Welcome to the College........................................................................................................ 1
Our Principles ...................................................................................................................... 2
Welcome from the Graduate School................................................................................... 3
The Graduate School........................................................................................................... 4
1. Introduction to the Department....................................................................................... 5
   Welcome from Head of Department ................................................................................ 5
   Welcome from Director of Postgraduate Studies ....................................................... 5
   Welcome from Programme Director .............................................................................. 6
   Academic and Administrative staff .............................................................................. 7
   English language requirement ..................................................................................... 8
   Attendance and absence ............................................................................................. 8
   Key dates 2021–22 ...................................................................................................... 8
2. Programme Information ..................................................................................................... 10
   Aims/Objectives/Learning Outcomes ......................................................................... 10
   Programme Structure .................................................................................................. 10
   Accreditation ............................................................................................................... 12
   Core Modules .............................................................................................................. 12
   Elective Modules ......................................................................................................... 14
      5 ECTS Modules ...................................................................................................... 17
      7.5 ECTS Modules ................................................................................................... 21
   The Project ..................................................................................................................... 21
   Computing ..................................................................................................................... 26
   Marking Guidelines ..................................................................................................... 26
   Further Elements of the Course .................................................................................. 26
   Imperial Mobile app ...................................................................................................... 27
   Welcome to Imperial app ............................................................................................. 27
   Imperial Success Guide ............................................................................................... 27
3. Assessment .......................................................................................................................... 28
   General ........................................................................................................................... 28
   Project ............................................................................................................................ 29
   Degree Classifications ................................................................................................. 29
   Release of Results ......................................................................................................... 30
   Past exam papers ......................................................................................................... 31
   Plagiarism ....................................................................................................................... 31
   Collusion ........................................................................................................................ 32
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam offences</td>
<td>32</td>
</tr>
<tr>
<td>Dishonest practice</td>
<td>32</td>
</tr>
<tr>
<td><strong>4. Board of Examiners</strong></td>
<td>33</td>
</tr>
<tr>
<td><strong>5. Location and Facilities</strong></td>
<td>34</td>
</tr>
<tr>
<td><strong>6. Working While Studying</strong></td>
<td>36</td>
</tr>
<tr>
<td><strong>7. Health and Safety</strong></td>
<td>37</td>
</tr>
<tr>
<td><strong>8. College Policies and Procedures</strong></td>
<td>39</td>
</tr>
<tr>
<td>Regulations for Students</td>
<td>39</td>
</tr>
<tr>
<td>Academic Feedback Policy</td>
<td>39</td>
</tr>
<tr>
<td>Provisional Marks Guidance</td>
<td>39</td>
</tr>
<tr>
<td>Late Submission Policy</td>
<td>40</td>
</tr>
<tr>
<td>Mitigating Circumstances</td>
<td>40</td>
</tr>
<tr>
<td>Academic Misconduct Policy and Procedures</td>
<td>40</td>
</tr>
<tr>
<td>Unsatisfactory Progress</td>
<td>41</td>
</tr>
<tr>
<td>Academic Appeals Procedure</td>
<td>41</td>
</tr>
<tr>
<td>Arithmetic Marks Check</td>
<td>41</td>
</tr>
<tr>
<td>Student Complaints</td>
<td>41</td>
</tr>
<tr>
<td>Student Disciplinary Procedure</td>
<td>41</td>
</tr>
<tr>
<td>Intellectual Property Rights Policy</td>
<td>42</td>
</tr>
<tr>
<td>Use of IT Facilities</td>
<td>42</td>
</tr>
<tr>
<td>General Data Protection Regulation (GDPR)</td>
<td>42</td>
</tr>
<tr>
<td><strong>9. Wellbeing, Support and Advice</strong></td>
<td>43</td>
</tr>
<tr>
<td>In your department</td>
<td>43</td>
</tr>
<tr>
<td>Your Union</td>
<td>43</td>
</tr>
<tr>
<td>Student Hub</td>
<td>44</td>
</tr>
<tr>
<td>Student Support Zone</td>
<td>44</td>
</tr>
<tr>
<td>Useful support contacts</td>
<td>44</td>
</tr>
<tr>
<td><strong>10. Student Administration</strong></td>
<td>46</td>
</tr>
<tr>
<td><strong>13. Work-life Balance</strong></td>
<td>47</td>
</tr>
<tr>
<td>Graduate Students' Union</td>
<td>47</td>
</tr>
<tr>
<td>Move Imperial</td>
<td>47</td>
</tr>
<tr>
<td><strong>14. Student feedback and representation</strong></td>
<td>48</td>
</tr>
<tr>
<td>Feedback from students</td>
<td>48</td>
</tr>
<tr>
<td>Student representation</td>
<td>48</td>
</tr>
<tr>
<td>Staff-Student Committee</td>
<td>48</td>
</tr>
<tr>
<td><strong>15. Student Surveys</strong></td>
<td>49</td>
</tr>
<tr>
<td><strong>16. And finally</strong></td>
<td>50</td>
</tr>
<tr>
<td>Alumni Services</td>
<td>50</td>
</tr>
<tr>
<td>Opportunities for Further Study</td>
<td>50</td>
</tr>
</tbody>
</table>
Welcome to the College

Congratulations on joining Imperial College London, the only university in the UK to focus exclusively on science, medicine, engineering and business.

From Fleming’s discovery of Penicillin to Gabor’s invention of holography, Imperial has been changing the world for well over 100 years. You’re now part of this prestigious community of discovery and we hope you will take this opportunity to make your own unique contribution.

You’re now very much a part of this community of discovery and we hope you will take this opportunity to make your own unique contribution. At Imperial, we expect all members of our community, whether students or staff, to share and demonstrate our values of respect, integrity, collaboration, innovation and excellence in all we do and strive to achieve.

We understand that this is a challenging time for our student community due to the impact of coronavirus and we are committed to providing you with the very best academic resources to enrich your experience. Information on teaching and learning, services and facilities to support the wider student experience during the Covid-19 pandemic can be found on the College’s webpages, alongside local information provided by your Department. We also provide a dedicated support network and a range of specialist support services to make sure you have access to the appropriate help, whether that’s further training in an academic skill like note taking or simply having someone to talk to.

You’ll have access to an innovative range of professional development courses within our Graduate School throughout your time here, as well as opportunities to meet students from across the College at academic and social events – see page 6 for more information.

We actively encourage you to seek out help when you need it and try to maintain a healthy work-life balance. Our choice of over 360 clubs, societies and projects is one of the largest of any UK university, making it easy to do something different with your downtime. Access to the gym and other sporting facilities will be dependent on government guidance. We are working to ensure that you have access to a variety of resources online to support your health and wellbeing if there are restrictions.

As one of the best universities in the world, we are committed to inspiring the next generation of scientists, engineers, clinicians and business leaders by continuing to share the wonder of what we do through public engagement events. Postgraduate students, alongside our academics and undergraduate students, make a significant contribution to events such as our annual Imperial Festival and our term-time Imperial Fringe events – if you’re interested in getting involved then there will be opportunities for you to do so.
Our Principles
In 2012 the College and Imperial College Union agreed ‘Our Principles’ a series of commitments made between students and the College. The Principles are reviewed annually by the Quality Assurance and Enhancement Committee and changes recommended for Senate approval.

Imperial will provide through its staff:
- A world class education embedded in a research environment
- Advice, guidance and support
- The opportunity for students to contribute to the evaluation and development of programmes and services

Imperial will provide students with:
- Clear programme information and assessment criteria
- Clear and fair academic regulations, policies and procedures
- Details of full programme costs and financial support
- An appropriate and inclusive framework for study, learning and research

Imperial students should:
- Take responsibility for managing their own learning
- Engage with the College to review and enhance provision
- Respect, and contribute to, the Imperial community

The Imperial College Students’ Union will:
- Support all students through the provision of independent academic and welfare assistance
- Encourage student participation in all aspects of the College
- Provide a range of clubs, societies, student-led projects and social activities throughout the year
- Represent the interests of students at local, national and international level

www.imperial.ac.uk/students/our-principles
Welcome from the Graduate School

Welcome to Imperial College London and the Graduate School!

The Graduate School is responsible for the postgraduate experience at the College and we work closely with the Union and the Graduate Students’ Union to ensure that when decisions are being made, which affect your time at Imperial, your voice is heard.

Another important aspect of our role is to offer you a free and exciting range of professional development opportunities which you can access wherever you are in the world.

Our team of tutors have a variety of research and other career experiences. We understand the importance of developing professional skills and our programmes will help you to progress in your academic studies and research and will prepare you for your future career. Whether you wish to pursue a career in academia, industry or something else, professional development training will improve your personal impact. You will also get to meet students from other Departments when attending our courses.

The Graduate School runs exciting competitions throughout the year which are an opportunity to broaden your knowledge as well as to meet other students and have fun. Our primary way to communicate to you will be through our monthly newsletter. However, do check our website, blog and social media platforms to keep up to date with all the latest activities available to you.

Finally, Imperial College is an extremely exciting, stimulating and diverse environment in which to work, to study and to research. Do make the most of all that the College and your programme has to offer.
The Graduate School
You automatically become a member of the Graduate School when you register as a postgraduate student at Imperial.

The Graduate School has been set up to support all postgraduate students at the College through:

- Training and development courses
- Networking activities, social and academic events to encourage cross-disciplinary interactions
- Forums to represent the views of postgraduate students throughout the College

‘Masterclass’ professional skills courses
You can see the full range of free professional skills courses for postgraduate students on the Graduate School website:

www.imperial.ac.uk/study/pg/graduate-school/students/masters/

All courses can be booked online.

Contact us
Level 3, Sherfield Building, South Kensington Campus
020 7594 1383
graduate.school@imperial.ac.uk
www.imperial.ac.uk/graduate-school
1. Introduction to the Department

Welcome from Head of Department

Dear MSc Students,

It is a pleasure to welcome you to the Department of Mathematics at Imperial College.

2020 has been a year full of unexpected changes and challenges for everyone — and as you know we have had to adapt the way that we deliver your programme. We have been putting much effort into being sure that you still get the same high-quality education that we have always demanded for our programmes.

Imperial College London is a fantastic place to study Statistics, and as such it is highly competitive to earn a place here. You have done well to gain entry! And, I am delighted that you decided to join us. I hope that you continue to excel, to enjoy Mathematics, and that you take advantage of all of the (remote) lectures, research supervision, facilities and teaching support available.

Again, welcome!

Best wishes for your year with us,

David van Dyk
Professor of Statistics, Head of Department of Mathematics

Welcome from Director of Postgraduate Studies

Dear MSc Students,

I’d like to offer you a very warm welcome to the Mathematics Department. The Department’s academic staff and administrative support team hope to make your time at Imperial as rewarding and positive as possible. This handbook contains a wealth of useful information about your MSc programme — please read on and keep a copy at hand throughout your studies. Each of our four taught MSc courses (Applied Mathematics, Machine Learning and Data Science, Mathematical Finance, Pure Mathematics, and Statistics) are truly world-class programmes. I hope that you will find both your modules and your research project to be enriching and productive experiences.

I also encourage you to engage fully with your MSc course. Many students find discussing mathematics with other students to be an essential element of learning. Your course lecturers will be very happy to discuss course material during office hours. Outside of your MSc, you will may find some of the Departmental seminars and colloquia, at which you are welcome, to be enriching.

