Mean-Field Games

Lectures at the Imperial College London

1st Lecture: Forward-backward SDEs

François Delarue (Nice - J.-A. Dieudonné)

May 52015

Joint works with R. Carmona; J.F. Chassagneux and D. Crisan; P.
Cardaliaguet

Part I. Motivation

Part I. Motivation

a. General philosophy

Basic purpose

- Interacting particles/players
- controlled
particles
players
financial agents
neurons
- particles have
dynamical non-static
in mean-field interaction
states $\leadsto \leadsto$ stochastic differential interaction of symmetric type interaction with the whole population no privileged interaction with some particles
- Associate cost functional with each player
- find equilibria w.r.t. cost functionals
- shape of the equilibria for a large population?

Different notions of equilibria

- Players may decide of the strategy on their own
- no way that the particles minimize their own costs simultaneously
- find a consensus inside the population?
- no interest for a particle to leave the consensus
- notion of Nash equilibrium in a game
- Center of decision may decide of the strategies for all the players
- "Chief says what the companies will do"
- minimize the global cost to the collectivity
- different notion of equilibrium \leadsto seek a minimizer
- Both cases \sim asymptotic equilibria?

Asymptotic formulation

- Paradigm

$$
\circ \text { mean-field/symmetry } \leadsto \rightarrow \begin{aligned}
& \text { law of large numbers } \\
& \text { propagation of chaos }
\end{aligned}
$$

- reduce the asymptotic analysis to one typical player with interaction with a theoretical distribution of the population?
- description of asymptotic equilibria in terms of

> player's private state
> theoretical distribution of the population

- decrease the complexity to solve asymptotic formulation first
- Program
- Existence of asymptotic equilibria? Uniqueness? Shape?
- Use asymptotic equilibria as quasi-equilibria in finite-player-systems
- Prove convergence of equilibria in finite-player-systems

Different kinds of asymptotic formulation

- Asymptotic formulation of Nash equilibria
- Mean-field games theory!

Lasry-Lions (2006)
Huang-Caines-Malhamé (2006)
Cardaliaguet, Achdou, Gomes, Porreta (PDE)
Bensoussan, Carmona, D., Kolokoltsov, Lacker, Yam (Probability)

- PDE or probabilistic analysis \leadsto both meet with the concept of master equation (last lecture)
- Central center of decision
- optimal control of McKean-Vlasov stochastic differential equations
- PDE point of view $\rightsquigarrow \rightarrow$ HJB equations in infinite dimension

Part I．Motivation

b．An introductory example

Purpose of the modeling

- Model for inter-bank borrowing and lending
- model introduced by Fouque and Ichiba (2013), Carmona, Fouque and Sun (2014)
- N banks $i=1, \ldots, N$ and a central bank
- Interaction between banks

$$
\text { - bank } i \text { may } \begin{aligned}
& \text { lend to } \\
& \text { borrow from }
\end{aligned} \text { bank } j
$$

- Control
- banks control $\begin{aligned} & \text { lending to } \\ & \text { borrowing from }\end{aligned}$ central bank
- Cost for lending borrowing fixed by the regulator
- Nash equilibria?
- N large?

Mean-field interaction between the banks

- (Log)-monetary reserve of bank $i \leadsto X_{t}^{i}$

\circ rate a of $\begin{aligned} & \text { borrowing } \\ & \text { lending }\end{aligned} \leadsto a\left(X_{t}^{j}-X_{t}^{i}\right) \leadsto(a / N)\left(X_{t}^{j}-X_{t}^{i}\right)$

$$
d X_{t}^{i}=a(\underbrace{\frac{1}{N} \sum_{j=1}^{N} X_{t}^{j}}_{\bar{X}_{t}^{N}}-X_{t}^{i}) d t+\ldots
$$

○ $\frac{d X_{t}^{i}}{d t} \leadsto$ instantaneous rate of lending/borrowing

- $\bar{X}_{N}=$ empirical mean
- mean-field interaction with reverting to the empirical mean
- \bar{X}_{t}^{N} mean state of the population (may be used for systemic risk)

Controlled stochastic dynamics

- Controlled rate of
borrowing from lending to

$$
d X_{t}^{i}=a\left(\bar{X}_{t}^{N}-X_{t}^{i}\right) d t+\alpha_{t}^{i} d t+\ldots
$$

$\begin{array}{ll}\circ \alpha_{t}^{i} & \text { negative } \sim \text { lending } \\ & \text { positive } \sim \text { borrowing }\end{array}$

- Noisy perturbations

$$
\begin{aligned}
& \quad d X_{t}^{i}=a\left(\bar{X}_{t}^{N}-X_{t}^{i}\right) d t+\alpha_{t}^{i} d t+\sigma d \tilde{W}_{t}^{i} \\
& \circ \tilde{W}_{t}^{i}=\rho \underbrace{W_{t}^{i}}_{\text {independent }}+\sqrt{1-\rho^{2}} \underbrace{W_{t}^{0}}_{\text {common }}
\end{aligned}
$$

$\circ\left(\left(W_{t}^{0}\right)_{t},\left(W_{t}^{1}\right)_{t}, \ldots,\left(W_{t}^{N}\right)_{t}\right):$ indep. Brownian motions \leadsto symmetric structure (original paper \leadsto role of W^{0} in systemic risk)

Cost functional

- Cost functional \Rightarrow penalize high borrowing/lending activities

$$
J^{i}\left(\alpha^{1}, \ldots, \alpha^{N}\right)=\mathbb{E}[g\left(X_{T}^{i}-\bar{X}_{T}^{N}\right)+\int_{0}^{T} f(\underbrace{X_{t}^{i}-\bar{X}_{t}^{N}}_{\text {global rate }}, \alpha_{t}^{i}) d t]
$$

- depends on all the controls through \bar{X}_{t}^{N}
- penalize high borrowing from/lending to central bank
- incite borrowing/lending \Rightarrow easier to borrow from central bank if low reserve
- Linear-quadratic functionals

$$
\begin{aligned}
& f(x, m, \alpha)=\alpha^{2}+\epsilon^{2}(m-x)^{2}-2 q \epsilon \alpha(m-x) \\
& g(x, m)=c^{2}(x-m)^{2}
\end{aligned}
$$

- $\bar{X}_{t}^{N}>X_{t}^{i} \Rightarrow$ lower cost if $\alpha_{t}>0$
- $q \in(0,1) \leadsto$ fixed by the regulator

Ansatz for the asymptotic Nash equilibrium

- Simplify \sim no common noise W^{0}
- law of large numbers $\Rightarrow \bar{X}_{t}^{N}$ stabilizes around some deterministic m_{t}
- m_{t} should stand for the theoretical mean of any bank at the equilibrium
- Focus on one bank only with dynamics

$$
d X_{t}=a\left(m_{t}-X_{t}\right) d t+\alpha_{t} d t+\sigma d W_{t}
$$

- the bank does not see the others anymore \leadsto cost functional

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, m_{T}\right)+\int_{0}^{T} f\left(X_{t}, m_{t}, \alpha_{t}\right) d t\right]
$$

- minimize!
- consensus means that optimal path has m_{t} as mean at time t

Case of a common noise

- If common noise W^{0}
- law of large numbers becomes conditional law of large numbers

$$
\begin{aligned}
& \left.U^{0}, U^{1}, \ldots, U^{N}, \ldots \text { i.i.d. r.v.'s (with values in } \mathbb{R}\right) \\
& \phi: \mathbb{R} \rightarrow \mathbb{R} \text { bounded Borel measurable function } \\
& \Rightarrow \mathbb{P}\left(\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \phi\left(U^{i}, U^{0}\right)=\mathbb{E}\left[\phi\left(U^{1}, U^{0}\right) \mid U^{0}\right]\right)=1
\end{aligned}
$$

