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08 June020 Imperial College COVID response team

Summary

In response to the COAI® pandemic, countrighave sought to control transmissiohSARSC0\V2
by restricting population movement through social distancing interventions, reducing the number of
contacts.

Mobility data represent an important proxy measure of social distancing. Heeedaevelop a
framework to infer therelationship betveenmobility andthe key measure of populaticlevel disease
transmission, the reproduction number (R). The framework is applied to 53 countries with sustained
SAR&0V2 transmission based on two distinct counspecfic automated measures of human
mobility, Apple and Google mobility data.

For both datasets, the relationship between mobility and transmission was consistent within and
across countries and explained more than 85% of the variance in the observed vaiiation
transmissibility. We quantified auntry-specific mobility thresholds defined as the reduction in
mobility necessary to expect a decline in new infections (R<1).

While social contacts wersufficiently reduced in France, Spain and the &thiKingdom tacontrol
COVIR9 as of the 10 of May, we find that enhanced control measurase still warranted for the
majority of countries. We found encouraging early evidencsamfie decoupling of transmission and
mobility in 10 countries, a key indicator of suss&ul easing of soctdistancing resictions.

Easing socialistancing restrictions should be considered very carefully, as small increasagaat
ratesare likely to risk resurgence even where COAD0s apparently under controDverall, strong
populationwide socialdistancing measws are effective to control COVIID; however gradual
easing of restrictions must be accompanied by alternative interventions, such as efficient eontact
tracing, to ensure control.
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1. Introduction

Since the declarain of COVIEL9 as a Public Health Engency of International Concern in late
January 202%) many countries have struggled to prevent the importatidand subsequent local
transmission of SARSOV24, the virus that causes COVIPP.

Socialdistancing, case isolation, and shielding have been widely used to limit comnAewety
transmissbn of SARE0V2 and protect vulnerable grougs. These interventions ainto reduce
mobility and contact within the population and thus to reduce the transmissibility of £AR3, as
measured by the reproduction number (R, the average numbesesbndary cases caed by a
primary case). Early in thepidemic reductions in a variety of digital sources of mobility data were
shown to correlate well witldecreassin incidencé&® and contact pattern¥.

In the face of the threat posed by COMI® most countries rapidly implemented intensivecil
distancing policies teuppress transmission (bringingt®& below 1)and thus avoid overwhelming
healthcare capeity'*. While such a reduction in new cases has now been convincingly observed in
mainland Ching, Italy, Frane, Spairthe UK and Hong Korfj where insome cases a reduction

in transmissin has been explicitly linked to the reduction in mobtfiff many countries are still
experiencing widespread transmission of SARY2'%%,

Understanding how well mobility data refits population contact rates and whether that relationship

is changing in countries transitioning from lockdown measures is important for tracking the trajectory
of country epidemics, improving forecasting and assessing the effectiveness of ongoing contro
measuresHere, wecharacterise the relationship between transmission and different mobility data
streamsfor 53 countriesaround the world

2. Methods

Data

Data on deaths due to COVID by country were sourced from the European CentredDisease

Corirol (ECDC)including ddy death @ dzy 14 NB LR NI SR o6& Sl OK O2dzy i NEQ:
up to the 26" of April 2020. Our analysis is based on countries which fulfil the following three criteria:

1) at least 10 deaths reported in the last week of data, 2) at least 1thsléa thepreceding week,

and 3) at least 100 deaths reported in total. These criteria were chosen to ensure that the countries
included showed evidence of active transmission.

Mobility data were sourced from Appfeand Googl&. These data reflect the movement of people

with an Apple or Android device using mapping apps. For the Apple data, the measure of mobility is
NBLEZ2NISR F2NJ GKNBS RIGF (aNI NRbAKRgr e Rodgledaty, he> Wo I
YSI adzNB 2F Y20AfAGe Ada NBLR2NIGSR F2NJ &AE RIFEGE &d
WOGNIyairld adrdiizyaQs Wg2Nl LX F OSaQ | yRieldNBréel At | y |
data streams. Bth measures estimate relative daily mobility for each country and are quantified

relative to the maximum mobility measured across the time sef@#®r to the pandemic WHO

declaration) Apple and Google mobility data were available from th& &8 Januay and 1%' of

February 2020, respectively, up to the last day that deaths were analyséa{May).
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Our analysis is based on 53 countries for which we had epidemiological data (meeting our active
transmission thresholds) and mobility datadnig include37 countries for which we had both Google

and Apple mobility data; 3 countries for which we only Apple mobility data; and 13 countries for which
we had only Google mobility data (see Table S1).

Processing mobility data

The variousmobility data streams (@. driving, walking and transit movement for Apple and the six

streams for Google) showed both shoend longterm variability in movement levels. For each

country and data source, we: 1) combined the mobility data streams (aagmgdWalkingQ'érivingQ
andWansitF 2 NJ ! LILX S YR WNBGFAfT FyR NBONBIGAZ2Y QX Wi NI
single measure; 2) calculated a weellyerage(Thursdayto-Thursday; 3) assigned this average to

the Thursday of each eek, and 4) interpolateanobility on other days linearly from these. This

smoothed measure of mobility was then rescalbdtween 0 and 1jelative to the maximum Monday

to-Thursday observed average to obtain a single daily measure of relative mobittyubtry &

(Fig. 1.a).

Estimating transmissibility, R, using mobility data

We define theinstantaneousreproduction number on dayt, Y, which reflects the level of
transmissibility in country on that day. We assum j is linked to relatie mobility on that day via
the following:

OEY oy T op agp
where'Y j is the basic reproduction number in counirgnd m; is the relative mobility in country
on dayt. When mobility is at its peak (1 d00%), transmissibility is characterised by the basic
reproduction number. Reduced mobility leads to reductions in the effective reproduction number
(whenf is postive). As themaximumsmoothed mobilityin the observed rangé scaled to 1, the
estimates of thebasic reproduction numbearcan be though as upper bound, similarly to defining the

reproduction number of a vector borne disease as transmissibility duhiegperiod with highest
vectorial transmission.