I wish you a productive and enriching year.

Dr Ryan Barnett
Welcome to the MSc in Statistics at Imperial.

I am really excited about this academic year as it brings new changes to the MSc, including the introduction of the Global MSc in Statistics, a fully online degree, and the delivery of the MSc through multi-mode delivery, combining asynchronous learning with synchronous interactive sessions. Building on from our experiences we have carefully designed and developed the course to make sure that you will benefit from Imperial's world leading education and have a fruitful year.

Through this year you will be exposed to statistical theory, methodology and areas of applications that will provide you with the necessary skillset for a successful career in statistics.

The course is run by the Statistics Section of the Department of Mathematics. The Statistics Section has an international reputation for conducting methodological and applied statistical research at the highest level. Areas of current activity include statistical genetics and biostatistics, time series and signal processing, statistical theory, Bayesian methods and computation, and statistical machine learning, with many interactions and overlaps between these areas of research. The Section is one of the leading statistics groups in the UK.

I strongly encourage you to engage as much as possible with the academics of the Section either through your lectures, personal tutor and project supervisor meetings as well as at our weekly statistics seminars and social events. You can find a list of academic staff in the Statistics Section at https://www.imperial.ac.uk/statistics/people/.

I hope you will enjoy your MSc study and have a fantastic time at Imperial.

Dr Marina Evangelou
Senior Lecturer in Statistics, MSc in Statistics Course Director
**Academic and Administrative staff**

![Dr Ryan Barnett](image1.png)
**Dr Ryan Barnett**
Director of Postgraduate Studies
6M49 Huxley Building
0207 594 8536
r.barnett@imperial.ac.uk

![Dr Marina Evangelou](image2.png)
**Dr Marina Evangelou**
MSc Statistics Programme Director
546 Huxley Building
0207 594 7184
m.evangelou@imperial.ac.uk

![Dr Gunnar Pruessner](image3.png)
**Dr Gunnar Pruessner**
PG Welfare Officer
6M32 Huxley Building
020 7594 8534
g.pruessner@imperial.ac.uk

![Arianna Saccani](image4.png)
**Arianna Saccani**
MSc Administrator
652 Huxley Building
020 8594 2843
a.saccani@imperial.ac.uk

![Sai Yoghananthan](image5.png)
**Sai Yoghananthan**
Student Experience Coordinator
654 Huxley Building
020 7594 8500
sai.nathan@imperial.ac.uk
English language requirement
If you are not a native English speaker you must meet the College’s English language requirements. See the Admissions website for details:
www.imperial.ac.uk/study/pg/apply/requirements/english

For information on English language support available while you’re here, see page 45.

Attendance and absence
You must inform your Senior Postgraduate Tutor if you are absent from the College for more than three days during term. If the absence is due to illness you must produce a medical certificate after seven days. If you are ill and miss an assessment deadline (this could be an examination, presentation or a coursework submission) you will need to make a claim for mitigating circumstances within 10 working days of the deadline. Please see the section on mitigation below.

The Registry will be informed of all student non-attendances as the College is obliged to report the non-attendance of students on Tier 4/Student Route visas to the Home Office.

Students are also expected to attend scheduled meetings with their Personal Tutor during Autumn and Spring terms (“Meet Your Personal Tutor” weeks). Students are expected to meet regularly (e.g. weekly) with their project supervisor during their research project. Missed appointments will be reported to the Programme Director.

Key dates 2021–22

Term dates
Autumn term: 2 October 2021 - 17 December 2021
Spring term: 8 January 2022 - 25 March 2022
Summer term: 30 April 2022 - 1 July 2022

Closure dates
Christmas/New year: 24 December 2021 - 1 January 2022
(College reopens on 4 January 2022)
Easter Holiday: 12 April 2022 – 19 April 2022
(College reopens on 20 April 2022)
Early May Bank Holiday: 2 May 2022
Spring Bank Holiday: 2 June 2022
Platinum Jubilee Bank Holiday 3 June 2022
Summer Bank Holiday: 29 August 2022
Great Exhibition Road Festival: TBC

Key events
Induction week 4 - 8 October 2021
Election of MSc Stats student reps 4 – 8 October 2021
Meet Your Personal Tutor Week 4 – 8 October 2021
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meet Your Personal Tutor Week</td>
<td>29 November – 3 December 2021</td>
</tr>
<tr>
<td>Spring term Examinations</td>
<td>First two weeks in January 2022</td>
</tr>
<tr>
<td>Meet Your Personal Tutor Week 9</td>
<td>7 – 11 February 2022</td>
</tr>
<tr>
<td>Release of informal results</td>
<td>February 2022</td>
</tr>
<tr>
<td>Meet Your Personal Tutor Week 9</td>
<td>7 – 11 March 2022</td>
</tr>
<tr>
<td>Summer term Examinations</td>
<td>May 2022</td>
</tr>
<tr>
<td>Meet Your Personal Tutor Week 9</td>
<td>27 June – 1 July 2022</td>
</tr>
<tr>
<td>Poster Presentations</td>
<td>June 2022</td>
</tr>
<tr>
<td>Release of informal results</td>
<td>July 2022</td>
</tr>
<tr>
<td>Submission of MSc thesis</td>
<td>2 September 2022</td>
</tr>
<tr>
<td>Project Oral Presentations</td>
<td>15 September 2022</td>
</tr>
<tr>
<td>Exam board</td>
<td>September 2022</td>
</tr>
<tr>
<td>Results released by Registry</td>
<td>October 2022</td>
</tr>
<tr>
<td>Graduation ceremony</td>
<td>May 2023</td>
</tr>
</tbody>
</table>
2. Programme Information

Aims/Objectives/Learning Outcomes

Here is what you can broadly expect from the programme:

1. You will improve your understanding of the probabilistic background to statistics. This will be mainly achieved through one of the core modules.
2. You will learn about the theoretical and methodological foundations of statistics. Besides a core module, you can choose to specialise in methodological aspects of statistics through appropriate choice of optional modules as well as through the choice of the project.
3. You will become proficient in modern computational methods for statistics. A minimal level will be achieved through a core module, which will be improved upon by the optional modules as well as the project.
4. You will become confident in using statistical methods to solve practical problems. This will be achieved through the core module “Applied Statistics”, through the use of the statistical software R throughout the course, through the range of optional modules and through the individual project.
5. You will get proficient in the statistical language R.
6. You will learn about the breadth of statistical applications. This will be achieved through the wide range of optional modules, which allow you to specialise in more methodological aspects as well as in a diverse range of modern applications.
7. You will learn to tackle, analyse and solve realistic statistical problems independently. This will be mostly achieved through the research project.

Programme Structure

In addition to the general MSc in Statistics, five additional streams are offered: Applied Statistics, Biostatistics, Theory and Methods, Data Science and Statistical Finance. The general MSc in Statistics stream enables you to choose modules across a variety of topics, whereas the specialist streams focus on a specific theme. The formal qualification received will include the name of the specialist stream, for example: MSc Statistics (Applied Statistics). It might be possible to switch between streams at the beginning of the Spring term (or later during the academic year), but this is subject to approval by the Programme Director.

A common set of core modules in the Autumn term ensures that all students obtain advanced knowledge in the fundamental areas of probability theory, statistical inference and applied and computational statistics. A large and diverse set of optional modules is offered in the Spring term, which provides the flexibility for you to develop your own specialist interests. During the Summer term, you complete a research project with a member of academic staff on a state-of-the-art research problem that suits your interests.

In addition to the on-campus MSc degree, a fully online version of the degree is offered this academic year, named Global MSc in Statistics. The specialisation streams offered for the MSc in Statistics are also offered for the Global MSc. Students following the Global MSc will not be able to enrol to the UG modules offered to the MSc, including Time Series and Survival Models. It might be possible to switch between the two degrees subject to approval by the Programme Director.
### Autumn Term

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Induction week</th>
</tr>
</thead>
</table>
| **Weeks 2-11** | Core modules:  
MATH70071 Applied Statistics (5 ECTS)  
MATH70093 Computational Statistics (5 ECTS) |
| **Weeks 3-11** | Core modules:  
MATH70082 Probability for Statistics (5 ECTS)  
MATH70078 Fundamentals of Statistical Inference (5 ECTS) |
| **Weeks 1-11** | Elective module:  
MATH70046 Time Series Analysis (7.5 ECTS) |

### Spring Term

The modules you take will depend on which stream you are on, tables showing the combination for each stream are listed below. Outside of the Core modules offered in the Autumn term, you also need to complete elective modules that equal to 30-32.5 ECTS, e.g. 6 modules of 5 ECTS each. This may include the two optional modules in the Autumn term. You are limited to taking at most two 7.5 ECTS modules (in other words: you must take at least four 5 ECTS modules).

| Week 1 | Written exams for:  
MATH70078 Fundamentals of Statistical Inference  
MATH70082 Probability for Statistics |
| **Weeks 2-6** | MATH70075 Contemporary Statistical Theory  
MATH70091 Machine Learning  
MATH70079 Introduction to Statistical Finance  
MATH70073 Biomedical Statistics  
MATH70076 Data Science  
MATH70013 Advanced Simulation Methods  
MATH70081 Nonparametric Statistics |
| **Weeks 7-11** | MATH70090 Bayesian Methods  
MATH70092 Multivariate Analysis  
MATH70070 Advanced Statistical Finance  
MATH70083 Statistical Genetics and Bioinformatics  
MATH70077 Deep Learning with TensorFlow  
MATH70072 Big Data  
MATH70089 Stochastic Processes |

### Summer Term

| Weeks 1-2 | Written exams for elective modules |
| Weeks 3-11 | Project work |
| **Weeks 9 or 10** | Project poster presentation |

The exams for the optional will take place at the beginning of the Summer term. The precise dates will be announced in due course.
**July-September**

Work on Project. Projects must be handed in by the date mentioned in “Key Dates”. Presentation on the project is shortly afterwards.

**Accreditation**

The MSc in Statistics is accredited by the Royal Statistical Society. For you that means:

1. Students of the MSc in Statistics get a free one-year student membership. You are very much encouraged to apply for this membership and get involved in the RSS.
2. Once graduated, the RSS will grant you “Graduate Statistician” status. This will allow you to use the postnominal designation of “Gradstat”.
3. When applying for Gradstat status, the RSS needs confirmation that you are indeed a graduate. Only registry can issue such a confirmation. Please send an e-mail to records@imperial.ac.uk, stating that a confirmation of degree should be posted to the RSS, giving the address of the RSS (if in doubt ask the RSS for the precise address).

It should be noted that the Global MSc in Statistics is not currently accredited by RSS.

**Royal Statistical Society**

The Royal Statistical Society (RSS) is one of the world’s most distinguished and renowned statistical societies. It is both a learned society for statistics and a professional body for statisticians.

It was founded in 1834 as the Statistical Society of London and became the Royal Statistical Society by Royal Charter in 1887. Today the Society has more than 7000 members around the world, of whom some 1500 are professionally qualified as Chartered Statistician. The RSS is active in a wide range of areas both directly and indirectly relevant to the study and application of statistics.

The RSS headquarters is located at 12 Errol Street (about 50 minutes on public transport from the Department of Mathematics).

