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Abstract— Commercial electromagnetic modeling software employs overly-simplified models
for the terahertz simulation of metal structures. For the first time, this paper gives a unique
review of various modeling strategies (classical, semiclassical and quantum mechanical based) for
normal metals and discusses their limitations with frequency at room temperature.
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1. INTRODUCTION

High frequency CAD software packages employ overly-simplified models for the electromagnetic
simulation of metal structures; using either classical skin-effect or classical relaxation-effect models.
At room temperatures, these models are accurate beyond the upper edges of the microwave and
sub-millimeter-wave parts of the frequency spectrum, respectively. However, semiclassical models
are needed to extend modeling well into the terahertz region or at significantly lower temperatures.
Here, issues relating to the specular or diffuse nature of electron reflections at the air-metal interface
become apparent at very low temperatures.

Within the near-infrared, visible and ultra-violet parts of the frequency spectrum, Commer-
cial CAD software packages again may employ overly-simplified empirically-fitted relaxation-effect
models, which only work over relatively narrow spectral bandwidths. However, to be accurate, an
analytical model must be adopted that employs a quantum mechanical treatment, as this takes
into account both energy dispersion and electron wavefunctions.

The author has investigated modeling strategies for normal metals. In one study, experimental
measurements that suggested the possibility of anomalous room-temperature conduction losses were
examined between DC and 12.5THz [1]. It was found that the classical relaxation-effect model was
still valid up to these frequencies. In another study, an elaborate semiclassical model to describe
anomalous excess conduction losses at room temperature was found to be completely erroneous [2].
In order to create accurate analytical models, it is important to develop semiclassical modeling
strategies [3] or develop quantum mechanical treatments. To this end, and for the first time,
this paper will review various approaches to the modeling of normal metals at room temperature.
More importantly, their limitations will be discussed in detail. It will be shown that a number of
well-know approaches have severe limitations to general applications.

2. CLASSICAL TREATMENT

Drude’s model of intraband transitions describes an ideal system of free electrons having a spherical
Fermi surface. The classical relaxation-effect model takes into account electron-phonon collisions,
represented by the following expression for surface impedance, ZSR, in terms of Drude’s model for
intrinsic bulk conductivity, σR:

ZSR =

√
jωµoµr

σR + jωεo
where σR =

σo

(1 + jωτ)
(1)

where, angular frequency, ω = 2πf ; and f = frequency of the driving electric field; µo = perme-
ability of free space; µr = relative permeability; εo = permittivity of free space; σo = intrinsic bulk
conductivity at DC; and τ = phenomenological scattering relaxation time for the free electrons
(i.e., mean time between collisions).

Note that the complex operator +j is used throughout and that this replaces −i used in some
cited references. Failure to adopt a consistent notation can result in errors. It is found that at
room temperature and at sufficiently low frequencies, (1) reduces to the classical skin-effect model:

ZSR ≈
√

jωµoµr

σ0
= Ro(1 + j) when ωτ << 1 (2)
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where, Ro = classical skin-effect surface resistance and the displacement current term can been
ignored.

A rigorous investigation into the robustness of the classical relaxation-effect model, when com-
pared to measured data, found that it works well from DC to the lower edge of the mid-infrared
frequency range, for normal metals at room temperature [1]. This finding helped to dispel a
long-standing myth that an anomalous intrinsic conduction loss in normal metals exists at room
temperature.

There are several reasons why the classical relaxation-effect model is not sufficient for a qanti-
tative account of experimental observation, even when interband transitions can be safely ignored
or calculated separately:

1) Conduction bands with normal metals can be significantly different from the ideal spherical
energy band (that assumes an effective electron mass, m).

2) Scattering relaxation time is assumed to be independent of energy E(k), where k = wave
vector of the electron, even though it depends on both energy and position. For this reason,
τ is considered to be a semi-empirical parameter.

3) A local-response regime is assumed.

For the above reasons, to achieve even better modeling accuracy, it is necessary to move towards
the more complicated semiclassical treatment.

