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Summary 
Countries have deployed a wide range of policies to prioritize patients to hospital care to address 

unprecedent surges in demand during the course of the pandemic. Those policies included postponing 

planned hospital care for non-emergency cases and rationing critical care. 

 

We develop a model to optimally schedule elective hospitalizations and allocate hospital general and 

critical care beds to planned and emergency patients in England during the pandemic. We apply the model 

to NHS England data and show that optimized scheduling leads to lower years of life lost and costs than 

policies that reflect those implemented in England during the pandemic. Overall across all disease areas 

the model enables an extra 50,750 - 5,891,608 years of life gained when compared to standard policies, 

depending on the scenarios. Especially large gains in years of life are seen for neoplasms, diseases of the 

digestive system, and injuries & poisoning.  
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1. Introduction  
Health systems worldwide have been struggling to provide life-saving hospital treatment when faced with 

surges in demand caused by the SARS-CoV-2 (henceforth COVID-19) pandemic. But even with surge 

capacity, many countries experienced shortages of critical care (CC) staff1, as well as of general & acute 

(G&A) and CC beds2,3 during the first peak of the pandemic. As a response, countries have deployed a wide 

range of policies to prioritize patients who require more urgent treatment or have a higher probability to 

benefit from treatment.  

 

Prioritization policies have been used in pre-pandemic times due to constraints to the supply side of 

hospital care provision. For hospital admissions, prioritization normally means postponement or 

cancellation of planned procedures when high demand for emergency care is expected, for example in 

winter. During the first peak of the pandemic these policies led to the cancellation of elective procedures 

and rationed access to CC when the demand for emergency care threatened to exceed overall hospital 

capacity. For example, policies in Italy involved prioritizing intensive care to COVID-19 patients under 70 

years who previously had no more than one admission per year for a chronic illness (e.g. exacerbated 

chronic obstructive pulmonary disease, advanced neoplasms and congestive heart failure)5. In England, 

the cancellation of non-urgent elective surgeries after 17th of March was combined with the prioritization 

to CC of those with high capacity to benefit as signaled by a low frailty score.6,7 As the second wave 

progresses, several hospitals have been further pressured to evaluate capacity and cancel elective 

surgeries.8–11 

 

While implemented to manage demand, these policies might not be optimal if they prioritize COVID-19 

patients over other patients that have higher capacity to benefit. Also, when implemented, these policies 

generate a backlog of non-COVID-19 patients in need of care12–14 that require prioritization rules that differ 

from pre-pandemic ones in order to be managed, since heterogeneity in disease progression over the 

postponement period might change their relative priority when compared to other patients. In England, 

the National Health Service (NHS) Confederation have projected waiting lists to reach 9.8 million by the 

end of this year,15 highlighting how essential it is to identify ways to prioritize care and prevent hospitals 

being overwhelmed under the various constraints posed by the pandemic.16   

 

Pre-pandemic prioritization and elective care scheduling rules are not sufficient in the presence of large 

surges of demand for emergency care like those brought about by the COVID-19 emergency 

hospitalizations since they don’t factor uncertainty in surges for emergency care nor the relative needs of 

COVID-19 patients vis a vis patient with other diseases. Failing to revise them may thus result in immediate 

or delayed deaths and increased morbidity among both non-COVID-19 and COVID-19 patients and an 

increase in the financial burden on health systems as delays in planned treatments accelerate disease 

progression and the need for more costly interventions.17 It is therefore essential to develop optimal 

allocation rules for existing hospital capacity to treat COVID-19 and non-COVID-19 patients in order to 

minimize avoidable mortality, morbidity and costs caused by delays in planned care.   
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The challenge for policymakers is to manage scarce hospital capacity and treat non-COVID-19 patients 

whilst maintaining the ability to respond to increased demand for emergency care by COVID-19 patients. 

These challenges are aggravated by the uncertainty about the number of COVID-19 patients that require 

care as well as the timing of the demand surges. To inform decisions about prioritization of care, 

policymakers need data-driven planning tools to better respond to the current crisis.  

 

We develop a model to optimally re-schedule the backlogs of elective care and allocate hospital beds to 

elective and emergency patients in G&A and CC in England during the pandemic (from the 2nd March for 

52 weeks), with the aim of minimizing Years of Life Lost (YLL) under alternative scenarios considering 

capacity constraints, demand for emergency care and epidemiological estimates of COVID-19 incidence 

and need for hospitalization (henceforth Optimized Schedule). We consider a range of epidemiological 

scenarios that reflect varying stringency of non-pharmaceutical mitigation strategies, projected with a 

susceptible-exposed-infected-recovered (SEIR) dynamic transmission model of SARS-CoV-2. We use the 

model to simulate a set of prioritization policies that reflect those implemented in England (henceforth 

Standard Policies), including: (i) postponement of electives, (ii) prioritization to critical care based on 

frailty and (iii) re-scheduling patients to elective care using pre-pandemic prioritization rules. The YLL and 

cost effectiveness of the Optimized Schedule is compared to that of the Standard Policies under several 

epidemiological and capacity related scenarios. Our findings show that the Optimized Schedule leads to 

significantly lower YLL than the Standard Policies with especially notable gains for neoplasms, diseases of 

the digestive system, and injuries & poisoning. We further show that the Optimized Schedule is either 

dominant (lower costs and YLL) or cost effective when compared to the Standard Policies. 

 

2. Methods 
The development of an Optimized Schedule and the simulation of Standard Policies requires several steps. 

First, for each method of admission (elective and emergency) we project weekly cohorts of COVID-19 and 

forecast weekly inflows of non-COVID-19 patients in need of care, stratified by disease and age, and in 

addition we forecast the proportion of frail in each group, over a 52-week time horizon starting from the 

2nd of March 2020 (week zero). Specifically, we estimate: (i) the number of non-COVID-19 patients in need 

of emergency and elective hospital care; (ii) the survival probability of patients admitted to hospital; (iii) 

the probability of being admitted as an emergency for patients waiting for elective care; and (iv) 

hospitalization costs.  

 

In the Optimized Schedule, these forecasted weekly inflows of emergency and elective patients are the 

inputs to a deterministic linear programming (LP) model. In the model, patients in need of emergency 

care are exogenous (i.e., are always seen in hospital if there is capacity and always have priority over 

elective patients), while elective admissions are scheduled over the 52-week planning horizon with the 

objective of minimizing YLL. Admission decisions are taken on a weekly basis, and new patients are 

admitted to hospital in the middle of each week. Once admitted to hospital, in case of insufficient critical 

care resources to treat all patients in need, the model additionally allocates patients to critical care 

accounting for resource availability and probability of survival. The model considers capacity constraints 

on the supply side, including the maximum number of G&A/CC beds and staff (Senior Doctors, Junior 
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Doctors and Nurses) as well as recommended staff-to-bed ratios.18,19 To reflect historical bed utilization 

rates, it is assumed that all the available capacity can be used, if needed, over the whole planning horizon. 

Full details of the model can be found in the Modelling section below. 

 

The optimal scheduling rules and outcomes (YLL and costs) projected from the model for the different 

pandemic scenarios are compared to a range of Standard Policies that reflect those defined in England 

and in other European Countries.6,7,20  

 

To model Standard Policies, we develop a simulation model in which “x%” of elective procedures are 

postponed over given weeks of the planning horizon, and when capacity is available, are re-scheduled in 

the same order of priority as when they were first scheduled (henceforth labelled as a first-in first-out 

(FIFO) rule-based system). Once admitted to hospital and when Standard Policies are switched on non-

frail patients have priority in admission to CC. Full details of the model can be found in the Modelling 

section below.  

 
The Optimized Schedule outcomes are compared with the Standard Policies over a range of scenarios 

using the aggregate incremental cost effectiveness ratio (ICER) calculated as: 

 

𝐼𝐶𝐸𝑅 =
Δ𝐶𝑜𝑠𝑡𝑠

Δ𝑌𝐿𝐺
=

𝐶𝑜𝑠𝑡𝑂𝑃𝑇 − 𝐶𝑜𝑠𝑡𝑆𝑃

𝑌𝐿𝐿𝑆𝑃 − 𝑌𝐿𝐿𝑂𝑃𝑇
 

 

with the subscripts OPT=Optimized Schedule, SP=Standard Policy. ΔYLG and Δ𝐶𝑜𝑠𝑡𝑠 denote, respectively, 

the incremental Years of Life Gained and incremental costs of the Optimized Schedule when compared to 

the Standard Policies. YLG and Cost are calculated across all disease groups and ages.   

 

2.1 Data  

We use several data sources, including combined administrative and modelling data, to create a unique 

dataset. This yields a comprehensive analysis of hospital elective and emergency admissions, waiting 

times, in-hospital mortality, YLL, and secondary care costs in England. 

 

To model non-COVID-19 patients in need of care (CC and G&A) for both electives and emergencies and 
events once patients have been admitted to hospital (CC and G&A), we rely on administrative data on 
admissions to NHS acute hospitals in England between January 2015 and February 2020 from Hospital 
Episode Statistics (HES). HES provides information on inpatient and critical care admissions, including 
patient age, diagnoses, admission/discharge dates and methods (including death in hospital), the referral 
to treatment date and the healthcare resource group (HRG), the NHS diagnosis-related costing grouper.21 
 

Projections of the weekly number of COVID-19 patients in need of emergency care are generated by an 

SEIR model (see further details in Section 2.3.1). To model care pathways of COVID-19 patients once 

admitted to hospital, we use individual-level clinical data from 614 patients admitted to hospital at 

Imperial College Healthcare NHS Trust (ICHNT) with SARS-CoV-2 infection between the 25th of  February 

2020 and the 5th of April 2020.22  
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Life expectancy is sourced from Office of National Statistics (ONS) life tables to calculate YLL.23 

 

Each non-COVID-19 and COVID-19 patient is individually costed. We use the National Cost Collection 

dataset from 2015 to 2019,24 which includes national and hospital level average unit costs of NHS patients 

in England using HRGs. HRGs classify patients with clinically similar treatments that use comparable levels 

of healthcare resources and assign them a unique cost. Every non-COVID-19 patient in HES belongs to an 

HRG which can be linked to a unit cost. For COVID-19 patients, we determine their HRGs using the HRG4+ 

2020/21 Local Payment Grouper,21 a software that uses each patient’s managing hospital, area of 

admission (clinical vs surgical), age, sex, method of admission (emergency vs elective), discharge 

destination, length of stay (days), number of consultant assessment episodes, list of final diagnoses (ICD-

10) and procedures (OPCS-4) to assign them an HRG. 

 

We map secondary care demand to supply side capacity constraints. Staff numbers are estimated from 

the NHS Electronic Staff Record (ESR) dataset for 2020. ESR data hold monthly information on full time 

equivalents (FTEs) by staff type and area of work for over 1.2 million directly employed staff (about six 

percent of the UK’s working population) covering 99% of NHS hospitals.  

  

G&A bed availability is calculated using the March 2020 extract of the Quarterly Bed Availability and 

Occupancy Dataset (KH03 dataset),25 which provides quarterly average daily numbers of available G&A 

beds for each hospital by consultant main specialty. CC beds are obtained using the Critical Care Monthly 

Situation Reports dataset for February 2020,26 which provides the monthly total number of available adult 

CC beds per hospital. Both estimates are aggregated at the national level. 

 

The number of monthly emergency admissions are obtained from the A&E Attendances and Emergency 

Admissions dataset from NHS England Statistics for the period March to June 2020.27 These data are used 

to compare the robustness of the time series emergency forecasts. 

 

2.2 Modelling 

Admissions are categorized into groups based on primary diagnosis code and patient age (Appendix B). 

This results in a total of 42 disease-age groups for non-COVID-19 elective admissions, 45 groups for non-

COVID-19 emergency admissions, and 3 groups for COVID-19 admissions. A binary frailty score is 

calculated for each patient.  A patient is considered frail if they have an ICD-10 diagnosis included in Soong 

et al.’s frailty score28, with the exclusion of Anxiety & Depression and Incontinence codes.   

 

For each patient group, the following inputs are used: (i) the projected weekly number of new COVID-19 

patients, the forecasted weekly number of non-COVID-19 emergency patients as well as the weekly 

number of patients in need of elective care; (ii) estimates of their probabilities of transitioning to various 

states once admitted (e.g. discharged, to CC or G&A, or died) with these probabilities being dependent on 

having waited a week prior to admission for elective patients; (iii) the probability of elective patients 

waiting to be admitted to elective care turning into emergencies while waiting; (iv) the forecasted initial 
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number of elective patients waiting to be seen in hospital and hospitalized patients at the beginning of 

the time period of the analyses as well as estimates of the costs and YLL of these patients; and (v) supply 

side resources (i.e. G&A and CC beds, staff, and staff-to-bed ratios). 

 

2.2.1 Patient Cohorts  

To quantify the weekly inflows of patients (both COVID-19 and non-COVID-19) in need of elective and 

emergency hospital care, we first categorize patients into the following cohorts (Appendix Table B2): 

(i) Cohort A: patients in need of elective care. 

(ii) Cohort B: Non-COVID-19 patients in need of emergency inpatient care. 

(iii) Cohort C: COVID-19 patients in need of emergency inpatient care. 

 

This classification results in the following stocks and their corresponding flows in our modelling approach, 

for each patient group: (i) the stock of waiting patients, which increases with new weekly inflows of 

elective patients and decreases with outflows of patients admitted to hospital; (ii) the stock of elective 

patients hospitalized in G&A (CC), increasing each week with new elective admissions to G&A (CC) and 

decreasing with the transition of patients to CC (G&A) or with patients leaving the hospital (either 

recovered or dead); (iii) the stock of emergency patients hospitalized in G&A (CC), increasing each week 

with new emergency admissions to G&A (CC) and decreasing with the transition of patients to CC (G&A) 

or with patients leaving the hospital (either recovered or dead).  

 

Using HES data of historical admissions, cohorts A and B are forecasted using local linear trend models 

with trigonometric seasonality and assuming historical hospital beds utilization rates (Appendix C1). 