- m_{t} should stand for the conditional mean of any bank at the equilibrium given the realization of W^{0}
- Focus on one bank only with dynamics

$$
d X_{t}=a\left(m_{t}-X_{t}\right) d t+\alpha_{t} d t+\sigma \sqrt{1-\rho^{2}} d W_{t}+\sigma \rho d W_{t}^{0}
$$

- consensus means that optimal path has m_{t} as conditional mean at time t

Part I. Motivation

c. Toolbox for the solution

Program

- Solve standard optimization problem (1st Lecture)
- parameterized by some input (state of the population at equilibrium)
- consider the case when the input may be random (think of the case when $\rho \neq 0$ in the previous example)
- need for a nice characterization of the optimal state in terms of the input
may use PDE arguments (HJB equation) may use probabilistic arguments (FBSDEs)
- finite horizon only!
- Solve a fixed point condition (2nd and 3rd Lectures)
- in order to characterize the asymptotic equilibrium
- fixed point condition of the McKean-Vlasov type \leadsto need to revisit the theory of McKean-Vlasov SDEs (2nd Lecture)

Part II. Stochastic optimal control \& FBSDEs

Part II. Stochastic optimal control \& FBSDEs

a. Stochastic optimal control problem

Basic controlled dynamics

- Controlled stochastic dynamics

$$
\begin{gathered}
d X_{t}=b\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t+\sigma\left(X_{t}, \mu_{t}, \alpha_{t}\right) d W_{t}, \quad t \in[0, T] \\
\left(W_{t}\right)_{0 \leq t \leq T} \text { B.M. with values in } \mathbb{R}^{d} \text { on }\left(\Omega, \mathbb{F}=\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)
\end{gathered}
$$

- may consider time dependent coefficients
$\circ X_{t} \leadsto$ state in \mathbb{R}^{d} of the $\begin{aligned} & \text { particle } \\ & \text { agent }\end{aligned}$ at time t
- $\left(\mu_{t}\right)_{0 \leq t \leq T}$ denotes some environment (think of it as a the mean of a probability distribution or as the probability distribution itself)
may take value in a general Polish space \mathcal{X}
example: $\mathcal{X}=$ space of probability measures on \mathbb{R}^{d} (see Lecture 2)
$\circ\left(\alpha_{t}\right)_{0 \leq t \leq T}$ denotes control process
with values in $A \subset \mathbb{R}^{k}$, closed and convex and \mathbb{F}-progressively measurable

$\underline{\text { Basic controlled dynamics }}$

- Controlled stochastic dynamics

$$
d X_{t}=b\left(X_{t}, t, \alpha_{t}\right) d t+\sigma\left(X_{t}, t, \alpha_{t}\right) d W_{t}, \quad t \in[0, T]
$$

$$
\left(W_{t}\right)_{0 \leq t \leq T} \text { B.M. with values in } \mathbb{R}^{d} \text { on }\left(\Omega, \mathbb{F}=\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)
$$

- may consider time dependent coefficients
$\circ X_{t} \leadsto$ state in \mathbb{R}^{d} of the $\begin{aligned} & \text { particle } \\ & \text { agent }\end{aligned}$ at time t
may take value in a general Polish space \mathcal{X}
example: $\mathcal{X}=$ space of probability measures on \mathbb{R}^{d} (see Lecture 2)
$\circ\left(\alpha_{t}\right)_{0 \leq t \leq T}$ denotes control process
with values in $A \subset \mathbb{R}^{k}$, closed and convex
and \mathbb{F}-progressively measurable

Controlled dynamics in a random environment

- Allow $\left(\mu_{t}\right)_{0 \leq t \leq T}$ to be random
- Think of the case $\rho \neq 0$ in the introductory example
- Controlled stochastic dynamics

$$
d X_{t}=b\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t+\sigma\left(X_{t}, \mu_{t}, \alpha_{t}\right) d W_{t}+\sigma^{0}\left(X_{t}, \mu_{t}, \alpha_{t}\right) d W_{t}^{0}
$$

$\left(W_{t}\right)_{0 \leq t \leq T}$ B.M. with values in \mathbb{R}^{d} on $\left(\Omega^{1}, \mathbb{F}^{1}=\left(\mathcal{F}_{t}^{1}\right)_{0 \leq t \leq T}, \mathbb{P}^{1}\right)$
$\left(W_{t}^{0}\right)_{0 \leq t \leq T}$ B.M. with values in \mathbb{R}^{d} on $\left(\Omega^{0}, \mathbb{F}^{0}=\left(\mathcal{F}_{t}^{0}\right)_{0 \leq t \leq T}, \mathbb{P}^{0}\right)$

- Equation set on $(\Omega, \mathbb{F}, \mathbb{P})=\left(\Omega^{0} \times \Omega^{1}, \mathbb{F}^{0} \otimes \mathbb{F}^{1}, \mathbb{P}^{0} \otimes \mathbb{P}^{1}\right)$
- $\left(X_{t}\right)_{0 \leq t \leq T}$ defined on Ω
- $\left(\alpha_{t}\right)_{0 \leq t \leq T}$ defined on Ω
- $\left(\mu_{t}\right)_{0 \leq t \leq T}$ defined on Ω^{0}

Typical set of assumptions

- Coefficients
- $\left(\sigma, \sigma^{0}\right)(x, \mu, \alpha)=\left(\sigma, \sigma^{0}\right)(x, \mu) \leadsto$ uncontrolled volatility
- growth

$$
\begin{aligned}
& |b(x, \mu, \alpha)|+|\sigma(x, \mu, \alpha)|+\left|\sigma^{0}(x, \mu, \alpha)\right| \\
& \quad \leq C\left(1+|x|+d_{\mathcal{X}}\left(0_{\mathcal{X}}, \mu\right)+|\alpha|\right)
\end{aligned}
$$

where d_{X} distance on \mathcal{X} and 0_{X} some element in \mathcal{X}
$\circ b, \sigma$ and σ^{0} Lipschitz in all the variables (too strong for the first lecture but useful for the sequel)

- Assumptions on the processes
- control processes satisfy $\mathbb{E} \int_{0}^{T}\left|\alpha_{t}\right|^{2} d t<\infty$
- inputs (if random) satisfy $\mathbb{E}\left[\sup _{0 \leq t \leq T}\left(d_{X}\left(0_{X}, \mu_{t}\right)\right)^{2}\right]<\infty$

Typical set of assumptions

- Coefficients
- $\left(\sigma, \sigma^{0}\right)(x,, \alpha)=\left(\sigma, \sigma^{0}\right)(x,) \sim$ uncontrolled volatility
- growth

$$
\begin{gathered}
|b(x, t, \alpha)|+|\sigma(x, t, \alpha)|+\left|\sigma^{0}(x, t, \alpha)\right| \\
\leq C(1+|x| \quad+|\alpha|)
\end{gathered}
$$

$\circ b, \sigma$ and σ^{0} Lipschitz in all the variables

- Assumptions on the processes
- control processes satisfy $\mathbb{E} \int_{0}^{T}\left|\alpha_{t}\right|^{2} d t<\infty$

Cost functional

- Environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$ is fixed throughout the analysis
- fix as well initial condition $\xi \in L^{2}\left(\Omega, \mathcal{F}_{0}, \mathbb{P} ; \mathbb{R}^{d}\right)$
- Given an admissible control $\boldsymbol{\alpha}=\left(\alpha_{t}\right)_{0 \leq t \leq T}$
- Unique solution $\left(X_{t}^{\alpha}\right)_{0 \leq t \leq T}$ with $X_{0}^{\alpha}=\xi$
- Cost functional of the type

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T} f\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t\right]
$$

$\circ f \leadsto$ running cost, $g \leadsto$ terminal cost

- assume f and g continuous and at most of quadratic growth

$$
|f(x, \mu, \alpha)|+|g(x, \mu)| \leq C\left(1+|x|+d_{X}\left(0_{\mathcal{X}}, \mu\right)+|\alpha|\right)^{2}
$$

- Goal is to minimize $J(\alpha)$!

