Imperial College

Primary department

Physics

Module Specification (Curriculum Review)

Basic details Earliest cohort Latest cohort UID 2025-26 Cohorts covered Long title Solid State Physics New code PHYS60003 New short title Solid State Physics Brief description This course covers the fundamentals of the physics of solids. We will explore how the properties of module of solids are determined by microscopic physics. There will be focus on electronic properties of (approx. 600 chars.) insulators, semiconductors and metals. 233 characters Available as a standalone module/ short course? Ν Statutory details **ECTS** CATS Non-credit Credit value 7.5 15 Ν **HECOS** codes FHEQ level Level 6 Allocation of study hours Hours Lectures 22 Group teaching 6 Incl. seminars, tutorials, problem classes. Lab/ practical 0 Other scheduled 11 Incl. project supervision, fieldwork, external visits. 148.5 Incl. wider reading/ practice, follow-up work, completion of assessments, revisions. Independent study Placement 0 Incl. work-based learning and study that occurs overseas. Total hours 187.5 **ECTS** ratio 25.00 Project/placement activity Is placement activity allowed? No Module delivery Delivery mode Taught/ Campus Other Delivery term Other Term 1, exam in term 3 Ownership

Additional teaching departments	None					
Delivery campus	South Kensington					
Collaborative delivery						
	Coll	aborative delivery?	N			
External institution External department External campus	N/A N/A N/A					
Associated staff						
Role	CID	Given name	Surname			
Module Leader		Niladri	Banerjee			
I			I			
Learning and tea Module description	aching					
1	0 11: (11:		11. 1			

I Callino	outcomes

On completion of this module you will be able to:

- explain and apply the band theory picture of electrons in solids
- distinguish between an insulator, metal or semiconductor
- describe electrical conduction in metals
- explain the basic electronic properties of a semiconductor

Module content

- Reciprocal lattice and Brillouin zones
- Bloch's theorem and electron bands: nearly free electron model and tight-binding models
- Fermi surfaces of a metal
- Electrical conduction: Drude theory, drift and diffusion
- Valence and conduction bands in a semiconductor
- Intrinsic and extrinsic semiconductors
- pn junction

Learning and **Teaching Approach**

Students will be taught over a term using a combination of lectures, office hours, directed problem solving in seminars, and exercises in problem sheets for homework. A fraction of problems are for in-course assessment (see below).

Assessment Strategy

An exam covering all learning outcomes will comprise the main part of the summative assessment and will comprise 80% of the module mark. In-course assessments in the form of 3-5 assessed problem sheets (online and handwritten) will comprise 20% of the mark.

Feedback	as online tests and verified back for assesse Solutions for non-ass	will be provided throughout the module following formative assessment in forms verbal feedback in seminars by teaching assistants. Seed problems are provided as written solutions. Seessed problem sheets are published 1-2 weeks after release of the problems. On written examinations for each module is provided in the form of written reports the students.				
Reading list	by the course, alongS. H. Simon, The OJ. R. Hook and H. E	are required to be purchased by the students. Further discussion of material covered with relevant problems can be found in: Oxford Solid State Basics. (OUP, 2013) E. Hall, Solid State Physics. (Wiley-Blackwell, 1991) on to Solid State Physics 8th edition, John Wiley & Sons, 2004)				
Quality assurance	е	Office use only	,			
Date of first approval Date of last revision Date of this approval		QA Lead Department staff Date of collection				

Date exported

Date imported

Niladri Banerjee

Module leader

Notes/ comments

Template version 16/06/2017

Programme structure Associated modules

UID Legacy code Requisite type Module title

Assessment details

Grading method Numeric Pass mark 40%

Assessments

Assessment type	Assessment description	Weighting	Pass mark	Must pass?
Examination	2-hour written exam	80%	40%	N
Coursework	In-course assessment	20%	40%	N
				,
		I		