In this framework, due to the delay beeen infection and deaths, the instantaneous reproduction
number experienced by those dying on dayn countryi, Y, is a weighted average of the
instantaneougeproduction number on dai; 'Y j:

Yhi YiQo i

assuming that the infectioto-death interval follows a gamma distributioi® with mean 18.8 days
and standardieviation of 8.46 day8(see SI.7 for details).
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We relate the observed reported deaths on dag countryi to the basic reproduction numbei()
and the parameterf () linking transmissibility to mobilityx( ) using the renewal equatiéh?®

¢

Orx 00 Y Or0

where'Oy, is the reported deaths on dayin countryi, andv is the serial interval (i.e. a serial interval

for deaths defined as the time between deaths oé timfector and infetee) assumed to be gamma
distributed with mean of 6.48 days and standard deviation 3.83 'dajfere we assume that the
number of reported deaths follow a negative binomial distribat (such that thevariance in the
observed numbers of deaths is greater than or equal to the expected number of deaths) with over
dispersion .

The framework outlined above and estimates of transmissibility obtaiaex robust to under
reporting of deatls but are affected by variation in levels of reporting.

Once the relationship between mobility aiX; is estimated, we can evaluateddistribution for

for any level of mobility. Using a fine grid of mobility, we obtained estimates of camnekipg’Y ;,

and this allowed us to estimate the distributiaf the reduction of mobility whenlY  p. This
mobility threstold can be interpreted as the reduction in measured mobility that would be necessary
in order to achieve control, given tregher behaviours of the population over the period under study
(e.g. countryspecific ways that people are interacting with eachasthnd countryspecific additional
control measures such as testing and contact tracing).

Implementation and caveats

We estinated the joint posterior distribution oY ;Q& 1+ & dzAAy 3 | al N 2@ [/ KI A
procedure with a Metropoliddasting algorithrff. Posterior disttiutions forY; and 'Y can be

directly obtained from the above. To ensure our parameter estimates were-diaten, we used
uninformative prior distributions foty ;Q& O dzy A T2 N¥Y Ay | &S ONAy K F 8 Na&H K yp &
[-100; 10Q).

As there are likely to be large heterogeneities in first the transmissibility between individuals and
second the reporting of deaths, we assume a negative binomial likelihood by default, which allows us
to estimatean overdispersion parametet,. Weused an exponential prior for with a mean of 1
(equivalent to a geometric likelihood)s a sensitivity analysis, we also fit the model using a Poisson
likelihood (see Sl for results). The model was also fitted wmmnglternative lower shorter serial
interval of deaths with mean 4.8 and standard deviation 2.7 day@/e evaluated the correlation
between estimated mobility thresholds and basic reproduction number across countries to ensure the
variation in the estimated thresholds was not driven by the variation in estimadsit reproduction
number (SI). Finlgi, as the reporting of deaths might have changed during the cotsgegific early
phase of the epidemic, we +estimated the mobilittransmission relationship discarding from the
likelihood all days previous to thevb consecutive weeks reporting eadheast 10 deaths (the criteria

for sustainedepidemic, see i
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Fitting the data with the model outlined above imposes a functional relationship between mobility

and transmissibility. Therefore, as well as the modee &S > ¢S TFALGGSR ¢ Wydz €
transmissibility was not linked to mobility (ife. M ® ¢ KA a WydzZ £ Q Y2RSt | &a&dzy
and that the epidemic was growing unchanged and dynamics can be characterised by a single
parameter,’Y . For each country, the best model was chosen using the Deviance Information
Criterion DIC.

The besffitting model waditted at multiple time-points, allowing us to evaluate its predictive ability

in reaktime. The nine time points fitted were the week ending thé o March until the weelending

10" of May 2020. For countries that met our active transmission crigmdhfor which we had mobility
data, wefitted the full and the null models (using the whole time series of deaths up to the last date),
assuming either a Poisson or negative binomial distribution for reported deaths.

Evaluating model fit

We assessed wheghn the simple model outlined above (twmarameters per countryY  andf )
captured the trends in the instantaneous reproduction number. Independent of the mobility data, we
estimated the instantaneous reproduction numbgased onwell-established methodologsf and the
F3a2O0Al GSR piEstin®l Ging 8 Bayesidn framework, the method estimates the
instantaneous reproduction numbdrasedon daily death counts:

ofx O Y OF 0

with 'Y ﬁﬁ 0§KS W2 06 aS NESReprodugfianintinbéegkly estimates ofy ﬁF‘ were
obtained assuming constant transmissibility for 7 days. Thenastid'Y ﬁﬁ Qa TphERtiMv®assume

a Poisson distribution of reported deaths. We also implemented a negative mhorodel, which is
equivalent to BiEstimin the limit when there is no ovettispersion. This is critical as allowing ever
dispersion is likely to change the ﬁﬁ estimate, especially when reported deaths are low.

For each country, we could then compa¥g; and Y F,F‘ . While'Y; relies on estimating 1 or 2

parameters ,, and if the nul model isrejected),’Y ﬁh relies on estimating@s many parameters
as there are number of weeks in the tirseries of deaths.