Cost functional

- fix as well initial condition $\xi \in L^{2}\left(\Omega, \mathcal{F}_{0}, \mathbb{P} ; \mathbb{R}^{d}\right)$
- Given an admissible control $\boldsymbol{\alpha}=\left(\alpha_{t}\right)_{0 \leq t \leq T}$
- Unique solution $\left(X_{t}^{\alpha}\right)_{0 \leq t \leq T}$ with $X_{0}^{\alpha}=\xi$
- Cost functional of the type

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, T\right)+\int_{0}^{T} f\left(X_{t}, t, \alpha_{t}\right) d t\right]
$$

$\circ f \leadsto$ running cost, $g \leadsto$ terminal cost

- assume f and g continuous and at most of quadratic growth

$$
|f(x, t, \alpha)|+|g(x, T)| \leq C(1+|x| \quad+|\alpha|)^{2}
$$

- Goal is to minimize $J(\alpha)$!

Part II. Stochastic optimal control \& FBSDEs

b. Interpretation of the value function

Backward representation of the cost functional

- Simplified assumption
- Assume coefficients and σ^{-1} bounded in (x, μ) and A bounded
- Case when \mathbb{F} is generated by $\left(W_{t}, W_{t}^{0}\right)_{0 \leq t \leq T}$ and ξ, μ_{0} deterministic
- Dynamical version of the cost \leadsto backward representation of the remaining cost functional
- for a given $\boldsymbol{\alpha}=\left(\alpha_{t}\right)_{0 \leq t \leq T}$

$$
Y_{t}^{\alpha}=\mathbb{E}\left[g\left(X_{T}^{\alpha}, \mu_{T}\right)+\int_{t}^{T} f\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}\right) d s \mid \mathcal{F}_{t}\right]
$$

- martingale representation of $g\left(X_{T}^{\alpha}, \mu_{T}\right)+\int_{0}^{T} f\left(X_{s}^{\alpha}, \alpha_{s}, \mu_{s}\right) d s$

$$
\begin{aligned}
Y_{t}^{\alpha} & =g\left(X_{T}^{\alpha}, \mu_{T}\right) \\
& +\int_{t}^{T} f\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}\right) d s-\int_{t}^{T} Z_{s}^{\alpha} d W_{s}-\int_{t}^{T} Z_{s}^{0, \alpha} d W_{s}^{0}
\end{aligned}
$$

- where $\mathbb{E}\left[\int_{0}^{T}\left(\left|Z_{s}^{\alpha}\right|^{2}+\left|Z_{s}^{0, \alpha}\right|^{2}\right) d s\right]<\infty$
(Z as a row vector)

A first backward SDE

- Consider another $\boldsymbol{\alpha}^{\star}$ (candidate for optimality)
- mimic equation of Y^{α} but turn it into a backward SDE

$$
\begin{aligned}
Y_{t}^{\alpha^{\star}} & =g\left(X_{T}^{\alpha}, \mu_{T}\right)+\int_{t}^{T} f\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}^{\star}\right) d s \\
& +\int_{t}^{T} Z_{s}^{\alpha^{\star}} \sigma^{-1}\left(X_{s}^{\alpha}, \mu_{s}\right)(\underbrace{b\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}^{\star}\right)-b\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}\right)}_{\text {kind of default }}) d s \\
& -\int_{t}^{T} Z_{s}^{\alpha^{\star}} d W_{s}-\int_{t}^{T} Z_{s}^{0, \alpha^{\star}} d W_{s}^{0}
\end{aligned}
$$

- coefficient is Lipschitz continuous in $Z^{\alpha^{\star}} \leadsto$ extension of the martingale representation theorem \leadsto existence and uniqueness of a solution (Pardoux and Peng, 1990)
$\circ\left(Z_{t}^{\alpha^{\star}}\right)_{0 \leq t \leq T}$ and $\left(Z_{t}^{0, \alpha^{\star}}\right)_{0 \leq t \leq T} \mathbb{F}$-progressively measurable with

$$
\mathbb{E}\left[\int_{0}^{T}\left(\left|Z_{s}^{\alpha^{\star}}\right|^{2}+\left|Z_{s}^{0, \alpha^{\star}}\right|^{2}\right) d s\right]<\infty
$$

Change of probability measure

- Make use of Girsanov theorem

$$
\begin{aligned}
\frac{d \mathbb{P}^{\star}}{d \mathbb{P}^{P}}= & \exp \left(\int_{0}^{T}\left(b\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}^{\star}\right)-b\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}\right)\right) d W_{s}\right. \\
& \left.-\frac{1}{2} \int_{0}^{T}\left|b\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}^{\star}\right)-b\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}\right)\right|^{2} d s\right)
\end{aligned}
$$

- Let $W_{t}^{\star}=W_{t}-\int_{0}^{t}\left(b\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}^{\star}\right)-b\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}\right)\right) d s$
- Under $\mathbb{P}^{\star},\left(W_{t}^{\star}, W_{t}^{0}\right)_{0 \leq t \leq T} 2 d$-dimensional B.M. w.r.t \mathbb{F}
- Connection with $\left(X_{t}^{\alpha^{\star}}\right)_{0 \leq t \leq T}$

$$
d X_{t}^{\alpha}=b\left(X_{t}^{\alpha}, \mu_{t}, \alpha_{t}^{\star}\right) d t+\sigma\left(X_{t}^{\alpha}, \mu_{t}\right) d W_{t}^{\star}+\sigma^{0}\left(X_{t}^{\alpha}, \mu_{t}\right) d W_{t}^{0}
$$

and $Y_{0}^{\alpha^{\star}}=\mathbb{E}^{\star}\left[g\left(X_{T}^{\alpha}, \mu_{T}\right)+\int_{0}^{T} f\left(X_{t}^{\alpha}, \mu_{t}, \alpha_{t}^{\star}\right) d t\right]$

- reminiscent of $\left(X_{t}^{\alpha^{\star}}\right)_{0 \leq t \leq T}$ under \mathbb{P} and $J\left(\boldsymbol{\alpha}^{\star}\right)(\operatorname{good}$ point as aim at comparing with $J(\boldsymbol{\alpha}))$

Hamilltonian

- Compute

$$
\begin{aligned}
Y_{0}^{\alpha^{\star}}-Y_{0}^{\alpha}=\mathbb{E}[& \int_{0}^{T} \\
& \left(H\left(X_{t}^{\alpha}, \mu_{t}, \alpha_{t}^{\star}, Z_{t}^{\alpha} \sigma^{-1}\left(X_{t}^{\alpha}, \mu_{t}\right)\right)\right. \\
& \left.\left.-H\left(X_{t}^{\alpha}, \mu_{t}, \alpha_{t}, Z_{t}^{\alpha} \sigma^{-1}\left(X_{t}^{\alpha}, \mu_{t}\right)\right)\right) d t\right]
\end{aligned}
$$

- $H(x, \mu, \alpha, z)=f(x, \mu, \alpha)+z \cdot b(x, \mu, \alpha)$ called Hamiltonian
- If

$$
\begin{aligned}
& H\left(X_{t}^{\alpha}, \mu_{t}, \alpha_{t}^{\star}, Z_{t}^{\alpha} \sigma^{-1}\left(X_{t}^{\alpha}, \mu_{t}\right)\right) \leq H\left(X_{t}^{\alpha}, \mu_{t}, \alpha_{t}, Z_{t}^{\alpha} \sigma^{-1}\left(X_{t}^{\alpha}, \mu_{t}\right)\right) \\
& \text { o then } Y_{0}^{\alpha^{\star}}-Y_{0}^{\alpha} \leq 0
\end{aligned}
$$