Throughout the year, the RSS organizes Ordinary Meetings, at which statistical papers are being presented and discussed. The Young Statisticians Section organizes Pre-Ordinary Meetings, held just before the Ordinary Meetings, which are aimed at giving an introduction to the area of the paper presented at the Ordinary Meeting. You might be interested in joining the RSS, in particular the Young Statisticians section.

**Core Modules**

**MATH70082 Probability for Statistics (Dr A. Duncan)**

The module Probability for Statistics introduces the key concepts of probability theory in a rigorous way. Topics covered include: the elements of a probability space, random variables and vectors, distribution functions, independence of random variable/vectors, a concise review of the Lebesgue-Stieltjes integration theory, expectation, modes of convergence of random variables, law of large numbers, central limit theorems, characteristic functions, conditional probability and expectation.

The second part of the module will focus on sequences of dependent random variables, covering aspects of discrete-time Markov chains and their key properties, including the
Chapman-Kolmogorov equations, classification of states, recurrence and transience, stationarity, time reversibility, ergodicity.

Assessment: 70% written exam, 30% coursework.

**MATH70078 Fundamentals of Statistical Inference (Prof A. Young)**

In statistical inference experimental or observational data are modelled as the observed values of random variables, to provide a framework from which inductive conclusions may be drawn about the mechanism giving rise to the data. This is done by supposing that the random variable has an assumed parametric probability distribution: the inference is performed by assessing some aspect of the parameter of the distribution.

This module develops the main approaches to statistical inference for point estimation, hypothesis testing and confidence set construction. Focus is on description of the key elements of Bayesian, frequentist and Fisherian inference through development of the central underlying principles of statistical theory. Formal treatment is given of a decision-theoretic formulation of statistical inference. Key elements of Bayesian and frequentist theory are described, focussing on inferential methods deriving from important special classes of parametric problem and application of principles of data reduction. General purpose methods of inference deriving from the principle of maximum likelihood are detailed. Throughout, particular attention is given to evaluation of the comparative properties of competing methods of inference.

Assessment: 75% written exam, 25% coursework.

**MATH70071 Applied Statistics (Prof N. Heard)**

The module focuses on statistical modelling and regression when applied to realistic problems and real data. We will cover the following topics:
- The Normal Linear model (estimation, residuals, residual sum of squares, goodness of fit, hypothesis testing, ANOVA, model comparison).
- Improving designs and explanatory Variables (categorical variables and multi-level regression, random and mixed effects models).
- Diagnostics and Model Selection (outliers, leverage, misfit, exploratory and criterion-based model selection, Box-Cox transformations, weighted regression)
- Generalised Linear Models (exponential family of distributions, iteratively re-weighted least squares, model selection and diagnostics).

Assessment: 100% coursework.

**MATH70093 Computational Statistics (Dr S. Filippi)**

This module covers a number of computational methods that are key in modern statistics. Topics include: Statistical computing: R programming, data structures, programming constructs, object system, graphics. Numerical methods: root finding, numerical integration, optimisation methods such as EM-type algorithms. Simulation: generating random variates, Monte Carlo integration. Simulation approaches in inference: randomisation and permutation procedures, bootstrap, Markov Chain Monte-Carlo.

Assessment: 100% coursework.
Elective Modules

You must register for Spring term modules equivalent to 30-32.5 ECTS. The stream you are on will determine which optional modules are compulsory or optional. The tables below illustrate the permitted module combinations. MSc modules are worth 5 ECTS and modules shared with undergraduate students are worth 7.5 ECTS. You can only take the 7.5 ECTS modules if you have not taken these modules (or their equivalents for undergraduate students) as part of a previous degree at Imperial.

Students following the Global MSc in Statistics will need to register for Spring term modules equivalent to 30 ECTS. The UG modules are not on offer for the Global MSc in Statistics.

You will have to make a final optional module choice once the second wave of optional modules in the Spring term is running (probably in weeks 7 or 8 of the Spring term - precise date to be announced). However, you will be deemed to be officially registered on a module through the submission of coursework which (in total) is worth at least 15% of the final mark. Thus, once you have reached this point in a module, you will be committed to completing the module.

What does this mean for the Time Series module running in the Autumn term? The coursework in this module is worth at most 10% of the final mark, so you will not be officially registered on this module before making your final module choice.

<table>
<thead>
<tr>
<th>General Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Choose 30-32.5 ECTS with a maximum of two 7.5 ECTS modules</strong></td>
</tr>
<tr>
<td>5 ECTS</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>
| • Advances Simulation Methods | • Time Series Analysis  
• Advanced Statistical Finance | • Survival Models  
• Bayesian Methods |  
• Big Data  
• Biomedical Statistics  
• Contemporary Statistical Theory  
• Data Science  
• Deep Learning with TensorFlow  
• Introduction to Statistical Finance  
• Machine Learning  
• Multivariate Analysis  
• Nonparametric Statistics  
• Statistical Genetics and Bioinformatics  
• Stochastic Processes |

<table>
<thead>
<tr>
<th>Applied Statistics Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Choose at least 20 ECTS from Group A. Any other elective modules from any group for a total of 30-32.5 ECTS worth of elective modules.</strong></td>
</tr>
<tr>
<td>Group A</td>
</tr>
<tr>
<td>Group A</td>
</tr>
<tr>
<td>5 ECTS</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>
| • Advanced Simulation Methods  
• Bayesian Methods | • Advanced Statistical Finance  
• Big Data | • Time Series Analysis  
• Survival Models |
<table>
<thead>
<tr>
<th>Biomedical Statistics</th>
<th>Contemporary Statistical Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Science</td>
<td>Deep Learning with TensorFlow</td>
</tr>
<tr>
<td>Introduction to Statistical Finance</td>
<td>Multivariate Analysis</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>Statistical Genetics and Bioinformatics</td>
</tr>
<tr>
<td>Nonparametric Statistics</td>
<td>Stochastic Processes</td>
</tr>
</tbody>
</table>

**Biostatistics Stream**

*Choose both module from Group A. 20-22.5 ECTS worth of elective modules from Group B.*

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ECTS</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>7.5 ECTS</td>
<td></td>
</tr>
</tbody>
</table>

- Biomedical Statistics
- Statistical Genetics and Bioinformatics
- Advanced Simulation Methods
- Advanced Statistical Finance
- Bayesian Methods
- Big Data
- Contemporary Statistical Theory
- Data Science
- Deep Learning with TensorFlow
- Introduction to Statistical Finance
- Machine Learning
- Multivariate Analysis
- Nonparametric Statistics
- Stochastic Processes
- Time Series Analysis
- Survival Models

**Data Science Stream**

*Choose all modules from Group A. 10-12.5 ECTS worth of elective modules from Group B.*

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ECTS</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>7.5 ECTS</td>
<td></td>
</tr>
</tbody>
</table>

- Big Data
- Data Science
- Deep Learning with TensorFlow
- Machine Learning
- Advanced Simulation Methods
- Advanced Statistical Finance
- Bayesian Methods
- Biomedical Statistics
- Contemporary Statistical Theory
- Introduction to Statistical Finance
- Multivariate Analysis
- Time Series Analysis
- Survival Models
<table>
<thead>
<tr>
<th>Statistical Finance Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Choose all modules from Group A. 15-17.5 ECTS worth of elective modules from Group B.</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ECTS</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>• Advanced Statistical Finance</td>
<td>• Advanced Simulation Methods</td>
</tr>
<tr>
<td>• Introduction to Statistical Finance</td>
<td>• Bayesian Methods</td>
</tr>
<tr>
<td>• Stochastic Processes</td>
<td>• Big Data</td>
</tr>
<tr>
<td></td>
<td>• Biomedical Statistics</td>
</tr>
<tr>
<td></td>
<td>• Contemporary Statistical Theory</td>
</tr>
<tr>
<td></td>
<td>• Data Science</td>
</tr>
<tr>
<td></td>
<td>• Deep Learning with TensorFlow</td>
</tr>
<tr>
<td></td>
<td>• Machine Learning</td>
</tr>
<tr>
<td></td>
<td>• Multivariate Analysis</td>
</tr>
<tr>
<td></td>
<td>• Nonparametric Statistics</td>
</tr>
<tr>
<td></td>
<td>• Statistical Genetics and Bioinformatics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theory and Methods Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Choose at least two modules from Group A. Any other elective modules from any group for a total of 30-32.5 ECTS worth of elective modules.</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ECTS</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>• Advanced Simulation Methods</td>
<td>• Advanced Statistical Finance</td>
</tr>
<tr>
<td>• Bayesian Methods</td>
<td>• Big Data</td>
</tr>
<tr>
<td>• Contemporary Statistical Theory</td>
<td>• Biomedical Statistics</td>
</tr>
<tr>
<td>• Multivariate Analysis</td>
<td>• Data Science</td>
</tr>
<tr>
<td></td>
<td>• Deep Learning with TensorFlow</td>
</tr>
<tr>
<td></td>
<td>• Introduction to Statistical Finance</td>
</tr>
<tr>
<td></td>
<td>• Machine Learning</td>
</tr>
<tr>
<td></td>
<td>• Nonparametric Statistics</td>
</tr>
<tr>
<td></td>
<td>• Statistical Genetics and Bioinformatics</td>
</tr>
<tr>
<td></td>
<td>• Stochastic Processes</td>
</tr>
</tbody>
</table>
5 ECTS Modules

MATH70075 Contemporary Statistical Theory (Dr A. Young)

This module aims to give an introduction to key developments in contemporary statistical theory, building on ideas developed in the core course Fundamentals of Statistical Inference. Motivations for wishing to extend the techniques are several. Optimal procedures of inference, as described, say, by Neyman-Pearson theory, may only be tractable in unrealistically simple statistical models. Distributional approximations, such as those provided by asymptotic likelihood theory, may be judged to be inadequate, especially when confronted with small data samples (as often arise in various fields, such as particle physics and in examination of operational loss in financial systems). It may be desirable to develop general purpose inference methods, such as those given by likelihood theory, to explicitly incorporate ideas of appropriate conditioning. In many settings, such as bioinformatics, we are confronted with the requirement to simultaneously test many hypotheses and need to control an appropriate overall error rate. More generally, we may be confronted with problems where the dimensionality of the parameter of the model increases with sample size, rather than remaining fixed. The data structures being analysed typically display low-dimensional structure: such sparsity can be utilised to develop inference methods. In many settings, the inferential problem to be studied is decided after looking at the sample data, resulting in loss of inferential guarantees. The techniques of selective inference aim to restore inferential validity after such double use of data.

Assessment: 80% written exam, 20% coursework.

MATH70090 Bayesian Methods (Dr D. Mortlock)

This module introduces the fundamental definitions of probability that underpin Bayesian inference and then explores the implications of these basic rules for generic statistical tasks. These include parameter inference, model comparison using the marginal likelihood, hypothesis testing, and experimental design.

Assessment: 80% written exam, 20% coursework.

MATH70092 Multivariate Analysis (Dr A. Monod)

Multivariate Analysis is concerned with the theory and analysis of data that has more than one outcome variable at a time, a situation that is ubiquitous across all areas of science. Multiple uses of univariate statistical analysis is insufficient in this settings where interdependency between the multiple random variables are of influence and interest. In this module we look at some of the key ideas associated with multivariate analysis. Topics covered include: multivariate notation, the covariance matrix, multivariate characteristic functions, a detailed treatment of the multivariate normal distribution including the maximum likelihood estimators for mean and covariance, the Wishart distribution, Hotelling’s T^2 statistic, likelihood ratio tests, principle component analysis, ordinary, partial and multiple correlation, multivariate discriminant analysis.