As well as comparing the estimated instantaneous reproduction numbers over time, we compared the
relationship betweerY ; and'Y ' and mobility.
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To do so, we linked deattelated reproduction numbers to the earlier mobility patteris,;, when
those dying were infected. We defined an effective mobility; , at time t that charaterises the
mobility at the time of infection of those who died at tinie

Thus,
Y YiQ YiQ h Qo i
(whereh(t-s)is the infectionto-death interval distribution). Therefore, the effective mobility is:

& pTBdé"Q'Q Q0

We can now ploty ; andY F,F‘ against the effetive mobility at the time of infection.

Interestingly, estimating the effective mobility experienced by those dying on tdeslies on
assumptions about the functional relationship between mobility &dntuitively, assuming that the
effective mobilityisequal to the past mobility weighted lilre infectionto-death interval is equivalent
to assuming a linear relationship between mobility and the reproduction number. Asslvhing

Yr T p &y, then, following the same logic as above, we have;, p B p

ap Qo i

Once the relationship between mobility andy, is characterised, we can evaluate the posterior
distribution for'Y j, for any mobility including whelY; p.

Dampening of the transmissiemobility relationship

As countries seek a way to easeisbdistancing measures, alternative public health control strategies
are being considered, sh@s increased testing and contact tracifgrthermore, while restrictions

on travel are being relaxed, often recommendations for social distancing remaincm Ve would
therefore expect some decoupling of transmission and mobility, leading to a weiake of the
correlation between mobility and underlying contact rates (and therefore transmisdibr)effect on
ongoing effective controls which are decoupleaim mobilitywould translate ito a reduction ofY

(and possibly a changefin), i.e. if the virus had been originally introduced while those measures were
in place, baseline transmission would have been lower.

As’Y j is entirely and solelgletermined by estimatedY ; and? , we argue that a medianY HF‘

lower than the estimated 2'S percentile of'Y}; provide evidence of such a dampening of the
transmissibilitymobility relationship. We do not attempt to infer the new mobitiyansmissibility
relationship, as it is too early to webustlyevaluated.

Producing shorterm forecasts and longeterm seenario modelling
Shortterm forecasts

Given the inferred relationship between mobility and transmission, and the delay between infection
and deathsrecent mobility patterns can be used to inform future incidence of deaths.
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We can use the same equation dser inference to project deaths forward. Past and recent mobility
pattern inform’Y ;, and a branching process simitita was used to forecast future deaths.

As forecasts are produced for addy horizon, we must make assumptions about mobility grais
during those 7 days. However, forecasts are robust to future mobility gssons as they are
weighted by the distribution of the infectioto-death interval. Given the assumed infectitmideath
interval distribution, on the last final day of fore¢cdday 7), the last 7 days of projected mobility will
be weighted by "Q ¢&b

For our shorterm forecasts, we assume future mobility is equal to the last observed measure of
mobility.

Longerterm scenario modelling
For longesterm simulations, we xplore two scenarios, assuming future mobility will be:

- maintained at itcurrent level
- gradually increased from its current level to its maximum over a period of 60 days (linear
increase in mobility).

Those scenarios were evaluated for adgy horizon.

3. Results

The negative binomial model outperformed the Poisson moddhe distribution of the daily number
of deaths in every week of inference. Unless otherwise specified, results presented below assume a
negative binomial distribution akeported deaths (default likelihood).

Temporal variation in mobility

We found a coristent pattern of reduction in mobility across countrigisd across different mobility
data sourcegFigure la, for th&JK and Sl for other countries). Over the 53 coustdensidered, the
median mobility estimated on the ¥0of May was reduced by 56% aording to Apple, and 51%
according to Googl&om their maximum levels

The 10% of countrieswith the smallest changes in mobility according to Apple data (including
Denmak, Finland, Sweden and Ukrair)owed a less than 39% drophe lowest change 10%f
countries from Google data showed a less than 36% drop, with countries incRelanys, Cameroon,
Denmark, Germany and Swedddsing Apple data, the 10% of countrieghathe highest drops in
mobility (including included Ireland, Morocco, Philippiaesl Spain) saw over a 76% drdpe same
figurefrom Googledatawas 68% and the 10% of countries included Bolivia, Honduras, Panama, Peru
and the Philippines.
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Correlationbetween mobility and transmissibility
We found a consistent correlation betweeaductions inmobility and reductions intransmission
intensity.

The null model (where mobility does not affect transmissibility) was accepted in only 6% (16 times) of
the (263 country/inference periods. This tended to happen early in an epidemic, perleflpsting

that the mobility had not changed sufficiently by then for the analysis to be well powered. For the
most recent two weeks of inference in every country, the nulbelavas never accepted.

For the UK (as well as other countries, see Sl), a sleatipel in mobility (Figure layas correlated

with a sharp decline in the estimated reproduction number for cagggFigure 1b, red), which, after

accounting for the ifectionto-death interval, is later reflected in a sharp decline in the estedat
reproduction number for death¥ ; (Fig.1b, blue). The temporal trends Y, are well correlated to

GK2aS Ay GKS W20aSNBSRQ A yzéidhﬂhs/\f};ﬁl- ya&S 2stirdateNFy tHINE R dzO (i |
W9 LJA 9ike indthsdFig.1b, grey).

By linking mobility to transmissibility, we were able to capture both temporal trends in transmissibility
and its relationship with mobility across multiple countriesg(ife 1b,c and SlSpecifically, he
relationship between mobilityand transmissibilityFigure 1c)js well captured by our simple model,
and, across countries37% of thevariation inY ﬁﬁ are explained by the simp(@&squarel of 'Y HF‘

againsty j, ).

Mobility thresholds

We estimated mobility thresholds for every country defined as the reduction in mobility necessary to
bring transmissibility belowhe threshold of 1 (Figur@ for Apple thresholds, see Figure Sl.1 for Google
thresholds).