- Recall $Y_{0}^{\alpha^{\star}} \leadsto \rightarrow J\left(\alpha^{\star}\right)$ (to be specified next) then optimality condition should read as

$$
\begin{aligned}
\alpha_{t}^{\star} & =\operatorname{argmin}_{\alpha \in A} H\left(X_{t}^{\alpha}, \mu_{t}, \alpha, Z_{t}^{\alpha} \sigma^{-1}\left(X_{t}^{\alpha}, \mu_{t}\right)\right) \\
& =\alpha^{\star}\left(X_{t}^{\alpha}, \mu_{t}, Z_{t}^{\alpha} \sigma^{-1}\left(X_{t}^{\alpha}, \mu_{t}\right)\right)
\end{aligned}
$$

\circ if $\alpha^{\star}(x, \mu, z)=\operatorname{argmin}_{\alpha \in A} H(x, \mu, \alpha, z)$ uniquely defined

FBSDE for the optimal state

- Dynamics of $\left(X_{t}^{\alpha}\right)_{0 \leq t \leq T}$ under \mathbb{P}^{\star}

$$
\begin{aligned}
d X_{t}^{\alpha}= & b\left(X_{t}^{\alpha}, \mu_{t}, \alpha^{\star}\left(X_{t}^{\alpha}, \mu_{t}, Z_{t}^{\alpha^{\star}} \sigma^{-1}\left(X_{t}^{\alpha}, \mu_{t}\right)\right)\right) d t \\
& +\sigma\left(X_{t}^{\alpha}, \mu_{t}\right) d W_{t}^{\star}+\sigma^{0}\left(X_{t}^{\alpha}, \mu_{t}\right) d W_{t}^{0}
\end{aligned}
$$

- coupled with the backward equation for $\left(Y_{t}^{\alpha^{\star}}\right)_{0 \leq t \leq T}$

$$
\begin{aligned}
Y_{t}^{\alpha^{\star}}= & g\left(X_{T}^{\alpha}, \mu_{T}\right)+\int_{t}^{T} f\left(X_{s}^{\alpha}, \mu_{s}, \alpha^{\star}\left(X_{s}^{\alpha}, \mu_{s}, Z_{s}^{\alpha^{\star}} \sigma^{-1}\left(X_{s}^{\alpha}, \mu_{s}\right)\right)\right) d s \\
& -\int_{t}^{T} Z_{s}^{\alpha^{\star}} d W_{s}^{\star}-\int_{t}^{T} Z_{s}^{0, \alpha^{\star}} d W_{s}^{0}
\end{aligned}
$$

- Reformulate the equation under $\left(\mathbb{P},\left(W_{t}, W_{t}^{0}\right)_{0 \leq t \leq T}\right)$ instead of $\left(\mathbb{P}^{\star},\left(W_{t}^{\star}, W_{t}^{0}\right)_{0 \leq t \leq T}\right)$
- Claim: the forward process should be the optimal state

Statement

- Assume that, on $(\Omega, \mathbb{F}, \mathbb{P})$, the FBSDE

$$
\begin{aligned}
X_{t}^{\star}= & \xi+\int_{0}^{t} \phi\left(Z_{s}^{\star}\right) b\left(X_{s}^{\star}, \mu_{s}, \alpha^{\star}\left(X_{s}^{\star}, \mu_{s}, Z_{s}^{\star} \sigma^{-1}\left(X_{t}^{\alpha}, \mu_{t}\right)\right)\right) d s \\
& +\int_{0}^{t} \sigma\left(X_{s}^{\star}, \mu_{s}\right) d W_{s}+\sigma^{0}\left(X_{s}^{\star}, \mu_{s}\right) d W_{s}^{0} \\
Y_{t}^{\star}= & g\left(X_{T}^{\star}, \mu_{T}\right)+\int_{t}^{T} f\left(X_{s}^{\star}, \mu_{s}, \alpha^{\star}\left(X_{s}^{\star}, \mu_{s}, Z_{s}^{\star} \sigma^{-1}\left(X_{s}^{\star}, \mu_{s}\right)\right)\right) d s \\
& -\int_{t}^{T} Z_{s}^{\star} d W_{s}-\int_{t}^{T} Z_{s}^{0, \star} d W_{s}^{0}
\end{aligned}
$$

has a unique solution for any cut-off function ϕ with

- Z^{\star} bounded by some C (indep. of ϕ)
$\circ \alpha^{\star}(x, \mu, z)$ is the unique minimizer of $\alpha \mapsto H(x, \mu, \alpha, z)$
- Then $\left(X_{t}^{\star}\right)_{0 \leq t \leq T}$ is the unique optimal path when $\phi(z)=z$ for $|z| \leq C$

Sketch of proof

- Given an admissible $\alpha=\left(\alpha_{t}\right)_{0 \leq t \leq T}$, solve

$$
\begin{aligned}
Y_{t}^{\alpha^{\star}} & =g\left(X_{T}^{\alpha}, \mu_{T}\right)+\int_{t}^{T} f\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}\right) d s \\
& +\int_{t}^{T} \phi\left(Z_{s}^{\alpha^{\star}}\right) Z_{s}^{\alpha^{\star}} \sigma^{-1}\left(X_{s}^{\alpha}, \mu_{s}\right)\left(b\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}^{\star}\right)-b\left(X_{s}^{\alpha}, \mu_{s}, \alpha_{s}\right)\right) d s \\
& -\int_{t}^{T} Z_{s}^{\alpha^{\star}} d W_{s}-\int_{t}^{T} Z_{s}^{0, \alpha^{\star}} d W_{s}^{0}
\end{aligned}
$$

- with $\alpha_{s}^{\star}=\alpha^{\star}\left(X_{s}^{\alpha}, \mu_{s}, Z_{s}^{\alpha^{\star}} \sigma^{-1}\left(X_{s}^{\alpha}, \mu_{s}\right)\right)$
- Under $\left(\mathbb{P}^{\star},\left(W_{t}^{\star}, W_{t}^{0}\right)_{0 \leq t \leq T}\right)$, get a solution to the FBSDE
- Generalization of Yamada-Watanabe \leadsto weak uniqueness

$$
\mathbb{P}^{\star} \circ\left(X_{t}^{\alpha}, Y_{t}^{\alpha^{\star}}, Z_{t}^{\alpha^{\star}}\right)_{0 \leq t \leq T}^{-1}=\mathbb{P} \circ\left(X_{t}^{\star}, Y_{t}^{\star}, Z_{t}^{\star}\right)_{0 \leq t \leq T}^{-1}
$$

$$
\circ J\left(\left(\alpha^{\star}\left(X_{t}^{\star}, \mu_{t}, Z_{t}^{\star} \sigma^{-1}\left(X_{t}^{\star}, \mu_{t}\right)\right)_{0 \leq t \leq T}\right)=Y_{0}^{\alpha^{\star}} \leq Y_{0}^{\alpha}=J(\boldsymbol{\alpha})(\text { strict })\right.
$$

Extension and complements

- Extension on the same model to the case when A is not bounded
- Need to localize over the control or use quadratic BSDE
- Extension to the case when \mathbb{F} is larger than the filtration generated by $\left(\xi, \mu_{0},\left(W_{t}, W_{t}^{0}\right)_{0 \leq t \leq T}\right)$
- loose martingale representation theorem

$$
\int_{t}^{T} Z_{s} d W_{s}+\int_{t}^{T} Z_{s}^{0} d W_{s}^{0} \leadsto \int_{t}^{T} Z_{s} d W_{s}+M_{T}-M_{t}
$$

- $\left(M_{t}\right)_{0 \leq t \leq T}$ is a square-integrable martingale orthogonal to $\sigma\left(\left(W_{t}\right)_{0 \leq t \leq T}\right)$
- Scope of application $\leadsto \sigma$ invertible and H strictly convex in α
$\circ f$ strictly convex in α and b linear in α
- Connection with HJB equation when no common noise $\leadsto \rightarrow$ next section