3. SEMICLASSICAL TREATMENT

It is well known that, at sufficiently high frequencies, the conductivity of normal metals exhibits
both temporal (i.e., frequency) and spatial (e.g., one-dimensional) dispersion. Harrison introduced
a frequency- and wave number-dependent dielectric function for a semiclassical free-electron gas [4].
This model describes the screened Coulomb potential effect that a spatial charge-density fluctuation
has on a free electron as it travels through a periodic lattice of fixed positive ions. It can be
helpful to think of induced conduction current within a normal metal as flowing in lamina-type
sheets: almost parallel to the surface (x-y-plane) of the conductor and having an amplitude that
decays exponentially from its surface into the bulk material. The electric and magnetic fields and
conduction current distributions inside the metal have time t and spatial (positive z-direction)
variations of the form:

e(jωt−γz) (3)

where, propagation constant, γ = α + jβ; α = attenuation constant; β = phase constant; and
γ = jq, where modified wave number of the driving electric field, q = q′ − jq′′.

Wang assumed that the periodic nature of the conduction current density gives rise to a screening
potential effect on free electrons as they travel in a direction perpendicular to the surface of the
air-metal boundary [5]. With spatial charge-density fluctuations being attributed to lamina-type
sheets of conduction currents, as an analogy to a periodic lattice of fixed positive ions, Wang
adopted Harrison’s screening potential theory. To this end, Harrison’s semiclassical expression for
intrinsic bulk conductivity, σH , was used to calculate Wang’s surface impedance, ZSW [2]:

ZSW=

√
jωµoµr

σH(s, ω)
where σH(s, ω)=σR




−3jωτ

s2
·

[
2s− ln

(
1+s
1−s

)]

2sjωτ +
[
2s−ln

(
1+s
1−s

)]


 and s=

±jqlm
(1+jωτ)

(4)

where, lm = mean distance traveled by the electron between collisions (i. e., mean-free path length).
In deriving (4), it was assumed that electrons at all angles, with respect to the metal surface in

the half-space, will contribute to the conductivity within this semiclassical free-electron gas analysis
[5]. Moreover, the modified wave number considered here is at least two orders of magnitude lower
than the Fermi wave number and, therefore, a quantum mechanical analysis is not necessary. It
was poorly assumed that with such long wavelengths of potential there is no difference between
conductivities for transverse and longitudinal fields in cubic materials [5]. Wang then applied his
spatial dispersion theory of excess conduction loss to room temperature measurements of copper,
from DC up to 6.7 THz, using the measured data at 35GHz and 70 GHz reported by Tischer [1, 2].

It is evident that the expression for intrinsic bulk conductivity, quoted by both Harrison and
Wang, is derived for longitudinal wave propagation [2]. As a result, his model has no meaning for
surface impedance and excess conduction loss calculations (as they are based on transverse wave
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propagation for normal incidence). Details of a rigorous de-construction of Wang’s model have
previously been published [2]. From this detailed investigation, it was clearly shown that not only
are there serious discrepancies within the general methodology, but even the data on which it is
based has unacceptable errors.

An accurate semiclassical treatment was first reported by Reuter and Sondheimer, back in 1948,
for transverse wave propagation [6]. Their approach gives an exact solution for all frequencies and
temperatures. Moreover, their general methodology can be for any value of specular reflection
coefficient, p; from diffuse (completely random) scattering, p = 0, to specular (mirror-type) surface
reflections, p = 1. With the latter, surface impedance ZsRS can be calculated from the following:

ZsRS =
jωµoµr

γ(o)
where γ(o) =

[
−lm

f(0)
f ′(0)

∣∣∣∣
p=1

]−1

and
f(0)
f ′(0)

∣∣∣∣
p=1

=
2

jπ(1 + jωτ)

∫ j∞
(1+jωτ)

0

1

s2 + ω2µoµrεol2m
(1+jωτ)2 − ξK(s)

· ds (5)

and ξ =
jς

(1 + jωτ)3
; ς =

3
4
ωµoµrσol

2
m; K(s) =

1
s3

[
2s− (1− s2) ln

(
1 + s

1− s

)]

This modeling approach assumes the following:

1) Skin depth is much less than linear dimensions of metal, thus regarding it as planar and
infinite in extent.