We estimated that in the UK reductionof 66% (95% Crl: 689%)of Apple mobility anb7% (95%
Crl: 54-61%)of Google mobility would be sufficient teduce thereproduction number belowt.

Given the mobility reduction in the UK (on the™6f May reached) 70% (Apple), 6% (Google),
were above the estimated thresholds, we predict that the epidemic in the UK is under control (Figure
1-2).

On the 10" of Mayin the UK, we estimate that the reproduction numbers for new infectiong,
were 0.91 (95% Crl: 0.8499) and0.82 (95% Crl: 0.7@.90) according to Apple and Google data,
respectively. Further, the reproduction numbezstimated fromdeaths,Y j, were estimated at 0.83
(95% Crl: 0.76.91) and 0.77 (95% Crl: 0:68B5), respectively. The lower reproductiomumber
associated with death$Y(};) than infection {f ;) suggests that on the ¥®f May recent increases in
mobility (Figure 2b) led to recent increases in transmissibility.

We foundsubstantialheterogeneity between countries in estimatingigtmobility threshold (Figure

3, S1.12). The median mobilityeductionthresholdacross the countries consideré¢elstimatedas the
median of countryspecific medians) was estimated to 8&8% (Applepr 59% (Google) reduction
Countries such as SwederdaBwitzerland appeared to require a smaller reduction in mobility to bring
R below oneWhile Apple and Google mobility es@tes and their respective mobility thresholds
differed from each other, for most countries, both thresholds estimated were comdistdative to

the observed mobilitfFigure SI.R
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As of the 18 of May, h only3 countries (France, Spain and the W observedreduction in mobility
washigher than the estimated upper 95% Crl thresholds, suggesting an epidemiccomted (Figure

3 and SI.22, and Table S)2In 30 out of the 53 countries considered, the reduction in mobility was
lower than the estnated lower 95% Crl thresholds (based on combined information), suggesting
ongoing epidemics. For the remaining 20 cwiges, the latest mobilitestimatesoverlapped with one

or both of the mobility thresholds estimated, suggesting weak evidence of dontro

The mobilitythreshold estimates wereobust to assumptions about the serial interval distribution,
and the parameic distribution of the number of reported deaths assumed (Poisson or negative
binomial) (Figre 3-Sl.1 and Table SI3). In addition, acpss countries, the estimated mobility
thresholds were not correlated with the estimated Basic reproduction numbé@fFgure SB) and
estimated parameters were robust to discarding the very early dynamic from the likelihood (i.e. before
our sustained epidein criteria is metFigure SI}%

Dampening of the transmissiemobility relationship
As of the 16 of May 2020, thenedian Y ﬁh was lower than the estimated 25percentile ofY j,

for 10 countries suggestingdecouplingof the transmissioAmobility relationship: Austria, Canada,
Denmark, Germany, Ireland, Poland, Sweden, Switzerland, Turkey adé&the

Future scenarios
Shortterm forecasting performed well (see Figure 3a,c for UK Abateed and SI for UK Goodpased
and for other countries), especially once the mathdel was rejected (blue forecasts in Figure 3a).

In the UKthe latestestimatedreproduction numbers are significantly below the threshold (Figgure
3b)but are sufficiently high that, even if social behaviour aadtrol interventiongemainunchanged

the epidemic in the UK would likely continfar months (Figure 3c)f socialbehaviour andcontrol
interventionsremainunchanged, we expedaily deaths predicted to drop below 1@@ound the end

of June (Apple: median aftef"®f July, 95%r| [13" of June; after 9 of July], Google: median 2&f
June, 95%CrI [3@" of June;after 9" of July]). Without other changes (e.g. no increased in contact
tracing), an increase mobility unsurprisingly show a rapid reversion to exponential grofifigure
3d).
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Figure 1:Relationship between mobility antslansmissiona) SmoothedApple mobility (purple line) and daily
mobility (aggregated and scaled over the data strearb¥)Estimated daily reproduction number for new
infections (red) and deaths by date of reported death (blue) estimated using thditiexy model and mobility

data. Instantaneous reproduction number estimated from deaths data alone using a dkily Sliding window

(grey); only estimates for which the coefficient of variation was lower than 0.2 are shown. In each case shading
representsthe 95% credible intentac) Estimates of the reproduction number against changes in mobility using
our best model (2 estimated parameters) (pink line showing the median predictions, with shading indicating the
hpr LI2ad SNRA 2N Ay G Sinadeéolisirepriodlidiion Whiber aistiiad 3 R QikeinAtBGiD (black

with 95% credible interval, estimates for the last 2 weeks are shown in dark and bright red respectively).

Results based on Apple mobility datequivalent figure using Google mobility cha found in the SI (Figa
SI1.54); the Appleclated figure is shown as it provides a marginally better fit (DIC using Google Apple: 740; DIC
using Google mobility: 744, see Table SI.2).
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Figure 2:Using mobility to predict futurencidence of deathsa) Observed daily indence of reported deaths in

the United Kingdom (black circles) and past and most recenth&tNY T2 NB Ol & (i a-dF-aC¥NBE SRAa G &
predictions relying on model fit given the data available before thet sihithe forecast. Blue forecasts show
results for the model with a link to mobility, while grey forecast is the null model (no effect of mobbity).
Median and 95% Crl estimatebbility thresholds to interrupt transmission in the UK éarch week of iference

(black and orange for default aradternative lower serial interval). The purple solid line shows the smoothed
reduction in daily mobility. Red/blue vertical lines indicate weeks where no threshold/a threshold could be
estimated. The green horizoaltdashed line shows the most recentlyigsited median thresholdc-d) Long

term forecasts of incidence of reported deaths for the United Kingdom assuming mobility stays at the level
observed on the 10 of May €) or gradually increases back to 100% wit® months (red), or to a level
intermediate between its current and maximum level (greea) Without other changes. The forecasts assume

the default serial interval and a negative binomial likelihood. The green horizontal dashed dotted lines show the
threshold of 100 reported deaths per day.