Part II. Stochastic optimal control \& FBSDEs

c. Stochastic Pontryagin principle

Perturbation in deterministic control

- First order optimality condition when no noise ($\sigma \equiv \sigma^{0} \equiv 0$)
- find $\left(\alpha_{t}^{\star}\right)_{0 \leq t \leq T}$ such that

$$
\frac{d J^{\varepsilon}}{d \varepsilon} \geq 0 \quad \text { with } J^{\varepsilon}=J\left(\left(\alpha_{t}^{\star}+\varepsilon\left(\beta_{t}-\alpha_{t}^{\star}\right)\right)\right)
$$

$\circ\left(\beta_{t}\right)_{0 \leq t \leq T}$ is another A valued control

- Let (formally) $x_{t}^{\star}=X_{t}^{\alpha^{\star}}, \partial x_{t}^{\star}=\frac{d}{d \varepsilon} X_{t}^{\alpha^{\star}+\varepsilon\left(\beta-\alpha^{\star}\right)}$ and $d=k=1$

$$
\begin{aligned}
\left.\frac{d J^{\varepsilon}}{d \varepsilon}\right|_{\varepsilon=0}= & \partial_{x} g\left(x_{T}^{\star}, \mu_{T}\right) \partial_{x} x_{T}^{\star} \\
& +\int_{0}^{T}\left(\partial_{x} f\left(x_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}\right) \partial_{x} x_{t}^{\star}+\partial_{\alpha} f\left(x_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}\right)\left(\beta_{t}-\alpha_{t}^{\star}\right)\right) d t
\end{aligned}
$$

\circ with $\partial_{x} x_{t}^{\star}=\left(\partial_{x} b\left(x_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}\right) \partial_{x} x_{t}^{\star}+\partial_{\alpha} b\left(x_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}\right)\left(\beta_{t}-\alpha_{t}^{\star}\right)\right) d t$

Deterministic Hamiltonian system

- C^{1} path $\left(y_{t}\right)_{0 \leq t \leq T}$ s.t. $y_{T}=\partial_{x} g\left(x_{T}^{\star}, \mu_{T}\right) \leadsto$ integration by parts

$$
\begin{aligned}
\left.\frac{d J^{\varepsilon}}{d \varepsilon}\right|_{\varepsilon=0}= & \int_{0}^{T}\left(\dot{y}_{t}+\partial_{x} f\left(x_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}\right)+y_{t} \partial_{x} b\left(x_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}\right)\right) \partial_{x} x_{t}^{\star} d t \\
& +\int_{0}^{T}\left(\partial_{\alpha} f\left(x_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}\right)+y_{t} \partial_{\alpha} b\left(x_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}\right)\right)\left(\beta_{t}-\alpha_{t}^{\star}\right) d t
\end{aligned}
$$

- recognize $\partial_{x} H\left(x_{t}, \mu_{t}, \alpha_{t}^{\star}, y_{t}\right)$ and $\partial_{\alpha} H\left(x_{t}, \mu_{t}, \alpha_{t}^{\star}, y_{t}\right)$
- Solve $y_{t}=\partial_{x} g\left(x_{T}^{\star}, \mu_{T}\right)+\int_{t}^{T} \partial_{x} H\left(x_{s}^{\star}, \mu_{s}, \alpha_{s}^{\star}, y_{s}\right) d s$

$$
\left.\frac{d J^{\varepsilon}}{d \varepsilon}\right|_{\varepsilon=0}=\int_{0}^{T} \partial_{\alpha} H\left(x_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}, y_{t}\right)\left(\beta_{t}-\alpha_{t}^{\star}\right) d t
$$

- $\left.\frac{d J^{\varepsilon}}{d \varepsilon}\right|_{\varepsilon=0} \geq 0$ for any $\left(\beta_{t}\right)_{0 \leq t \leq T}$ if and only if

$$
\begin{gathered}
\forall \beta \in A \quad \partial_{\alpha} H\left(x_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}, y_{t}\right)\left(\beta-\alpha_{t}^{\star}\right) \geq 0 \\
\quad \text { with } \dot{x}_{t}^{\star}=\partial_{y} H\left(x_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}, y_{t}\right)
\end{gathered}
$$

Stochastic version

- With $\left(\alpha_{t}^{\star}\right)_{0 \leq t \leq T}$ candidate for being the optimal control, associate $\left(Y_{t}^{\alpha^{\star}}\right)_{0 \leq t \leq T}$

$$
\begin{aligned}
Y_{t}^{\alpha^{\star}}= & \partial_{x} g\left(X_{T}^{\alpha^{\star}}, \mu_{T}\right)+\int_{t}^{T} \partial_{x} H\left(X_{t}^{\alpha^{\star}}, \mu_{t}, \alpha_{t}^{\star}, Y_{t}^{\alpha^{\star}}\right) d t \\
& -\int_{t}^{T} Z_{t}^{\alpha^{\star}} d W_{t}-\int_{t}^{T} Z_{t}^{0, \alpha^{\star}} d W_{t}^{0}
\end{aligned}
$$

\circ martingale component \leadsto the dual variable is adapted!

- backward equation in $\left(Y_{t}^{\alpha^{\star}}\right)_{0 \leq t \leq T} \leadsto$ existence and uniqueness if Lipschitz (quite natural)
- Require now $\alpha_{t}^{\star}=\alpha^{\star}\left(X_{t}^{\alpha^{\star}}, \mu_{t}, Y_{t}^{\alpha^{\star}}\right)$
$\circ \alpha^{\star}(x, \mu, y)$ is the unique minimizer of $\alpha \mapsto H(x, \mu, \alpha, y)$
- implicit condition \sim new FBSDE
\circ is the forward component an optimal path? Turn the first-order necessary condition into a sufficient condition \leadsto convexity

Statement

- Let σ and σ^{0} indep. of x and \mathbb{F} generated by $\left(\xi, \mu_{0},\left(W_{t}, W_{t}^{0}\right)_{0 \leq t \leq T}\right)$
- Assume that, on $(\Omega, \mathbb{F}, \mathbb{P})$, the FBSDE

$$
\begin{aligned}
X_{t}^{\star}= & \xi+\int_{0}^{t} b\left(X_{s}^{\star}, \mu_{s}, \alpha^{\star}\left(X_{s}^{\star}, \mu_{s}, Y_{s}^{\star}\right)\right) d s \\
& +\int_{0}^{t} \sigma\left(\mu_{s}\right) d W_{s}+\sigma^{0}\left(\mu_{s}\right) d W_{s}^{0} \\
Y_{t}^{\star}= & \partial_{x} g\left(X_{T}^{\star}, \mu_{T}\right)+\int_{t}^{T} \partial_{x} H\left(X_{s}^{\star}, \mu_{s}, \alpha^{\star}\left(X_{s}^{\star}, \mu_{s}, Y_{s}^{\star}\right)\right) d s \\
& -\int_{t}^{T} Z_{s} d W_{s}-\int_{t}^{T} Z_{s}^{0} d W_{s}^{0}
\end{aligned}
$$

has a solution with

- H convex in (x, α) and strictly in α and g convex in x $\circ \alpha^{\star}(x, \mu, z)$ is the unique minimizer of $\alpha \mapsto H(x, \mu, \alpha, z)$
- Then $\left(X_{t}^{\star}\right)_{0 \leq t \leq T}$ unique optimal path with $\alpha_{t}^{\star}=\alpha^{\star}\left(X_{t}^{\star}, \mu_{t}, Y_{t}^{\star}\right)$

Sketch of proof

- Consider an arbitrary control $\boldsymbol{\alpha}=\left(\alpha_{t}\right)_{0 \leq t \leq T}$
- write

$$
\begin{aligned}
J(\boldsymbol{\alpha})-J\left(\boldsymbol{\alpha}^{\star}\right)= & J(\boldsymbol{\alpha})-J\left(\boldsymbol{\alpha}^{\star}\right)-\mathbb{E}\left[\left(X_{T}^{\alpha}-X_{T}^{\star}\right) \cdot \partial_{x} g\left(X_{T}^{\star}, \mu_{T}\right)\right] \\
& +\mathbb{E}\left[\left(X_{T}^{\alpha}-X_{T}^{\star}\right) \cdot Y_{T}^{\star}\right]
\end{aligned}
$$