Cohort C is modelled using a deterministic SEIR model to generate projected epidemic curves for two 

scenarios defined by the maximum value, 𝑅𝑚𝑎𝑥, of the reproduction number 𝑅𝑡 attained over the 

projected period (beginning 1st September 2020): 𝑅𝑚𝑎𝑥 = 1.1 and 𝑅𝑚𝑎𝑥 = 1.2. We use explicit model 

compartments for three age groups and three degrees of severity (asymptomatic, mild and severe 

influenza-like-illness), hospitalizations, and deaths. The basic reproduction number, seed time of the 

epidemic, the start time of lockdown, and the reduction in transmission due to non-pharmaceutical 

interventions (NPIs) are calibrated to hospital occupancy data29 from 20th of March to 30th of June. For 

each 𝑅𝑡 we run an early lockdown scenario with a lockdown imposed on the 1st of December 2020 and a 

late lockdown scenario imposed on the 1st of January 2021, in order to simulate ongoing mitigation efforts. 

See Appendix D for model details and Figure D1 for the fitted initial epidemic and 4 projected scenarios. 

We calibrate the post-lockdown period to our desired 𝑅𝑚𝑎𝑥  and project under the assumption of fixed 

NPIs, resulting in a single peak of infections, leading to herd immunity with respect to the fixed contact 

rates.  

 

2.2.2 Transition Probabilities 

To model patients’ flows between the different states, we estimate various transition probabilities. Due 

to increased severity caused by delayed access to care, some patients waiting to be admitted for elective 

care may need emergency care and thus transition from Cohort A to B. In other words, these patients are 

removed from the stock of waiting patients and admitted to hospital as emergencies. This probability is 
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estimated as a function of waiting time (days) using a Kaplan-Meier estimator (Appendix E1). We then 

calculate the mean of the weekly transition probabilities to be used in the model. Once patients are 

admitted for either elective or emergency care to either G&A or CC, they can transition to any of the 

following states: (i) discharge alive; (ii) move to CC or G&A; (iii) die; or (iv) remain in their current state 

(G&A or CC). The probabilities of transitioning between these states within a given number of days are 

estimated using multinomial logistic regressions, conditional on waiting time for electives (Appendix E2).  

 

2.2.3 Outcome Measures: YLL and Costs 

We calculate the individual average cost of every non-COVID-19 patient at each hospital in England by 

linking 2019 reference cost and HES data matched at HRG level. We then compute a mean unit cost for 

each patient group type. As the cost of treating COVID-19 patients has not yet been determined, we 

calculate the HRGs for each of the ICHNT COVID-19 patients using the grouper and match them to the 

2018-19 national cost schedule to obtain a mean unit cost of a COVID-19 patient. See Appendix F1 for 

more details.   

Finally, we calculate the YLL for each age group in several steps. First, we derive the number of YLL per 

death by averaging the age specific life expectancy (LE) across all ages within each age group.23 The YLL 

per death factors are subsequently multiplied by the number of deaths per age group estimated by the 

optimization model to provide the total YLL. YLL are used as the main outcome of the model. While it 

would have been preferable to use an outcome that combines both premature mortality and quality of 

life such as Quality-Adjusted Life Years (QALYs), QALYs are not systematically available across all disease 

groups and therefore could not be embedded in the analyses. 

 

2.2.4 Optimized Schedule 
We develop an LP model for the optimal weekly scheduling of patient admissions to all hospitals across 

England (Appendix A). With a 52-week planning horizon, the LP model aims to minimize YLL by scheduling 

patients to general and critical care. Specifically, the key decision variables of the model are (i) which 

patients to admit to hospital and when (admission scheduling) and (ii) which patients should be allocated 

critical care resources in case of scarcity. Emergency inflows of COVID-19 and non-COVID-19 patients are 

always admitted and treated upon arrival if capacity is available and using pre-pandemic bed utilization 

rates. The optimization model allocates capacity to patients in need of emergency care and schedules the 

admissions of patients that are waiting for elective care. When demand for care is above capacity, the 

model rations care in three ways. First, patients in need of elective care remain on the waiting list. Second, 

patients admitted to care in need of CC beds are denied CC until capacity is available and, while waiting, 

are treated in G&A, where they are assigned different transition probabilities. Third, for patients in need 

of emergency care that are denied treatment because there is no capacity to see all emergencies we 

consider two sets of assumptions: (i) that they die (Upper Bound case); or (ii) that they would be seen in 

extra emergency care capacity beyond the surge capacity implemented during the first wave of the 

pandemic  (Lower Bound case). The optimization model is open source, and it solves within seconds on a 

standard computer. See Appendix A for further details. The source code is available on GitHub 

(https://github.com/ImperialCollegeLondon/OptimalScheduling4COVID).30 
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2.2.5 Standard Policies 

Building on the same inputs as the optimization model, we model Standard Policies by developing a 

simulation model over the same 52-week planning-horizon in which patients are admitted to hospital 

according to their order of priority as determined pre-pandemic; in addition to this, the model accounts 

for the postponement of a fraction of elective admissions over given weeks of the planning horizon. For 

each simulated policy, we implement a postponement of 100% elective admissions (75% in alternative 

specification) during the weeks in which the Standard Policy is activated. Patients that have their elective 

procedures cancelled remain in the queue awaiting admission to hospital at the earliest possible time 

according to a FIFO rule. When capacity is not available, they are kept waiting and when space is available, 

they are admitted in order of original scheduled date that reflects their order of priority when care was 

scheduled. If several patients across different disease groups have the same scheduled date, we select an 

equal proportion of patients across all diseases to be admitted to care (uniform sampling). In addition, 

once admitted to care, and during the weeks in which the Standard Policy is on, CC is prioritized for non-

frail patients (emergency and elective) belonging to each patient group.  All other modeling assumptions 

are as in the Optimized Schedule. 

 

We model four Standard Policies informed by actual admission policies in England between 17th of March 

and 23rd of April 2020, including prioritization of non-frail patients to critical care and postponement of 

non-urgent elective procedures. Standard Policy 1 assumes that all elective procedures were cancelled 

between 17th of March to 29th of April 2020 (weeks 3-8 in the model), as actually occurred.20 Standard 

Policy 2 additionally allows for this policy to be implemented over the intervention horizon by switching 

the policy on and off contingent on specific trigger points given by projected incidence of COVID-19. The 

trigger points are chosen based on the incidence of COVID-19 observed when Standard Policy 1 was 

implemented in England. In particular, cancellation of all electives is triggered when the number of 

projected COVID-19 cases in need of hospital care surpasses 4,118 (the observed number of COVID-19 

cases on 17th of March). Electives procedures are rescheduled starting from the week in which the number 

of projected COVID-19 cases decline and fall below 7,494 (the observed number of cases on 23rd of April). 

If the number of cases at the peak remains below 7,494 after electives are cancelled, then electives are 

rescheduled when the number of cases begins to decrease. Standard Policies 3 and 4 are akin to 1 and 2 

but consider 75% of electives postponement (Appendix G). 
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2.3 Scenarios  

For both the Optimized Schedule and the Standard Policies, we run several scenarios to reflect different 

epidemiological projections, capacity constraints and inflows of emergency admissions. The baseline 

scenario considers epidemiological projections of COVID-19 hospitalizations at 𝑅𝑡  of 1.1 and pre-

pandemic hospital capacity (staff and beds). The best-case scenario considers an 𝑅𝑡   of 1.1 plus reduction 

in emergencies and expanded capacity. A reduction in the forecasted number of patients in need of 

emergency care is considered to reflect behavioral changes due to the pandemic and its mitigation 

strategies as well as potentially increased mortality at home. We reduce our forecasted emergency needs 

by 34%, using A&E attendance data to estimate the proportion of the reduction in emergency admissions 

throughout the pandemic (see Appendix C2). Capacity is expanded to reflect hospital interventions 

introduced to increase total capacity (e.g. field hospitals, recruitment of retired and student medical staff) 

by 16,500 beds and 38,462 staff.31 The worst case scenario considers epidemiological projections of 

COVID-19 hospitalizations at 𝑅𝑡  of 1.2, no reduction in emergency care needs, and no expanded capacity.  

Appendix Table H outlines the various constraints and assumptions modelled to compose the different 

scenarios used. 

 

2.4 Sensitivity Analyses 

We run sensitivity analyses by calculating the YLL per death for each age group by taking the difference 

between life expectancy at birth32 and the midpoint of the age group, using projected life expectancy at 

birth in the UK of 81 years at 2020 (Appendix F2).33 Results remain qualitative the same apart from all YLL 

outputs which are ~4% lower across all scenarios, proportional to the change in the YLL/death input data 

(full set of results available from authors upon request). 

 

 

3. Results  

 

3.1 Years of Life Lost and Healthcare Cost under Different Scenarios 

When comparing the Standard Policies with the Optimized Schedules considering hospital activity for all 

patient groups, the (average and total) YLL is greater under the Standard Policies (Appendix Table I1). 

Looking at YLL by patient group, the Standard Policies tend to be associated with a higher YLL for all disease 

groups (ICD groups) across all scenarios. The top three ICD groups that exhibit the largest contributions to 

YLL in the Standard Policies (when compared with the Optimized Schedule) are neoplasms (C00-D48), 

digestive system disease (K00-K93), injuries and poisoning (S00-T98). Large differences are also observed 

for diseases of the circulatory system (I00-I99; for both Lower and Upper Bound cases), and for respiratory 

diseases (J00-J99; in the Upper Bound case) (Figure 1 for Standard Policy 1; Appendix Figure I1 for 

Standard Policies 2-4). The Optimized Schedule prioritizes these patients over COVID patients and thus 

exhibits higher YLL than Standard Polices for the latter in some scenarios.  The differences in YLL between 

the Optimized Schedule and the Standard Policies are larger in scenarios where capacity constraints are 

more stringent and are particularly significant in the Worst-Case Late Lockdown Upper bound scenario. 

When existing capacity enables accommodating all emergencies (Best Case and Baseline scenarios) or 
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when there is scope to invest in extra emergency care capacity beyond the existing levels, the value of 

prioritization is reduced as all patients can receive care with the existing capacity. 

 
Figure 1. Comparison of Standard Policy 1 and Optimized Schedule for Years of Life Lost (YLL)   The difference in 

YLL for all admissions under Standard Policy 1 and Optimized Schedule (𝑌𝐿𝐿𝑂𝑃𝑇 − 𝑌𝐿𝐿𝑆𝑃) over the 52-week planning 

horizon. 

 

The significant health gains of the Optimized Schedule do not come at an increased cost in most scenarios 

(Figure 2 and Appendix Table I2). In fact, for most scenarios (Baseline and Best-Case), the Optimized 

Schedule is also cheaper than the Standard Policies.  

 

For the few scenarios in which the Optimized Schedule is costlier than the Standard Policies, only minimal 

increased spending is required to increase YLG, with the extra costs being associated with an increased 

number of elective admissions and shifting from low priority to high priority patients. For the worst-case 

scenarios, the Optimized Schedule is cost effective for thresholds ranging between £57 and £1070 per 

YLG.  
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Figure 2: Incremental Cost-Effectiveness Ratios/Cost Effectiveness Plane.  𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑂𝑃𝑇 −

𝐶𝑜𝑠𝑡𝑆𝑃;  𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 = 𝑌𝐿𝐿𝑆𝑃 − 𝑌𝐿𝐿𝑂𝑃𝑇 . 

 

3.2 Number of Elective & Emergency Admissions 

Across all scenarios, the Optimized Schedule accommodates more elective admissions than the Standard 

Policies since there is no postponement of elective procedures, and admission scheduling is determined 

by the patient’s probability of survival and the likelihood of the patients needing emergency care while 

waiting for elective care. This also leads to a lower number of total emergency admissions under the 

Optimized Schedule. Indeed, in the Baseline (Early and Late Lockdown), Best-Case scenario (Early and Late 

Lockdown) and Worst-Case scenario Early Lockdown, the Optimized Schedule leads to fewer non-COVID-

19 patients in need of emergency care (and thus fewer non-COVID-19 emergency admissions) than the 

Standard Policies (Appendix Table I3). The ICDs for which the difference in elective (emergency) 

admissions is the highest (lowest) are: K00-K93 Diseases of the digestive system, C00-D48 Neoplasms, N00-
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N99 Diseases of the genitourinary system and S00-T98 Injury, poisoning (Figure 3 for Standard Policy 1, 

Appendix Figure I2 for Standard Policies 2-4).  

 

 
Figure 3: Difference in Elective and Emergency Admissions between Optimized Schedule and Standard Policy 1, 

by ICD.  𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑃𝑇 − 𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑆𝑃 . 

 

In the Worst-Case scenarios, especially in Late Lockdown, capacity constraints are more severe than in 

the Baseline and Best-Case scenarios. As a consequence, and relative to other scenarios, more patients 

will require emergency care while waiting for elective care in both the Optimized Schedule and the 

Standard Policies. Therefore, due to fewer available resources, the Optimized Schedule and the Standard 

Policies differ less in terms of number of emergency admissions in the Worst-Case Late Lockdown scenario 

(Appendix Table I3).  
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Notice that there are no denials in emergency admissions in the Best-Case scenario for all Standard 

Policies and the Optimized Schedule. However, this is not the case in any other scenario, where emergency 

patients may be denied admission due to the capacity shortages. The numbers of emergency admission 

denials are higher for the Standard Policies than the Optimized Schedule (Figure 4 for Best- and Worst 

Case, Appendix Figure I3 and Table I3 for Baseline-Case). 

 

 
Figure 4. Comparison of Standard Policies and Optimized Schedule for admissions and admission denials over the 

planning horizon.  

 

3.3 Admission to Critical Care   

In the Baseline scenario, the Optimized Schedule denies CC to a small fraction of patients (2.2% and 2.6% 

over the 52 weeks under Early and Late Lockdown, respectively), most of which (83% and 85%, 
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respectively) are COVID-19 patients aged 65+-years-old (Appendix Figure I4). In the Worst-Case scenarios, 

the share of patients denied CC increases to 4.8% and 6.4% under Early and Late Lockdown, respectively; 

also, in this case, 92% and 83% (respectively) of patients that are denied CC stem from COVID-19 aged 65+ 

(Figure 5). Therefore, the Optimized Schedule shows that it may be advantageous (to minimize YLL) to 

prioritize non-COVID patients for access to CC. In particular, it is interesting to notice that in the Worst-

Case Late Lockdown Optimized Schedule, patients with neoplasms and diseases of the circulatory 

system are given access to CC while COVID-19 patients aged 65+-years-old are denied CC. All patients who 

are denied CC receive treatment in G&A in both Standard Policies and Optimized Schedule. See Appendix 

Figure I5 for G&A bed utilization under these scenarios. 

 

Comparing the Optimized Schedule with Standard Policies, the former has a higher average elective 

occupancy in CC and in G&A. It also tends to admit more non-COVID-19 patients to CC than the Standard 

Policies. In the Best-Case scenario, the Optimized Schedule admits all patients to CC requiring it, while 

Standard Policies deny CC to patients during the weeks following the postponement of elective admissions 

(Appendix Table I3). 