2) Normal incidence of propagation, thus simplifying to a one-dimensional problem.
3) Conduction electrons are quasi-free, having a kinetic energy E(k) = ~|k|2/2m with a parabolic

band approximation, where ~ = modified Planck’s constant.
4) Collision mechanism is always described in terms of lm.
5) A fraction p of electrons arriving at the surface is scattered specularly, while the rest are

scattered diffusely.
6) This one-band free-electron model does not apply to multi-valent metals, in which the electrons

occupy more than one energy band (e.g., aluminium or tin).
7) K(s) is derived for transverse conductivity, and holds for the whole (q, ω) plane, for a spherical

energy band.
8) While the semiclassical treatment takes into account partially-filled conduction band energy

dispersion, E(k), it ignores electron wavefunctions.

It is interesting to note that when |s| ¿ 1, e.g., with the long-wavelength limit of q → 0, then
K(s) = 4/3 in (5) and the associated intrinsic bulk conductivity is equal to Drude’s model for
intrinsic bulk conductivity, σR, given in (1).

4. QUANTUM MECHANICAL TREATMENT

Zhang and Pan use a quantum mechanical approach to derive, in detail [7], the following expression
for the dielectric function of the free-electron gas [7, 8]:

εr(q, ω) = 1 +
2e2

q2εo

1
V

∑

k

f(k)− f(k + q)
E(k + q)− E(k)− ~ω + jζ

(6)

where, e = electron charge; V = volume; f(k) = Fermi-Dirac distribution function. This is a
standard derivation and the result is known as the Lindhard dielectric function; also know as
the self-consistent-field (SCF) or random phase approximation (RPA) dielectric function [9]. By
replacing f(k + q) with f(−k) and taking the long wavelength limit, Zhang and Pan highlight the
following [7, 8]:

1
V

∑

k

f(k) =
n

2
; σo =

ne2τ

m
; vf =

~kf

m
; ζ =

~
2τ

(7)

where n = electron density, vf = velocity between collisions of the free electron, having kinetic
energy at the Fermi level and kf = Fermi wave number; as a means to somehow derive an expression
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for their intrinsic bulk conductivity, in expressions for dielectric function and surface impedance
[7, 8]:

εrZP (q, ω) = 1 +
σZP (q, ω)

jωεo
where σZP (q, ω) =

σo

1 + jωτ

[
1− 3

5

(
qlm
ωτ

)2
]

∴ ZsZP =

√
jωµoµr

σZP (q, ω) + jωεo

(8)

Unfortunately, the original expression for the dielectric function given in (6) is only valid for
longitudinal wave propagation [9]. As a result, the Zhang and Pan model has no meaning for their
surface impedance, ZsZP , and excess conduction loss calculations.

It is evident from the publications of Zhang and Pan that they have made the same mistake as
Wang, by trying to fit the wrong type of theoretical model to measured data. It has been previously
demonstrated that the relaxation-effect model is adequate for characterising the intrinsic frequency
dispersive nature of normal metals at room temperature, even into the terahertz frequency range.
Indeed, the results from a quantum mechanical model should actually converge onto those from
the relaxation-effect model at these frequencies, at room temperature. Since the room temperature
results, from the model of Zhang and Pan, deviate from the classical relaxation-effect model at
relatively low frequencies then this alone points to a fundamental error.

5. PROOF OF CONTRADITIONS WITH MODELS (4) AND (8)

Apart from the lack of any physical insight to justify the need for new models and the obvious misuse
of longitudinal wave propagation terms for calculating surface impedance, the work published by
Wang and also by Zhang and Pan also share a couple of fundamental contradictions.
5.1. First Contradiction
Intrinsic bulk conductivity exhibits spatial dispersion in the non-local response regime and, there-
fore, has a wave number dependency in reciprocal q-space. For one-dimensional propagation along
the positive z-axis, the general expression for conduction current density, Jc, in terms of intrinsic
bulk conductivity and electric field, E, is given by the non-local constitutive equation in real space
[10]:

Jcy(z)
∣∣∣
p=1

=

+∞∫

−∞
σ(z − z′)Ey(z′).dz′ (9)

