# Imperial College London

# A full factorial benchmarking study of non-parametric partitioning methods for mixed-type data

Efthymios Costa

Supervised by: Dr. Ioanna Papatsouma & Prof. Alastair Young

# Motivation & Aims

- Clustering: the task of assigning data points into a number of groups/clusters such that data points within each cluster are more similar to each other than to points in other groups.
- Mixed data sets are often encountered and performing meaningful cluster analysis is crucial for practitioners.
- Benchmarking studies could serve as a guide to help with the choice of clustering technique but these need to disentangle possible interactions between the various data set characteristics. [1]

# Non-Parametric Methods

Dissimilarities between data objects are defined by distance functions:

• **K-Prototypes** [2]:

$$d(X_i, Q_l) = \sum_{j=1}^{p_r} (x_{ij} - q_{lj})^2 + \gamma_l \sum_{j=p_r+1}^{p} \delta(x_{ij}, q_{lj}).$$

• Gower's dissimilarity [3]:

$$d_G(X_i, X_j) = 1 - \frac{\sum_{k=1}^{p} w_k(X_i, X_j) s_k(X_i, X_j)}{\sum_{k=1}^{p} w_k(X_i, X_j)}$$

• Mixed K-Means [4]:  $d_M(X_i, Q_l) =$  $\sum_{i=1}^{N} (w_j(x_{ij}-q_{lj}))^2 + \sum_{i=1}^{N} \Omega(x_{ij},q_{lj})^2$ 

• Modha-Spangler K-Means [5]:

$$d_{MS}(X_i, Q_l) =$$

$$\sum_{j=1}^{p_r} (x_{ij} - q_{lj})^2 + \gamma_l \left( 1 - \frac{\sum_{j=p_r+1}^{P^*} x_{ij} q_{lj}}{\sqrt{\sum_{j=p_r+1}^{P^*} x_{ij}^2} \sqrt{\sum_{j=p_r+1}^{P^*} q_{lj}^2}} \right)$$

$$E = \sum_{l=1}^{k} \sum_{i=1}^{n} y_{il} \ d(X_i, Q_l) \tag{1}$$

(1) is the 'trace of the within cluster dispersion matrix' cost function that we want to minimise.

# Factor Analysis Techniques

#### Motivation

- Data sets can consist of a very large number of columns (variables), some of which may be irrelevant to the existing cluster structure.
- Dimensionality reduction techniques can be particularly helpful in such cases.
- How can they be achieved for both continuous & categorical data?

#### Methods Considered:

- Factor Analysis for Mixed Data [6]:
- Sequential dimensionality reduction and clustering method.
- The  $i^{\text{th}}$  principal component is given by:

$$\begin{aligned} \boldsymbol{F}_{i}^{*} &= \underset{\boldsymbol{F}_{i} \perp \boldsymbol{F}_{i-1}, \dots, \boldsymbol{F}_{1}}{\operatorname{arg\,max}} \sum_{j=1}^{p_{r}} R^{2} \left(\boldsymbol{F}_{i}, \boldsymbol{X}_{con_{j}}\right) + \sum_{j=p_{r}+1}^{p} \eta^{2} \left(\boldsymbol{F}_{i}, \boldsymbol{X}_{cat_{j}}\right). \end{aligned}$$
• K-Means is applied on the lower dimensional representation.

- Mixed Reduced K-Means [7]:
- Joint dimensionality reduction and clustering method.
- The 'optimal' cluster allocation is given by:  $oldsymbol{Z}_k^* = rg \min \phi_{RKM}\left(oldsymbol{B}, oldsymbol{Z}_k, oldsymbol{G}
  ight) = rg \min \left\|oldsymbol{X} - oldsymbol{Z}_k oldsymbol{G} oldsymbol{B}^\intercal 
  ight\|_F^2$
- Minimisation via an alternating least squares algorithm.

# Experimental Design & Results

### Experimental Design

- Aspects Investigated:
- Number of observations (300, 600, 1200)
- Number of variables (6, 10, 12)
- Number of clusters (3, 4, 5)
- Cluster sphericity (Spherical/Non-Spherical)
- Average cluster overlap:  $\omega_{ij} = \omega_{i|j} + \omega_{j|i}$ , where  $\omega_{i|j} = \mathbb{P}_{\boldsymbol{X}} \left( \pi_j \phi \left( \boldsymbol{X}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j \right) < \pi_i \phi \left( \boldsymbol{X}; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i \right) | \boldsymbol{X} \sim \mathcal{N}_p \left( \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j \right) \right)$  [8] (0.01, 0.05, 0.10, 0.15, 0.20)
- Cluster density, i.e. whether clusters are balanced (Balanced/Highly Unbalanced)
- Data sets simulated from Gaussian mixtures, half of the variables discretised by quantile discretisation.
- Cluster recovery performance evaluated using the Adjusted Rand Index (ARI) [9].