 

 

 
Figure 5. CC bed utilization by patient group over the planning horizon.   

 



10 December 2020                                                                           Imperial College COVID-19 response team 

DOI: https://doi.org/10.25561/84788  Page 15 of 54 

 

4. Discussion and Policy Implications 
 

We develop an optimal scheduling tool for hospital care that, if implemented, saves lives when compared 

to the healthcare policies implemented in several countries. In most of the assessed scenarios, the tool 

also leads to decreased hospital costs, except in scenarios with severe capacity constraints. In those 

scenarios, the health gains of the Optimized Schedule imply minimal extra spending, the extra costs being 

associated with an increased number of elective admissions and shifting care from low priority to high 

priority and costlier patients. 

 

The different outcomes are caused by two factors: (i) the Optimized Schedule is data-driven, admits 

patients in an optimal way based on the relative probability of survival across the different disease groups 

and maximizes the use of hospital capacity while Standard Policies rely on prioritization rules 

implemented pre-pandemic and admits patients based on uniform sampling and the timing of their arrival 

in the care pathway; (ii) Standard Policies prescribe a blanket postponement of electives, while the 

Optimized Schedule only delays electives if the dynamic capacity needs exceed hospital capacity over the 

course of the pandemic.  How well the Optimized Schedule fairs with regards to the Standard Policies 

depends on the severity of the capacity constraints and of the pandemic scenario. 

 

As shown by Table 1, the years of life gained (YLG) increase in proportion with the severity of the 

considered scenarios, suggesting that optimal scheduling of electives is increasingly beneficial as 

resources become scarcer. The Table reports the gains in years of life of the Optimized Schedule compared 

to Standard Policy 1 across the different scenarios. The analysis shows that in the Best-Case scenarios, 

when enough resources are available to treat all patients in the system, the Optimized Schedule 

outperforms the Standard Policy by only 1.1-1.4%. This differential benefit increases with the severity of 

the pandemic scenarios, reaching a 8.2%-76% increase in YLG for the Worst-Case Late Lockdown scenario. 

  

Table 1. Absolute and relative difference in YLG between the Optimized Schedule (OPT) and Standard 

Policy 1 (SP1) across the scenarios (LB: lower bound; UB: upper bound). 

Scenario ∆ YLGOPT-SP1 (LB/UB) ∆% YLGOPT-SP1 (LB/UB) 

Best-Case Early Lockdown 61’454 / 61’454 1.4% / 1.4% 

Best-Case Late Lockdown 50’750 / 50’750 1.1% / 1.1% 

Baseline Early Lockdown 319’402 / 558’662 6.2% / 11% 

Baseline Late Lockdown 319’747 / 552’940 6.0% / 10% 

Worst-Case Early Lockdown 518’162 / 1’051’544 8.5% / 17% 

Worst-Case Late Lockdown 597’895 / 5’891’608 8.2% / 76% 

 

When capacity constraints allow to accommodate all surges in emergency care needs due to COVID-19, 

YLL and costs are always higher under Standard Policies. The Optimized Schedule accommodates all 

emergencies and still exhibits lower YLL and costs associated with elective patients than those associated 

with the Standard Policies. In contrast, the Standard Policies lead to higher YLL and unit costs across most 
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ICDs associated with delayed treatment and subsequent emergency admission, with the biggest losses 

being incurred for neoplasms, diseases of the digestive system, and injuries & poisoning.  

 

In addition to this, our optimization model shows that prioritizing non-COVID-19 patients to CC could 

result in lower YLL. In particular, in the Worst-Case scenarios, to minimize YLL the Optimized Schedule 

prioritizes access to CC to patients with neoplasms and diseases of the circulatory system over elderly 

COVID-19 patients. 

 

Our findings are of relevance for policymakers globally. In England, fears over premature mortality and 

morbidity associated with the cancellation of elective procedures heightened policy discussions on the 

increasing needs of patients for elective care.4 This has resulted in NHS England directing hospitals to 

resume elective care to target levels in August 2020. This directive, provided before the second peak, is 

becoming near impossible to meet with surge demands from COVID-19 and winter pressures.34,35 Thus, 

our findings are timely for the NHS as they have the potential to support the NHS in re-scheduling delayed 

elective procedures while coping with further peaks of the pandemic. We achieve this through a model 

that minimizes YLL under the competing constraints faced by the health system. While we have shown 

the benefits of our Optimized Schedule tool with an application to the context of the NHS in England, the 

model can be used in any other health systems globally: it is open source and runs efficiently with limited 

computing resources. It can also be adapted for use at hospital level, and to strategically plan care in the 

context of other pandemics or in post-pandemic periods. 

 

Despite our model being data-driven, it can also be run in low-income settings where resources are limited 

and historical data on hospital activity is scarce. Where data are not available, our findings outline key 

prioritization principles that save lives that can be embedded in national policies in low-income settings, 

where efficient use of resources is key. These are: (i) prioritizing patients to elective care according to 

their capacity to benefit, considering the effect of waiting times on disease progression; (ii) postponing 

electives for which disease progression is mild and that have lower chances of being admitted to 

emergency care; (iii) prioritizing access to emergency care and CC based on capacity to benefit, rather 

than by default prioritizing COVID-19 over non-COVID-19 patients; and (iv) when handling unavoidable 

backlogs, admitting elective patients based on their capacity to benefit from care rather than applying 

FIFO scheduling. These principles, if implemented, also have the potential to save costs for health systems. 

 

Despite its strengths and important policy implications, our analysis has several limitations. Given data 

limitations, a number of assumptions are made. First, COVID-19's impact on staff shortages and infection 

control measures (e.g., ward closures) are not modelled, which likely underestimates the impact of 

COVID-19 on hospital capacity. Second, referrals for elective care are assumed to remain constant at pre-

pandemic levels. We now know that primary care attendance and referrals were reduced during the first 

peak of the pandemic.36 This has two implications for the analyses: we do not account for YLLs due to 

reduced care seeking behavior by patients, and the types of procedures requested by patients and GPs 

are likely to differ during the pandemic period, which may impact the costs and life years saved by the 

different policies. A third assumption is that patients within each broad age and disease category are 
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considered as homogenous in the severity of disease and progression along the disease pathway. This fails 

to account for the heterogeneity in disease progression and outcomes for different patient subgroups. 

Furthermore, the model does not consider competing risks. The hospital dataset records usage on 

discharge; therefore, the data analysis does not account for patients who would have died before 

receiving elective care. Furthermore, some patients who have been scheduled for elective care may 

subsequently die of COVID-19 due to hospital acquired infection; this is not accounted for in any model. 

Also, patients scheduled for elective care may not have an emergency admission observed but may have 

a different disease progression due to the change in severity of their illness. In the absence of an indicator 

that would enable capturing severity in a meaningful way across ICDs, we account for the latent severity 

by modelling transition probabilities as a function of waiting times. Severity is also captured through some 

patients being forecasted to need care earlier than others. Thus, this analysis may underestimate the life 

years lost and cost of care. 

 

We do not allow for capacity restrictions due to the need of isolating patients in hospital to avoid 

nosocomial infections. Due to a lack of available data on mental health service use, community care, social 

care, dental care, primary care and other services, this study is restricted to examining care delivered by 

acute hospitals. While these services may not be used to deliver COVID-19 care during the pandemic and 

were not the focus of government policy, these services may have still been restricted due to staff 

shortages and attempts by the health service to reduce nosocomial transmission. While some services are 

unlikely to have a significant impact on life years lost in the short term, a reduction in access to care for 

patients with severe mental health conditions particularly, may have resulted in increased morbidity and 

should be a focus of future research. 

 

In both the Optimized Schedule and the Standard Policies, we use Years of Life Lost as our main outcome. 

None of the models incorporate preferences of either patients and the public or medical professionals 

(such as the clinical guide on surgical prioritization by the Royal College of Surgeons of England).37 

Furthermore, we do not examine the impact of the Standard Policies or the Optimized Schedule on existing 

health inequalities or health equity. Those living in deprived socioeconomic areas and those from black 

and minority ethnic groups have an increased risk of mortality from COVID-19.38,39 To date, data are not 

available as to whether the same groups have been more or less likely to have unmet care needs due to 

policy changes or changes in care seeking behavior. Further research is needed to ensure that the 

Optimized Schedule does not inadvertently increase health inequalities, and is acceptable to clinicians, 

patients and the public. If data are available, however, the model can be readily adapted to run with the 

objective of minimizing health inequalities. 

 

While these are important caveats that can impact the magnitude of the YLL and costs, they are likely to 

affect the Optimized Schedule and the Standard Policies models in a similar way, thus not impacting the 

validity of the comparison across the two.  

 

The presented model attempts to minimize the detrimental health impact of unprecedented hospital 

capacity shortages during the pandemic. The model is an attempt to operationalize the principles of best 
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use of NHS resources as embodied in the NHS England strategic plan “The NHS Five Year Forward View”40  

and in National Institute for Health and Care Excellence (NICE) fundamental operating principles.41 More 

generally, the model is of relevance to health systems globally seeking to prioritize hospital care to address 

the needs of all patients, substantially improving on short sighted measures that focus on COVID-19 

patients to the detriment of the health of other patients. 
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7. Appendices 
 

Appendix A: Optimization Model  

 

A1. Overview of the Model Structure  

 

We develop a linear programming model to optimally schedule the admission of patients to hospital under 

different pandemic scenarios. Figure A1 offers a schematic overview of the model structure.  

 

Model inputs. Focusing on the entire NHS in England, we first characterize (i) the initial situation (at 𝑡 =

0) in terms of the available resources (Ξ) and the current allocation of patients (waiting vs in-hospital 

patients, in CC vs G&A, etc.). We divide patients into different patient groups and subdivide each group 

on the basis of severity. For each subgroup, we provide as inputs (ii) their resource requirements (Δ) as 

well as transition matrices (Π) representing the probabilities of endogenous transfers of patients between 

severity groups (e.g., patients needing emergency care while waiting for elective care, or patients in G&A 

requiring CC). For 𝑡 > 0, based on the scenarios we are investigating (e.g. lockdown), we observe (iii) new 

exogenous inflows of patients (Φ). Investments to increase capacity could additionally be accounted for 

in a strategic planning problem (possible model expansion). 

 

 
Figure A1 – Conceptual input-output overview of the LP model 

Model outputs. During each week, the model optimizes the allocation of patients, i.e., how many patients 

of each group to admit to hospital (𝑧𝑡 , 𝑧𝑡
′) as well as the in-hospital transfers of patients(𝑥𝑡 , 𝑥𝑡

′). Crucially, 

we account for the possibility of capacity shortages, which, for instance, have affected patients’ welfare 

negatively during the first peak of the COVID-19 outbreak; that is, the model considers that admission to 

hospital or to CC might be denied to patients in need. The objectives are the minimization of total YLL (the 

model can also be used to minimize total cost). The key constraints are the capacities and resource 

balances. 
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A2. LP Model Formulation 

 

In this section we detail the sets, parameters, decision variables and constraints of the LP optimization 

model. Figures A2 and A3 offer a schematic representation of the system’s evolution for any given week 

𝑡. Week 𝑡 begins at time t and ends at time 𝑡 + 1. Patient inflows are observed at the middle of each week 

(time 𝑡 + 0.5), when also decisions on hospital admissions are made (𝑧𝑡). The evolution of newly admitted 

patients during their first 3.5 days in hospital is mapped by the decision variables 𝑥𝑡
′. During the following 

weeks, the transition of patients across severity states is mapped by the decision variables 𝑥𝑡  (see Figure 

A3). The number of waiting (𝑤𝑡) and hospitalized (𝑦𝑡) patients is assessed at each time instant 𝑡 ∈

 {0, … , 𝑡, … , 𝑇}. The model is initialized with the number of waiting and hospitalized patients at the 

beginning of the planning horizon 𝑡 = 0 (𝑤0, 𝑦0). 

 

 
 

Figure A2 - Schematic overview of the system evolution of incoming patients at half-week for any given week t. 
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Figure A3 – Schematic representation of the system evolution of hospitalised patients during a week for any given 

week t. 

 
 
Table A1. Sets and their elements 

Set name (index) Elements 

TIMES (𝒯) {0, … , 𝑡, … , 𝑇 = 52} Time periods (weeks)  
RESOURCES (ℛ) 
PATIENT GROUPS (𝒫) 
ADMISSION TYPE (𝒜) 
SEVERITY STATE (𝒮) 

{0, … , 𝑟, … , 𝑅} Resources (CC beds, G&A beds, staff) 
{0, … , 𝑝, … , 𝑃} Patients divided by disease type and age group 
{𝑒, 𝑛}, where 𝑒 is emergency and 𝑛 is elective admission 
{𝐺, 𝐶, 𝐺∗, 𝐻, 𝐷}, where 𝐺 is G&A, 𝐶 is CC, 𝐺∗is G&A for patients who 
have been denied CC, 𝐻 is recovered, 𝐷 is dead 

 
 
 
 
 
 
 
 
Table A2. Parameters with description 
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Parameter Units Description 

𝜙𝑡𝑝
𝑎  [# patients] New patients’ inflow (exogenous) for each patient group 𝑝 ∈ 𝒫 of 

admission type 𝑎 ∈ 𝒜 during each week 𝑡 ∈ 𝒯 
 𝜋𝑤,𝑝

𝑒  [-] Probability of transfer from elective 𝑛 to emergency 𝑒 for each waiting 
patient group 𝑝 ∈ 𝒫 

 𝜋𝑧,𝑡𝑝𝑎
𝑠  [-] Fraction of patients from each patient group 𝑝 ∈ 𝒫 of type 𝑎 ∈ 𝒜 

requiring admission to  𝑠 ∈ 𝒮 at the beginning of each week 𝑡 ∈ 𝒯 

 𝜋0,𝑝𝑎
𝑠𝑠′

 [-] Probability of transfer in the first 3.5 days from severity state 𝑠 ∈ 𝒮 to 
𝑠′ ∈ 𝒮 for each patient group 𝑝 ∈ 𝒫 of admission type 𝑎 ∈ 𝒜 

 𝜋𝑦,𝑝𝑎
𝑠𝑠′

 [-] Probability of transfer (weekly transitions) from severity state 𝑠 ∈ 𝒮 to 
𝑠′ ∈ 𝒮 for each patient group 𝑝 ∈ 𝒫 of admission type 𝑎 ∈ 𝒜 