Now, at the surface of the metal, conduction current density vector, Jcy(0), and surface current
density vector, Js, are related by the propagation constant at the surface, γ(0), as follows:

Jcy(0) = γ(0)Js where Js = n×Hx(0) (10)

where n =unit vector pointing out normal to the surface of the metal and Hx(0) = magnetic field
vector at the surface of the metal. Equation (9) can be expressed in terms of a simple convolution
(denoted by the symbol ∗) of the intrinsic bulk conductivity and electric field as follows:

∴ Jcy(z)
∣∣∣
p=1

≡ {σ(z)∗Ey(z)} (11)

But, surface impedance for normal incidence is related to the electric and magnetic fields as follows
using Ohms law [9, 10]:

Zs =
Ey(0)
Hx(0)

(12)

It can be easily seen that determining surface impedance is not so straight forward in the non-local
response regime, since: {

σ(z)∗Ey(z)
}∣∣

z=0
≡ γ(0)Hx(0) (13)

Now, taking the Fourier transform of both sides of (11) gives the non-local constitutive equation
in reciprocal q-space [10]:

Jc(q)
∣∣∣
p=1

= σ(q)E(q) (14)
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Surface impedance, by its very nature, must be expressed within real space and so (14) is of no direct
use. In the local response regime, however, the generalised conductivity behaves like a δ-function,
i.e., σ(z − z′) → σδ(z − z′).

∴
+∞∫

−∞
δ(z − z′)Ey(z′).dz′ = Ey(z) and Jcy(z)

∣∣∣
p=1

→ σEy(z) (15)

Therefore, in the local response regime, which represents the long-wavelength limit q → 0 in
reciprocal q-space, and ignoring displacement current, the simple expression for surface impedance
can be easily determined using (10), (12) and (15):

Zs =
γ(0)
σ

=

√
jωµoµr

σ
where σ 6= f(q) (16)

Evidently, (16) could only have been derived here if the intrinsic bulk conductivity is in the local
response regime. Since Wang’s semiclassical model and the work by Zhang and Pan both adopt
(16) with intrinsic bulk conductivity having spatial dispersion, i.e., in a non-local response regime,
this is direct proof of a fundamental contradiction.
5.2. Second Contradiction
Angular frequency ω and modified wave number q are assumed to be real variables by both Wang [5]
and also by Zhang [11], but this must be a complex variable when modeling normal metals at room
temperatures and at frequencies below the plasma frequency, as previously stated by Lucyszyn
[2]. In general, either the angular frequency ω or the modified wave number q must be a complex
term, in order to account for an exponentially decaying wave as it propagates into the metal. The
dispersion relations for electromagnetic waves in an isotropic homogeneous medium has either q
being complex and q = f(ω), where ω is real, or ω being complex and ω = f(q), where q is real [9].
Only if there is no dissipation of electromagnetic energy can both q and ω be real [9]. Therefore,
since both are treated as real variables, this contradicts the principle of conservation of energy for
wave propagation within a normal metal; once again challenging the validity of (4) and (8).

6. CONCLUSIONS

It would be inappropriate to use either Wang’s semiclassical model or the work by Zhang and Pan
to support the view that anomalous intrinsic frequency dispersion exists within normal metals at
room temperature. When the findings from this investigation are combined with those recently
published on the lack of experimental evidence, any myth associated with anomalous behavior at
room temperature can be finally dispelled; the relaxation-effect model is sufficiently accurate to
describe the natural behavior of normal metals at room temperature. It has already been shown
that measured data up to 12.5 THz actually fits the classical relaxation-effect model quite well [1].
This is good news for those working between circa 30GHz and 12 THz. For example, within future
measurement systems, the mathematically simple Drude model can be used to characterize the
surface impedance for calibration standards (with accurate values for only σo and τ being needed
by the metrologist). This approach would lead to much more accurately calibrated sub-mm-wave
measurement systems. For even greater accuracy, the complicated semiclassical approach based on
the work of Reuter and Sondheimer are recommended, especially when modeling is to be undertaken
for applications well below room temperature.
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