- Itô expansion of the last term

$$
\begin{aligned}
& J(\boldsymbol{\alpha})-J\left(\boldsymbol{\alpha}^{\star}\right) \\
& =\mathbb{E}\left[g\left(X_{T}^{\alpha}, \mu_{T}\right)-g\left(X_{T}^{\star}, \mu_{T}\right)-\left(X_{T}^{\star}-X_{T}^{\alpha}\right) \cdot \partial_{x} g\left(X_{T}^{\star}, \mu_{T}\right)\right. \\
& +\int_{0}^{T}\left[H\left(X_{t}^{\alpha}, \mu_{t}, \alpha_{t}, Y_{t}^{\star}\right)-H\left(X_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}\right)\right. \\
& \\
& \quad-\left(X_{t}^{\alpha}-X_{t}^{\star}\right) \cdot \partial_{x} H\left(X_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}\right)- \\
& \left.\left.\quad \leq\left(\alpha_{t}-\alpha_{t}^{\star}\right) \cdot \partial_{\alpha} H\left(X_{t}^{\star}, \mu_{t}, \alpha_{t}^{\star}\right)\right] d t\right] \geq 0
\end{aligned}
$$

Extension and complements

- Extension to the case when \mathbb{F} is larger than the filtration generated by $\left(\xi, \mu_{0},\left(W_{t}, W_{t}^{0}\right)_{0 \leq t \leq T}\right)$
- loose martingale representation theorem

$$
\int_{t}^{T} Z_{s} d W_{s}+\int_{t}^{T} Z_{s}^{0} d W_{s}^{0} \leadsto \int_{t}^{T} Z_{s} d W_{s}+M_{T}-M_{t}
$$

- $\left(M_{t}\right)_{0 \leq t \leq T}$ is a square-integrable martingale orthogonal to $\sigma\left(\left(W_{t}\right)_{0 \leq t \leq T}\right)$
- Scope of application \leadsto no need for σ invertible but indep. of x and H convex in (x, α)
- f convex in (x, α) and b linear in (x, α)
- Connection with HJB equation when no common noise $\leadsto \rightarrow$ next section

Part III. Analysis of FBSDEs

Part III. Analysis of FBSDEs

a. Small time analysis

General form of the FBSDE

- On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $\left(\xi, \mu_{0},\left(W_{t}, W_{t}^{0}\right)_{0 \leq t \leq T}\right)$

$$
\begin{aligned}
X_{t}= & \xi+\int_{0}^{t} b\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s \\
& +\int_{0}^{t} \sigma\left(X_{s}, \mu_{s}, Y_{s}\right) d W_{s}+\sigma^{0}\left(X_{s}, \mu_{s}, Y_{s}\right) d W_{s}^{0} \\
Y_{t}= & g\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} f\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s \\
& -\int_{t}^{T} Z_{s} d W_{s}-\int_{t}^{T} Z_{s}^{0} d W_{s}^{0}
\end{aligned}
$$

- no Z in σ and σ^{0} !
$\circ\left(X_{t}, Y_{t}, Z_{t}\right): \Omega \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{m} \times \mathbb{R}^{d \times m}$
- Call a $\left(X_{t}, Y_{t}, Z_{t}\right)_{0 \leq t \leq T}$ a solution if progressively-measurable and

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left(\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right)+\int_{0}^{T}\left|Z_{t}\right|^{2} d t\right]<\infty
$$

Cauchy-Lipschitz theory in small time

- Assume that the coefficients are at of most of linear growth

$$
\left|\left(b, f, \sigma, \sigma^{0}, g\right)(x, \mu, y, z)\right| \leq C\left(1+|x|+d_{\chi}(0 x, \mu)+|y|+|z|\right)
$$

- Assume that the coefficients are measurable in all the variables and L-Lipschitz continuous in (x, y, z) (uniformly in μ)
- There exists $c(L)$ such that unique solution for any initial condition provided that

$$
T \leq c(L)
$$

- Two-point-boundary problem \leadsto no way to expect better

$$
\begin{gathered}
\dot{x}_{t}=y_{t}, \quad \dot{y}_{t}=-x_{t}, \quad y_{T}=x_{T}, \quad T=\pi / 4 \\
\circ \ddot{x}_{t}=-x_{t}, \begin{array}{l}
x_{t}=A \cos (t)+B \sin (t) \\
y_{t}=-A \sin (t)+B \cos (t)
\end{array} \Rightarrow A=0 \Rightarrow x_{0}=0
\end{gathered}
$$

- no solution if $x_{0} \neq 0$ and ∞ many if $x_{0}=0$

Sketch of proof

- Construction a contraction mapping
- With $\left(X_{t}\right)_{0 \leq t \leq T}$ solve the backward equation
- With $\left(Y_{t}, Z_{t}\right)_{0 \leq t \leq T}$, solve the forward equation

$$
\begin{aligned}
X_{t}^{\prime}= & \xi+\int_{0}^{t} b\left(X_{s}^{\prime}, \mu_{s}, Y_{s}, Z_{s}\right) d s \\
& +\int_{0}^{t} \sigma\left(X_{s}^{\prime}, \mu_{s}, Y_{s}\right) d W_{s}+\sigma^{0}\left(X_{s}^{\prime}, \mu_{s}, Y_{s}\right) d W_{s}^{0}
\end{aligned}
$$

- Seek $\left(X_{t}\right)_{0 \leq t \leq T}$ such that $X \equiv X^{\prime}$
- Forward-backward constraints \Rightarrow no way to use Gronwall!
- Given $\left(X_{t}^{1}\right)_{0 \leq t \leq T}$ and $\left(X_{t}^{2}\right)_{0 \leq t \leq T}$, prove that for $T \leq 1$

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|X_{t}^{1 \prime}-X_{t}^{2 \prime}\right|^{2}\right] \leq c(L) T \mathbb{E}\left[\sup _{0 \leq t \leq T}\left|X_{t}^{1}-X_{t}^{2}\right|^{2}\right]
$$

- Denote solution by $\left(X_{t}^{\xi}, Y_{t}^{\xi}, Z_{t}^{\xi}\right)_{0 \leq t \leq T}$

Decoupling field

- Stability estimates for $T \leq c(L)$

$$
\mathbb{E}\left[\left|Y_{0}^{\xi}-Y_{0}^{\xi^{\prime}}\right|^{2} \mid \mathcal{F}_{0}\right] \leq C\left|\xi-\xi^{\prime}\right|^{2}
$$

- Let $u(0, x)=Y_{0}^{x}, x \in \mathbb{R}^{d}$
$\circ x \mapsto u(0, x)$ is a random field, \mathcal{F}_{0}^{0}-measurable (reduce the filtration $\left.u\left(0, x, \mu_{0}\right)\right)$, deterministic if no common noise
- Lipschitz continuous
- Choose $\xi^{\prime}=\sum_{i=1}^{N} 1_{A_{i}} x_{i}$, with $A_{i} \in \mathcal{F}_{0}$
$\circ Y_{0}^{\xi^{\prime}}=\sum_{i=1}^{N} 1_{A_{i}} Y_{0}^{x_{i}}=\sum_{i=1}^{N} 1_{A_{i}} u\left(0, x_{i}\right)=u\left(0, \xi^{\prime}\right)$
- approximation argument $\leadsto Y_{0}^{\xi}=u(0, \xi)$
- Extension to any time $t \in[0, T], u(t, x)=Y_{t}^{t, x}$ is \mathcal{F}_{t}^{0}-measurable
$\circ\left(X_{s}^{t, \xi}, Y_{s}^{t, \xi}, Z_{s}^{t, \xi}\right)_{t \leq s \leq T}$ solution with $X_{t}^{t, \xi}=\xi \in L^{2}\left(\Omega, \mathcal{F}_{t}, \mathbb{P} ; \mathbb{R}^{d}\right)$
- $Y_{t}^{t, \xi}=u(t, \xi)$

