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Motivation & Aims

• Clustering: the task of assigning data points into
a number of groups/clusters such that data
points within each cluster are more similar to
each other than to points in other groups.

• Mixed data sets are often encountered and
performing meaningful cluster analysis is crucial
for practitioners.

• Benchmarking studies could serve as a guide to
help with the choice of clustering technique but
these need to disentangle possible interactions
between the various data set characteristics. [1]

Non-Parametric Methods

Dissimilarities between data objects are defined by
distance functions:
• K-Prototypes [2]:

d(Xi, Ql) =
pr∑

j=1
(xij − qlj)2 + γl

p∑
j=pr+1

δ(xij, qlj).

• Gower’s dissimilarity [3]:

dG(Xi, Xj) = 1 −

p∑
k=1

wk(Xi,Xj)sk(Xi,Xj)
p∑

k=1
wk(Xi,Xj)

• Mixed K-Means [4]: dM(Xi, Ql) =
pr∑

j=1
(wj(xij − qlj))2 +

p∑
j=pr+1

Ω(xij, qlj)2

• Modha-Spangler K-Means [5]:
dMS(Xi, Ql) =

pr∑
j=1

(xij − qlj)2 + γl
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
E =

k∑
l=1

n∑
i=1

yil d(Xi, Ql) (1)

(1) is the ‘trace of the within cluster dispersion
matrix’ cost function that we want to minimise.

Factor Analysis Techniques

Motivation

• Data sets can consist of a very large number of
columns (variables), some of which may be
irrelevant to the existing cluster structure.

• Dimensionality reduction techniques can be
particularly helpful in such cases.

• How can they be achieved for both continuous &
categorical data?

Methods Considered:
• Factor Analysis for Mixed Data [6]:

• Sequential dimensionality reduction and clustering method.
• The ith principal component is given by:

F ∗
i = arg max

F i⊥⊥F i−1,...,F 1

pr∑
j=1

R2 (F i, Xconj

)
+

p∑
j=pr+1

η2 (F i, Xcatj

)
.

• K-Means is applied on the lower dimensional representation.

• Mixed Reduced K-Means [7]:
• Joint dimensionality reduction and clustering method.
• The ‘optimal’ cluster allocation is given by:

Z∗
k = arg min

Zk

ϕRKM (B, Zk, G) = arg min
Zk

∥X − ZkGB⊺∥2
F

• Minimisation via an alternating least squares algorithm.

Experimental Design & Results
Experimental Design
• Aspects Investigated:

• Number of observations (300, 600, 1200)
• Number of variables (6, 10, 12)
• Number of clusters (3, 4, 5)
• Cluster sphericity (Spherical/Non-Spherical)
• Average cluster overlap: ωij = ωi|j + ωj|i, where ωi|j = PX

(
πjϕ

(
X ; µj, Σj

)
< πiϕ (X ; µi, Σi) |X ∼ Np

(
µj, Σj

))
[8]

(0.01, 0.05, 0.10, 0.15, 0.20)
• Cluster density, i.e. whether clusters are balanced (Balanced/Highly Unbalanced)

• Data sets simulated from Gaussian mixtures, half of the variables discretised by quantile discretisation.
• Cluster recovery performance evaluated using the Adjusted Rand Index (ARI) [9].
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Figure: Violin/box plots of Adjusted Rand Index values by method

Effect Source partial η2

Between
data sets
effects

overlap .804
shape .268
# clusters .140
density .091
# vars .012
# obs .006

Within
data sets
effects
(univariate
tests)

Method (M) .666
M*overlap .501
M*vars .206
M*clusters .153
M*density .093
M*shape .024
M*obs .002

Table: Repeated measures ANOVA for six clustering methods
on ARI (factors ordered by decreasing effect size, partial η2)

Additional Results Plots
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Future Work Plans

• Investigate the effect of the ratio of categorical to
continuous variables in clustering performance.

• Generate purely mixed-type data, i.e. purely
categorical variables and purely continuous
variables with a cluster structure.

• Look at high-dimensional data (n ≪ p) and
conduct a similar study.
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Notation

k: number of clusters, n: number of data points, p: number of variables, pr: number of continuous variables, P ∗: number of continuous & dummy-coded categorical variables, Xi: ith data point, Ql: prototype/centroid/
medoid for lth cluster, ∥·∥F : Frobenius norm, yil: = 1 ⇐⇒ Xi is in lth cluster (else 0), B: columnwise orthonormal loadings matrix, G: cluster centroids in reduced dimensions, Zk: cluster allocations matrix


