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Part I. Motivation

a. General philosophy



Basic purpose
• Interacting particles/players

◦ controlled
particles
players
financial agents
neurons

in mean-field interaction

◦ particles have
dynamical
non-static

states! stochastic differential

equation

◦ mean-field!
interaction of symmetric type
interaction with the whole population
no privileged interaction with some particles

• Associate cost functional with each player

◦ find equilibria w.r.t. cost functionals

◦ shape of the equilibria for a large population?



Different notions of equilibria
• Players may decide of the strategy on their own

◦ no way that the particles minimize their own costs
simultaneously

◦ find a consensus inside the population?

◦ no interest for a particle to leave the consensus

◦ notion of Nash equilibrium in a game

• Center of decision may decide of the strategies for all the players

◦ “Chief says what the companies will do”

◦ minimize the global cost to the collectivity

◦ different notion of equilibrium{ seek a minimizer

• Both cases{ asymptotic equilibria?



Asymptotic formulation
• Paradigm

◦ mean-field/symmetry!
law of large numbers
propagation of chaos

◦ reduce the asymptotic analysis to one typical player with
interaction with a theoretical distribution of the population?

◦ description of asymptotic equilibria in terms of

player’s private state
theoretical distribution of the population

◦ decrease the complexity to solve asymptotic formulation first

• Program

◦ Existence of asymptotic equilibria? Uniqueness? Shape?

◦ Use asymptotic equilibria as quasi-equilibria in
finite-player-systems

◦ Prove convergence of equilibria in finite-player-systems



Different kinds of asymptotic formulation
• Asymptotic formulation of Nash equilibria

◦Mean-field games theory!

Lasry-Lions (2006)
Huang-Caines-Malhamé (2006)
Cardaliaguet, Achdou, Gomes, Porreta (PDE)
Bensoussan, Carmona, D., Kolokoltsov, Lacker, Yam (Probability)

◦ PDE or probabilistic analysis{ both meet with the concept of
master equation (last lecture)

• Central center of decision

◦ optimal control of McKean-Vlasov stochastic differential
equations

◦ PDE point of view! HJB equations in infinite dimension
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b. An introductory example



Purpose of the modeling
•Model for inter-bank borrowing and lending

◦ model introduced by Fouque and Ichiba (2013), Carmona,
Fouque and Sun (2014)

◦ N banks i = 1, . . . ,N and a central bank

• Interaction between banks

◦ bank i may
lend to
borrow from

bank j

• Control

◦ banks control
lending to
borrowing from

central bank

• Cost for
lending
borrowing

fixed by the regulator

◦ Nash equilibria?

◦ N large?



Mean-field interaction between the banks
• (Log)-monetary reserve of bank i{ Xi

t

◦
borrow from
lend to

bank j if
Xj

t > Xi
t

Xj
t < Xi

t

◦ rate a of
borrowing
lending

{ a (Xj
t − Xi

t){ (a/N) (Xj
t − Xi

t)

dXi
t = a

( 1
N

N∑
j=1

Xj
t︸    ︷︷    ︸

X̄N
t

− Xi
t

)
dt + . . .

◦
dXi

t

dt
{ instantaneous rate of lending/borrowing

• X̄N = empirical mean

◦ mean-field interaction with reverting to the empirical mean

◦ X̄N
t mean state of the population (may be used for systemic risk)



Controlled stochastic dynamics

• Controlled rate of
borrowing from
lending to

central bank

dXi
t = a

(
X̄N

t − Xi
t
)

dt + αi
t dt + . . .

◦ αi
t

negative{ lending

positive{ borrowing

• Noisy perturbations

dXi
t = a

(
X̄N

t − Xi
t
)

dt + αi
t dt + σ dW̃ i

t

◦ W̃ i
t = ρ W i

t︸︷︷︸
independent

+
√

1 − ρ2 W0
t︸︷︷︸

common

◦ ((W0
t )t, (W1

t )t, . . . , (WN
t )t) : indep. Brownian motions{

symmetric structure (original paper{ role of W0 in systemic risk)



Cost functional
• Cost functional⇒ penalize high borrowing/lending activities

Ji(α1, . . . , αN)
= E

[
g(Xi

T − X̄N
T ) +

∫ T

0
f ( Xi

t − X̄N
t︸   ︷︷   ︸

global rate

, αi
t)dt

]

◦ depends on all the controls through X̄N
t

◦ penalize high borrowing from/lending to central bank

◦ incite borrowing/lending⇒ easier to borrow from central bank
if low reserve

• Linear-quadratic functionals

f (x,m, α) = α2 + ε2(m − x
)2
− 2qεα

(
m − x

)
g(x,m) = c2(x − m)2

◦ X̄N
t > Xi

t ⇒ lower cost if αt > 0

◦ q ∈ (0, 1){ fixed by the regulator



Ansatz for the asymptotic Nash equilibrium
• Simplify{ no common noise W0

◦ law of large numbers⇒ X̄N
t stabilizes around some

deterministic mt

◦ mt should stand for the theoretical mean of any bank at the
equilibrium

• Focus on one bank only with dynamics

dXt = a
(
mt − Xt

)
dt + αt dt + σ dWt

◦ the bank does not see the others anymore{ cost functional

J(α) = E
[
g(XT ,mT ) +

∫ T

0
f (Xt,mt, αt)dt

]
◦ minimize!