Assessment: 90% written exam, 10% coursework.

MATH70091 Machine Learning (Dr S. Filippi)

This module will provide an introduction to statistical machine learning. The lectures will focus on a variety of useful techniques including methods for regression, classification, feature extraction, dimensionality reduction, and data clustering. State-of-art approaches such as
Random Forest, Neural networks, kernel methods and Gaussian processes will be introduced. Real-world applications will illustrate how the techniques are applied to real data sets.

Assessment: 100% coursework.

**MATH70079 Introduction to Statistical Finance (Dr C. Pike-Burke)**

The module introduces fundamental concepts in financial economics and quantitative finance and presents suitable statistical tools which are widely used when analysing financial data. The module will start off with an introduction to risk-neutral pricing theory followed by a primer on risk measures such as value at risk and expected shortfall which are widely used in financial risk management.

Next, an introduction to time series analysis will be given, where the main focus will be on so-called ARMA-GARCH processes. Such processes can describe some of the stylised facts widely observed in financial data, including non-Gaussian returns and heteroskedasticity. Finally, methods for forecasting financial time series will be introduced.

Assessment: 90% written exam, 10% coursework.

**MATH70070 Advanced Statistical Finance (Dr N. Kantas)**

The module will first introduce the basics of extreme value theory, which will be used to develop models and estimation methods for extremes in financial data.

The second part of the module will provide a concise introduction to the theory of stochastic integration and Itô calculus, which provide a theoretical foundation for volatility estimation from high-frequency data using the concept of realised variance. The asymptotic properties of realised variance will be elucidated and applied to draw inference on realised volatility.

The third part introduces some recently developed volatility forecasting models that incorporate volatility information from high-frequency data and demonstrates how the performance of such models can be assessed and compared using modern forecast evaluation methods such as the Diebold-Mariano test and the model confidence set.

The final part of the module provides an overview of covariance matrix estimation in a high-dimensional setting, motivated by applications to variance-optimal portfolios. The pitfalls of using the standard sample covariance matrix with high-dimensional data are first exemplified. Then it is shown how shrinkage methods can be applied to estimate covariance matrices accurately using high-dimensional data.

Assessment: 90% written exam, 10% coursework.

**MATH70089 Stochastic Processes**

The first part of the module presents an introduction to continuous-time stochastic processes, with a focus on understanding key concepts and simulation. Poisson processes and their variants will be introduced, their properties and will be presented in detail, along with variants. Methods for simulating such processes will be discussed. Brownian motion will also be presented, as a second class of Markov process in continuous time and its properties analysed. Building on these two examples, the key concepts of theory of Markov processes will be introduced, including the notions of martingales, infinitesimal generators and Kolmogorov equations. The long time behaviour of Markov processes, and conditions for ergodicity will also be covered briefly.
The second part of the module will provide a gentle introduction to Stochastic Differential Equations, starting from stochastic integrals and leading onto a general definition of diffusion processes through Ito’s formula and related results. Methods for approximate simulations of SDEs is presented, followed by presentation of Girsanov theorem, in the context of importance sampling for diffusions.

Assessment: 80% written exam, 20% coursework

**MATH70073 Biomedical Statistics (Dr O. Ratmann)**

The module Biomedical Statistics introduces central concepts in statistical analysis of biomedical data. Emphasis is placed on statistical modelling and applied data analysis on a number of case studies. Central concepts covered include: causality and association; basic study designs of observational studies; basic design of clinical trials; estimation and interpretation of incidence rates, prevalence, risk ratios and number needed to treat; Bayesian hierarchical modelling; variable selection techniques; inference of causal effects from observational data; meta-analysis; analysis in the presence of missing data. Students will gain familiarity with the highly used Stan statistical computing software package for fitting statistical models. Case studies include comprehensive real-world data sets from clinical trials, observational studies on non-communicable and infectious diseases, wildfires, and pharmaceutical drug effectiveness, and are adapted each year to include examples that were noted in the news.

Assessment: 100% coursework.

**MATH70083 Statistical Genetics and Bioinformatics (Dr M. Evangelou)**

Advances in biotechnology are making routine use of DNA sequencing and microarray technology in biomedical research and clinical use a reality. Innovations in the field of Genomics are not only driving new investigations in the understanding of biology and disease but also fuelling rapid developments in computer science, statistics and engineering in order to support the massive information processing requirements. In this module, students will be introduced into the world of Statistical Genetics and Bioinformatics that have become in the last 10-15 years two of the dominant areas of research and application for modern Statistics.

In this module we will develop models and tools to understand complex and high-dimensional genetics datasets. This will include statistical and machine learning techniques for: multiple testing, penalised regression, clustering, p-value combination, dimension reduction. The module will cover both Frequentist and Bayesian statistical approaches. In addition to the statistical approaches, the students will be introduced to genome-wide association and expression studies data, next generation sequencing and other OMICS datasets.

Assessment: 100% coursework.

**MATH70072 Big Data (Dr M. Briers)**

The emergence of Big Data as a recognised and sought-after technological capability is due to the following factors: the general recognition that data is omnipresent, an asset from which organisations can derive business value; the efficient interconnectivity of sensors, devices, networks, services and consumers, allowing data to be transported with relative ease; the emergence of middleware processing platforms, such as Hadoop, InfoSphere Streams, Accumulo, Storm, Spark, Elastic Search, …, which in general terms, empowers the developer with an ability to efficiently create distributed fault-tolerant applications that execute statistical analytics at scale.
To promote the use of advanced statistical methods within a Big Data environment - an essential requirement if correct conclusions are to be reached - it is necessary for statisticians to utilise Big Data tools when supporting or performing statistical analysis in the modern world. The objective of this module is to train statistically minded practitioners in the use of common Big Data tools, with an emphasis on the use of advanced statistical methods for analysis. The module will focus on the application of statistical methods in the processing platforms Hadoop and Spark.

Assessment: 100% coursework.

**MATH70013 Advanced Simulation Methods (Dr N. Kantas)**

Modern problems in Statistics require sampling from complicated probability distributions defined on a variety of spaces and setups. In this module we will visit popular advanced sampling techniques, such as Importance Sampling, Markov Chain Monte Carlo, Sequential Monte Carlo. We will consider the underlying principles of each method as well as practical aspects related to implementation, computational cost and efficiency. By the end of the module the students will be familiar with these sampling methods and will have applied them to popular models, such as Hidden Markov Models, which appear ubiquitous in many scientific disciplines.

Assessment: 100% coursework.

**MATH70076 Data Science (Dr P. Chakravarti)**

Data scientific methods are wide in scope, drawing equally from statistics and computer science. This module will cover computing with data, producing reproducible work flows, preparing messy real-world datasets, performing exploratory data analysis and presenting data via data visualisation techniques. In addition, it will cover the science in data science, exploring what data analysts really do, thinking critically about appropriate uses and misuses of data science.

Assessment: 100% coursework.

**MATH70081 Non-parametric Statistics (Dr K. Ray)**

The module will first introduce the most basic nonparametric estimator, the empirical distribution function, and cover its basic properties and how it can be used to construct confidence intervals. We then consider the problem of nonparametric density estimation, illustrating the key concept of the bias-variance trade-off via histograms and kernel density estimators. To evaluate the statistical properties of the latter, we will examine approximation by convolutions.

The module then covers various methods in nonparametric regression, such as kernel methods, local polynomial regression or splines. We will finally turn to the basis function approach, using suitable bases to provide efficient function approximations and hence derive estimators. This will be illustrated via B-splines and wavelets.

Assessment: 80% written exam, 20% coursework.

**MATH70077 Deep Learning with TensorFlow (Dr K. Webster)**

This module teaches the building blocks of deep learning models, and how to design network architectures for specific applications, in both supervised and unsupervised contexts. It covers
practical skills in implementing neural networks in the popular deep learning library TensorFlow. Students will learn how to build, train and evaluate networks using this framework. In the latter part of the module, the focus is on probabilistic deep learning models, such as normalising flows and variational autoencoders (VAEs).

Assessment: 100% coursework.

7.5 ECTS Modules

MATH70046 Time Series Analysis (Dr E. Cohen)
A time series is a series of data points indexed and evolving in time. They are prevalent in many areas of modern life, including science, engineering, business, economics, and finance. This module is a self-contained introduction to the analysis of time series. Weight is given to both the time domain and frequency domain viewpoints, and important structural features (e.g. stationarity, reversibility) are treated rigorously. Attention is given to estimation and prediction (forecasting), and useful computational algorithms and approaches are introduced.

Assessment: 90% written exam, 10% coursework

MATH70048 Survival Models (Dr A. Gandy)
Survival models are fundamental to actuarial work, as well as being a key concept in medical statistics. This module will introduce the ideas, placing particular emphasis on actuarial applications.

Assessment: 90% written exam, 10% coursework

The Project

Allocation
Early in the Spring term a list of projects offered by supervisors in the Statistics section will be made available to students. The project descriptions may either describe the general area of interest or be particular research topics that a supervisor is willing to supervise.

Special sessions will be set up in Spring term for students to meet supervisors and ask any further questions about the projects on offer. Shortly after these sessions conclude, students will be asked to submit their preferences.

Students will be asked to submit their preferred area of research for their project: Statistical Theory and Methods, Applied Statistics, Biostatistics, Data Science or Statistical Finance. If a student is in a particular programme stream, then this choice should match their stream. In addition, students will be able to list up to three preferred projects from the list provided.

A marriage algorithm will determine the allocation of the students to the supervisors, taking into account the students’ performances in the core modules and the supervisors’ preferences. If a student is not allocated to one of their three preferred projects, they will still be allocated to a supervisor who will supervise a project in their preferred stream.
We aim to announce the allocation before the end of the Spring term. Before the end of the Spring term, students and supervisors will have their first meeting to discuss the project, related datasets, and publications.

Students with a strong desire to work on a specific topic may wish to approach a supervisor working in that area to discuss potentially working together on that topic. Any such arrangement must be finalised by the end of Autumn term. More information about the research interests of the members of the Statistics Section can be found at https://www.imperial.ac.uk/statistics/research/.

**Working on the project**

The work on the project is done under the direction of a Supervisor, who need not be your Personal Tutor. In case of projects done with external partners, you will still have a supervisor from within the Statistics section who has the overall responsibility.

You should start with initial work on the project as soon as the topic is allocated. Aim to meet your supervisor before the Easter break. Particularly, try to resolve any issues with regards to access to data as soon as possible.

You should work essentially full-time on the project after the exams for the optional modules are finished. During the Summer term, immediately after the exams, the project should be defined and refined, so that the scope is clear by the end of the Summer term.

You can expect regular meetings during the Summer term, usually one hour every two weeks. After the Summer term, you can only expect less frequent meetings.

It is a good practice to keep minutes of your meetings and to share the notes with your supervisor(s) after each meeting. For fruitful supervisory meetings, it is recommended that you have an agenda prepared for each meeting that you can through with your supervisor, this will make your meetings more fruitful for a successful project.

The purpose of the project is largely to train and test your ability to work independently. The supervisor(s) will give general guidance on the work for the project and the writing of the thesis.