Results based on Apple mobility dataquivalent figure using Google mobility can be found in the Sl (Figure
S1.54); the Apple related figure is shown as it provides a marginally better fit (DIC using Googlé4AppleC
using Google mobility: 744, s&able SI.2).
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Figure 3:Results based on Apple mobility data. Median and 95% Crl cespéwific Apple mobilityhresholds

to interrupt transmission (to achieve R<1). The main (black) thresholds assurdeftdt serial interval and a
negative binomiklikelihood (estimated thresholds for the alternative lower serial interval in orange, see Si for
Poisson likelihood). The dashed vertical green line represents the median threshold estimated from the
O 2 dzy (i KdiaBsa Te prrple stars represent whehe tiatest mobility has been estimated (on.6f May).

A purple star on the right of the credible interval indicates that the reduction in mobility appears to be sufficient
to contain COVIR9 transmission. Equilent figure for the Google mobility threskds can be found ithe SI
(Figure Sl.1¥or some countries, we only have Google or Apple mobility; The Google mobility thresholds figure
includes 13 additional countries: Afghanistan, Bangladesh, Belarus,aB@mineroon, Dominican Republic,
EcuadorHonduras, Moldova, Nigeria, Pakistan, Panama and Peru.
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Uncertain, based on mobility and estimated R; Uncertain, based on RtD' o (evidence of dampening of transmission vs. mobility)

Decline, based on mobility and estimated R; Decline, based on R °* (evidence of dampening of transmission vs. mobility)
Growth, based on mobility and estimated R; Growth, based on R?'°”5 (evidence of dampening of transmission vs. mobility)

Figure 4Map showing epidemics trend in selected countries on th&dfdViay 2020. Where we found evidence
of recent dampening of the mobility/transmaibility relationship, we present resultgsed onY ﬁﬁ .Where we
found no such evidence, we present results based™of which rely on mobility estimatesWhen this
interpretation of the'Y ; estimates based on Apple/Google differed, we present the most uncertzén(Ghile

and Italy: growth or uncertain, Japan, decline or uncerta@@ountries in grey indicate countries where we could
not estimate the mobility threshold.
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4. Discussion

We found consistent evidence that automated measures of mobility correlatewitbl transmission
intensity over time in several countries. The relationship holds for both Apple and Google mobility
data and was robust to assumptions about the likelihood aarial interval distribution. Given the
precisely estimated relationship h&een mobility and transmissibility, sheirm forecasting of
future transmission based on assumptions of future mobility was possible and performed well. As
mobility data increaingly become available in retiine (currentlyupdated across countries witk

to-4, 7to-10 - days delay for AppleGoode mobility), future epidemiological forecastsay
increasingly rely othis type of data

Our framework allows us to estimate countspecific mobility thresholds: if the reduction in mobility
reaches a certaifevel, we predict that SARS\L2 infection incidence will declind all other factors
that impact ontransmissibility stay unchangedlthough Apple and Google mobility meassidiffer,
and therefore so do the mobility thresholds, the link between traissibility and each mobility
measure was clear and consistent at any given time.

For the majority of countries included in our analyses, current levels of mobility are sigtiific
higher, or at least not significantly lower, than the mobility thresheldguired for infection incidence
to decline. However, the success of a few countries in controlling CCAIough populatiorwide
social distancing and case isolation is emaging anchighlightsthe potential of such public health
interventions.

The heterogeneity in estimated mobility thresholds between countries likely reflects sndtaral
differences and/or the differences in the interventions each country has impleadeithile we were
able to characterise between countries heterogegeivithin country heterogeneity is likely to also
exist but were not considered here, for counspecific analyses of transmission see: for Bfazil
Italy®, and the US.

Previousstudies, prior to the pandemic, have shown hdwe tproximity and interpersonal distances
maintained between people while interactingary substantially between countries, likalye to
cultural difference®, and this could influence baseline national levels of SBR& transmissia.
Similarly, it is likely that awareness of SARS?2 transmission will affect those interpersonal
distances differently between countries, leading to heterogeneities in thativel reductions in
mobility required to achieve COVI® control.

In additon, the COVIEL9 public health responses are highly variable between countries. In particular,
the levels of contaetracing and testing vary considerably. South Korea, havingaqrsly experienced
alarge MERS coronavirus outbré&akmplemented an aggressive strategy of tracing (and testing) early
on?!, allowing rapid control oftte epidemic. South Korea was not included in this analysis as reported
deaths are currently very low, falling short of our threshold for inclusion.

It follows that countryspecift mobility thresholds are likely not constant but will vary over space and
time. As a country intensifies its contacacing efforts, the mobility threshold would likely decrease
(i.e. a smaller reduction would be requiredlso, many countries are attguting to reopen (thus
increasing mobility) while maintaining physical digtisng.Our analysis also indicates that in the few
countries where populationwide social distancing and case isolation have been successfully
implemented, the margin to lift mobty restrictions is very small if everything else remains the same.
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However as alternative strategies such as more complete conti@ating are implemented, the lifting
of mobility restrictions could be more substantial without risking the success acfiteve

We conclude that for 53 countriecurrently experiencingctive SARE0V2 transmissionthere is a

strong link between mobility measures and transmissibility, supporting the implementation of
populationwide scial distancing interventions to control the epidemic. Of those 53 countries,

mobility measured until 10 of May was sufficiently reduced to ensure a decline in the epidemic in
onlythree countries (France, Spain and the UK). However, even for Spait, sttiaws the strongest

reduction in mobility relative to its mobility threstayl control efforts are fragile. If everything else
NEYFAYSR da 0SF2NBZ  wm: AYyONBFrasS Ay {LIAyQa Od