 𝛿0,𝑝𝑠𝑎
𝑟  [# items] Requirement of resource 𝑟 ∈ ℛ for each patient group 𝑝 ∈ 𝒫 in severity 

state 𝑠 ∈ 𝒮 and admission type 𝑎 ∈ 𝒜 (first 3.5 days) 
 𝛿𝑠

𝑟 [# items] Requirement of resource 𝑟 ∈ ℛ for patients in severity state 𝑠 ∈ 𝒮 
(weekly) 

𝜉𝑟 [# items] Capacity of resource 𝑟 ∈ ℛ (weekly) 
𝜆𝑝 [# years] Years of life lost (YLL) for each patient group 𝑝 ∈ 𝒫 

𝛾𝑝𝑎 [GBP] Unit cost of care for each patient group 𝑝 ∈ 𝒫 of admission type 𝑎 ∈ 𝒜 

 
 
 
Table A3. Decision variables with description. All variables are continuous and non-negative unless otherwise 
indicated 

Variable Units Description 

𝑤𝑡𝑝
(1) [# patients] Elective patients of group 𝑝 ∈ 𝒫 waiting for care at time 𝑡 ∈ 𝒯 

𝑧𝑡𝑝𝑎 [# patients] Patients of group 𝑝 ∈ 𝒫 and admission type 𝑎 ∈ 𝒜 admitted to hospital 
in week 𝑡 ∈ 𝒯 

𝑧′𝑡𝑝𝑎
𝑠  [# patients] Patients of group 𝑝 ∈ 𝒫 and admission type 𝑎 ∈ 𝒜 admitted to severity 

state 𝑠 ∈ 𝒮 in week 𝑡 ∈ 𝒯 
𝑦𝑡𝑝𝑎

𝑠 (1) [# patients] Patients of group 𝑝 ∈ 𝒫 and admission type 𝑎 ∈ 𝒜 in hospital and in 
severity state 𝑠 ∈ 𝒮 at time 𝑡 ∈ 𝒯 

𝑥𝑡𝑝𝑎
𝑠𝑠′

 [# patients] Patients of type 𝑝 ∈ 𝒫 of admission type 𝑎 ∈ 𝒜 transferred from severity 
state 𝑠 ∈ 𝒮 to 𝑠′ ∈ 𝒮 during week 𝑡 ∈ 𝒯 (weekly transitions) 

𝑥′𝑡𝑝𝑎
𝑠𝑠′

 [# patients] Patients of type 𝑝 ∈ 𝒫 of admission type 𝑎 ∈ 𝒜 transferred from severity 
state 𝑠 ∈ 𝒮 to 𝑠′ ∈ 𝒮 during week 𝑡 ∈ 𝒯 (first 3.5 days) 

(1) for 𝑡 = 0, 𝑤𝑡𝑝 = 𝑤0𝑝 and 𝑦𝑡𝑝𝑎
𝑆 = 𝑦0𝑝𝑎

𝑆 , where 𝑤0𝑝 and 𝑦0𝑝𝑎
𝑆  are input parameters 
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A2.2 Constraints 
 
The model is expressed by the objective function [1] and the constraints [2]-[15]. 
 

min 𝑌𝐿𝐿 =  ∑ ∑ ∑ 𝜆𝑝
𝑎 ∈ 𝒜𝑝 ∈ 𝒫𝑡 ∈ 𝒯

(𝑦𝑡𝑝𝑎
𝐷 + 𝑧′𝑡𝑝𝑎

𝐷 )  [1] 

s.t. 𝑤𝑡+1,𝑝 = 𝜙𝑡𝑝
𝑛 + (1 − 𝜋𝑤,𝑝

𝑒 )𝑤𝑡𝑝 − 𝑧𝑡𝑝𝑛 ∀𝑡 ≠ 𝑇, ∀𝑝  [2] 

 𝑧𝑡𝑝𝑒 + 𝑧′𝑡𝑝𝑒
𝐷 = 𝜙𝑡𝑝

𝑒 + 𝜋𝑤,𝑝
𝑒 𝑤𝑡𝑝 ∀𝑡 ≠ 𝑇, ∀𝑝  [3] 

 𝑧′𝑡𝑝𝑎
𝐶 + 𝑧′𝑡𝑝𝑎

𝐺∗
= 𝑧𝑡𝑝𝑎𝜋𝑧,𝑡𝑝𝑎

𝐶  ∀𝑡 ≠ 𝑇, ∀𝑝, ∀𝑎  [4] 

 𝑧′𝑡𝑝𝑎
𝐺 = 𝑧𝑡𝑝𝑎𝜋𝑧,𝑡𝑝𝑎

𝐺  ∀𝑡 ≠ 𝑇, ∀𝑝, ∀𝑎  [5] 

 𝑦𝑡+1,𝑝𝑎
𝑠 = ∑ (𝑥𝑡𝑝𝑎

𝑠′𝑠 + 𝑥′𝑡𝑝𝑎
𝑠′𝑠 )

𝑠′∉ {𝐻,𝐷}
 ∀𝑡 ≠ 𝑇, ∀𝑝, ∀𝑠, ∀𝑎  [6] 

 𝑥′𝑡𝑝𝑎
𝑠′𝑠 = 𝜋0,𝑝𝑎

𝑠′𝑠 𝑧′𝑡𝑝𝑎
𝑠′

 
∀𝑡 ≠ 𝑇, ∀𝑝, ∀𝑠′ ∈ {𝐺, 𝐶, 𝐺∗},  

∀𝑠 ∈ {𝐺, 𝐻, 𝐷}, ∀𝑎  
[7] 

 𝑥′𝑡𝑝𝑎
𝐶𝐶 + 𝑥′𝑡𝑝𝑎

𝐶𝐺∗
= 𝜋0,𝑝𝑎

𝐶𝐶 𝑧′𝑡𝑝𝑎
𝐶  ∀𝑡 ≠ 𝑇, ∀𝑝, ∀𝑎  [8] 

 𝑥′𝑡𝑝𝑎
𝐺𝐶 + 𝑥′𝑡𝑝𝑎

𝐺𝐺∗
= 𝜋0,𝑝𝑎

𝐺𝐶 𝑧′𝑡𝑝𝑎
𝐺  ∀𝑡 ≠ 𝑇, ∀𝑝, ∀𝑎  [9] 

 𝑥′𝑡𝑝𝑎
𝐺∗𝐶 + 𝑥′𝑡𝑝𝑎

𝐺∗𝐺∗
= 𝜋0,𝑝𝑎

𝐺∗𝐶 𝑧′𝑡𝑝𝑎
𝐺∗

 ∀𝑡 ≠ 𝑇, ∀𝑝, ∀𝑎  [10] 

 𝑥𝑡𝑝𝑎
𝑠′𝑠 = 𝜋𝑦,𝑝𝑎

𝑠′𝑠 𝑦𝑡𝑝𝑎
𝑠′

 
∀𝑡 ≠ 𝑇, ∀𝑝, ∀𝑠′ ∈ {𝐺, 𝐶, 𝐺∗},  

∀𝑠 ∈ {𝐺, 𝐻, 𝐷}, ∀𝑎  
[11] 

 𝑥𝑡𝑝𝑎
𝐶𝐶 + 𝑥𝑡𝑝𝑎

𝐶𝐺∗
= 𝜋𝑦,𝑝𝑎

𝐶𝐶 𝑦𝑡𝑝𝑎
𝐶  ∀𝑡 ≠ 𝑇, ∀𝑝, ∀𝑎  [12] 

 𝑥𝑡𝑝𝑎
𝐺𝐶 + 𝑥𝑡𝑝𝑎

𝐺𝐺∗
= 𝜋𝑦,𝑝𝑎

𝐺𝐶 𝑦𝑡𝑝𝑎
𝐺  ∀𝑡 ≠ 𝑇, ∀𝑝, ∀𝑎  [13] 

 𝑥𝑡𝑝𝑎
𝐺∗𝐶 + 𝑥𝑡𝑝𝑎

𝐺∗𝐺∗
= 𝜋𝑦,𝑝𝑎

𝐺∗𝐶 𝑦𝑡𝑝𝑎
𝐺∗

 ∀𝑡 ≠ 𝑇, ∀𝑝, ∀𝑎  [14] 

 ∑ ∑ ∑ (∑ 𝛿0,𝑝𝑠𝑎
𝑟

𝑠′∈ {𝐻,𝐷}
𝑥′𝑡𝑝𝑎

𝑠𝑠′
+ ∑

𝛿𝑠
𝑟

2𝑠′∉ {𝐻,𝐷}
𝑥′𝑡𝑝𝑎

𝑠𝑠′
+ 𝛿𝑠

𝑟𝑦𝑡𝑝𝑎
𝑠 ) ≤ 𝜉𝑟

𝑠 ∈ 𝒮𝑎 ∈ 𝒜𝑝 ∈ 𝒫

 ∀𝑡, ∀𝑟  [15] 

 
Unless stated otherwise, each parameter bound by a "∀" ("∀𝑡" ) is assumed to range over all values of its 
associated set (e.g., "∀𝑡"should be read as "∀𝑡 ∈ 𝒯" , whereas "∀𝑝" abbreviates "∀𝑝 ∈ 𝒫"). 
 
The model minimizes the total YLL  [1] over a 1-year planning horizon (52 weeks).  
 
In the middle of each week t, a new exogenous inflow of patients in need of elective care (𝜙𝑡𝑝

𝑛 ) is observed, 

which adds to the cohort of waiting patients at the end of the previous week (𝑤𝑡𝑝). Note that at 𝑡 =  0, 

we have a stock of patients waiting for care (𝑤0𝑝) that are people that at the beginning of week zero were 

waiting for elective care but had not yet been admitted to hospital. Some of these elective patients are 
admitted to hospital during week t (𝑧𝑡𝑝𝑛); patients in need of elective care not admitted to the hospital 
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remain in the waiting list [2]. Patients waiting for elective care are at risk of needing emergency care while 
waiting with probability 𝜋𝑤,𝑝

𝑒 . These patients are immediately admitted into hospital, together with the 

new inflow of patients in need of emergency care (𝜙𝑡𝑝
𝑒 ). In case of capacity shortages, admission to 

hospital might be denied to patients in need of emergency care. In the model, we assume these patients 

(𝑧′𝑡𝑝𝑒
𝐷 ) either die if no extra emergency capacity is made available in the NHS (Upper Bound case) or are 

admitted to newly created emergency care capacity (Lower Bound case) [3]. This assumption is relaxed in 
a sensitivity analysis in which we assume these patients survive, hence providing upper/lower bounds for 
our results relative to this assumption. 
 
At the moment of admission to hospital, patients can be assigned a G&A (G) or a CC (C) bed based on the 
parameter 𝜋𝑧,𝑡𝑝𝑎

𝑠 . The variables 𝑧′𝑡𝑝𝑎
𝑠  define the severity state 𝑠 ∈ 𝒮 that patients are admitted to. 

Patients needing CC are assigned a C bed if available (𝑧′𝑡𝑝𝑎
𝐶 ); in case of capacity shortages, CC admission 

might be denied to a patient in need; this patient is admitted to a specific G&A state (𝐺∗) where he/she 
evolves according to a new set of transition probabilities [4]. If capacity becomes available, patients in 𝐺∗ 
that have neither died nor been discharged are assigned a C bed. Patients needing G&A care are assigned 
a G bed [5]. 
 
Once in hospital, patients can transition between these severity states, and they can also recover (H) or 
die (D). At week 0, there is already a stock of patients in hospital care (y0) that corresponds to patients 
that were admitted to hospital prior to week 0 and that had not been discharged from hospital by then. 
The number of patients in a given severity state 𝑠 ∈ 𝒮 at the end of week t (𝑦𝑡+1,𝑝𝑎

𝑠 ) is equal to the sum 

of the patients who remained in state 𝑠 during that week plus the transitions from other states 𝑠′ ∈ 𝒮 to 

𝑠 during week t [6]. In particular, equations [7]-[10] and the decision variables 𝑥′𝑡𝑝𝑎
𝑠′𝑠  map the transitions 

across severity states of newly admitted patients in their first 3.5 days of hospitalization; symmetrically, 

the set of equations [11]-[14] and the decision variables 𝑥𝑡𝑝𝑎
𝑠′𝑠  map transitions across severity states in the 

following weeks. 
 

The transition of a patient from state 𝑠′ to state 𝑠 is defined by the matrix 𝜋0,𝑝𝑎
𝑠′𝑠  for the first 3.5 days [7] 

and by the matrix 𝜋𝑦,𝑝𝑎
𝑠′𝑠   [11] in the following weeks. Admission to CC is an exception to this: [8], [9], [12] 

and [13] enforce that in case of capacity shortages, CC might be denied to a patient in need; this patient 
transitions to a specific G&A state (𝐺∗) where he/she evolves according to a new set of transition 
probabilities. If space in CC becomes available in the following weeks, this patient might be admitted to 
CC [10][14]. 
 
Patients in G&A and CC are allocated 1 bed and staff resources (nurses, doctors) based on specific staff-
to-bed ratios. Equation [15] ensures that the total consumption of bed and staff resources does not 
exceed the available capacity (𝜉𝑟). To do this, patients are divided into three distinct categories: (i) patients 
leaving the hospital in the first 3.5 days consume an amount of resources proportional to their length-of-
stay (𝛿0,𝑝𝑠𝑎

𝑟 ); (ii) newly admitted patients who remain in hospital after the first 3.5 days consume resources 

for a half-week (𝛿𝑠
𝑟/2); (iii) in the following weeks, patients use resources for full-week periods (𝛿𝑠

𝑟). 
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Appendix B: Patient Group and Cohort Identification 
 
Patients are grouped using their ICD-10 root group (Table B1) and age group (0-24, 25-64, and 65+ years). 
For example, ICD-10 code C15 for malignant neoplasm of the oesophagus falls under the root ICD group 
C00 – D49: Neoplasms. This medically classifies diseases in broad categories (e.g. respiratory diseases, 
cancer, etc.) and thus captures any heterogeneity within the needs for emergency or elective admissions 
for that set of diseases.  
  