Continued documentation of your work is good practice, and it will help greatly when the final thesis is being prepared. You are strongly advised to pass a first draft of the thesis to the supervisor(s) at least a month before the submission deadline. Advice on the suitability or otherwise of particular sections of the thesis cannot be expected.

**Project Milestones**

There are three project milestones. A poster presentation of your project during the Summer term. This is a compulsory, but non-assessed part of the course. The second milestone is the submission of the thesis (written report) that counts for 90% of the overall project mark. The final milestone is the oral presentation of the project that counts for 10% of the overall project mark. Further details of the three milestones can be found below. The dates of these milestones are listed in the Key Dates section.

**Poster Presentation**

At the end of the Summer term, you are expected to present a poster. The poster should clearly state and describe the underlying question and the scope of your project. This is an
excellent opportunity to get feedback, both from members of staff as well as from your fellow students. There is no need to spend a lot of time dressing up the poster, and no need to overload the poster with material. It is mainly intended to encourage you to clarify (and to explain) the scope of the project. It may very well be that you cannot present any results of your own yet, but you may want to address what results you hope to achieve. On a practical side: A template for posters will be available in Blackboard. Precise details and timings will be circulated in due course.

The Thesis

You have to submit a thesis, a substantial written thesis presenting the original work conducted.

The thesis should be on A4-sized paper and typed, and words or paragraphs must not be crossed out. It is important that students sign the declaration “The work contained in this thesis is my own work unless otherwise stated”.

The thesis must be between 30 and 70 pages, using the LaTeX template provided, with the page count starting on the first page of the introduction and ending on the last page of the conclusion. While there is a page limit, the thesis will be judged on the quality of the work it describes, rather than the quantity of pages; excess length disproportionate to the content may be penalised. Additional tables and figures may be included in appendices, but the markers are not obligated to review these sections.

Each thesis should include
(i) a brief summary,
(ii) an introduction
(iii) the main body of the thesis,
(iv) a bibliography.

An electronic copy of the thesis (one PDF document) must be submitted via the Virtual Learning Environment (Blackboard). Late submission may be penalised and will normally delay consideration of the thesis to the following year.

The thesis is worth 90% of the project mark.

Guide to the Presentation of the Thesis

The following are guidelines only and need to be taken with common sense and adapted for the needs of your particular project.

It is very important to write your thesis with the reader in mind and to present your work at the appropriate level so that any reader, familiar and non-familiar with the topic of your project to be able to follow and understand it.

The recommended structure consists of an abstract, a Table of Contents (Chapter/Section numbers), an introduction, a middle section presenting the main work of the project and a conclusion section followed by a bibliography. Sections should be numbered, as should pages, graphs/tables and equations. The graphs and tables should appear at their natural location in the text. Any long program listings should be put in appendices at the end.

It is important that references to other research work consulted or results borrowed or shared should be properly documented and you should copy the style of reference of one of the research articles you consult, i.e. with referencing also included within the text as well as at
the end. It is also a good idea to acknowledge the help that your supervisor has given you! Avoid citing Wikipedia, while it may point you to certain articles or books, you should always read the original books/articles and cite those.

The **abstract** should be a brief statement of the aims and outcomes of the project, to summarise/advise even for a casual reader!

The **introduction** should describe the topic of the thesis and the research objectives of your project. In the introduction you should give an overview of your project and clearly point out your main contributions. You should attempt to set your work in the context of other work previously done in the field. The introduction needs to demonstrate that you are aware of what you are doing, and how it relates to other work that should be properly referenced.

The **main chapters** of the thesis should include information about the statistical methods, datasets (if any) and results of the project. It is important to write your thesis with the reader in mind, that you can assume that is someone who is familiar with the content of the four core modules of the MSc. For example, you should avoid writing up in detail statistical methods discussed in one of the four core modules, but instead you should briefly present such methods and add appropriate references. More advanced methods or methods discussed in one of the elective modules should be described in more detail and referenced appropriately.

Background information about the data used in the thesis needs to be included. Any terminology related to the topic/data needs to be clearly presented and explained to the reader. If in the project you have generated simulated data, a clear presentation of the generative procedure needs to be included. Further, you should guide the reader through the results of the project. Both your successes and your failures in trying to solve your problem need to be discussed. It is important to discuss unsuccessful attempts, especially if you have ideas or explanations as to why they failed. Graphs and simple diagrams (especially when they are neat) can sometimes be far more effective in presenting the main body of your thesis than lots of numbers and/or lots of words.

The **conclusion** section should summarise what you have learned. If you would have done more, given more time, you should indicate where your effort would have gone. If your work has raised any unsettled questions, you should address them and indicate what further work needs doing.

While you may choose to include certain functions or scripts that are significant to the project, it is not recommended that a large body of code is included. Any code included should be properly commented. A discussion of the input data/parameters necessary to run the code and output resulting from running the code should be accompanying the code. A suitable option for larger scripts would be to upload your code on a platform such as GitHub and then include a link in the thesis.

Large tables of results should be organised in reference form (as should large sets of graphs) with indices and tables of contents to guide the interested reader through them. Appendices do not count towards the word limit.

The **title page** is your own design however it should include your name, CID, project title, supervisor’s name. You may want to include the wording: “Submitted in partial fulfilment of the requirements for the MSc in Statistics of Imperial College London”. You should not be using the Imperial crest, but you can use the Imperial logo: [http://www.imperial.ac.uk/brand-style-guide/visual-identity/the-college-crest/](http://www.imperial.ac.uk/brand-style-guide/visual-identity/the-college-crest/) [http://www.imperial.ac.uk/brand-style-guide/visual-identity/the-imperial-logo/](http://www.imperial.ac.uk/brand-style-guide/visual-identity/the-imperial-logo/)

The second page must contain a signed and dated plagiarism statement, “The work contained in this thesis is my own work unless otherwise stated”. It is sufficient if you sign the hard copies.
Before submitting the thesis, make sure you read the thesis in its entirety. There should be no half-finished sentences. Also, use a spell-checker.

Include an acknowledgement.

**Figures:** The best place is at the top or at the bottom of a page. If this is not possible, they should go on a separate page. In LaTeX this can be achieved by

\begin{figure} [tbp]
...
\end{figure}

When generating plots from R it is usually best to export them as pdf or eps for inclusion in LaTeX. To get Greek letters, sub and superscripts into labels use eg xlab=expression(alpha[5]).

**List of references:** Using author (year) style notation is good practice (the reader may know the paper, but she will definitively not know the number in your reference list. To achieve this in LaTeX you can use BibTeX together with the package natbib. If citing several references together, use citep{ref1,ref2,ref3}. Use a coherent style - either all authors get their first full names or none gets their full names. Books need the name of the publisher, journal articles need the name of the journal. When using BibTeX for generating references, make sure that appropriate capitalisation is used, eg it should be Monte Carlo and not monte carlo. To achieve this in BibTeX, use {M}onte {C}arlo.

Maths: In formulas use, for example, \exp and not exp, or \sin and not sin.

**Submission**

You will have to submit an electronic copy of the thesis (in PDF format) through the virtual learning environment (Blackboard). Please name this file in the following format: “CID Surname Firstname Thesis.pdf”. Note that this electronic copy may be checked for plagiarism via online plagiarism detection services (e.g. Turnitin).

The thesis submission deadline is a very hard deadline since the assessment process has then to be completed on a very short timescale.

**Oral Presentation**

An integral part of the project will be an oral examination, consisting of a 20-minute presentation and 10-minute questioning on the project. The oral examination will be worth 10% of the total project mark.

The presentation will usually take place shortly after the submission deadline of the thesis, precise dates are listed in the Key Dates section.

The audience will consist of two faculty members.

You are strongly advised to prepare your oral presentation carefully, as it is an integral part of your training. Bear in mind that you only have 20 minutes, and that you should not assume or expect that the audience are experts in the area of your project. The purpose of the oral is not only to test your technical mastery of the material, but also to see how you can convey main ideas and results in your work to a general statistical public. As the presentation is only 20 minutes long then you should aim to have less than 20 slides in total.
A few more suggestions:

- Spend enough time at the beginning on setting the scene to make sure that the audience is on board. They have not been working on this for the last 4 months.
- Be selective about what you present. You can always add a slide at the end ("other things I have been doing"). Having more slides than minutes is usually never a good idea (imagine sitting through a few high-speed talks in a row).
- The presentation aims at a reasonably educated statistician - essentially your fellow students. You do not have to introduce very basic material.
- Switch off your mobile phone during the presentation (including yours!).

**Computing**
The Department of Mathematics has several research computing resources - discuss with your supervisor if you need to use those.

See: [https://www.imperial.ac.uk/mathematics/for-staff/research-computing-support/](https://www.imperial.ac.uk/mathematics/for-staff/research-computing-support/) for an overview.

**Marking Guidelines**
See separate document, available on Blackboard.

**Further Elements of the Course**

**Introduction to R, Python and LaTeX**
There will be an introduction to R and LaTeX in the first weeks of the Autumn term. The goal is to enable you to use LaTeX with confidence and to produce reports as well as presentations. During the Autumn term the assessments of the Applied Statistics and Computational Statistics modules will require good knowledge of both R and LaTeX.

At the beginning of the Spring term there will be an introductory tutorial on Python. Python will be the primary programming language used in some of the modules delivered in the Spring term.

**Talks “Statistics in Practice”**
These are talks given by statisticians from various industries (e.g. pharmaceutical, consulting, official statistics, academia) about their career in particular and about typical problems in their industry. This will show students the various career paths that are open to the MSc students after their graduation.

**The Statistics Research Seminar**

Attendance is strongly encouraged. Speakers are specifically instructed to “start gently”, to allow MSc students to follow at least parts of the talks.
Professional Skills Development

Working as a practical statistician will involve several transferable skills, a lot of these will be trained during the year.

As part of the course, you will train your teamwork abilities through group assessments. You will train your problem-solving skills throughout the course. In particular it is very important that you work through the problem sheets that you will be given. Furthermore, the project will enable you to work thoroughly on a major problem.

Presentation skills are very important for your future career. You will have the opportunity to train these in the presentation of your project and oral examinations. Furthermore, some lecturers may require you to present your coursework.

Imperial Mobile app

Don't forget to download the free Imperial Mobile app for access to College information and services anytime, anywhere, including your programme timetable, College emails and a library catalogue search tool.

www.imperial.ac.uk/imperialmobile

Welcome to Imperial app

The College has a Welcome to Imperial app which contains important information about campus operations, aspects of student life, a schedule of welcome activities and information about life in halls. All new students should download this guide to ensure they have the most up to date information and event schedule for the start of term.

You can download the App from the Apple or Google App Stores.

Imperial Success Guide

The Imperial Success Guide is an online resource with advice and tips on the transition to Master’s level study. More than just a study guide, it is packed with advice created especially for Imperial Master’s students, including information on support, health and well-being and ideas to help you make the most of London.

www.imperial.ac.uk/success-guide
3. Assessment

General
The MSc in Statistics programme specification can be found on the course website, along with the competency standards for all taught mathematics masters programmes https://www.imperial.ac.uk/mathematics/postgraduate/msc/

The entire MSc course will be worth 90 ECTS. It consists of two elements. The first element consists of the taught modules and is worth 60 ECTS. The second, the project, is assigned 30 ECTS.