Connection with PDE

- Assume that no common noise $W^{0}\left(\sigma^{0}=0\right)$
- Write $Y_{t}^{0, \xi}=Y_{t}^{t, X_{t}^{0, \xi}}=u\left(t, X_{t}^{0, \xi}\right)$
- If u smooth enough \leadsto expand as a semi-martingale and compare with $d Y_{t}^{0, \xi}$
- compare $d W_{t}$ terms $\leadsto Z_{t}^{0, \xi}=\partial_{x} u\left(t, X_{t}^{0, \xi}\right) \sigma\left(x, \mu_{t}\right)$
- compare $d t$ terms \leadsto nonlinear PDE

$$
\begin{aligned}
& \partial_{t} u(t, x)+\frac{1}{2} \operatorname{trace}\left(\sigma \sigma^{\dagger}\left(x, \mu_{t}, u(t, x)\right) \partial_{x x}^{2} u\right) \\
& \quad+\partial_{x} u(t, x) b\left(x, \mu_{t}, u(t, x), \partial_{x} u(t, x) \sigma\left(x, \mu_{t}\right)\right) \\
& \quad+f\left(x, \mu_{t}, u(t, x), \partial_{x} u(t, x) \sigma\left(x, \mu_{t}\right)\right)=0
\end{aligned}
$$

- terminal boundary condition $u(T, x)=g\left(x, \mu_{T}\right)$
- If $\left(\mu_{t}\right)_{0 \leq t \leq T}$ random \sim backward SPDE!

Examples

- Revisit the FBSDEs of Section II when $\sigma^{0} \equiv 0$
- Interpretation of the value function
- PDE writes

$$
\begin{aligned}
& \partial_{t} u(t, x)+\frac{1}{2} \operatorname{trace}\left(\sigma \sigma^{\dagger}\left(x, \mu_{t}\right) \partial_{x x}^{2} u\right) \\
& \quad+\inf _{\alpha \in A}\left[\partial_{x} u(t, x) \cdot b\left(x, \mu_{t}, \alpha\right)+f\left(x, \mu_{t}, \alpha\right)\right]=0
\end{aligned}
$$

- HJB equation describing minimal cost when $X_{t}=x$
- optimal control $\alpha_{t}^{\star}=\alpha^{\star}\left(X_{t}^{\star}, \mu_{t}, \partial_{x} u\left(t, X_{t}^{\star}\right)\right)$ has Markov feedback form!
- Use of the Stochastic Pontryagin principle
- Same shape for the Markov feedback form \leadsto decoupling field must be $\partial_{x} u(t, x)$!
\circ PDE is the derivative of HJB

Part III. Analysis of FBSDEs

b. From small to long times

Principle for an iterative construction

- Let T arbitrary \leadsto construct the decoupling field close to T

- for $t \in[T-\delta, T] \leadsto$ unique solution with $X_{t}=\xi \leadsto$ define decoupling field on $[T-\delta, T]$
- Consider on $[0, T-\delta]$ new FBSDE with $u(T-\delta, \cdot)$ instead of $g\left(\cdot, \mu_{T}\right)$ as terminal condition (forget $\mu_{T-\delta}$)

- need to control the Lipschitz constant of u along the induction

Construction of a solution from the decoupling field

- Construction of the decoupling field by backward induction
- Construction of a solution by forward induction

- solve first on 1 with $X_{0}=\xi$ as initial condition and $u(t 1, \cdot)$ as terminal condition
- restart at $t 1$ with $X_{t 1}$ as new initial condition and $u(t 2, \cdot)$ as terminal condition ...
- Uniqueness by backward induction

Part III. Analysis of FBSDEs

c. Convex framework

Revisiting the Pontryagin principle

- Assume
- σ, σ^{0} constant
- $b(x, \mu, \alpha)=b_{0}(\mu)+b_{1} x+b_{2} \alpha$
- $\partial_{x} f, \partial_{\alpha} f, \partial_{x} g L$-Lipschitz in (x, α)

○ f convex in (x, α) with λ-convexity in α

$$
\begin{aligned}
& f\left(x^{\prime}, \alpha^{\prime}\right)-f(x, \alpha)-\left(x^{\prime}-x\right) \cdot \partial_{x} f(x, \alpha)-\left(\alpha^{\prime}-\alpha\right) \cdot \partial_{\alpha} f(x, \alpha) \\
& \quad \geq \lambda\left|\alpha^{\prime}-\alpha\right|^{2}
\end{aligned}
$$

- Unique minimizer $\alpha^{\star}(x, \mu, z)=\operatorname{argmin}_{\alpha \in A} H(x, \mu, z, \alpha)$
- implicit function theorem $\sim \alpha^{\star}$ is Lipschitz
- Existence and uniqueness hold in small time
- control of the decoupling field?

Using convexity

- Let $t \in[0, T]$ and $x, x^{\prime} \in \mathbb{R}^{d}$

$$
\begin{aligned}
& \mathbb{E}\left[g\left(X_{T}^{\star t, x^{\prime}}, \mu_{T}\right)+\int_{t}^{T} f\left(X_{s}^{\star, t, x^{\prime}}, \mu_{t}, \alpha_{t}^{\star, t, x^{\prime}}\right) d t \mid \mathscr{F}_{t}\right] \\
& \quad-\mathbb{E}\left[g\left(X_{T}^{\star, t, x}, \mu_{T}\right)+\int_{t}^{T} f\left(X_{s}^{\star t, x}, \mu_{t}, \alpha_{t}^{\star, t, x}\right) d t \mid \mathscr{F}_{t}\right] \\
& \geq\left(x^{\prime}-x\right) \cdot Y_{t}^{\star, t, x} \\
& +\mathbb{E}\left[g\left(X_{T}^{\star t, t x^{\prime}}, \mu_{T}\right)-g\left(X_{T}^{\star, t, x}, \mu_{T}\right)-\left(X_{T}^{\star, t, x^{\prime}}-X_{T}^{\star, t, x}\right) \cdot \partial_{x} g\left(X_{T}^{\star, t, x}, \mu_{T}\right)\right. \\
& +\int_{0}^{T}\left[H\left(X_{t}^{\star, t, x^{\prime}}, \mu_{t}, \alpha_{t}^{\star, t, x^{\prime}}, Y_{t}^{\star, t, x}\right)-H\left(X_{t}^{\star, t, x}, \mu_{t}, \alpha^{\star, t, x}, Y_{t}^{\star, t, x}\right)\right. \\
& \quad-\left(X_{t}^{\star t, x^{\prime}}-X_{t}^{\star, t, x}\right) \cdot \partial_{x} H\left(X_{t}^{\star, t, x}, \mu_{t}, \alpha_{t}^{\star, t, x}\right) \\
& \left.\left.\quad-\left(\alpha_{t}^{\star, t, x^{\prime}}-\alpha_{t}^{\star, t, x}\right) \cdot \partial_{\alpha} H\left(X_{t}^{\star, t, x}, \mu_{t}, \alpha_{t}^{\star t, x}\right)\right] d t \mid \mathscr{F}_{t}\right] \\
& \geq\left(x^{\prime}-x\right) \cdot Y_{t}^{\star, t, x}+\lambda \mathbb{E}\left[\int_{t}^{T}\left|\alpha_{s}^{\star, t, x^{\prime}}-\alpha_{s}^{\star, t, x^{\prime}}\right|^{2} d s \mid \mathscr{F}_{t}\right]
\end{aligned}
$$

