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Background and Motivation

Stellar evolution is a branch of astronomy which focuses on how stars are formed and
how they evolve over time. Astrophysicists characterise a star using parameters such as
age, distance from the Earth, mass, composition. Computer models predict stellar
photometry from these parameters. Photometry is a commonly used measure of an
astronomical object’s brightness. Photometric data are observed via telescopes with
certain measurement errors.
To make inference about stellar parameters, van Dyk et al. (2009) has developed a
principled Bayesian statistical technique that embeds computer models for stellar
evolution into a multilevel model that accounts for data contemination, measurement
errors and multi-star systems. Markov chain Monte Carlo(MCMC) is employed to
explore the joint posterior distribution of parameters of this model. Figure 1 is a typical
serpent-shaped joint posterior density of logAge (short for log10(Age)), distance
modulus, and mass of a white dwarf star.

Figure 1: Marginal posterior density of age, distance modulus and mass.

Hierarchical Modelling a Cluster of Halo Stars

The aim of this project is to learn the population distribution of white dwarf stars in the
Galactic halo. Galactic halo is the outer region of a galaxy. Figure 2 shows the plain
view of a Galaxy.

Figure 2: The plain figure of a Galaxy.

For brevity, let Aj = log10(Age) for star j and θj be the mass, distance modulus and
metallicity of star j. We consider the hierarchical model:

(Xj|θj,Aj) ∼ N(G(θj,Aj),Σj);

θj ∼ p(θj);

(Aj|γ, τ ) ∼ N(γ, τ 2), j = 1, · · · , J,

where G(·) is the stellar evolution model. Based on astronomers’ understanding, we
can set an objective and proper joint prior on γ and τ , denoted by π(γ, τ ) ∝ 1.
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Methodology

In our method, we take empirical Bayes to fit the hierarchical model. It proceeds in two
steps. Step 1: find the MAP (Maximum a Posterior) estimate of hyperparameters, γ
and τ . Step 2: plug this estimate in the population level model leads to a prior for all
individual stars. To circumvent the case that τ peaks at 0, we take the logarithm
transformation by taking ξ = log(τ ).
Here is the description of our algorithm for obtaining the MAP estimates for γ and τ .

Phase 1: MCEM

1. Initialise γ = γ(1), ξ = ξ(1) and τ = exp(ξ(1));
2. Given the t-th iteration γ(t) and τ (t), for star i = 1, · · · , I, we draw a sample
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4. Replicate step 2 and 3 until distance between two consecutive iterations is small
enough;

Phase 2: EM with importace sampling

1. Record the last a few samples for all stars in phase 1. For breivity, we take just
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obtained when given γ = γ∗, τ = exp(xi∗).
2. Suppose current iteration γ(t), τ (t) = exp(ξ(t)), then
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3. Repeat step 2 until some stopping criteria is satisfied.

Real Data Analysis

Our method is used to fit those five stars. Figure 3 is the comparison between
non-hierarchical fitting and its hierarchical countpart. We can see the shrinkage effect
of hierarhical modelling, which compromises all available age information from different
stars.

Figure 3: Hierarchical fitting versus nonhierarchical fitting of 5 stars
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