The MSc modules will be assessed through a combination of coursework and written examinations. Written exams will either take place in the first week of the Spring term or in the Summer term. 7.5ECTS modules will normally be examined by a 2-hour exam and 5 ECTS modules by a 1.5-hour exam. The four core elective modules and some of the elective modules also include group assessments.

The raw marks from each assessment will be weighted and combined to produce a raw module mark; the raw module mark will then be converted to a 0–100 scale. Due to the nature of Statistics as an academic discipline it is often necessary for module marks to be scaled in order to ensure comparability across all MSc modules and so that they map appropriately onto the postgraduate degree classification system. In accordance with the Regulations for Taught Programmes of Study, this process is applied consistently to all students taken each module and reported to External Examiners and the Board of Examiners.

Based on students’ performances in the module assessments, the module lecturers make a decision about what they consider to be the pass / fail boundary (P), the Pass/Merit Boundary (T), the Merit/Distinction Boundary (E) and the maximum mark (M) which was realistically possible for the module. For the MSc modules the raw marks P, T, E and M are mapped to 50, 60, 70 and 100 respectively (with 0 being mapped to 0). These choices of grade boundaries (PTEM) are compared by a sub-Board of the Board of Examiners (the MSc Liaison Panel) and further adjustments are made to ensure comparability of marks across modules. The MSc Liaison Panel meets twice during the academic year, beginning of the Spring term and end of the Summer term. The Liaison panel reviews the distribution of each individual module and compares it to the other modules - this is essential given the wide variation in elective modules offered at the MSc. Once the values of the grade boundaries for a module have been finalised, an individual raw mark is then mapped to the 0–100 scale by linear interpolation and this becomes the student’s mark for that module.

The External Examiner may recommend modifications to the mapping when they consider the scaled marks for each individual module and all students. Once the final marks are agreed by the Board of Examiners, they are on the official College scale. Reporting of marks on course transcripts is communicated to students on the College Scale.

Undergraduate modules
For modules run by the undergraduate teaching system (Time Series and Survival Models) the marks are calibrated and moderated together with the undergraduate students.

When sitting exams for these modules there will be a 5th “mastery” question that MSc and the M4 (4th year) undergraduate students are required to take on top of the other four questions. This will be harder than the other 4 questions. Students will be given an extra half an hour for
this question (M3 students have 2hrs for the whole exam, MSc and M4 students have 2.5hrs for the exam) and it has the same mark weighting as questions 1-4.

The marks for the entire group of students (undergraduate and postgraduate) sitting the module are collated and then scaled and converted to the College Scale as a whole (details can be found undergraduate handbook). A postgraduate student is required by College to obtain 50% (college scale) to pass the course.

**Project**

The second course element, the project, will be examined as follows. Students have to submit a thesis, a substantial written report of original work normally not exceeding 12000 words. The thesis must be submitted by the deadline specified above. The thesis is worth 90% of the project mark. An integral part of the project will be an oral examination, consisting of a 20-minute presentation and 10-minute questioning on the project. The oral examination will be worth 10% of the total project mark.

**Degree Classifications**

MSc degrees are awarded only once each year, following the Examiners’ Meeting which is normally held by the end of September.

In line with usual practice, the MSc in Statistics has an external examiner, meaning an examiner external to the university whose main role it is to uphold standards and to ensure that the assessment process is fair and rigorous. More details of the role of the external examiner are available below.

Degree classification is based on assessment results from each of the modules and project mark (each of these assessment results is on the 0-100 scale). These results are then combined following the programme weightings below to produce the overall weighted average which is used for the purpose of degree classification.

**Programme Weightings:**

<table>
<thead>
<tr>
<th>Module</th>
<th>% Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability for Statistics</td>
<td>8.33%</td>
</tr>
<tr>
<td>Fundamentals of Statistical Inference</td>
<td>8.33%</td>
</tr>
<tr>
<td>Applied Statistics</td>
<td>8.33%</td>
</tr>
<tr>
<td>Computational Statistics</td>
<td>8.33%</td>
</tr>
<tr>
<td>Elective modules to the value of 30-32.5 ECTS</td>
<td>33.33%</td>
</tr>
<tr>
<td>Each module weighted in proportion to its ECTS.</td>
<td></td>
</tr>
<tr>
<td>Statistics Research Project</td>
<td>33.33%</td>
</tr>
</tbody>
</table>

**Award of a MSc Degree**

To qualify for the award of the MSc in Statistics a student must have:

1. accumulated credit to the value of no fewer than 90 credits at level 7 or above of which no more than 15 credits may be from credit level 6;
2. and no more than 15 credits as a Compensated Pass;
For the specialisation streams a student must have met the specific requirements of their chosen specialisation as outlined above.

**Classification of Postgraduate Taught Awards**

The College sets the class of Degree that may be awarded as follows:

**Distinction:**
- a. The student has achieved an overall weighted average of 70.00% or above across the programme.
- b. The student must normally achieve a distinction (70.00%) mark in the Statistics research project.

**Merit:**
- a. The student has achieved an overall weighted average of above 60.00% but less than 70.00%
- b. The student must normally achieve a merit (60%) mark in the Statistics research project.

**Pass:**
- a. The student has achieved an overall weighted average of 50.00% but less than 60.00%.

Overall weighted averages 0.5% from the degree borderlines will be automatically rounded up in accordance with item 13.19 in the 2020-2021 regulations. The board of examiners will consider other borderline cases, as they are defined in items 13.20–13.22 of the Regulations for Taught Programmes of Study 2020-2021.

**Exit Degree: Award of a Postgraduate Diploma (PG Dip)**

To qualify for the award of the PG in Statistics a student must have passed:
- a. Accumulated credit from modules to the value of no fewer than 60 credits at Level 7 (this may include a maximum of 15 credits from Level 6 where this is approved as part of the award);
- b. and no more than 10 credits as a Compensated Pass;

The Postgraduate Diploma in Statistics is an exit award that may be offered at the discretion of the Board of Examiners and is not available for entry.

**Release of Results**

The exam board, which will take place after the course has finished, will have final authority to decide your results. You will receive your final results from Registry (around November after the course has finished).

During the year, you will receive indications of your performance in the various modules you have taken - these are provisional and subject to confirmation by the exam board. Specifically, in Blackboard, under the “course” MSc in Statistics, you will find rough indications of your results on the College Scale (under “My Grades”). The following code will be used:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>high distinction</td>
</tr>
<tr>
<td></td>
<td>[80,100]</td>
</tr>
<tr>
<td>A</td>
<td>distinction range</td>
</tr>
<tr>
<td></td>
<td>[70,80)</td>
</tr>
</tbody>
</table>
### Past exam papers

Past examination papers will be made available for exam-based modules (precise location will be announced but are usually posted on the Blackboard module page by the module lecturer). For modules which are shared with BSc/MSci students past exam papers are available on Blackboard Maths Central in Examinations Information section.

### Instruction to Candidates for Examinations

Students who are candidates for examinations are asked to note that all examinations are conducted in accordance with the College Regulations. The relevant set of regulations will depend on your programme and year of entry, please see our Regulations webpage to determine which apply to you:

- [www.imperial.ac.uk/about/governance/academic-governance/regulations/](http://www.imperial.ac.uk/about/governance/academic-governance/regulations/)

Instructions for exam candidates can be found here:


### Academic Integrity and Academic Misconduct

As your programme of study continues, you will be taught the concept of academic integrity and how you can ensure that any work that you complete now, or in the future, conforms to these principles. This means that your work acknowledges the ideas and results of others, that it is conducted in an ethical way and that it is free from plagiarism.

Academic misconduct is the attempt to gain an academic advantage, whether intentionally or unintentionally, in any piece of assessment submitted to the College. This includes plagiarism, self-plagiarism, collusion, exam offences or dishonest practice. Full details of the policy can be found at:


Definitions of the main forms of academic misconduct can be found below:

### Plagiarism

Plagiarism is the presentation of another person’s thoughts, words, images or diagrams as though they were your own. Another form of plagiarism is self-plagiarism, which involves using your own prior work without acknowledging its reuse. Plagiarism may be intentional, by deliberately trying to use another person’s work by disguising it or not citing the source, or unintentional where citation and/or referencing is incorrect.
Plagiarism must be avoided, with particular care on coursework, essays, reports and projects written in your own time but also in open and closed book written examinations. You can support your understanding of proper referencing and citation by using the resources available from the College such as the Library learning support webpages at:

[www.imperial.ac.uk/admin-services/library/learning-support/plagiarism-awareness/](http://www.imperial.ac.uk/admin-services/library/learning-support/plagiarism-awareness/)

Where plagiarism is detected in group work, members of that group may be deemed to have collective responsibility for the integrity of work submitted by that group and may be liable for any penalty imposed, proportionate to their contribution.

TurnitinUK is an online text matching service which assists staff in detecting possible plagiarism. The system enables institutions and staff to compare students’ work with a vast database of electronic sources. Your programme team will explain how it is used in your programme

[www.imperial.ac.uk/admin-services/ict/self-service/teaching-learning/turnitin/](http://www.imperial.ac.uk/admin-services/ict/self-service/teaching-learning/turnitin/)

**Collusion**

This is the term used for work that has been conducted by more than one individual, in contravention of the assessment brief. Where it is alleged that there has been collusion, all parties will be investigated under the Academic Misconduct procedure.

You should note that whilst the College encourages students to support each other in their studies you should be careful to ensure that you do not exceed any assessment brief with regards to individual work, acknowledge the contributions of others in your work, and do not leave yourself open to allegations that you have supplied answers to enable another student to commit academic misconduct.

**Exam offences**

Exam offences fall into two categories. These are offences that may be disruptive in the exam venue or are considered an attempt to cheat. This can include behaviour such as bringing unauthorised material into an exam, attempting to communicate with others apart from the invigilator, trying to remove examination material without permission, taking an exam for someone else or getting someone else to take an exam for you. It would also include having an electronic device that has not been fully turned off or failing to follow a reasonable instruction of the invigilators.

**Dishonest practice**

This is the most serious category under the procedure. Examples of dishonest practice include bribery, contact cheating (buying work from an essay mill or other individual to submit as your own), attempting to access exam papers before the exam, making a false claim for mitigating circumstances or providing fraudulent evidence, falsifying documentation or signatures in relation to assessment or a claim for mitigating circumstances.
4. Board of Examiners

Board of Examiners

Lecturers from the Statistics Section

External Examiners

Dave Woods, University of Southampton

External examining acts as an essential part of the College's quality assurance and enhancement process, serving to ensure that academic standards are maintained. The knowledgeable and independent views of external examiners are invaluable in certifying that the College's awards are appropriate and comparable as well as highlighting good practice and potential areas of enhancement.

During your programme you may be invited to meet your external examiners to discuss how you have found the. It is not appropriate however, for you to seek to submit complaints or representations directly to external examiners or to seek to influence them other than by giving feedback in a meeting. Inappropriate communication towards an examiner would make you liable for disciplinary action.

A summary of External examiners reports from the previous academic year can be found here:

www.imperial.ac.uk/about/governance/academic-governance/academic-policy/external-examining/
5. Location and Facilities

Imperial has a number of campuses in London and the South East. All have excellent travel links and are easily accessible via public transport.