As many countries are eagisocialdistancing policies, our analysis illustrates that sustainabladifti

of populationwide socialdistancing measures should be undertaken very carefully and replaced with
equally effective control measures, such as thorough cortfacing?33 Encouragingly, in ten
countries, we found ame early evidence of a recent dampening of the relationship between
transmission and mobility, suggesting alternative control strategies have been implemented and
significantly @crease transmission. This raises the hope that easing of slisiahcing neasures
without a second wave of deaths is possible but requires careful monitoring of the level of
transmission.
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Mobility data

Table Sl.1Table summarising the total number of deaths reported, minirm@torded relative mobility, as well
as the number of data streams used to estimatebility. (For example, the minimum mobility observed in
Afghanistan was 53.7% of the bagelirepresenting a 46.3% reduction.)

DOl:https://doi.org/10.25561/79643

Country Cumulative deaths ~ Minimum mobility recorded STREAMSf mobility data

Apple Google Apple Google
Afghanistan 115 NA 54 NA 3
Argentina 300 10 21 2 3
Austria 615 24 29 2 3
Bangladesh 214 NA 30 NA 3
Belarus 126 NA 62 NA 3
Belgium 8581 26 30 3 3
Bolivia 114 NA 15 NA 3
Brazil 10627 24 39 3 3
Cameroon 108 NA 73 NA 3
Canada 4693 33 38 3 3
Chile 304 22 36 2 3
Colombia 445 27 20 2 3
Czechia 276 21 44 3 3
Denmark 526 41 50 3 3
Dominican Rep. 385 NA 24 NA 3
Ecuador 1717 NA 18 NA 3
Egypt 514 29 45 2 3
Finland 265 51 49 3 3
France 26310 15 22 3 3
Germany 7377 33 46 3 3
Greece 151 17 27 2 3
Honduras 108 NA 24 NA 3
Hungary 413 24 46 2 3
India 2109 17 28 2 3
Indonesia 959 31 51 2 3
Ireland 1467 15 28 3 3
Israel 247 26 28 2 3
Italy 30395 10 21 3 3
Japan 613 48 56 3 3
Mexico 3353 27 41 3 3
Moldova 161 NA 38 NA 3

Morocco 186 10 NA 2 NA

Netherlands 5422 31 47 3 3
Nigeria 128 NA 48 NA 3
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Pakistan 639 NA 37 NA 3
Panama 237 NA 18 NA 3
Peru 1814 NA 16 NA 3
Philippines 704 17 20 3 3
Poland 785 24 39 2 3
Portugal 1126 12 26 2 3
Romania 926 21 36 2 3
Russia 1827 38 NA 2 NA
Saudi Arabia 239 46 29 2 3
Serbia 213 22 29 2 3
South Africa 186 14 24 0 0
Spain 26621 7 15 3 3
Sweden 3220 60 66 3 3
Switzedand 1531 35 40 3 3
Turkey 3739 23 29 2 3
UK 31587 24 28 3 3
Ukraine 376 46 NA 2 NA
United Arab
Emirates 185 38 34 0 0
USA 78794 36 49 3 3
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Mobility thresholds by countries
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Table SI2Basic reproduction numbemd mobility iresholds with dedult serial interval and negative binomial likelihood for Apple and Google mobility.

country RO
Afgharistan -
Argentina 3.5;95%Crl [2.2 ;4.9
Austria 4.6 ;95%Crl [3.4 ; 5]
Bangladesh -
Belarus -
Belgium 4.9 ; 95%Crl [4.5 ; 5]
Bolivia -
Brazil 4.6 ; 95%Crl [3.4 ; 5]
Cameroon -
Canada 4.4 ; 95%Crl [3.3 ; 5]
Chile 4.3 ;95%Crl [2.6 ; 5]
Colombia 4.2 ; 95%Crl [2.6 ; 5]
Czechia 4.5 ; 95%Crl [3 ; 5]
Denmark 4.4 ; 95%Crl [2.;5]
Dominican Rep. -
Ecuador -
Egypt -
Finland 3.8 ; 95%Crl [2.3 ;4.9
France 3.9; 95%Crl [2.1 ; 5]
Germany 4.8 ; 95%CiHK.2 ; 5]
Greece 4.8 ; 95%Crl [4.2 ; 5]
Honduras 3.9; 95%Crl [2.3 ; 4.9
Hungary -
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277
347

601

542

478
251
278
257
323

335
259
819
596
238

Apple Mobility
Latest Estimated threshold DIC

mobility = (median; 95%Crl)
75 95 ; 95%Crl [75-]
49 58 ; 95%Crl [51 ; 67
58 63 ; 95%Crl [59 ; 67
63 92 ; 95%Crl [84-}
50 74 ; 95%Crl [66 ; 84
62 85 ; 95%Crl [68-]
57 85 ; 95%Crl [69-]
53 69 ;95%Crl [58 ; 86
28 46 ; 95%Crl [39 ; 55
56 70 ; 95%Crl [58 ; 92
24 50 ; 95%Crl [40 ; 72
73 66 ; 95%Crl [63 ; 69
43 54 ; 95%Crl [50 ; 58
55 64 ; 95%0151 ; 84]

RO

3.1;95%Crl [2.1; 4.¢
3.4 ;95%Crl [2.2 ; 4.
4.3 ;95%0C13 ; 4.9]

3.8;95%Crl [2.2 ; 4.
3.4;95%Crl [2.1; 4.
4.8 ; 95%@ [4.3 ; 5]