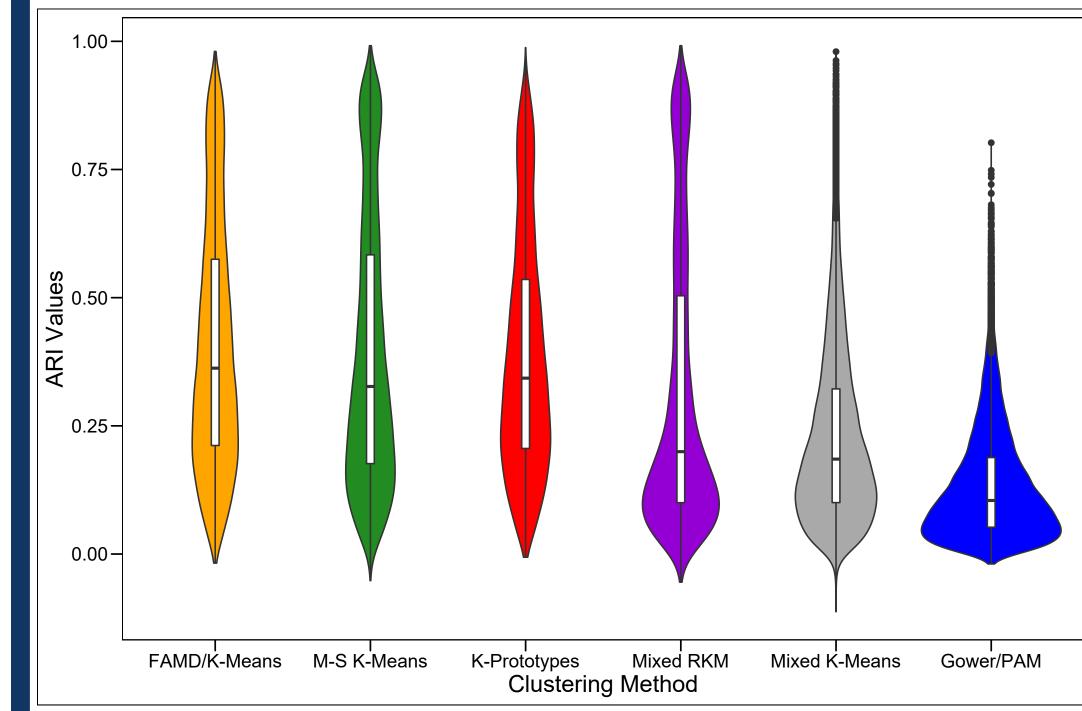
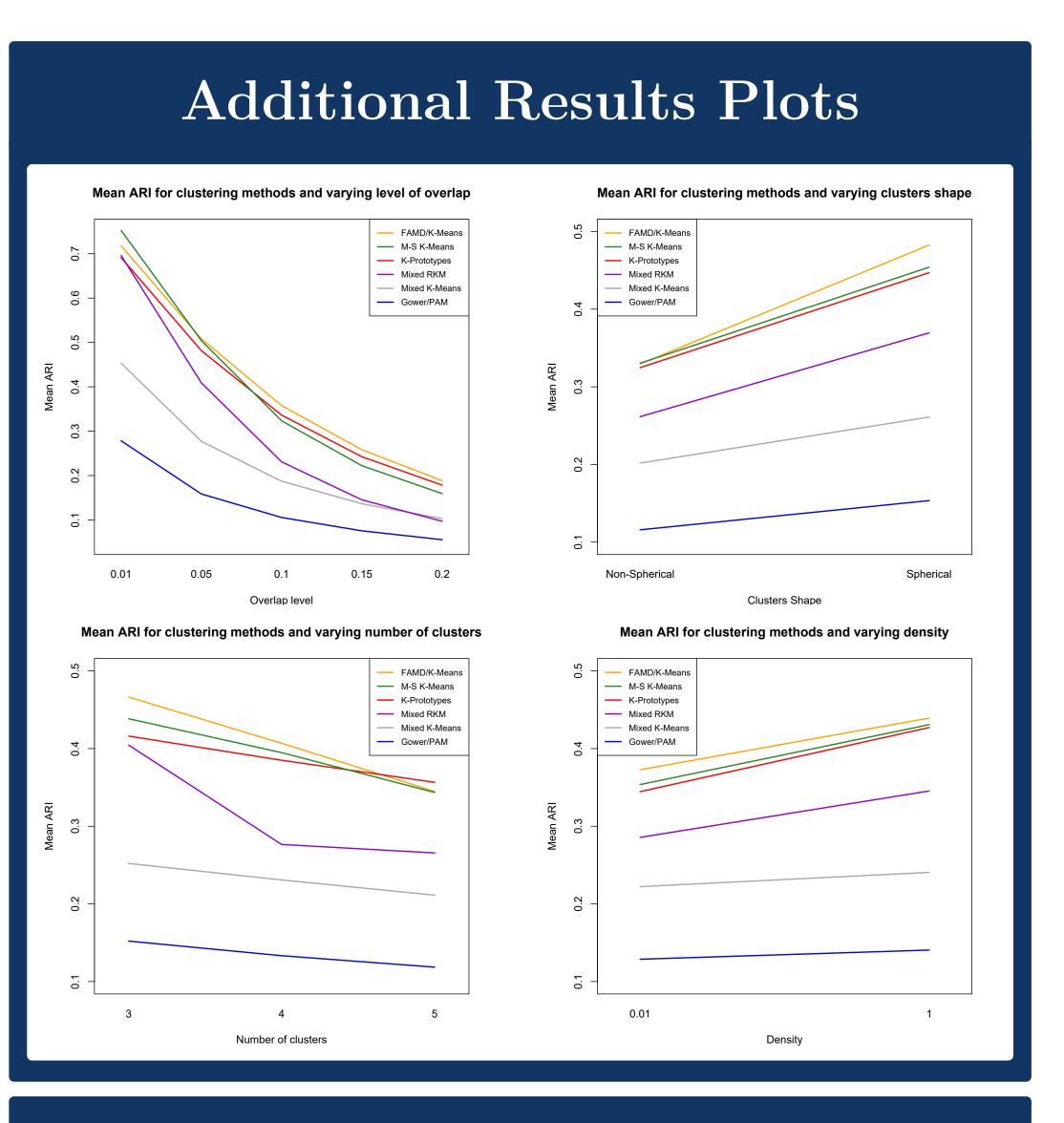