◦ consensus means that optimal path has mt as mean at time t



Case of a common noise
• If common noise W0

◦ law of large numbers becomes conditional law of large numbers

U0, U1, . . . , UN , . . . i.i.d. r.v.’s (with values in R)
φ : R→ R bounded Borel measurable function

⇒ P
(
limN→∞

1
N

∑N
i=1 φ(Ui,U0) = E

[
φ(U1,U0)|U0]) = 1

◦ mt should stand for the conditional mean of any bank at the
equilibrium given the realization of W0

• Focus on one bank only with dynamics

dXt = a
(
mt − Xt

)
dt + αt dt + σ

√
1 − ρ2dWt + σρdW0

t

◦ consensus means that optimal path has mt as conditional mean
at time t
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c. Toolbox for the solution



Program
• Solve standard optimization problem (1st Lecture)

◦ parameterized by some input (state of the population at
equilibrium)

◦ consider the case when the input may be random (think of the
case when ρ , 0 in the previous example)

◦ need for a nice characterization of the optimal state in terms of
the input

may use PDE arguments (HJB equation)
may use probabilistic arguments (FBSDEs)

◦ finite horizon only!

• Solve a fixed point condition (2nd and 3rd Lectures)

◦ in order to characterize the asymptotic equilibrium

◦ fixed point condition of the McKean-Vlasov type{ need to
revisit the theory of McKean-Vlasov SDEs (2nd Lecture)
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Part II. Stochastic optimal control & FBSDEs

a. Stochastic optimal control problem



Basic controlled dynamics
• Controlled stochastic dynamics

dXt = b(Xt, µt, αt)dt + σ(Xt, µt, αt)dWt, t ∈ [0,T]

(Wt)0≤t≤T B.M. with values in Rd on (Ω,F = (Ft)0≤t≤T ,P)

◦ may consider time dependent coefficients

◦ Xt { state in Rd of the
particle
agent

at time t

◦ (µt)0≤t≤T denotes some environment (think of it as a the mean of
a probability distribution or as the probability distribution itself)

may take value in a general Polish space X
example: X = space of probability measures on Rd (see Lecture 2)

◦ (αt)0≤t≤T denotes control process
with values in A ⊂ Rk, closed and convex
and F-progressively measurable



Basic controlled dynamics
• Controlled stochastic dynamics

dXt = b(Xt, t, αt)dt + σ(Xt, t, αt)dWt, t ∈ [0,T]

(Wt)0≤t≤T B.M. with values in Rd on (Ω,F = (Ft)0≤t≤T ,P)

◦ may consider time dependent coefficients

◦ Xt { state in Rd of the
particle
agent

at time t

◦ (µt)0≤t≤T denotes some environment (think of it as a the mean of
a probability distribution or as the probability distribution itself)

may take value in a general Polish space X
example: X = space of probability measures on Rd (see Lecture 2)

◦ (αt)0≤t≤T denotes control process
with values in A ⊂ Rk, closed and convex
and F-progressively measurable



Controlled dynamics in a random environment
• Allow (µt)0≤t≤T to be random

◦ Think of the case ρ , 0 in the introductory example

• Controlled stochastic dynamics

dXt = b(Xt, µt, αt)dt + σ(Xt, µt, αt)dWt + σ0(Xt, µt, αt)dW0
t

(Wt)0≤t≤T B.M. with values in Rd on (Ω1,F1 = (F 1
t )0≤t≤T ,P

1)

(W0
t )0≤t≤T B.M. with values in Rd on (Ω0,F0 = (F 0

t )0≤t≤T ,P
0)

• Equation set on (Ω,F,P) = (Ω0 ×Ω1,F0 ⊗ F1,P0 ⊗ P1)

◦ (Xt)0≤t≤T defined on Ω

◦ (αt)0≤t≤T defined on Ω

◦ (µt)0≤t≤T defined on Ω0

continuous and adapted to F0



Typical set of assumptions
• Coefficients

◦ (σ,σ0)(x, µ, α) = (σ,σ0)(x, µ){ uncontrolled volatility

◦ growth

|b(x, µ, α)| + |σ(x, µ, α)| + |σ0(x, µ, α)|

≤ C
(
1 + |x| + dX(0X, µ) + |α|

)
where dX distance on X and 0X some element in X

◦ b, σ and σ0 Lipschitz in all the variables (too strong for the first
lecture but useful for the sequel)