Table B1. ICD root group identification 

ICD-10 Chapter Disease Category 

A00–B99 Certain infectious and parasitic diseases  
C00–D48 Neoplasms  
D50–D89 Diseases of the blood and blood-forming organs and certain disorders involving the 

immune mechanism  
E00–E90 Endocrine, nutritional and metabolic diseases  
F00–F99 Mental and behavioural disorders  
G00–G99 Diseases of the nervous system  
H00–H59 Diseases of the eye and adnexa  
H60–H95 Diseases of the ear and mastoid process  
I00–I99 Diseases of the circulatory system  
J00–J99 Diseases of the respiratory system  
K00–K93 Diseases of the digestive system  
L00–L99 Diseases of the skin and subcutaneous tissue  
M00–M99 Diseases of the musculoskeletal system and connective tissue  
N00–N99 Diseases of the genitourinary system  
O00–O99 Pregnancy, childbirth and the puerperium  
P00–P96 Certain conditions originating in the perinatal period  
Q00–Q99 Congenital malformations, deformations and chromosomal abnormalities  
R00–R99 Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified  
S00–T98 Injury, poisoning and certain other consequences of external causes  
V01–Y98 External causes of morbidity and mortality  
Z00–Z99 Factors influencing health status and contact with health services  

 
Patients are further grouped into cohorts depending on the type of care needed. Patients are broadly 
categorized as needing emergency or elective care. For those waiting for elective care, their disease might 
deteriorate and consequently, these patients might need emergency treatment while waiting for elective 
care. Some ICD groups in our dataset, however, have too few observations to run robust empirical 
analyses. Thus, the ICDs representing the lowest 5% of the frequency distribution of patients in need of 
care separately are aggregated together for both electives and emergencies (Table B2). This leaves 15 and 
14 ICD groups for non-COVID-19 emergency admissions and elective patients in need of care, respectively, 
plus one COVID-19 emergency ICD group. Admitted patients are also stratified by age (0-24, 25-64 and 
65+ years).  
 
  

https://en.wikipedia.org/wiki/ICD-10_Chapter_I:_Certain_infectious_and_parasitic_diseases
https://en.wikipedia.org/wiki/ICD-10_Chapter_II:_Neoplasms
https://en.wikipedia.org/wiki/ICD-10_Chapter_III:_Diseases_of_the_blood_and_blood-forming_organs,_and_certain_disorders_involving_the_immune_mechanism
https://en.wikipedia.org/wiki/ICD-10_Chapter_IV:_Endocrine,_nutritional_and_metabolic_diseases
https://en.wikipedia.org/wiki/ICD-10_Chapter_V:_Mental_and_behavioural_disorders
https://en.wikipedia.org/wiki/ICD-10_Chapter_VI:_Diseases_of_the_nervous_system
https://en.wikipedia.org/wiki/ICD-10_Chapter_VII:_Diseases_of_the_eye,_adnexa
https://en.wikipedia.org/wiki/ICD-10_Chapter_VIII:_Diseases_of_the_ear_and_mastoid_process
https://en.wikipedia.org/wiki/ICD-10_Chapter_IX:_Diseases_of_the_circulatory_system
https://en.wikipedia.org/wiki/ICD-10_Chapter_X:_Diseases_of_the_respiratory_system
https://en.wikipedia.org/wiki/ICD-10_Chapter_XI:_Diseases_of_the_digestive_system
https://en.wikipedia.org/wiki/ICD-10_Chapter_XII:_Diseases_of_the_skin_and_subcutaneous_tissue
https://en.wikipedia.org/wiki/ICD-10_Chapter_XIII:_Diseases_of_the_musculoskeletal_system_and_connective_tissue
https://en.wikipedia.org/wiki/ICD-10_Chapter_XIV:_Diseases_of_the_genitourinary_system
https://en.wikipedia.org/wiki/ICD-10_Chapter_XV:_Pregnancy,_childbirth_and_the_puerperium
https://en.wikipedia.org/wiki/ICD-10_Chapter_XVI:_Certain_conditions_originating_in_the_perinatal_period
https://en.wikipedia.org/wiki/ICD-10_Chapter_XVII:_Congenital_malformations,_deformations_and_chromosomal_abnormalities
https://en.wikipedia.org/wiki/ICD-10_Chapter_XVIII:_Symptoms,_signs_and_abnormal_clinical_and_laboratory_findings
https://en.wikipedia.org/wiki/ICD-10_Chapter_XIX:_Injury,_poisoning_and_certain_other_consequences_of_external_causes
https://en.wikipedia.org/wiki/ICD-10_Chapter_XX:_External_causes_of_morbidity_and_mortality
https://en.wikipedia.org/wiki/ICD-10_Chapter_XXI:_Factors_influencing_health_status_and_contact_with_health_services
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Table B2. Bundling of elective and emergency ICDs 

Elective Bundling Emergency Bundling 

A00 – B99: Infectious and parasitic diseases  D50 – D89: Disease of blood, immune mechanism 
disorders  

E00 – E89: Endocrine, nutritional, metabolic 
diseases 

H00 – H59: Disease of eye and adnexa  

F01 – F99: Mental, behavioural, 
neurodevelopment disorder 

H60 – H95: Diseases of ear, mastoid process 

H60 – H95: Diseases of ear, mastoid process P00 – P96: Conditions originating in perinatal 
period 

O00 – O99: Pregnancy, childbirth, puerperium Q00 – Q99: Congenital malformations, 
deformations and chromosomal abnormalities 

P00 – P96: Conditions originating in perinatal 
period 

Z00 – Z99: Factors influencing health status, 
health services 

Q00 – Q99: Congenital malformations, 
deformations, chromosomal abnormalities 

 

 
In summary, each patient in our dataset falls into one of three cohorts: i) non-COVID-19 patients waiting 
for elective care that do not require emergency treatment while waiting (Cohort A); ii) non-COVID-19 
patients in need of emergency care, including those patients that require emergency care while waiting 
for electives care due to progressed disease severity for the same condition for which they need elective 
care (Cohort B); iii) COVID-19 patients in need of emergency care (Cohort C). 
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Appendix C: Forecasting 

 

C1. Forecasting Cohorts of Hospital Care Need 

 
In order to estimate the number of non-COVID-19 patients in need of both elective and emergency care 
(i.e. the expected number of new weekly occurring patients that are expected to enter the care pathway 
and those that are admitted to emergency care), we fit local linear trend models with trigonometric 
seasonality to weekly historical data on hospital admissions for emergency patients for the various groups 
from January 2015 to February 2020, and we forecast from March 2020 to March 2021. For elective 
referrals we use weekly referrals from January 2015 to March 2019, and subsequently forecast from April 
2019 to March 2021. As HES data only records a patient’s referral date once the patient has been admitted 
to hospital, to account for the full patient cohort, we use a maximum waiting time of a year.  The local 
linear trend model has several advantages over alternative approaches. It can deal easily with weekly 
seasonality, it can cope well with missing observations, has good forecasting ability and can be easily 
interpreted.  
 
In a local linear trend model with trigonometric seasonality,42,43 the observed number of admissions in a 
specific group 𝑦𝑡 in week t is decomposed into an unobserved stochastic trend 𝜇𝑡, an unobserved seasonal 
component 𝛾𝑡 and an unobserved measurement error 휀𝑡: 

𝑦𝑡 = μ𝑡 + γ𝑡 + ε𝑡           ε𝑡 ∼ N(0, σε
2). 

The stochastic trend μ𝑡  has the form of a unit root process with a drift which is also modelled using a unit 
root process: 

μ𝑡+1 = μ𝑡 + ν𝑡 + 𝜉𝑡           𝜉𝑡 ∼ N(0, σξ
2) 

ν𝑡+1 = ν𝑡 + 휁𝑡           휁𝑡 ∼ N(0, σ𝜁
2) 

The term 𝜇𝑡 allows the level of the trend to change, while the drift ν𝑡 modifies the slope of the trend over 
time.  
The seasonal term has the form: 

γ𝑡 = ∑ γ𝑗𝑡

[𝑠/2]

𝑗=1

, 

where  𝑠 = 52.18 is the period and is equal to the average number of weeks in a year accounting for leap 
years, and  

𝛾𝑗𝑡+1 = 𝛾𝑗𝑡𝑐𝑜𝑠λ𝑗 + 𝛾𝑗𝑡
∗ 𝑠𝑖𝑛λ𝑗 + ω𝑗𝑡 

𝛾𝑗𝑡=1
∗ = −𝛾𝑗𝑡𝑠𝑖𝑛λ𝑗 + 𝛾𝑗𝑡

∗ 𝑐𝑜𝑠λ𝑗 + ω𝑗𝑡
∗  

λ𝑗 =
2 𝜋 𝑗

𝑠
. 

The parameters 𝛾𝑗𝑡  and 𝛾𝑗𝑡=1
∗  capture the seasonality of the series and allow for complex seasonal 

patterns, while 𝜉𝑡 , 휁𝑡, ω𝑗𝑡  and ω𝑗𝑡
∗  are white noise errors which are mutually uncorrelated. Estimation is 

done by maximum likelihood using the KFAS package in R.44 Admissions needs forecasts and 95% 
forecasting intervals (FI) are constructed. 
 
We forecast patients in need of care split by admission method (elective or emergency), disease group, 
and age band. We priginally aimed to also stratify these forecasts by frailty. However, due to the small 
number of frail patients, we were unable to run forecasts for frail patients. Therefore, we instead forecast 
the proportion of patients in need of care who are frail. Analogously, while our goal was to run forecasts 
for patients in need of both G&A and CC (for both elective and emergency care settings), the number of 
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patients in CC is considerably small for some patient groups. So, we run forecasts for volumes of patients 
in need of G&A, and for proportions of patients in need of care that need CC.  These proportions are 
forecasted using a local linear trend model with trigonometric seasonality. The dependent variable used 

in the estimation is not the proportion of interest 𝑝𝑡 but  𝑦𝑡 = ln (
1−𝑝𝑡

𝑝𝑡
). Forecasts for 𝑝𝑡 and the 

corresponding forecasting intervals are obtained from forecasts and forecasting intervals of 𝑦𝑡, 

respectively, by 𝑝𝑡 =
1

1+𝑒𝑦𝑡
.￼ 

 
These weekly proportions are then applied to the forecasted volumes of patients in need of elective care 
(cohort A) and emergency care (cohort B) for each patient group in order to obtain the number of patients 
in need of care split by elective vs. emergency setting, patient group (disease, age, and frailty), and G&A 
vs. CC entry point. 

 

C2. Adjusting for Emergency Needs reductions 

 
Changes in care seeking behavior, changes in the prevalence of certain conditions and deaths at home 
have reduced the number of A&E attendances and emergency admissions during the pandemic, but our 
forecasts of emergency needs do not account for such changes. Therefore, we modify our forecasts for 
emergency admissions in the light of the changes in the patterns observed in the total hospital admission 
in England. In order to calculate the percentage reduction in emergency admission, we estimate a local 
linear trend model with trigonometric seasonality to monthly historical data (i.e. s = 12 in the sum of 
trigonometric terms) between August 2010 and February 2020. We then forecast emergency admissions 
and forecasting interval (FI) for the next four months and compute the percentage difference between 
the forecasted and the observed emergency admissions. The results are reported in Table C1 below. 
 

Table C1. Forecasted versus actual emergency attendances from March to June 2020 

Month Forecasted 
Emergency 
Attendances 

Lower 
95% FI 

Upper 
95% FI 

Actual 
Emergency 
Attendances 

Percentage 
Difference 

Lower 
95% FI 

Upper 
95% FI 

March 556,899 550,285 563,512 427,921 – 30% – 29% – 32% 
April 530,080 523,467 536,694 326,581 – 62% – 60% – 64% 
May 550,247 543,634 556,861 398,407 – 38% – 36% – 40% 
June 534,958 528,344 541,571 437,535 – 22% – 21% – 24% 

 
We found that the forecasted emergency needs reduced by around 34% during the first peak of the 
pandemic.   
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Appendix D: Epidemiological Projections for COVID-19 Hospitalizations 
 
Epidemic projections are made using the integrated epidemic/economic model Daedalus 45, in which the 
population consists of 4 age groups: pre-schoolers, school-age children, working-age adults, and retired. 
The working-age population is further divided into 63 economic sectors plus non-working adults. Each of 
these groups is further divided into 8 subgroups with respect to disease status: the susceptible, the 
exposed, the asymptomatic infectious, the infected with mild symptoms, the infected with influenza like 
symptoms, the hospitalized, the recovered, and the dead, whose population at time 𝑡 is denoted, 

respectively, by  𝑆𝑖(𝑡), 𝐸𝑖(𝑡), 𝐼𝑖
𝑎𝑠𝑦𝑚(𝑡), 𝐼𝑖

𝑚𝑖𝑙𝑑(𝑡),  𝐼𝑖
𝐼𝐿𝐼(𝑡),  𝐻𝑖(𝑡), 𝑅𝑖(𝑡), and 𝐷𝑖(𝑡). Disease dynamics follow 

a SEIR model as follows: 
 

�̇�𝑖(𝑡) = −𝑆𝑖(𝑡)λ𝑖(𝑡) 
�̇�𝑖(𝑡) = 𝑆𝑖(𝑡)λ𝑖(𝑡) − σ𝐸𝑖(𝑡) 

λ𝑖(𝑡) = 𝛽 ∑ 𝑀𝑖𝑗

𝐼𝑗(𝑡)

𝑤𝑗

7

𝑗=1

 

𝐼𝑗(𝑡) = İi
asym(𝑡) + 𝐼�̇�

𝑚𝑖𝑙𝑑(𝑡) + 𝐼�̇�
𝐼𝐿𝐼(𝑡) 

İi
asym(𝑡) = σ(1 − psym)Ei(𝑡) − γ1Ii

asym(𝑡) 

𝐼�̇�
𝑚𝑖𝑙𝑑(𝑡) = σ𝑝𝑠𝑦𝑚(1 − 𝑝𝐼𝐿𝐼)𝐸𝑖(𝑡) − γ1𝐼𝑖

𝑚𝑖𝑙𝑑(𝑡) 

𝐼�̇�
𝐼𝐿𝐼(𝑡) = σ𝑝𝑠𝑦𝑚𝑝𝐼𝐿𝐼𝐸𝑖(𝑡) − γ2𝐼𝑖

𝐼𝐿𝐼(𝑡) − ℎ𝑖𝐼𝑖
𝐼𝐿𝐼(𝑡) 

�̇�𝑖(𝑡) = ℎ𝑖𝐼𝑖
𝐼𝐿𝐼(𝑡) − γ3𝐻𝑖(𝑡) − μ𝑖𝐻𝑖(𝑡) 

�̇�𝑖(𝑡) = μ𝑖𝐻𝑖(𝑡) 

�̇�𝑖(𝑡) = γ1 (𝐼𝑖
𝑎𝑠𝑦𝑚(𝑡) + 𝐼𝑖

𝑚𝑖𝑙𝑑(𝑡)) + γ2𝐼𝑖
𝐼𝐿𝐼(𝑡) + γ3𝐻(𝑡). 