Figure: Violin/box plots of Adjusted Rand Index values by method

| Effect                    | Source            | partial $\eta^2$ |
|---------------------------|-------------------|------------------|
| Between data sets effects | overlap           | .804             |
|                           | shape             | .268             |
|                           | # clusters        | .140             |
|                           | density           | .091             |
|                           | # vars            | .012             |
|                           | # obs             | .006             |
| Within                    | Method (M)        | .666             |
|                           | M*overlap         | .501             |
| data sets                 | M*vars            | .206             |
| effects                   | M*clusters        | .153             |
| (univariate               | M*density         | .093             |
| tests)                    | M*shape           | .024             |
|                           | M*obs             | .002             |
|                           | A N I 🔿 \ / A - C |                  |

Table: Repeated measures ANOVA for six clustering methods on ARI (factors ordered by decreasing effect size, partial  $\eta^2$ )



#### Future Work Plans

- Investigate the effect of the ratio of categorical to continuous variables in clustering performance.
- Generate purely mixed-type data, i.e. purely categorical variables and purely continuous variables with a cluster structure.
- Look at high-dimensional data  $(n \ll p)$  and conduct a similar study.

#### References

- Van Mechelen, A.-L. Boulesteix, R. Dangl, N. Dean, I. Guyon, C. Hennig, F. Leisch, and D. Steinley, "Benchmarking in cluster analysis: A white paper," arXiv preprint arXiv:1809.10496, 2018.
- [2] Z. Huang, "Clustering large data sets with mixed numeric and categorical values," in *Proceedings of* the 1st Pacific-Asia conference on knowledge discovery and data mining (PAKDD), pp. 21–34,
- [3] J. C. Gower, "A general coefficient of similarity and some of its properties," *Biometrics*, pp. 857–871,
- [4] A. Ahmad and L. Dey, "A k-mean clustering algorithm for mixed numeric and categorical data," Data & Knowledge Engineering, vol. 63, no. 2, pp. 503–527, 2007.
- D. S. Modha and W. S. Spangler, "Feature weighting in k-means clustering," *Machine learning*,
- 6] J. Pagès, Multiple Factor Analysis By Example Using R, ch. 3, pp. 67–78.
- Vichi, D. Vicari, and H. A. Kiers, "Clustering and dimension reduction for mixed variables,"
- Behaviormetrika, vol. 46, no. 2, pp. 243–269, 2019.
- [8] R. Maitra and V. Melnykov, "Simulating data to study performance of finite mixture modeling and clustering algorithms," Journal Of Computational And Graphical Statistics, vol. 19, no. 2, pp. 354–376, 2010.
- [9] L. Hubert and P. Arabie, "Comparing partitions," Journal Of Classification, vol. 2, no. 1,

#### Notation

k: number of clusters, n: number of data points, p: number of variables,  $p_r$ : number of continuous & dummy-coded categorical variables, k: ith data point, k: prototype/centroid/ medoid for  $l^{\text{th}}$  cluster,  $\|\cdot\|_F$ : Frobenius norm,  $y_{il}:=1\iff X_i$  is in  $l^{\text{th}}$  cluster (else 0),  $\boldsymbol{B}$ : cluster centroids in reduced dimensions,  $\boldsymbol{Z}_k$ : cluster allocations matrix