Imperial College
London

Symmetrization inequalities on one-dimensional integer lattice
Shubham Gupta
Department of Mathematics, Imperial College London

Symmetrization inequalities on \mathbb{R}^{d}

$$
\begin{align*}
& \text { We consider the famous Polya-Szegö inequality [10]: } \\
& \qquad \int_{\mathbb{R}^{d}}|\nabla u|^{2} d x \geq \int_{\mathbb{R}^{d}}\left|\nabla u^{*}\right|^{2} d x, \tag{1}\\
& \text { where } u^{*} \text { is the symmetric-decreasing rearrangement of the function } u \text {, defined by }
\end{align*}
$$

$$
u^{*}(x):=\int_{0}^{\infty} \chi_{\{|u|>t\}^{*}}(x) d t,
$$

where, given a set $\Omega \subset \mathbb{R}^{d}$, Ω^{*} is the ball centered at origin whose measure is same as the measure of Ω.

$\{f>t\}$

$\{f *>t\}$

In Euclidean spaces, symmetrization inequalities including (1) are a standard and powerful tool to establish the symmetry of optimizers of many variational problems. In the past, they have also estabish the symmetry of optimizers of mary variational probiems. In the past, they have also ties(Sobolev inequality, Cafferreli-Kohn-Nirenberg inequality, etc) [1], [11].

Open Problem

Find a labeling $\eta: \mathbb{Z}^{2} \rightarrow \mathbb{N}$ of the 2-D lattice \mathbb{Z}^{2} :

such that we have $\sum_{x \sim y}|u(x)-u(y)|^{2} \geq \sum_{x \sim y}\left|u^{*}(x)-u^{*}(y)\right|^{2}$, where u^{*} is the decreasing
rearrangement of u w.r.t. the labeling η. rearrangement of u w.r.t. the labeling η.

Symmetrization inequalities on graphs

The oldest results on the topic dates back to the early 20th century. These results are compiled in chapter X of the book by Hardy, Littlewood and Polya [7].
In late 90 's, Alexander R. Pruss [13] studied symmetrization inequalities on regular trees, and used them to prove Faber-Krahn inequality

They proved the following Polya-Szegö inequality

$$
\begin{equation*}
\sum_{x \sim y}|u(x)-u(y)|^{2} \geq \sum_{x \sim y}\left|u^{*}(x)-u^{*}(y)\right|^{2} \tag{3}
\end{equation*}
$$

where u^{*} is defined as a decreasing rearrangement of the function u with respect to the labeling given in the diagram above.

Applications of Open Problem

The open problem posed can have the following potential applications:

1. It implies isoperimetric inequality on the lattice by taking u to be a characteristic function, see [8] for a survey on isoperimetric problems on graphs.
It can be used to prove Faber-Krahn inequality on the lattice, see [14] for the existing results in this direction
It can be used to prove the Sobolev inequality on the lattice, see [9] for the existence of the optimizer of Sobolev inequality on the lattice.
It can be used to prove the Hardy's inequality on the lattice, see [4] for the asymptotic behaviour of the sharp constant in Hardy's inequality

Results

$$
\begin{align*}
& \text { In [5], we studied the symmetrization inequalities on integers. We proved the following main } \\
& \text { results: } \\
& \text { 1. Let } w: \mathbb{Z}^{+} \rightarrow \mathbb{R} \text { be a non-negative increasing function. Let } u:^{+} \rightarrow \mathbb{R} \text { be a function. Then } \\
& \qquad \sum_{n \in+}|u(n)-u(n+1)|^{p} w(n) \geq \sum_{n \in+}|\widetilde{u}(n)-\widetilde{u}(n+1)|^{p} w(n), \tag{4}\\
& \text { for all } p \geq 1 \text {, where } \widetilde{u}(0) \text { is the largest value of } u \widetilde{u}(1) \text { is the second largest value of } u \text { and so } \\
& \text { on. Morever, } \\
& \text { decreasing function. }>0 \text {, if } u \text { produces equality in (4), then }|u|=\widetilde{u} \text {. In particular, }|u| \text { is a } \\
& \text { 2. Let } u \in l^{2}(\mathbb{Z}) \text {, then we have } \\
& \qquad \sum_{n \in \mathbb{Z}}|u(n)-u(n-1)|^{2} \geq \sum_{n \in \mathbb{Z}}\left|u^{*}(n)-u^{*}(n-1)\right|^{2}, \\
& \text { for some radially decreasing function } u^{*} \text {. } \\
& \text { As an application, we applied inequality (4) to prove weighted Hardy's inequality[3], [2]: } \\
& \qquad \sum_{n=1}^{\infty}|u(n)-u(n-1)|^{2} n^{\alpha} \geq(\alpha-1)^{2} / 4 \sum_{n=1}^{\infty}|u|^{2} n^{\alpha-2},
\end{align*}
$$

for $1<\alpha \leq 2$.

References

```
    1]) AAvino, Friedemann Brock F Chiacchio,A A Meraldo, and MR Posteraro. Some isoperimetric inequalities on rn with respect to
    2] Shubham Gupta. One-dimensional discrete hardy and rellich inequalities on integers. ax\iv preprint arxiv:2112.10923, 2021.
    [3] Shubham Gupta. Discrete weighted hardy inequality in 1-d. Journal of Mathematical Analysis ond Applications, page 126345, 2022
    4] Shubham Gupta. Harcy and rellich inequality on latices. arxiv preprint arxi:2205.07221, 2022.
    51. Shubham Gupta, Symmetrizaion inequalities on one-dimensional integer lattice. axiv verepinta arxiv.220411447, 2022.
    [6] Hichem Haidie. Rearrangement inequalites in the discrete seting and some applications.Nonineara Analysis:Theory. Methods&
    *) Hichem Hajiei.).Rearangement ineuulities in the discrete setting and some applications. Nonlinear Analysis: Theor, Methods &
    7] Goocriey Harold Harcy, John Edensor Littewood, George Poly, György Polya, etal./ nequalities. Cambridge university pres, 1952.
    I8. Lawrence Hueston Harper. Global methods for combinatoroil soperinetric problems, volume 90. Cambridge University Pess, 2004.
    Bubo Hua and Ruowei Li.T.The existence of extemal functions for discrete sobolev inequalities on latice graphs. Journal of Differentio
[0] Srinivasan Kesava.Syymetrization and applictions, volume 3. Wordd Scientifc. 2006,
11] ElliotHLHLieb.Existence and uniqueness of the minimizing solution of coquard's nonlinear equation.Studies i A Applied Mathematics
[12] Alexader R Pruss. 'symmetrization, harmonic measures,Green's functions and difference equations,". PhD thesis, Ph. D. thesis,
```



```
[14] Yakov Shlapentorh-Rothman. An asymptotic faber-krahn inequality for the combinatorial laplacian on`` 2. arxiv prep\mathrm{ \rint}
```