 
 
The indices i and j incorporate a community of 4 age groups (0-4, 5-19, 20-64, 65+ years) and the 63 sectors 
of the economy, each comprising a subset of the 20-64-year-old population. The degree 𝑥𝑖 ∈ [0,1] to 
which a sector is open determines the working sector population, with 𝑥𝑖 = 1 yielding the pre-lockdown 
scenario (fully functioning). The value of 𝑥𝑖 can be changed at discrete time intervals. All populations are 
subject to contacts in the community, with additional contacts made in the workplace. Opening certain 
sectors (schools, transport and hospitality/entertainment venues) also induces additional community 
contacts.  
 
All model parameters are consistent with the real-time modelling used at Imperial College London.46 
Infections are divided into asymptomatic (“asym”), symptomatic (“sym”) and influenza-like-illness (“ILI”). 
𝑃𝑠𝑦𝑚 denotes the proportion of infections that are symptomatic, and 𝑝𝐼𝐿𝐼 the proportion of symptomatic 

infections that are influenza-like. Recovery rates are denoted by the letter γ, and age-stratified 
hospitalization and death rates are denoted ℎ𝑖 and μ𝑖, respectively.  
  
We fit four parameters to English hospital occupancy data 29 from 20th of March to 30th of June 2020, 
namely 𝑡0 (epidemic onset), 𝑅0 (basic reproduction number), 𝑡1 (lockdown onset) and δ (reduction in 
transmission during lockdown due to NPIs). Economic closure during lockdown, 𝑥𝑚𝑖𝑛, is estimated from 
ONS 47, alongside changes in contact rates due to working from home. For simplicity, and in order for 
projections to remain independent of hospitalization constraints, our projections retain the economic 
configuration, and we calibrate a fixed post-lockdown value of 𝛿 to yield our desired maximum value 𝑅𝑚𝑎𝑥 
of the reproduction number 𝑅𝑡. Calibration is performed using the next-generation operator eigenvalue 
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method 48, for values of 𝑅𝑚𝑎𝑥 = 1.1 and 𝑅𝑚𝑎𝑥 = 1.2. A further value of 𝛿 is calibrated to 𝑅𝑚𝑎𝑥 = 1 and 
used to impose a second lockdown on 1st December 2020 (Early) or 1st January 2021 (Late). This second 
lockdown is exogenous to the hospital capacity model, whilst representing a realistic mitigation strategy. 
We therefore have four different scenarios, comprising all combinations of 𝑅𝑚𝑎𝑥 and onset of second 
lockdown.  
 
Figure D1 presents the fitted initial epidemic and 4 projected scenarios. 
 

 
Figure D1. Fitted initial epidemic and 4 projected scenarios. 
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Appendix E: Transition Probabilities 
 
We estimate transition probabilities for both patients waiting to receive care and those admitted to 
hospital.  
 

E1. Patients in Need of Emergency Care due to Prolonged Waiting to Receive Care (𝛑𝒘𝒑
𝒆 ) 

 
It is possible that patients waiting for elective care need emergency care due to prolonged waiting times 
imposed by prioritization rules and/or the various scenarios (e.g. postponement of elective admissions 
lead to delayed access to care for those patients). The longer patients wait, the more likely they are to 
need emergency care. We identify these types of patients as those that had an emergency admission for 
the same ICD as their elective admission while they were waiting for elective care. Specifically, we 
calculate the waiting period as the difference in time between the date (rttperstart_elective in HES) the 
patient entered the care pathway (i.e. when they are first referred to a consultant for a new condition) 
and the date the patient is admitted for emergency care for the same ICD (admidate_emergency in HES).  
 
For our optimization model in Appendix A, we calculate the probability (𝜋𝑝) that an individual within 

patient group p who is not admitted as an elective in a certain week may be admitted as an emergency in 
that week conditional on having already waited for a certain time period:  
 

𝑃𝑟{𝑊𝑇 ≤ 𝑤𝑡 + 1|𝑊𝑇 ≥ 𝑤𝑡} 
 
where 𝑊𝑇 is the length of time between the referral to treat date and the emergency admission and 𝑤𝑡 
is the length of time the individual has already waited pre-admission. The probability of switching in week 
𝑤𝑡 + 1 is calculated using survival analysis methods as:   
 

𝑃𝑟{𝑊𝑇 ≤ 𝑤𝑡 + 1 | 𝑊𝑇 ≥ 𝑤𝑡} =
1 − 𝑃𝑟{𝑊𝑇 ≥ 𝑤𝑡 + 1}

𝑃𝑟{𝑊𝑇 ≥ 𝑤𝑡}
=

1 − 𝑆(𝑤𝑡 + 1)

𝑆(𝑤𝑡)
, 

 
where 𝑆(𝑡), 𝑡 ≥ 0, is the survival function. Assuming we have independent and identically distributed 
observations on 𝑁 individuals, with censoring time independent of the survival time, the required 

probability can be estimated using 
1−�̂�(𝑤𝑡+1)

�̂�(𝑤𝑡)
, where �̂�(𝑤𝑡) is the Kaplan-Meier estimator of the survival 

function. The estimation is done using the package Survival in R. 49  
 
We calculate these probabilities at weekly intervals of waiting time over a ten-week period (i.e. wt = 7, 
14, 21 ,..,70). Then the average of these probabilities is used as input into the optimization model to give 
an estimate of this incidence across a range of wt. 
 
Ideally, we would have estimated the transition probabilities stratified for every patient group defined by 
the ICDs, age groups and frailty scores outlined in Appendix B. However, due to small sample sizes in some 
of those groups, Kaplan-Meier estimates would not be precise. Therefore, we bundle some ICDs together 
for both emergency and elective admissions. Specifically, we bundle the ICDs representing the lowest 5% 
of the frequency distribution of electives as well as emergency patients in need of care. While the same 
criterion is applied for electives and for emergencies, the bundled groups do not match between electives 
and emergencies (Appendix Table B2). Thus, in estimating the transition probabilities we pool all patients 
in the elective bundle. Then we further refine that transition probability by combining it with the 
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forecasted proportions of each ICD/age group out of the total number of patients in the bundle. The latter 
is accomplished using a local linear trend model with trigonometric seasonality subject to suitable 
transformations to account for the fact that a proportion is between zero and one (Appendix C1). In 
particular, the probability of transitioning from a waiting fo elective care to needing emergency care is 
applied to the cohort of patients in need of elective care (cohort A). Then, we apply the forecasted 
proportions who move from the electives to the emergency bundle of patients to this newly calculated 
stock of patients transitioning, in order to ascertain the number of patients in each ICD group that move 
from needing elective (cohort A) to emergency (cohort B) care. 
  
 

E2. Patients Admitted to Hospital (𝛑𝒚,𝒂𝒑
𝑺𝑺′

) 

 
Upon admission to hospital, patients in need of elective and emergency care can move between 
different states in their immediate care pathway. A patient can be admitted to G&A, then transition to 
being discharged (i.e. recovery), CC or die. Similarly, a patient can be admitted to CC (either directly or 
through G&A), then transition into recovery, (return) to G&A or die. For each G&A and CC starting state, 
the end states are mutually exclusive and jointly exhaustive outcomes.  
 
Most patients admitted to G&A or CC beds stay for less than a week. Since our time unit is a week, 
estimating the transition probabilities at the end of the week would lead to an over-estimate of their 
patients’ expected time in hospital. Therefore, we split the first week in half and estimate the transition 
probabilities for patients in the first half of the week (i.e. at 3.5 days from admission). For patients that 
remain in G&A longer than 3.5 days we estimate the probability of dying, being discharged from hospital, 
being transferred to CC or continue staying in a G&A bed by the end of day 10.5 of their admission.  In the 
optimization model, the transition probabilities at 3.5 days are used as transition probabilities at the end 
of the first week from admissions. The transition probabilities at 10.5 days are then used for all subsequent 
weeks. For the stock of patients already in hospital at the start of the pandemic, the transition probabilities 
at 10.5 days apply. 
 
The transition probabilities at 3.5 days are estimated using a multinomial logit. We estimate the transition 
probabilities at 10.5 days using a multinomial logit for individuals who stay longer than 3.5 days.  
 
We make the following assumptions in this analysis.  
 
First, patients in need of emergency care, both non-COVID-19 (cohort B) and COVID-19 (cohort C), are 
admitted without waiting. Therefore, their in-hospital transition probabilities are not conditioned on 
waiting time. For patients admitted for elective care, the transition probabilities are estimated conditional 
on waiting times.  
 
Second, we do not include patients that need emergency care while waiting for elective procedures in the 
calculations of elective (cohort A) transition probabilities. Thus, it is possible that we underestimate some 
of the probabilities of transitioning into more severe states (e.g. CC or death).  
 
Third, in the absence of data during the COVID-19 epidemic, we assume that the in-hospital transition 
probabilities estimated for non-COVID-19 patients pre-pandemic remained unchanged after the start of 
the pandemic.  
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Fourth, given the above assumption may be reasonable when hospital capacity is far from being 
exhausted but too strong under full capacity constraints (i.e., hospitals operating at capacity will see 
patients who would normally be admitted to CC remaining in G&A beds), we make the following 
simplifying assumptions for non-COVID-19 patients denied CC (these are the patients in group 𝐺∗):  
 

(i) The probability of an individual 𝑖 dying at time 𝑡 if denied CC when in need is at least as large as 
the probability of dying if timely admitted to CC such that: 

𝑃𝑟𝑡
𝑖{𝑑𝑦𝑖𝑛𝑔|𝑑𝑒𝑛𝑖𝑒𝑑 𝐶𝐶} =

1

2
(𝑃𝑟𝑡

𝑖{𝑑𝑦𝑖𝑛𝑔|𝐶𝐶} + 1) 

(ii) The probability that a patient who has been denied CC, is discharged alive is half of the smaller 
between the probability of not dying if denied CC and the probability that a patient who is in CC 
is first discharged to G&A and then discharged alive: 
 

𝑃𝑟𝑡
𝑖{𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑎𝑙𝑖𝑣𝑒|𝑑𝑒𝑛𝑖𝑒𝑑 𝐶𝐶}

=
1

2
𝑚𝑖𝑛 {1

− 𝑃𝑟𝑡
𝑖{𝑑𝑦𝑖𝑛𝑔|𝑑𝑒𝑛𝑖𝑒𝑑 𝐶𝐶}, 𝑃𝑟𝑡

𝑖{𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑎𝑙𝑖𝑣𝑒|𝐺&𝐴} 𝑃𝑟𝑡
𝑖{𝐺&𝐴|𝑖𝑛 𝐶𝐶}} 

 
(iii) The probability of an individual 𝑖 remaining in G&A at time step 𝑡 is 1 minus both of the above 

probabilities: 
 

𝑃𝑟𝑡
𝑖{𝐺&𝐴|𝑑𝑒𝑛𝑖𝑒𝑑 𝐶𝐶} = 1 − 𝑃𝑟𝑡

𝑖{𝑑𝑦𝑖𝑛𝑔|𝑑𝑒𝑛𝑖𝑒𝑑 𝐶𝐶} − 𝑃𝑟𝑡
𝑖{𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑎𝑙𝑖𝑣𝑒|𝑑𝑒𝑛𝑖𝑒𝑑 𝐶𝐶}. 

 
Patients initially denied CC are in need of CC in subsequent weeks and can therefore be admitted to CC at 
all subsequent weekly time steps if capacity becomes available. If capacity does not become available, 
these patients will stay in G&A and the transition probabilities conditional on being denied CC apply to 
them. 
 
Lastly, for the case of COVID-19 patients, we calculate the above transition probabilities as previously 
described directly from the available data.   
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Appendix F: Costs and Years of Life Lost 

 

F1. Estimating Unit Costs   
 
To calculate the cost the care provided in hospital, we link HES data with reference costs via their HRG. 
Patients are first matched via hospital and HRG using 2018-19 organizational reference cost data. If they 
could not be matched, they are then linked via just the HRG using the 2018-19 national reference cost 
schedule. We attempt to match any additional unmatched patients on either hospital and HRG using 
organizational or national reference cost data from 2017-18, then 2016-17, and then 2015-16. Due to data 
limitations, the majority of HES data could not be costed in years 2015-17. We therefore calculate average 
costs per patient group using admissions from 2017-19, where only fewer than 1% of admissions are not 
costed. There are no significant differences between average costs calculated using 2017-19 data and 
2015-19 data. While it is possible that our cost estimates may be biased due to these missing matched 
patients, the small percentage of unmatched patients suggests that this bias is likely negligible. 
 
Since HRGs do not yet exist for COVID-19 patients, we estimate their hospitalization costs by building our 
own HRGs using the HRG4+ 2020/21 Local Payment Grouper publicly available from NHS Digital.21 The 
grouper is a computer program that assigns an HRG by considering various patient-level information and 
is the same software used by the NHS to generate HRGs in the HES data. We therefore take the following 
individual-level information from administrative discharge records of COVID-19 patients from ICHNT and 
feed them into the grouper to create individual HRGs for each patient: managing hospital, area of 
admission (clinical vs surgical), age, sex, method of admission (emergency vs elective), discharge 
destination, length of stay (days), number of consultant assessment episodes, list of final diagnoses (ICD-
10) and procedures (OPCS-4), among others. An average unit cost as well as distributions of unit costs per 
patient group are then calculated for each cohort. 
 

F2. Years of Life Lost  
 
To calculate the unit YLL for each age group, we take the unweighted average of the age specific life 
expectancy across all ages in that group. The unit YLL per death for each age group is subsequently 
multiplied by the number total number of deaths of the group (irrespective of the age distribution if the 
patients are within the group) estimated by the optimization model to provide the total YLL. 
 
This is summarized using the equation below: 
 

𝑌𝐿𝐿𝑖 = (𝐿𝑖𝑓𝑒 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦 − 𝐴𝑔𝑒 𝐺𝑟𝑜𝑢𝑝 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑖) × 𝑇𝑜𝑡𝑎𝑙 𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠𝑖 
 
With 𝑖 = {< 25, 25 − 64, 64} denoting the age group. 
 