Lipschitz estimate in the convex setting

- Exchange the roles of x and x^{\prime} and make the sum

$$
0 \geq\left(x^{\prime}-x\right) \cdot\left(Y_{t}^{\star, t, x}-Y_{t}^{\star, t, x^{\prime}}\right)+\lambda \mathbb{E}\left[\int_{t}^{T}\left|\alpha_{s}^{\star t, x^{\prime}}-\alpha_{s}^{\star, t, x^{\prime}}\right|^{2} d s \mid \mathcal{F}_{t}\right]
$$

- Stability of the forward equation

$$
\mathbb{E}\left[\sup _{t \leq s \leq T}\left|X_{s}^{\star t, t, x}-X_{s}^{\star t, t x^{\prime}}\right|^{2} \mid \mathscr{F}_{t}\right] \leq C \mathbb{E}\left[\int_{t}^{T}\left|\alpha_{s}^{\star, t, x^{\prime}}-\alpha_{s}^{\star t, x^{\prime}}\right|^{2} d s \mid \mathscr{F}_{t}\right]
$$

- Stability of the backward equation

$$
\begin{aligned}
\mathbb{E}\left[\sup _{t \leq s \leq T}\left|Y_{s}^{\star t, t, x}-Y_{s}^{\star t, t x^{\prime}}\right|^{2} \mid \mathcal{F}_{t}\right] & \leq C \mathbb{E}\left[\int_{t}^{T}\left|\alpha_{s}^{\star, t, x^{\prime}}-\alpha_{s}^{\star t, t, x^{\prime}}\right|^{2} d s \mid \mathcal{F}_{t}\right] \\
& \leq C\left(x^{\prime}-x\right) \cdot\left(Y_{t}^{\star, t, x^{\prime}}-Y_{t}^{\star t, t, x}\right)
\end{aligned}
$$

- Deduce $\left|u\left(t, x^{\prime}\right)-u(t, x)\right|^{2} \leq C\left(x^{\prime}-x\right) \cdot\left(u\left(t, x^{\prime}\right)-u(t, x)\right)$

Part III. Analysis of FBSDEs

d. Non-degenerate case

A simple case

- Assume (for simplicity)
- $\sigma=\mathrm{Id}, \sigma^{0}=0$ (no common noise)
- $b(x, \mu, \alpha)=\alpha$
- $f(x, \mu, \alpha)=f_{0}(x, \mu)+\frac{1}{2}|\alpha|^{2}$
- f_{0} and g bounded and Lipschitz
- Compute $\alpha^{\star}(x, \mu, z)=-\pi_{A}(z)(\perp$ projection onto $A)$
- consider a cut-off function ϕ

$$
\begin{aligned}
& d X_{s}^{\star, t, x}=-\phi\left(Z_{s}^{\star, t, x}\right) \pi_{A}\left(Z_{s}^{\star, t, x}\right) d s+d W_{s}+\sigma^{0}\left(X_{s}^{\star, t, x}, \mu_{s}\right) d W_{s}^{0} \\
& d Y_{s}^{\star, t, x}=-f_{0}\left(X_{s}^{\star, t, x}, \mu_{s}\right) d s-\frac{1}{2}\left|\pi_{A}\left(Z_{s}^{\star, t, x}\right)\right|^{2} d s+Z_{s}^{\star t, x} d W_{s} \\
& Y_{T}^{\star, t, x}=g\left(X_{T}^{\star, t, x}, \mu_{T}\right)
\end{aligned}
$$

- unique solution in small time

Change of probability

- Let

$$
\begin{aligned}
& \frac{d \mathbb{P}^{\star, t, x}}{d \mathbb{P}}=\exp \left(\int_{t}^{T}\left(\phi \pi_{A}\right)\left(Z_{s}^{\star, t, x}\right) d W_{s}-\frac{1}{2} \int_{t}^{T}\left|\left(\phi \pi_{A}\right)\left(Z_{s}^{\star, t, x}\right)\right|^{2} d s\right) \\
& \circ\left(W_{s}^{\star, t, x}=W_{s}-\int_{t}^{s}\left(\phi \pi_{A}\right)\left(Z_{r}^{\star, t, x}\right) d W_{r}\right)_{t \leq s \leq T} \text { B.M. under } \mathbb{P}^{\star, t, x}
\end{aligned}
$$

- Under $\mathbb{P}^{\star, t, x}$

$$
\begin{aligned}
d X_{s}^{\star t, t, x}= & d W_{s}^{\star, t, x} \\
d Y_{s}^{\star t, t, x}= & -f_{0}\left(X_{s}^{\star t, t, x}, \mu_{s}\right) d s+\left(\left(\phi \pi_{A}\right)\left(Z_{s}^{\star, t, x}\right) \cdot Z_{s}^{\star, t, x}-\frac{1}{2}\left|Z_{s}^{\star t, t, x}\right|^{2}\right) d s \\
& \quad \quad \quad Z_{s}^{\star t, x} d W_{s}^{\star, t, x} \\
Y_{T}^{\star, t, x}= & g\left(X_{T}^{\star t, x}, \mu_{T}\right)
\end{aligned}
$$

- same system but under $\mathbb{P} \leadsto\left(\tilde{X}_{s}^{\star, t, x}, \tilde{Y}_{s}^{\star t, x}, \tilde{Z}_{s}^{\star, t, x}\right)_{t \leq s \leq T}$
- same joint distribution $\leadsto \tilde{Y}_{t}^{\star, t, x}=u(t, x)($ PDE is the same $)$

Quadratic BSDE

- Consider $x, x^{\prime} \in \mathbb{R}^{d}$ and let

$$
\left(\delta \tilde{X}_{s}^{\star}, \delta \tilde{Y}_{s}^{\star}, \delta \tilde{Z}_{s}^{\star}\right)=\left(\tilde{X}_{s}^{\star, t, x^{\prime}}-\tilde{X}_{s}^{\star, t, x^{\prime}}, \tilde{Y}_{s}^{\star, t, x^{\prime}}-\tilde{Y}_{s}^{\star, t, x^{\prime}}, \tilde{Z}_{s}^{\star, t, x^{\prime}}-\tilde{Z}_{s}^{\star, t, x^{\prime}}\right)
$$

- Dynamics

$$
d\left(\delta \tilde{Y}_{s}^{\star}\right)=-\delta_{x} f_{s} \delta \tilde{X}_{s}^{\star} d s-\delta_{z} f_{s} \delta \tilde{Z}_{s}^{\star} d s+\delta \tilde{Z}_{s}^{\star} d W_{s}
$$

- $\left|\delta \tilde{X}_{s}^{\star}\right|^{2} \leq C\left|x-x^{\prime}\right|^{2}$
$\circ\left|\delta_{x} f_{s}\right| \leq C,\left|\delta_{z} f_{s}\right| \leq C\left(1+\left|Z_{s}^{\star, t, x}\right|+\left|Z_{s}^{\star t, t, x^{\prime}}\right|\right)$
- New Girsanov argument to remove $\delta \tilde{Z}^{\star}$
- get a bound on Lip. $x \mapsto u(t, x)$
\circ recall $Z_{s}^{\star t, x}=\partial_{x} u\left(s, X_{s}^{t, x}\right)$ to get a bound on $Z^{\star, t, x}$

Extension

- A may not be bounded
- presence of common noise
- b, f and g bounded in $(x, \mu), C$ Lipschitz in x
- Regularity in α
$\circ b$ linear in α and $f \begin{aligned} & \text { strictly convex } \\ & \text { at most quadratic growth }\end{aligned}$ in α
- f loc. Lip in α, with $\operatorname{Lip}(f)$ at most of linear growth in α
- then FBSDE characterizing optimizer is uniquely solvable (forget cut-off and focus on solutions with bounded Z^{\star})
- decoupling field is Lipschitz and Z^{\star} is bounded
- forward path is the unique optimal path