Your main location of study will be:

South Kensington Campus
Huxley Building, 180 Queens Gate, SW7 2AZ London

Facilities

• MSc Computer/Common Room – 215 Huxley (level 2)
• Maths Learning Centre – 416 Huxley (level 4) (contains 64 computers, two study desks fitted out with audio-visual facilities for project presentations, two printers and a range of additional study areas)
• MSc Silent Study Room – 413 Huxley (level 4).
• The MSc Administrator office is located at 652 Huxley.
• Lockers - There is a (limited) number of lockers on Level 1 of the Huxley building. For availability contact Andy Pope a.pope@imperial.ac.uk

Please note that the building has maximum safe occupancy limits and some of these facilities may not be accessible during the autumn term.

Library Services

The Central Library at South Kensington is open around the clock for study space pretty much all year. Make sure you find out who your departmental librarian is as they'll be able to help you find resources for your subject area. Also, don’t forget to check out the Library’s range of training workshops and our other campus libraries for access to specialist medicine and life sciences resources. Alongside these physical spaces and resources, the Library provides over 300,000 electronic books, journals and databases available both on and off campus and a free document delivery service to help you source books and articles from around the UK and the rest of the world. In order to keep you safe many of our services are operating remotely and we will be controlling the numbers who can visit our libraries. Services may be slightly reduced but you can keep up to date with the latest developments on our website and on Twitter @imperiallibrary.

Maps

Campus maps and travel directions are available at:

www.imperial.ac.uk/visit/campuses

Accessibility

Information about the accessibility of our South Kensington Campus is available online through the AccessAble access guides:

www.accessable.co.uk/organisations/imperial-college-london

Smoke-Free Policy
All Imperial campuses and properties are smoke-free. This means that smoking by staff, students or visitors is not permitted on or within 20 metres of College land. The policy covers all College properties, including student accommodation and sports grounds.

SafeZone

SafeZone is a College app through which you can quickly and directly contact the Security team whenever you need them. Whether you're in an emergency situation, in need of First Aid or want to report an incident on campus, SafeZone allows you to be immediately put in touch with a member of our Security team and, at the touch of a button, can share your location and personal profile so that they can respond quickly and effectively to your specific needs. It also allows the entire College community to stay informed in the event of a major incident in London or wherever you may be in the world. Safezone also provides information on other services, such as real-time updates on the College shuttle bus.

SafeZone is optional to register for and is now available to download on the Apple and Android App stores. Visit www.imperial.ac.uk/campus-security for more details about SafeZone.

All existing phone numbers for the Security team are still operational. In the event of an emergency, you can still call 4444 from any internal College phone. In the event of a wider incident in London, you can now also call 0300 131 4444, Imperial's Emergency Recorded Message Line, which will point you in the direction of up-to-date information and advice.

Changes due to Coronavirus (COVID-19)
The College will keep you informed about any further changes that may affect you due to the impact of coronavirus (COVID-19). The COVID-19 FAQs on the website are a repository of helpful information and the latest guidance can be found at:

www.imperial.ac.uk/about/covid-19/students
6. Working While Studying

If you are studying full time, the College recommends that you do not work part-time during term time. If this is unavoidable we advise you to work no more than 10–15 hours per week, which should be principally at weekends and not within normal College working hours. Working in excess of these hours could impact adversely on your studies or health.

If you are here on a Tier 4/Student Route visa you can work no more than 20 hours a week during term time. Some sponsors may not permit you to take up work outside your studies and others may specify a limit.

If you are considering part-time work during term time you are strongly advised to discuss this issue with your supervisor or Personal/Senior Personal Postgraduate Tutor. If you are on a Tier 4/Student Route visa you should also seek advice from the International Student Support team regarding visa limitations on employment.

The College’s examination boards will not normally consider as mitigating circumstances any negative impact that part-time work during term-time may have had on your performance in examinations or in other assessed work. Examinations or vivas cannot be rescheduled to accommodate your part-time working arrangements.
7. Health and Safety

Keeping you safe is a top priority for us. We continue to be guided by the latest official government guidance. At Imperial, we also have some of the world’s leading researchers of the coronavirus (COVID-19) pandemic who are advising governments around the world on the most effective measures to take to protect people from the virus as well as developing and testing a new vaccine.

You will be required to follow the safety requirements put in place on campus and in all College buildings (including halls) to ensure we keep the campuses and the Imperial community safe and to mitigate the impact of the pandemic, particularly in our ability to deliver your degree programme and to offer you a full student experience.

You can find the latest guidance on the measures we are taking for your safety, plus information about the healthcare support available to you at:

www.imperial.ac.uk/about/covid-19/students/keeping-you-safe/

The College’s Health and Safety Policy can be found at:


Your Departmental safety contact is:

Andy Pope
131 Huxley, Level 1
0207 594 8544
a.pope@imperial.ac.uk

You may be required to complete inductions and attend training sessions to safely complete this course. These include:

• Safety Induction for Maths Postgraduate Students – during induction week

The College Safety Department

The Safety Department offers a range of specialist advice on all aspects of safety. This includes anything which you feel might affect you directly, or which may be associated with teaching, research or support service activities.

The College’s activities range from the use of hazardous materials (biological, chemical and radiological substances) to field work, heavy or awkward lifting, driving, and working alone or late.

All College activities are covered by general health and safety regulations, but higher risk activities will have additional requirements.

The Safety Department helps departments and individuals ensure effective safety management systems are in place throughout the College to comply with specific legal requirements.

Sometimes the management systems fail, and an accident or a near-miss incident arises; it is important that we learn lessons from such situations to prevent recurrence and the Safety Department can support such investigations. All accidents and incidents should be reported online at:

www.imperial.ac.uk/safety
To report concerns or to ask for advice you should contact your programme director, academic supervisor or departmental safety officer in the first instance. You may also contact the Safety Department directly.

**Your Departmental safety contact is:**

- Andy Pope
- 131 Huxley, Level 1
- 0207 594 8544
- a.pope@imperial.ac.uk

**Occupational Health requirements**

The College Occupational Health Service provides services to:

- protect health at work
- assess and advise on fitness for work
- ensure that health issues are effectively managed

The Service promotes and supports a culture where the physical and psychological health of staff, students and others involved in the College is respected, protected and improved whilst at work.

- [www.imperial.ac.uk/occupational-health](http://www.imperial.ac.uk/occupational-health)
8. College Policies and Procedures

Regulations for Students
All registered students of the College are subject to the College Regulations. The relevant set of regulations will depend on your programme and year of entry, please see our Regulations webpage to determine which apply to you:

- www.imperial.ac.uk/about/governance/academic-governance/regulations
- www.imperial.ac.uk/students/terms-and-conditions

Academic Feedback Policy
We are committed in providing you with timely and appropriate feedback on your academic progress and achievement, enabling you to reflect on your academic progress. During your study you will receive different methods of feedback according to assessment type, discipline, level of study and your individual need. Further guidance on the Policy of Academic Feedback can be found on the Academic Governance website:

- www.imperial.ac.uk/media/imperial-college/administration-and-support-services/registry/academic-governance/public/academic-policy/academic-feedback/Academic-feedback-policy-for-taught-programmes.pdf

Students will obtain feedback via:
- Marked coursework
- Meetings with research project supervisors
- Meetings with personal tutor
- Meetings with Programme Director
- Feedback from students via:
  - Departmental Postgraduate Staff-Student Committee (meets three times a year)
  - Individual Course Survey (PGSo)
  - Research project supervisors meeting their students
  - Personal tutors meeting their students
  - Meetings between programme director and students, particularly their elected representative
  - The Postgraduate Tutor being approached by students

It is very important that you provide us with your feedback (I am sure you are aware of the bias that can be caused by missing data):
- If something is great we definitively want to know.
- If something does not work well - we can only fix it if we know about it.

An annual course review will take place taking into account the student feedback. Please note that your examination scripts once completed belong to the College under the GDPR legislation. Please see the College GDPR webpages for further information at:


Provisional Marks Guidance
Provisional marks are agreed marks that have yet to be ratified by the Board of Examiners. These results are provisional and are subject to change by the Board of Examiners. The release of provisional marks is permitted except in certain circumstances. Further information can be found in the Guidelines for Issuing Provisional Marks to Students on Taught Programmes:
Late Submission Policy

You are responsible for ensuring that you submit your coursework assessments in the correct format and by the published deadline (date and time). Any piece of assessed work which is submitted beyond the published deadline (date and time) would be classed as a late submission and will incur a penalty (a cap at the pass mark, or it is classed as a fail). Further guidance on Late Submission of Assessments can be found on the Academic Governance website:


If you submit late due to mitigating circumstances, you may be able to make a claim that means that the cap on your mark is lifted. Please see below and the policy document.

Mitigating Circumstances

During your studies you may be affected by sudden or unforeseen circumstances. You should always contact your personal tutor for advice and support. If this happens at the time of, or immediately preceding your assessments you may be able to make a claim for mitigating circumstances. If successful this claim enables the Board of Examiners when reviewing your marks at the end of the year to have greater discretion with regards to offering repeat attempts (either capped or uncapped), a repeat year, or with your progression or final classification. Please note, the Board are not permitted to amend the marks that you were awarded, only to take your claim into account making decisions.

All claims must be supported by independent evidence and submitted within 10 working days of the assessment deadline. Any claim made after this deadline is likely to be rejected unless there is a good reason (such as you were still unwell) until the point of submitting the claim. Details of the College’s Mitigating Circumstances procedure can be found under the Mitigating Circumstances tab on the page below:

www.imperial.ac.uk/about/governance/academic-governance/academic-policy/exams-and-assessment/

Through the procedure you may also be able to request an extension deadline to some forms of assessment. Wherever possible it is expected that this is used as it will enable to you complete your studies within the same College year (rather than over the summer holiday or in the next year).

Your department will have specific instructions for making a claim for mitigation or for requesting an extension.

Support for ongoing or long-term conditions, or for registered disabilities would not normally fall under the remit of mitigating circumstances and students should be supported through their studies with Additional Examination Arrangements. More details can be found at:

www.imperial.ac.uk/disability-advisory-service/support/exams/

Academic Misconduct Policy and Procedures

As has been highlighted under the Academic Integrity section, it is important that you learn how to properly attribute and acknowledge the work, data and ideas of others. Any proven
form of academic misconduct is subject to penalties as outlined in the College’s Misconduct Policy and Procedures.

www.imperial.ac.uk/about/governance/academic-governance/academic-policy/exams-and-assessment/

Unsatisfactory Progress
Unfortunately, sometimes students struggle to make satisfactory progress in their study or their engagement with their studies falls below our expectations. The College has a process to identify and support students by reaffirming these expectations with an action plan. The full details of this process, and the appeals procedure relating to it can be found at:

www.imperial.ac.uk/about/governance/academic-governance/academic-policy/complaints-appeals-and-discipline

Academic Appeals Procedure
We have rigorous regulations in place to ensure assessments are conducted with fairness and consistency, claims for mitigating circumstances have been considered reasonably and in line with the regulations of the College, and that the decisions of the Boards of Examiners maintain the integrity of our academic awards. In the event that you believe that you have grounds to appeal these decisions, we have laid out clear and consistent procedures through which appeals can be investigated and considered:

www.imperial.ac.uk/about/governance/academic-governance/academic-policy/complaints-appeals-and-discipline

Arithmetic Marks Check
If you consider that there may have been an error in the adding up of your marks, you may request an arithmetic mark check. Please note that this must be requested within 10 working days of the official notification of your results from the Results team in Registry. You may not request a marks check for a previous year of study.