As a sensitivity analysis, we also calculate the unit YLL in the following way. Using the life expectancy (LE) 
at birth for the UK in 2020 (81.15 years)32 we derive the unit YLL per death for each age group by taking 
the difference between LE and the midpoint of the age group (i.e. at 12.5, 44.5 and 73 years).   For 
example, for the age group 64+, the YLL per death is 8 (i.e., 81.15 –73, where 73 is the midpoint of the age 
group). Table F1 below summarizes the unit YLL per death across the age groups considered.  
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Table F1: Unit YLL per death across the three age categories 

 
 
 
Age Group i 

Unit YLL per 
death using LE 

at birth 

Unit YLL per 
death using age 

specific LE 

<25 68.85 69.9 
25-64 36.65 38.5 
64+ 8.15 8.9 
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Appendix G: Standard Policies 
 
We use the following Standard Policies implemented by the English government in our simulated 
scenarios: prioritization of patients to CC and the postponement of scheduled elective procedures. 
 
On the 20th of March 2020, England’s National Institute for Health and Care Excellence (NICE) published a 
critical care prioritization guideline for adults during the COVID-19 pandemic.6 The guidelines (Figure  G1) 
suggest how to prioritize admission of adult patients to critical care. In general, NICE suggested to assess 
each patient using a frailty assessment according to age. Those over 65 years of age without long-term 
disabilities, learning disabilities, or autism are to be assessed using the Clinical Frailty Scale (CFS) score. 
Physicians are suggested to use an individualized assessment of frailty and not the CFS score for patients 
under 65-years-old with long-term disabilities, learning disabilities, or autism. Those who are deemed to 
be less frail (e.g., CFS score < 5) and would like CC treatment would be referred to CC if their condition 
worsened. Those who are identified as frailer (e.g., CFS score of 5+) are further assessed whether CC was 
appropriate (measures undefined by NICE; presumably left to the physicians’ discretion). If so, then these 
patients could still be admitted to CC if their condition deteriorated. If not, then these patients would 
receive end-of-life care. 
 
To mirror this policy change, we include a prioritization rule to CC whereby in weeks where CC capacity 
will be full, patients are prioritized based on their frailty score. That is, patients who are not frail are 
prioritized over patients who are frail. 
 

 
Figure G1. NICE prioritization of adults into critical care during COVID-19 pandemic guidelines6 
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Furthermore, in a letter to NHS staff on the 17th of March 2020, NHS England’s Chief Executive and the 
NHS Chief Operating Officer informed hospitals to cancel all non-urgent elective operations from April 
15th at the latest. This was implemented for hospitals to free up the maximum possible capacity in 
anticipation of upcoming surges in demand due to COVID-19 patients. On the 23rd of April, 2020, it was 
announced that hospitals should re-start other services.50 Therefore, we leverage these decisions to 
model four Standard Policies.  
 
In Standard Policy 1, we mimic the implementation of the policy described above that occurred in England 
between 17th of March and 23rd of April (weeks 3-8) and that consists of prioritization of patients to critical 
care based on frailty and postponement of non-urgent elective operations. Standard Policy 1 assumes 
that the policy was only enacted during the actual time-period (weeks 3-8) and the postponement of 100% 
of elective procedures. Standard Policy 2 considers potential policy implementation during future 
pandemic peaks by switching the policy on and off depending on the number of predicted COVID-19 cases 
in the population. We switch the policy on (postponement of 100% of electives) when the number of 
predicted COVID-19 cases surpass 4,118 (the observed number of cases on 17th of March). The policy is 
switched off when the number of predicted COVID-19 hospitalizations begin to decline and falls below 
7,494 (the observed number of cases on 23rd of April). If the number of cases never reaches the peak 7,494 
after the policy is switched on, then it is switched off when the number of hospitalizations begins to 
decrease. Therefore, for 𝑅𝑡 = 1.1, the policy switches on between weeks 3-8 and 44-50 for Late Lockdown 
and between weeks 3-8 only for Early Lockdown. Likewise, for 𝑅𝑡 = 1.2, the policy switches on between 
weeks 3-8 and 35-54 for Late Lockdown and between weeks 3-8 and 35-44 for Early Lockdown.  Standard 
Policies 3 and 4 follow the same rules as Standard Policies 1 and 2 except with the postponement of 75% 
of electives. 
 
For all policies, we run the different epidemiological scenarios, namely: Baseline (Early and Late 
Lockdown), Best-Case (Early and Late Lockdown) and Worst-Case scenario (Early and Late Lockdown). 
  

G1. Simulation Model  
 
We develop a simulation model over a 52-week planning-horizon to replicate the Standard Policies and 
compare their outcomes against those of the Optimized Schedule.  
 
The simulation model admits patients to hospital according to a rule-based system, by which patients are 
admitted to hospital according to their order of priority as determined pre-pandemic; in addition to this, 
they account for the postponement of a fraction of elective admissions over given weeks of the planning 
horizon. For each scenario, we implement a postponement of “x%” elective admissions during the weeks 
in which the Standard Policy is activated. Patients for which their elective procedures are postponed 
remain in the queue awaiting admission at the earliest possible time according to a FIFO rule. We look at 
two values for “x%”, namely 100% (in Standard Policies 1 and 2) and 75% (in Standard Policies 3 and 4). In 
addition, during the weeks in which the Standard Policy is on, CC is prioritized for non-frail patients 
(emergency and elective) belonging to each patient group. 
 
 
G1.1 Model Inputs 
At the beginning of the time horizon (𝑡 = 0) we have as inputs the total available resources and an initial 
stock of patients comprising of patients hospitalized at 𝑡 = 0 in CC and G&A, and elective patients 
awaiting admission. We aggregate patients by disease type and severity states, allowing for enough 
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differentiation to closely reflect the individual patient characteristics. For each subgroup, we also have 
information detailing their resource requirements, transition probabilities, and frailty proportions. The 
transition probabilities represent the evolution of a patient’s condition (reflected by their severity state) 
once admitted to hospital, while the frailty proportions for each group are used for prioritizing access to 
CC for non-frail patients during the time periods that the resources are rationed. For 𝑡 > 0, based on the 
scenario we are investigating (e.g., reproduction number, Late versus Early Lockdown), we observe new 
exogenous inflows of patients. Moreover, for each Standard Policy that is implemented, we have as input 
the time period in which the Policy is activated. 
 
 
G1.2 Model Assumptions 
We impose the following assumptions on the simulation model: 

(i) If an incoming emergency patient is denied access to hospital due to shortage of beds in G&A at 
a particular time period, we assume that the patient dies if no more emergcncy capacity is created 
(Upper Bound case) or the patient is seen in extra emergency capacity created by the government 
(Lower Bound case). 

(ii) The non-frail prioritization rule during the weeks in which the policy is activated applies only to 
new incoming patients requiring CC. That is, if a patient is in CC the week before the Standard 
Policy is turned on (week 2) and this patient again requires CC in the week that the Standard Policy 
is turned on (week 3), this patient will not be removed from CC even though he may be frail. 

(iii)  During the weeks in which the Standard Policy is on, non-frail patients are prioritized for access 
to CC. However, if beds are available once all the non-frail patients have been admitted to CC, the 
remaining beds are allocated to frail patients. 

(iv) With regards to access to resources, a patient already in hospital has higher priority over incoming 
patients. That is, no patient already admitted in hospital is removed from hospital to make space 
for an incoming patient.  

 

G1.3 Model Implementation 
At the beginning of each week/time period t (where 0 ≤  𝑡 ≤  𝑇), all resources are available to the model. 
First, patients currently in hospital from the previous week, transition from their state in week 𝑡 − 1 to 
their current state in week 𝑡. The transition occurs according to a Markov Chain which uses the transition 
probabilities of the subgroup that the patient belongs to. If a patient recovers (i.e., transitions to “H” 
state), he/she is removed from the system. If a patient dies (i.e., transitions to “D” state), the 
corresponding YLL is updated and the patient is removed from the system. For any other transition, 
patients are moved or allowed to stay on in the ward where they require care and the resources required 
in the current week are updated accordingly. Once all the patients have transitioned, we check if the 
resource requirement in CC for the current week exceeds the resource availability in CC. If this is the case, 
we choose uniformly among patients needing CC and move them to G&A (G*) until the resources in CC 
are no longer over-utilized. By design, we always have enough resources in G&A to accommodate patients 
already in hospital from previous weeks. 
 
We next make admissions decisions regarding the patients in need of emergency care arising from the 
inflows (of standard emergencies as well as patients in need of emergency care as a result of waiting for 
elective care ) in the current week. We first handle the emergency patients requiring CC, followed by those 
requiring G&A. Our handling of these patients depends on whether the Standard Policy is on/off in the 
current week. 
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(i) When the Standard Policy is on: The non-frail patients from each patient subgroup are prioritized 
for access to CC. If not enough resources in CC are available to accommodate all non-frail patients 
requiring CC, we employ uniform sampling to choose non-frail patients across subgroups that are 
admitted to CC for the current week. The remaining patients are allocated G&A, where they 
evolve according to a new set of transition probabilities (G*). However, if space remains available 
in CC once all the non-frail patients have been accommodated in CC, the remaining resources are 
uniformly distributed amongst the frail patients belonging to the different subgroups. The 
remaining frail patients (if any) are moved to G&A (G*). Finally, we admit patients that require 
G&A. If resources in G&A are short, we once again employ uniform sampling across subgroups to 
admit patients to G&A. Any emergency patients denied admission to G&A are assumed to either 
die if no more emergency capacity is created (Upper Bound case) or to be seen in extra emergency 
capacity created by the government (Lower Bound case).  

(ii) When the Standard Policy is off: In these weeks, the mechanism for admissions remains the same 
as in the weeks when the Standard Policy is on, except that the patients are not prioritized by 
frailty for access to CC. 
 

Finally, we make decisions regarding the elective admissions for the current week. The patients are first 
added to the waiting queue (which may be empty) corresponding to their subgroups. Subsequently, the 
patients are admitted from the queue in a FIFO rule. That is, we first admit patients who entered the 
waiting queue at an earlier point in time before admitting patients who entered the queue at a later time. 

(i) When the Standard Policy is on: In these weeks, we postpone x% of electives. That is, we can only 
admit up to (100 - x)% of the electives given that there is sufficient space available. Moreover, in 
these weeks, CC is prioritized for non-frail patients belonging to each subgroup. The number of 
patients admitted in the current week are thus driven by the Standard Policy and the availability 
of resources. The number of patients admitted from each subgroup is proportional to the fraction 
of the total waiting patients belonging to that particular subgroup. 

(ii) When the Standard Policy is off: In these weeks, we admit as many elective patients as can be 
accommodated in CC and G&A subject to availability of resources. As in (i), the number of patients 
admitted from each subgroup is proportional to the fraction of the total waiting patients 
belonging to that particular subgroup. 
 

G1.4 Model Outputs  
At each time period, for each subgroup of patients we track the following: 

(i) Number of elective and emergency admissions made, and the associated costs 
(ii) Contribution to YLL as a result of patients dying 
(iii) Emergency patients denied admission to hospital 
(iv) The beds utilized in CC and G&A (differentiated by those that require G&A and those that required 

CC but were moved to G&A because of insufficient beds in CC). 
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Appendix H: Simulation & Scenarios for Optimized Schedule and Standard Policies  
 

Table H. Constraints and assumptions for each scenario and simulation 

Simulation Scenario Name 

X% Cancellation of 
Electives, 

Policy Description 
Reproduction Number 
(𝑅𝑡)/Lockdown month Capacity 

Emergency 
Care-Seeking 

Behavior 

O
p

ti
m

iz
ed

 
Sc

h
ed

u
le

 

Baseline Early Lockdown N/A 1.1/Dec Normal Normal 
Baseline Late Lockdown N/A  1.1/Feb Normal Normal 
Best-Case Early Lockdown N/A  1.1/Dec Expanded Reduced 
Best-Case Late Lockdown N/A  1.1/Feb Expanded Reduced 
Worst-Case Early Lockdown N/A  1.2/Dec Normal Normal 
Worst-Case Late Lockdown N/A  1.2/Feb Normal Normal 

St
a

n
d

a
rd

 P
o

lic
y 

1
 

Baseline Early Lockdown 
100%, on over 

weeks 3-8 
1.1/Dec Normal Normal 

Baseline Late Lockdown 
100%, on over 

weeks 3-8 
1.1/Feb Normal Normal 

Best-Case Early Lockdown 
100%, on over 

weeks 3-8 
1.1/Dec Expanded Reduced 

Best-Case Late Lockdown 
100%, on over 

weeks 3-8 
1.1/Feb Expanded Reduced 

Worst-Case Early Lockdown 
100%, on over 

weeks 3-8 
1.2/Dec Normal Normal 

Worst-Case Late Lockdown 
100%, on over 

weeks 3-8 
1.2/Feb Normal Normal 

St
a

n
d

a
rd

 P
o

lic
y 

2 

Baseline Early Lockdown 
100%, on/off with 

thresholds 
1.1/Dec Normal Normal 

Baseline Late Lockdown 
100%, on/off with 

thresholds 
1.1/Feb Normal Normal 

Best-Case Early Lockdown 
100%, on/off with 

thresholds 
1.1/Dec Expanded Reduced 

Best-Case Late Lockdown 
100%, on/off with 

thresholds 
1.1/Feb Expanded Reduced 

Worst-Case Early Lockdown 
100%, on/off with 

thresholds 
1.2/Dec Normal Normal 

Worst-Case Late Lockdown 
100%, on/off with 

thresholds 
1.2/Feb Normal Normal 

St
a

n
d

a
rd

 P
o

lic
y 

3 

Baseline Early Lockdown 
75%, on over 

weeks 3-8 
1.1/Dec Normal Normal 

Baseline Late Lockdown 
75%, on over 

weeks 3-8 
1.1/Feb Normal Normal 

Best-Case Early Lockdown 
75%, on over 

weeks 3-8 
1.1/Dec Expanded Reduced 

Best-Case Late Lockdown 
75%, on over 

weeks 3-8 
1.1/Feb Expanded Reduced 

Worst-Case Early Lockdown 
75%, on over 

weeks 3-8 
1.2/Dec Normal Normal 
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Worst-Case Late Lockdown 
75%, on over 

weeks 3-8 
1.2/Feb Normal Normal 

St
a

n
d

a
rd

 P
o

lic
y 

4
 

Baseline Early Lockdown 
75%, on/off with 

thresholds 
1.1/Dec Normal Normal 

Baseline Late Lockdown 
75%, on/off with 

thresholds 
1.1/Feb Normal Normal 

Best-Case Early Lockdown 
75%, on/off with 

thresholds 
1.1/Dec Expanded Reduced 

Best-Case Late Lockdown 
75%, on/off with 

thresholds 
1.1/Feb Expanded Reduced 

Worst-Case Early Lockdown 
75%, on/off with 

thresholds 
1.2/Dec Normal Normal 

Worst-Case Late Lockdown 
75%, on/off with 

thresholds 
1.2/Feb Normal Normal 
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Appendix I: Results - Figures and Tables 