3.3;95%Crl [2.1; 4.¢
4.1;95%Crl [3.2 ;4.9
3.5; 95%CrP[1; 4.9]

4.3 ;95%Crl [3.1;4.¢
4.2 ;95%Crl [2.5 ; 5]
4 ;95%Crl [2.4 ; 4.9]
4.5 ;95%Crl [3.2 ; 5]
4.2 ; 95%Crl [2.7 ; 5]
3.6 ; 95%Crl [2.3 ; 4.¢
3.6 ; 95%Crl [2.4 ; 4.¢
3.4 ;95%Crl [2.1 ; 4.¢
4.1;95%Crl [2.3; 4.¢
3.8 ;95%Crl [3.4 ; 4.4
4.4 ;95%Crl [3.5; 4.¢
3.5;95%Crl [2.1 ; 4.
3.7 ;95%Crl [2.2 ; 4.

41
59
39
59
27
53
78
44
18
51
53
65
37
33
66
68
44
36
66
31
43
69

Google mobility
Latest
mobility

Estimated threshold

(median;95%Crl)
58 ; 95%Crl [38-]
78 ; 95%Crl [61-]
50 ; 95%Crl [43 ; 59]
69 ; 95%Crl [53]
33 ; 95%Crl [23 ; 73]
58 ; 95%Crl [54 ; 62]
-; 95%Crl [84]
70 ; 95%Crl [63 ; 82]
25 ; 95%Crl [18 ; 41]
66 ; 95%Crl [60 ; 76]
64 ; 95%Crl [5292]
89 ; 95%Crl [71-]
48 ; 95%Crl [40 ; 60]
41 ; 95%Crl [35 ; 51]
67 ; 95%Crl [55 ; 87]
76 ; 95%Crl [67 ; 90]
55 ; 95%Crl [45 ; 81]
49 ; 95%Crl [39 ; 69]
56 ; 95%Crl [53 ; 59]
42 ; 95%Crl [39 ; 45]
53 ; 95%Crl [41 ; 72]
75 ; 95%Crl [56-]
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180
279
344
225
165
581
175
543
196
476
251
279
255
324
297
595
337
256
803
582
239
198
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India
Indonesia
Ireland
Israel
Italy
Japan
Mexico
Moldova
Morocco
Netherlands
Nigeria
Pakistan
Pa- ma
Peru
Philippines
Poland
Portugal
Romania
Russia
Saudi Arabia
Serbia
South Africa
Spain
Sweden
Switzerland
Turkey
UK
Ukraine
UAE
USA

4.1 ; 95%Crl [2.3 ; 5]
3.9; 95%Crl [2.6 ; 4.9
3.3;95%Crl [2.2 ; 4.7

4.6 ;95%Crl [3.6 ]5

4.4 ; 95%Crl [2.8 ; 5]
4.3 ; 95%Crl [3.7 ; 4.9

2.4 ; 95%Crl [23.3]

4.4 ; 95%Crl [2.9 ; 5]
3.9;95%Crl [2.2 ;4.9

4.6 ; 95%Crl [3.9 ; 5]

3.5;95%Crl [2.2 ; 4.9
4.3 ;95%Crl [2.8 ; 5]
4.7 ; 95%Crl [3.6 ; 5]
4.5 ; 95%Crl [3.4 ; 5]
4.3; 95%Crl [2.9 ; 5]
4 ;95%Crl [2.3 ; 4.9]
4.1 ;95%Crl [2.3 ; 5]

3.5;95%Crl [2.1; 4.9

4.1;95%Crl [3.6 ; 4.6
4.7 ; 95%Crl [3.8 ; 5]
4.5 ; 95%Crl [3.4 ; 5]

4.8 ; 95%Crl [45]
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80 ; 95%Crl [67-]
-; 95%Crl [92-]
62 ; 95%Crl [53 ; 76
80 ; 95%Crl [71 ; 91
65 ; 95%Crl [53 ; 82
75 ; 95%Crl [72 ; 79
43 ; 95%Crl [32 ; 62
93 ; 95%Crl [81-]
71 ; 95%Crl [57 ; 96
55 ; 95%Crl [51 ; 59

82 ; 95%Crl [70-]
77 ; 95%Crl [66 ; 93
76 ;95%Crl [68 ; 87
80 ; 95%Crl [71 ; 92
68 ; 95%Crl [59 ; 87
61 ; 95%Crl [48 ; 97
75 ; 95%Crl [61-]

-; 95%Crl [78-]
70 ; 95%Crl [67 ; T4
35; 95%Crl [32 ; 39
46 ; 95%Crl [41 ; 51
68 ; 95%Crl [62 ; 74
94 ; 95%Crl [66-]

Imperial College COVII response team

3.9 ;95%Crl [2.3 ; 4.
3.5;95%Crl [2.3 ; 4.¢
2.6 ; 95%Crl [2 ; 3.6]
4.6 ; 95%Crl [3.5; 5]
4.4 ; 95%Crl [2.9 ; 5]
3.3; 95%Crl [2.9 ; 3.7
2.5 ;95%Crl [2 ; 3.4]
4 ;95%Crl [2.6 ; 4.9]
3.9 ; 95%Crl [2.2 ; 5]
3.9 ;95%Crl [3.1; 4.7
3.2 ; 95%Crl [2.14.8]
3;95%Crl [2.1 ; 4.6]
3.3;95%Crl [2.1; 4.¢
4 ;9846Cl[2.3; 4.9]
2.8 ;95%Crl [2.1 ; 4.1
4.3 ;95%Crl [2.9 ; 5]
4.6 ; 95%Crl [3.4 ; 5]
4.3 ; 95%Crl [3 ; 5]

