Plasma Physics

<table>
<thead>
<tr>
<th>Module Code</th>
<th>PHYS96031</th>
<th>FHEQ Level</th>
<th>Level 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-requisites</td>
<td>None</td>
<td>Co-requisites</td>
<td>None</td>
</tr>
<tr>
<td>Primary Department</td>
<td>Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Leader</td>
<td>Prof Jeremy Chittenden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Teaching Departments</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching Staff</td>
<td>Prof Jeremy Chittenden + Associate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmes on which the Module is delivered</td>
<td>All UG Physics programmes (F300, F303, F309, F325, F390, F3W3)</td>
<td>Core/Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Learning Outcomes

On completing the Plasma Physics course, students will:

- Understand the broad range of physical phenomena which determine the behaviour of plasmas and the importance of collective effects.
 - Qualitative understanding
 - Theoretical models (often have to be simplified)
- Start learning how to think like a plasma physicist
 - Develop intuition for plasma behaviour
 - Pin-point the key physics/phenomena for a particular system/application
 - Understand conditions spanning over 20 orders of magnitude.
 - Simplification of theoretical models.
- Learn problem-solving skills for plasma physics
 - Linearization of PDEs
 - ...to facilitate tractable, quantitative solutions
 - Enhance their analytical abilities and physics problem-solving, in general
- Understand the principles and challenge involved in energy generation by thermonuclear fusion.
- Understand the role of plasma in a range of naturally occurring phenomena and laboratory application.

Description of Content

Basic properties of plasmas
- Definition, occurrence & importance of plasmas, Debye shielding
- Quasi-neutrality, plasma parameter, plasma frequency, Larmor orbits (basics)
- Non-ideal plasmas

Thermonuclear fusion
- Nuclear reactions & cross sections, ignition & break-even

Single particle motion
- Guiding centre drifts; $E\times B$, curvature, gradient
- Magnetic moment (μ), conservation of μ, magnetic mirrors

Collisions
- Coulomb collisions; mean-free-path and collision time (single & cumulative collisions)
- Resistivity, particle diffusion, bremsstrahlung

Magnetohydrodynamics (MHD)
- MHD equations; mass continuity, momentum, energy, Ohm’s law
- The convective derivative, MHD validity & assumptions
- B-field dynamics; flux freezing, resistive diffusion, magnetic Reynolds number
- Magnetic pressure & tension

Waves
- Electromagnetic, Langmuir, MHD (Alfvén, magnetosonic)

Magnetic confinement
- MHD equilibria; flux surfaces, Z-pinches
- -MHD instabilities & the safety factor, energy confinement in tokamaks
- Tokamak requirements – summary

Kinetic theory
- Vlasov & Boltzmann equations, obtaining fluid/MHD equations from Boltzmann
- Langmuir waves, resonant particles & trapping, Landau damping
- Laser-Plasma particle accelerators

Main approaches to controlled fusion
- Overviews; magnetic confinement fusion (MCF) & tokamaks, inertial confinement fusion (ICF)

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Assessment Type</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>Exam1</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning & Teaching Hours</th>
<th>Independent Study Hours</th>
<th>Placement Hours</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>103</td>
<td>0</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS Credit</th>
<th>CATS Credit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of introduction</th>
<th>Date of Last Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2016</td>
<td>May 2018</td>
</tr>
</tbody>
</table>