 

Table I1. Health economic metrics (costs and years of life lost) for Optimized Schedule and Standard Policy scenarios 

Scenario 

Total Cost 
(£ millions) 

Lower 
Bound 

Total Cost 
(£ millions) 

Upper 
Bound 

Unit 
Cost (£) 
Lower 
Bound 

Unit Cost 
(£) 

Upper 
Bound 

Total YLL 
(x 1,000) 

Lower 
Bound 

Total YLL 
(x 1,000) 

Upper 
Bound 

Unit YLL 
Lower 
Bound 

Unit YLL 
Upper 
Bound 

O
p

ti
m

iz
ed

 S
ch

ed
u

le
 

Baseline Early Lockdown 23,173 23,180 2,593 2,593 5,113 5,129 0.57 0.57 
Baseline Late Lockdown  23,260 23,268 2,594 2,594 5,350 5,365 0.60 0.60 
Best-Case Early Lockdown 20,458 20,458 2,452 2,452 4,313 4,313 0.52 0.52 
Best-Case Late Lockdown 20,525 20,525 2,454 2,454 4,548 4,548 0.54 0.54 
Worst-Case Early Lockdown 23,197 23,204 2,595 2,596 6,063 6,078 0.68 0.68 
Worst-Case Late Lockdown 22,876 23,151 2,594 2,625 7,266 7,803 0.82 0.88 

St
an

d
ar

d
 P

o
lic

y 
1

 Baseline Early Lockdown 23,586 23,611 2,629 2,632 5,432 5,687 0.61 0.63 
Baseline Late Lockdown 23,377 23,401 2,641 2,643 5,669 5,918 0.64 0.67 
Best-Case Early Lockdown 20,506 20,506 2,456 2,456 4,375 4,375 0.52 0.52 
Best-Case Late Lockdown 20,573 20,573 2,458 2,458 4,599 4,599 0.55 0.55 
Worst-Case Early Lockdown 22,922 22,974 2,667 2,673 6,581 7,130 0.77 0.83 
Worst-Case Late Lockdown 22,543 23,097 2,679 2,744 7,864 13,694 0.93 1.63 

St
an

d
ar

d
 P

o
lic

y 
2

 Baseline Early Lockdown 23,586 23,611 2,629 2,632 5,432 5,687 0.61 0.63 
Baseline Late Lockdown 23,143 23,170 2,649 2,652 5,644 5,929 0.65 0.68 
Best-Case Early Lockdown 20,506 20,506 2,456 2,456 4,375 4,375 0.52 0.52 
Best-Case Late Lockdown 20,578 20,578 2,459 2,459 4,608 4,608 0.55 0.55 
Worst-Case Early Lockdown 22,642 22,700 2,678 2,685 6,534 7,142 0.77 0.84 
Worst-Case Late Lockdown 22,284 22,856 2,689 2,758 7,823 13,846 0.94 1.67 

St
an

d
ar

d
 P

o
lic

y 
3

 Baseline Early Lockdown 23,584 23,614 2,629 2,632 5,423 5,732 0.60 0.64 
Baseline Late Lockdown 23,441 23,468 2,638 2,641 5,670 5,951 0.64 0.67 
Best-Case Early Lockdown 20,495 20,495 2,455 2,455 4,388 4,388 0.53 0.53 
Best-Case Late Lockdown 20,562 20,562 2,457 2,457 4,639 4,639 0.55 0.55 
Worst-Case Early Lockdown  23,001 23,065 2,663 2,670 6,552 7,229 0.76 0.84 
Worst-Case Late Lockdown 22,641 23,196 2,674 2,739 7,857 13,687 0.93 1.62 

 Baseline Early Lockdown  23,584 23,614 2,629 2,632 5,423 5,732 0.60 0.64 
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Baseline Late Lockdown  23,289 23,323 2,643 2,647 5,663 6,015 0.64 0.68 
St

an
d

ar
d

 

P
o

lic
y 

4
 

Best-Case Early Lockdown 20,495 20,495 2,455 2,455 4,388 4,388 0.53 0.53 

Best-Case Late Lockdown  20,565 20,565 2,457 2,457 4,614 4,614 0.55 0.55 

Worst-Case Early Lockdown  22,748 22,808 2,673 2,681 6,585 7,212 0.77 0.85 

Worst- Case Late Lockdown  22,443 23,012 2,682 2,750 7,813 13,800 0.93 1.65 
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Table I2. ICER calculations comparing Optimized Schedule and Standard Policy scenarios 

 Upper Bound Lower Bound 

Scenario Comparisons Incremental 
YLG 

Incremental 
Costs 

ICER (£ per YLG) Incremental 
YLG 

Incremental 
Costs 

ICER (£ per YLG) 

Optimization vs Policy 1 
      

Baseline Early lockdown       558,662  -£413,446,875 Optimization Dominates       319,402  -£430,376,814 Optimization Dominates 
Baseline Late lockdown        552,940  -£116,389,685 Optimization Dominates       319,747  -£132,725,591 Optimization Dominates 
Best-Case Early Lockdown         61,454  -£47,596,452 Optimization Dominates         61,454  -£47,596,452 Optimization Dominates 
Best-Case Late Lockdown         50,750  -£47,642,231 Optimization Dominates         50,750  -£47,642,231 Optimization Dominates 
Worst-Case Early Lockdown    1,051,544  £275,091,690 £262       518,162  £230,349,858 £445 
Worst-Case Late Lockdown    5,891,608  £333,374,507 £57       597,895  £54,170,589 £91 
Optimization vs Policy 2 

      

Baseline Early lockdown       558,662  -£413,446,875 Optimization Dominates       319,402  -£430,376,814 Optimization Dominates 
Baseline Late lockdown        563,403  £117,991,402 £209       294,776  £98,605,639 £335 
Best-Case Early Lockdown         61,454  -£47,596,452 Optimization Dominates         61,454  -£47,596,452 Optimization Dominates 
Best-Case Late Lockdown         60,114  -£53,050,302 Optimization Dominates         60,114  -£53,050,302 Optimization Dominates 
Worst-Case Early Lockdown    1,063,271  £554,618,584 £522       471,048  £504,227,425 £1,070 
Worst-Case Late Lockdown    6,043,843  £591,540,040 £98       556,905  £294,550,683 £529 
Optimization vs Policy 3 

      

Baseline Early lockdown       603,207  -£411,545,947 Optimization Dominates       309,949  -£433,623,646 Optimization Dominates 
Baseline Late lockdown        586,021  -£180,357,312 Optimization Dominates       320,614  -£199,556,768 Optimization Dominates 
Best-Case Early Lockdown         75,133  -£37,030,951 Optimization Dominates         75,133  -£37,030,951 Optimization Dominates 
Best-Case Late Lockdown         90,410  -£36,955,969 Optimization Dominates         90,410  -£36,955,969 Optimization Dominates 
Worst-Case Early Lockdown    1,150,318  £195,800,775 £170       489,658  £138,855,856 £284 
Worst-Case Late Lockdown    5,884,363  £235,303,123 Optimization Dominates       591,657  -£45,143,878 Optimization Dominates        

Optimization vs Policy 4 
      

Baseline Early lockdown       603,207  -£411,545,947 Optimization Dominates       309,949  -£433,623,646 Optimization Dominates 
Baseline Late lockdown        650,031  -£28,844,180 Optimization Dominates       313,334  -£55,015,902 Optimization Dominates 
Best-Case Early Lockdown         75,133  -£37,030,951 Optimization Dominates         75,133  -£37,030,951 Optimization Dominates 
Best-Case Late Lockdown         65,521  -£40,120,334 Optimization Dominates         65,521  -£40,120,334 Optimization Dominates 
Worst-Case Early Lockdown    1,133,252  £448,788,642 £396       521,911  £396,138,396 £759 
Worst-Case Late Lockdown    5,997,639  £432,669,881 £72       546,779  £139,210,355 £255 
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Table I3. Patient flow and capacity metrics for Optimized Schedule and Standard Policy scenarios 

Scenario 

Patient Flows (x 1,000) Hospital Capacity 

Total 
Elective 

Admissions 

Total 
Emergency 
Admissions 

Total 
Admissions 

Waiting  
Patients 

Admission 
Denials 
(Total) 

COVID 
Emergency 
Admissions 

Non-COVID 
Emergency 
Admissions 

Idle 
Capacity 
G&A (%) 

Idle 
Capacity 
CC (%) 

Average 
Elective 

Occupancy 
in G&A (%) 

Average 
Elective 

Occupancy 
in CC (%) 

O
p

ti
m

iz
ed

 S
ch

ed
u

le
 

Baseline Early 
Lockdown 

2,205 6,733 8,938 1,531 2 179 6,554 1.63 1.90 10.82 21.83 

Baseline Late 
Lockdown 

2,229 6,740 8,969 1,521 2 200 6,540 1.04 1.91 10.93 20.59 

Best-Case Early 
Lockdown 

3,868 4,476 8,345 0 0 182 4,294 31.78 18.02 15.76 26.68 

Best-Case Late 
Lockdown 

3,869 4,496 8,365 0 0 202 4,294 31.32 16.32 15.76 26.69 

Worst-Case Early 
Lockdown 

2,156 6,782 8,939 1,600 2 249 6,533 0.01 1.91 10.37 17.77 

Worst-Case Late 
Lockdown 

2,021 6,798 8,820 1,745 74 311 6,487 0 3.06 9.57 21.94 

St
an

d
ar

d
 P

o
lic

y 
1

 

Baseline Early 
Lockdown 

2,154 6,816 8,970 1,488 9 181 6,635 0.36 1.55 10.08 16.04 

Baseline Late 
Lockdown 

2,014 6,839 8,853 1,625 8 201 6,638 0.35 1.40 9.48 14.85 

Best-Case Early 
Lockdown 

3,850 4,500 8,350 0 0 182 4,318 31.69 22.56 15.46 22.09 

Best-Case Late 
Lockdown 

3,850 4,520 8,370 0 0 202 4,318 31.20 21.14 15.47 22.10 

Worst-Case Early 
Lockdown 

1,702 6,893 8,595 1,923 19 251 6,643 0.36 1.45 7.99 11.88 

Worst-Case Late 
Lockdown 

1,600 6,816 8,416 2,022 196 329 6,487 0.36 1.41 7.58 11.73 

St
an

d
ar

d
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o
lic

y 
2

 Baseline Early 
Lockdown 

2,154 6,816 8,970 1,488 9 181 6,635 0.36 1.55 10.08 16.04 

Baseline Late 
Lockdown 

1,891 6,844 8,735 1,743 10 201 6,642 0.78 1.44 8.95 14.83 

Best-Case Early 
Lockdown 

3,850 4,500 8,350 0 0 182 4,318 31.69 22.56 15.46 22.09 

Best-Case Late 
Lockdown 

3,842 4,528 8,369 1 0 202 4,325 31.42 21.96 15.21 20.83 
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Worst-Case Early 
Lockdown 

1,556 6,898 8,454 2,062 21 250 6,648 1.02 1.74 7.33 10.85 

Worst-Case Late 
Lockdown 

1,471 6,817 8,288 2,145 202 329 6,488 0.96 1.70 6.99 11.08 

St
an

d
ar

d
 P

o
lic

y 
3

 

Baseline Early 
Lockdown 

2,159 6,812 8,971 1,485 10 181 6,631 0.26 0.92 10.18 16.91 

Baseline Late 
Lockdown 

2,052 6,835 8,887 1,591 9 201 6,634 0.26 0.92 9.67 15.94 

Best-Case Early 
Lockdown 

3,860 4,490 8,350 0 0 182 4,307 31.75 21.61 15.55 23.25 

Best-Case Late 
Lockdown 

3,860 4,510 8,370 0 0 202 4,307 31.30 19.90 15.55 23.07 

Worst-Case Early 
Lockdown 

1,756 6,883 8,638 1,876 23 250 6,633 0.26 0.92 8.25 12.34 

Worst-Case Late 
Lockdown 

1,659 6,809 8,468 1,970 196 329 6,479 0.26 0.90 7.87 12.48 

St
an
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d
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o
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Baseline Early 
Lockdown 

2,159 6,812 8,971 1,485 10 181 6,631 0.26 0.92 10.18 16.91 

Baseline Late 
Lockdown 

1,978 6,834 8,812 1,663 12 201 6,633 0.54 0.98 9.37 15.41 

Best-Case Early 
Lockdown 

3,860 4,490 8,350 0 0 182 4,307 31.75 21.61 15.55 23.25 

Best-Case Late 
Lockdown 

3,857 4,513 8,370 0 0 202 4,311 31.33 20.52 15.48 22.74 

Worst-Case Early 
Lockdown 

1,616 6,893 8,509 2,007 21 250 6,642 0.71 0.97 7.66 12.57 

Worst- Case Late 
Lockdown 

1,560 6,810 8,369 2,065 200 329 6,481 0.69 0.98 7.42 12.14 
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Figure I1. Comparison of Standard Policies 2-4 with the Optimized Schedule for Years of Life Lost (YLL)   The difference 

in YLL for all admissions under Standard Policies and Optimized Schedule (𝑌𝐿𝐿𝑂𝑃𝑇 − 𝑌𝐿𝐿𝑆𝑃) over the 52-week planning 

horizon. 

 
 

  
 

Figure I2. Difference in Elective  and Emergency Admissions between Optimized Schedule for  Standard Policies 2-4, 

by ICD.  𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑃𝑇 − 𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑆𝑃 . 
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Figure I3. Comparison of admissions and admission denials between Standard Policy and Optimization scenarios for 
Baseline scenarios with Early and Late Lockdown 
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Figure I4. Comparing CC bed utilisation between Optimized Schedule and Standard Policy scenarios for Baseline 
scenarios with Early and Late Lockdown 
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Figure I5. Comparison of G&A bed utilization between Optimized Schedule and Standard Policy scenarios for 
Baseline, Best-Case and Worst-Case scenarios 

 
 
 
 