3.8 ;95%Crl [2.2 ; 4.¢
3.8 ;95%Crl [2.3 ; 4.¢
3.1;95%Crl [2.1; 4.¢
3.5;95%Crl [3.1 ; 4]
4.6 ; 95%Crl [3.4 ; 5]
3.6 ; 95%Crl [2.7 ; 4.€
4.5 ;95%Crl [3.5; 5]

37
64
48
64
39
54
44
55
44
39
38
47
76
74
73
38
58
52

59
42
55
66
20
42
59
53

55 ; 95%Crl [45 ; 75]
94 ; 95%Crl [77-]
38 ; 95%Crl [31 ; 49]
65 ; 95%Crl [58 ; 74]
58 ; 95%Crl [48 ; 73]
61 ; 95%Crl [58 ; 65]
29 ; 95%Crl [22 ; 43]
70 ;95%Crl [60 ; 94]
74 ; 95%Crl [56-]
40; 95%Crl [37 ; 44]
84 ; 95%Crl [53-]
75 ; 95%Crl [56-]
82 ; 95%Crl [63-]
-; 95%Crl [92-]
73 ; 95%Crl [60 ; 100
59 ; 95%rl[51 ; 71]
60 ; 95%Crl [53 ; 69]
63 ; 95%Crl [54 ; 75]

79 ; 95%Crl [61-]
66 ; 95%Crl [52 ; 91]
94 ; 95%Crl [66-]
60 ; 95%Crl [5764]
27 ; 95%Crl [25 ; 30]
43 ;95%Crl [38 ; 49]
57 ; 95%Crl [52 ; 63]
-; 95%Crl [67]
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Mobility thresholds (Goggle)
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Figure Sl.1Results based on Google mobility dag¢gjfivdent to Figure 3 in main text). Median and 95% Crl
country-specific Apple mobilitythresholds to interrupt transmission (to achieve R<1). The main (black)
thresholds assume thdefault serial interal and a negative binomial likelihood (estimatedesinolds for the

alternative lower serial interval in orange, see Sl for Poisson likelihood). The dashed vertical green line represents
0KS YSRAIFIY GKNBakKz2tR SadAYl (SR e StaRr¥present Whe® zhdzidtéshA S a Q
mobility has beerestimated (on 16 of May). A purple star on the right of the credible interval indicates that

the reduction in mobility appears to be sufficient to contain CG1ARransmission.

In a given countryboth Apple and Google mobility estimates and tistireated nobility thresholds.
However, the important aspect in term drawing a consistent understanding of the situation is: the
level of mobility observed relative to the threshold. In the figure below,plot for both Apple and
Google the mobility thresblds scald (divided) by the latest observed mobility. This allow visualising
how consistent the pattern estimated are.
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Figure Sl.2Apple (blue) and Google (red) mobility thresholds (median &% €rl) standardised by the latest
reduction in mollity obsewred. Credible interval on the left of the star indicate that reduction in mobility appears
to be sufficient to contain COWVAD® transmission.

Correlation between RO and the mobility threshold

We evaluated the correlation between estimated midlithresholds and basic reproduction number
across countries to ensure the variation in the estimated thresholds was not driven by the variation in
estimatedbasic reproduction number

We found no evidnce of a correlation between the estimated mobilikyesholdand the estimated
Basic reproduction number.
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Figure SI.3 Relationship between the estimated (medians) Basic Reproduction number and the estimated
(medians) mobility thresholds. For both Apgind Google mobility, we found no significant ctation between
the estimated RO and mobility thresholds.
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Sensitivity of estimated parameters to early epidemic dynamics

As the reporting of deaths might have changed during the couspscific early phase of the
epidemic, we reestimated the mobilitytransmissiornrelationship discarding from the likelihood all
days previous to the two consecutive weeks reporting each atlé8 deaths (the criteria for
sustainedepidemic). However, the estimated parameters were robust to discarding the very early
dynamic from thelikelihood (i.e. before our sustained epidemic criteria is met).
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Figure Sl.4Estimatedparameters when discarding the early epidemic phase (black), or including the early
epidemic phase (blue) from the likelihood calculation.
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Main analysisper country

Afghanistan

Imperial College COVI® response team

Current reduction in mobility observed is within tir@erquartile range of the current countrgpecific reductions in mobilityThe estimated median mobility threshold is
also within the interquartile range of the edianestimated countryspecific moHity thresholds Mobility reduction is below the median threshold, suggesting not enough
reduction in mobility is in place to ensure contrdle see no evidence for dampening of the relationship between transmissiomabdity. This suggests higher level of
mobility restriction and/or alternative control strategies are needed to reach control.

a) Afghanistan (Google)

c) R, predicted (with mobilty)
— pastR™

— R™*, vieek finsihing May 3
— R™, week finsihing May 10"

prop. mobilty

00 02 04 06 DB 10

Mar 01 Aprot May 01 0.0 02 04 06 08 10

Prop. reduction in mevement

Figure S1.3As in Figure -2 of main text.
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Argentina

Current reductions in mobility observed are above/within theengjuartile range of the current countrgpecific reductions in mobility for Apple/Googlehe estimated
median mobility thresholds are within/above the interquartile range of the median estimated cospayific mobility thresholds (Apple/Google), suggesrelativel high
reduction in mobilly is necessary to ensure contrdllobility reductions have been within the range of the 95% Crl mobility threshold but no longer are, suggesting not
enough reduction in mobility is in place to ensure control. Retremid showsncreasing mobility, whichuggest increasing transmissiafie see no evidence for dampening

of the relationship between tramsission and mobilityThis suggests higher level of mobility restriction and/or alternative control strategies ateddo reactcontrol.

Figure Sl.4As in Figure -2 of main text.
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