Student Complaints
The College strives to ensure that all students are well supported in their studies and receive a good experience of their programme and the wider College activities. If you feel that your experience has not lived up to these expectations the College has an agreed Students Complaints process through which your concern can be investigated and considered.

If you have any concerns about your experience at the College and have been unable to address these informally, you should contact Student Complaints who can provide advice about what is the appropriate way to seek to resolve this at:

student.complaints@imperial.ac.uk

www.imperial.ac.uk/about/governance/academic-governance/academic-policy/complaints-appeals-and-discipline

Student Disciplinary Procedure
The College has the right to investigate any allegation of misconduct against a student and may take disciplinary action where it decides, on the balance of probabilities, that a breach of discipline has been committed. The general principles of the Student Disciplinary Procedure are available on the College website:
Intellectual Property Rights Policy
For further guidance on the College’s Intellectual Property Rights Policy is available on the College website:


Further information about the Imperial Enterprise Lab can be found at:

[www.imperial.ac.uk/students/enterprising-students](http://www.imperial.ac.uk/students/enterprising-students)


Use of IT Facilities
View the Conditions of Use of IT Facilities:

[www.imperial.ac.uk/admin-services/ict/self-service/computers-printing/staff-computers/conditions-of-use-for-it-facilities/](http://www.imperial.ac.uk/admin-services/ict/self-service/computers-printing/staff-computers/conditions-of-use-for-it-facilities/)

General Data Protection Regulation (GDPR)
All staff and students who work with personal data are responsible for complying with GDPR. The College will provide support and guidance but you do have a personal responsibility to comply.
In line with the above please see the College’s privacy notice for students which form part of the terms and conditions of registration with the College.

9. Wellbeing, Support and Advice

In your department
Your department has a system of academic and pastoral care in place to make sure you have access to the appropriate support throughout your time at Imperial.

Your Personal Tutor
Your Personal Tutor is your first point of contact for pastoral support and advice. You can arrange to have a meeting with them at any time during your studies (although most Personal Tutors will have set office hours or may require you to make an appointment). If necessary, they will direct you to an appropriate source of support.

Department of Mathematics Senior Postgraduate Tutor:
Dr Gunnar Pruessner
6M32 Huxley Building
020 7594 8534
g.pruessner@imperial.ac.uk

Departmental Disability Officers
Departmental Disability Officers are the first point of contact in your department for issues around disability. They can apply for additional exam arrangements on your behalf and will facilitate support within your department.

Your Departmental Disability Officer is:
Sai Yoghananthan
654 Huxley Building
020 7594 8500
sai.nathan@imperial.ac.uk

More information on Departmental Disability Officers is available at:

www.imperial.ac.uk/disability-advisory-service/support/ddos

More information about how to request additional arrangements for exams if you have a disability is available at:


Your Union
All Imperial students automatically become members of Imperial College Union when they register at the College. The Union provides a range of independent support.

Imperial College Union Advice Centre
The Union’s advisers are on hand to provide free, confidential, independent advice on a wide range of welfare issues including housing, money and debt, employment and consumer rights, and personal safety.

www.imperialcollegeunion.org/advice

Student representatives
Imperial College Union operates two Representation Networks of over 600 elected student representatives – the Academic Representation Network and the Wellbeing Representation Network. Reps represent the voice of students and can direct you to internal and external support services. The Union’s Liberation Officers also work to make sure that the views of under-represented and interest groups are heard at the College. If you have any feedback about issues in your department relating to academic or wellbeing issues, you can speak to one of your student representatives.

Student Hub
At the Student Hub, you can access advice about accommodation, admissions and financial support and get help with international student enquiries, questions about student records, and exams.

Student Support Zone
If you have moved home to take up your place at Imperial you will need to register with a new doctor (also known as a General Practitioner or GP) so that you can access NHS healthcare. It’s important that you register with a doctor soon after you arrive – don’t wait until you are sick, as this could delay your access to treatment.

Student Support Zone has lots of information about the resources available at Imperial and beyond to help you to stay healthy and happy. It’s a great place to start when you’re looking for some support – it covers advice about housing and money, health, wellbeing and maintaining a good work-life balance, and provides the details of who you can contact if you need some extra support.

Useful support contacts
Health and wellbeing

Imperial College Health Centre
40 Prince’s Gardens, South Kensington Campus
020 7584 6301
imperialcollege.hc@nhs.net
www.imperialcollegehealthcentre.co.uk

Imperial College Dental Centre
Prince’s Gardens, South Kensington Campus
020 7589 6623
www.imperialcollegedental.co.uk

Student Counselling and Mental Health Advice Service
020 7594 9637
counselling@imperial.ac.uk
www.imperial.ac.uk/counselling
Multi-Faith Chaplaincy Service

Chemistry Building, South Kensington Campus
chaplaincy@imperial.ac.uk
www.imperial.ac.uk/chaplaincy

Disability Advisory Service

Room 566, Level 5, Sherfield Building, South Kensington Campus
020 7594 9755
disabilities@imperial.ac.uk
www.imperial.ac.uk/disability-advisory-service

International students’ support

Centre for Academic English

Level 3, Sherfield Building, South Kensington Campus
english@imperial.ac.uk
www.imperial.ac.uk/academic-english

International Student Support team

020 7594 8040
www.imperial.ac.uk/study/international-students

Careers

Careers Service
Level 5, Sherfield Building, South Kensington Campus
020 7594 8024
careers@imperial.ac.uk
www.imperial.ac.uk/careers

ICT and software

ICT Service Desk
Central Library, South Kensington Campus
020 7594 9000
www.imperial.ac.uk/ict/service-desk

Software shop
www.imperial.ac.uk/admin-services/ict/self-service/computers-printing/devices-and-software/
10. **Student Administration**

The Student Administration Team are responsible for the administration and maintenance of the student records for all students studying at the College. This includes enrolments, programme transfers, interruption of studies, withdrawals and processing of examination entry for research degree students. The team also use this information to fulfil reporting duties to the Student Loans Company, Transport for London and the UKVI, as well as other external bodies.

The Team is responsible for the processing of student results and awards on the student record system as well as the production and distribution of academic transcripts and certificates of award.

The Student Administration Team produce a variety of standard document requests for both current and previous students including council tax letters, standard statements of attendance and confirmation of degree letters.

**Student Records**
- +44 (0)20 7594 7268
- student.records@imperial.ac.uk

**Degree certificates**
- +44 (0)20 7594 7267
- certificates@imperial.ac.uk
13. Work-life Balance

The pace and intensity of study at Imperial can be demanding so it’s important to find time for outside interests.

Graduate Students’ Union
The Graduate Students’ Union is the postgraduate arm of Imperial College Union. The GSU works alongside the Imperial College Union President to ensure that the requirements of postgraduate students are catered for. It also organises a number of academic and social events during the year.

Move Imperial
Imperial College has a wide range of sports and activities on offer that cater for all standards and abilities. We have a recreational activity offer, competitive sports teams and an elite sport programme. We are dedicated to ensuring we have a diverse, inclusive and exciting offer for all.

Whilst we are closely monitoring government advice, we are also beholden to the overarching College strategy of a phased return to campus and a reduction in on-campus activity until at least the beginning of the 2020-21 academic year. In line with this, we are anticipating being able to begin to reopen some of our facilities from Monday 7 September; details will be communicated regularly to our community.

More information about Imperial student memberships and updates to our services can be found at:

- www.imperial.ac.uk/ethos/memberships/students

With an annual fee of £30 you will get use of the gym and swimming facilities on our campuses.

- www.imperial.ac.uk/sport

We have a huge collection of online resources, home workout videos, healthy recipes and playlists available to all as part of our MoveFromHome campaign, more information can be found at:

- www.imperial.ac.uk/sport/movefromhome
14. Student feedback and representation

Feedback from students
The College and Union is committed to continually improving your education and wider experience and a key part of this is your feedback. Feedback is thoroughly discussed by your student representatives and staff. Examples of where student feedback has made a positive impact on the MSc in Statistics include managing coursework lengths and deadlines to minimise stress placed on students, holding more social events, streamlining administrative processes, creating greater transparency in the assessment process.

Student representation
Student Representatives are recruited from every department to gather feedback from students to discuss with staff. More information about the role, and instructions on how to become an academic representative, are available on the Imperial College Union website.

www.imperialcollegeunion.org/your-union/your-representatives/academic-representatives/overview

Staff-Student Committee
Staff-Student Committees are designed to strengthen understanding and improve the flow of communication between staff and students and, through open dialogue, promote high standards of education and training, in a co-operative and constructive atmosphere. College good practice guidelines for staff-student committees are available here:

www.imperial.ac.uk/about/governance/academic-governance/academic-policy/student-feedback
15. **Student Surveys**

Your feedback is important to your department, the College and Imperial College Union. Whilst there are a variety of ways to give your feedback on your Imperial experience, the following College-wide surveys give you regular opportunities to make your voice heard:

- **PG Student Online Evaluation (SOLE) module survey or departmental equivalent**
- **Student Experience Survey (SES)**

The PG SOLE module survey (or equivalent for your department) runs at the end of the autumn and spring terms. This survey is your chance to tell us about the modules you have attended. The Student Experience Survey (SES) is an opportunity to give your views on your experience beyond the lecture theatres or labs. This survey will cover a range of College services and on the Imperial College Union.

All these surveys are confidential and the more students that take part the more representative the results so please take a few minutes to give your views.

The Union’s “You Said, We Did” campaign shows you some of the changes made as a result of survey feedback:

- [www.imperialcollegeunion.org/you-said-we-did](http://www.imperialcollegeunion.org/you-said-we-did)

The Union’s response to surveys can be found here:

- [www.imperialcollegeunion.org/your-union/your-representatives/responses](http://www.imperialcollegeunion.org/your-union/your-representatives/responses)

If you would like to know more about any of these surveys or see the results from previous surveys, please visit:

- [www.imperial.ac.uk/students/academic-support/student-surveys/pg-student-surveys](http://www.imperial.ac.uk/students/academic-support/student-surveys/pg-student-surveys)

For further information on surveys, please contact the Registry’s Surveys Team at:

- [surveys.registrysupport@imperial.ac.uk](mailto:surveys.registrysupport@imperial.ac.uk)
16. And finally

**Alumni Services**
When you graduate you will be part of a lifelong community of over 190,000 alumni, with access to a range of alumni benefits including:

- discounts on further study at the College and at Imperial College Business School
- alumni email service
- networking events
- access to the Library and online resources
- access to the full range of careers support offered to current students for up to three years after you graduate
- access to our Alumni Visitor Centre at the South Kensington Campus, with free Wi-Fi, complimentary drinks, newspapers and magazines, and daytime left luggage facility

Visit the Alumni website to find out more about your new community, including case studies of other alumni and a directory of local alumni groups in countries across the world.

[www.imperial.ac.uk/alumni](http://www.imperial.ac.uk/alumni)

**Opportunities for Further Study**
After you have completed the MSc in Statistics you may choose to continue with a PhD in Statistics at the Department of Mathematics. For further information visit:

[https://www.imperial.ac.uk/mathematics/postgraduate/doctoral-programme/](https://www.imperial.ac.uk/mathematics/postgraduate/doctoral-programme/)