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Symmetrization inequalities on Rd

We consider the famous Polya-Szegö inequality [10]:∫
Rd

|∇u|2dx ≥
∫
Rd

|∇u∗|2dx, (1)

where u∗ is the symmetric-decreasing rearrangement of the function u, defined by

u∗(x) :=
∫ ∞

0
χ{|u|>t}∗(x)dt, (2)

where, given a set Ω ⊂ Rd, Ω∗ is the ball centered at origin whose measure is same as the measure

of Ω.

In Euclidean spaces, symmetrization inequalities including (1) are a standard and powerful tool to

establish the symmetry of optimizers of many variational problems. In the past, they have also

been successfully used to provide the sharp constants in various important functional inequali-

ties(Sobolev inequality, Cafferreli-Kohn-Nirenberg inequality, etc) [1], [11].

Open Problem

Find a labeling η : Z2 → N of the 2-D lattice Z2:

such that we have
∑

x∼y |u(x) − u(y)|2 ≥
∑

x∼y |u∗(x) − u∗(y)|2, where u∗ is the decreasing

rearrangement of u w.r.t. the labeling η.

Symmetrization inequalities on graphs

The oldest results on the topic dates back to the early 20th century. These results are compiled

in chapter X of the book by Hardy, Littlewood and Polya [7].

In late 90’s, Alexander R. Pruss [13] studied symmetrization inequalities on regular trees, and used

them to prove Faber-Krahn inequality.

They proved the following Polya-Szegö inequality∑
x∼y

|u(x) − u(y)|2 ≥
∑
x∼y

|u∗(x) − u∗(y)|2, (3)

where u∗ is defined as a decreasing rearrangement of the function u with respect to the labeling

given in the diagram above.

Applications of Open Problem

The open problem posed can have the following potential applications:

1. It implies isoperimetric inequality on the lattice by taking u to be a characteristic function, see

[8] for a survey on isoperimetric problems on graphs.

2. It can be used to prove Faber-Krahn inequality on the lattice, see [14] for the existing results

in this direction.

3. It can be used to prove the Sobolev inequality on the lattice, see [9] for the existence of the

optimizer of Sobolev inequality on the lattice.

4. It can be used to prove the Hardy’s inequality on the lattice, see [4] for the asymptotic

behaviour of the sharp constant in Hardy’s inequality.

Results

In [5], we studied the symmetrization inequalities on integers. We proved the following main

results:

1. Let w : Z+ → R be a non-negative increasing function. Let u :+→ R be a function. Then∑
n∈+

|u(n) − u(n + 1)|pw(n) ≥
∑
n∈+

|ũ(n) − ũ(n + 1)|pw(n), (4)

for all p ≥ 1, where ũ(0) is the largest value of u, ũ(1) is the second largest value of u and so

on. Moreover, if w(n) > 0, if u produces equality in (4), then |u| = ũ. In particular, |u| is a
decreasing function.

2. Let u ∈ l2(Z), then we have∑
n∈Z

|u(n) − u(n − 1)|2 ≥
∑
n∈Z

|u∗(n) − u∗(n − 1)|2, (5)

for some radially decreasing function u∗.

As an application, we applied inequality (4) to prove weighted Hardy’s inequality[3], [2]:
∞∑

n=1
|u(n) − u(n − 1)|2nα ≥ (α − 1)2/4

∞∑
n=1

|u|2nα−2, (6)

for 1 < α ≤ 2.
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