• Assumptions on the processes

◦ control processes satisfy E
∫ T

0 |αt|
2dt < ∞

◦ inputs (if random) satisfy E[sup0≤t≤T (dX(0X, µt))2] < ∞



Typical set of assumptions
• Coefficients

◦ (σ,σ0)(x,

µ

, α) = (σ,σ0)(x,

µ

){ uncontrolled volatility

◦ growth

|b(x, t, α)| + |σ(x, t, α)| + |σ0(x, t, α)|

≤ C
(
1 + |x|

+ dX(0X, µ)

+ |α|
)

where dX distance on X and 0X some element in X

◦ b, σ and σ0 Lipschitz in all the variables

(too strong for the first
lecture but useful for the sequel)

• Assumptions on the processes

◦ control processes satisfy E
∫ T

0 |αt|
2dt < ∞

◦ inputs (if random) satisfy E[sup0≤t≤T (dX(0X, µt))2] < ∞



Cost functional
• Environment (µt)0≤t≤T is fixed throughout the analysis

◦ fix as well initial condition ξ ∈ L2(Ω,F0,P;Rd)

• Given an admissible control α = (αt)0≤t≤T

◦ Unique solution (Xαt )0≤t≤T with Xα0 = ξ

• Cost functional of the type

J(α) = E
[
g(XT , µT ) +

∫ T

0
f (Xt, µt, αt)dt

]
◦ f { running cost, g{ terminal cost

◦ assume f and g continuous and at most of quadratic growth

|f (x, µ, α)| + |g(x, µ)| ≤ C
(
1 + |x| + dX(0X, µ) + |α|

)2

• Goal is to minimize J(α)!



Cost functional

• Environment (µt)0≤t≤T is fixed throughout the analysis

◦ fix as well initial condition ξ ∈ L2(Ω,F0,P;Rd)

• Given an admissible control α = (αt)0≤t≤T

◦ Unique solution (Xαt )0≤t≤T with Xα0 = ξ

• Cost functional of the type

J(α) = E
[
g(XT ,T) +

∫ T

0
f (Xt, t, αt)dt

]
◦ f { running cost, g{ terminal cost

◦ assume f and g continuous and at most of quadratic growth

|f (x, t, α)| + |g(x,T)| ≤ C
(
1 + |x|

+ dX(0X, µ)

+ |α|
)2

• Goal is to minimize J(α)!
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b. Interpretation of the value function



Backward representation of the cost functional
• Simplified assumption

◦ Assume coefficients and σ−1 bounded in (x, µ) and A bounded

◦ Case when F is generated by (Wt,W0
t )0≤t≤T and ξ, µ0

deterministic

• Dynamical version of the cost{ backward representation of the
remaining cost functional

◦ for a given α = (αt)0≤t≤T

Yαt = E
[
g(XαT , µT ) +

∫ T

t
f (Xαs , µs, αs)ds

∣∣∣∣ Ft

]
◦ martingale representation of g(XαT , µT ) +

∫ T
0 f (Xαs , αs, µs)ds

Yαt = g(XαT , µT )

+

∫ T

t
f (Xαs , µs, αs)ds −

∫ T

t
Zαs dWs −

∫ T

t
Z0,α

s dW0
s

◦ where E
[∫ T

0

(
|Zαs |

2 + |Z0,α
s |

2
)
ds

]
< ∞ (Z as a row vector)



A first backward SDE
• Consider another α? ( candidate for optimality)

◦ mimic equation of Yα but turn it into a backward SDE

Yα
?

t = g(XαT , µT ) +

∫ T

t
f (Xαs , µs, α

?
s ) ds

+

∫ T

t
Zα

?

s σ−1(Xαs , µs)
(
b(Xαs , µs, α

?
s ) − b(Xαs , µs, αs)︸                              ︷︷                              ︸

kind of default

)
ds

−

∫ T

t
Zα

?

s dWs −

∫ T

t
Z0,α?

s dW0
s

◦ coefficient is Lipschitz continuous in Zα
?
{ extension of the

martingale representation theorem{ existence and uniqueness of a
solution (Pardoux and Peng, 1990)

◦ (Zα
?

t )0≤t≤T and (Z0,α?
t )0≤t≤T F-progressively measurable with

E
[∫ T

0

(
|Zα

?

s |
2 + |Z0,α?

s |2
)
ds

]
< ∞



Change of probability measure
•Make use of Girsanov theorem

dP?

dP
= exp

(∫ T

0

(
b(Xαs , µs, α

?
s ) − b(Xαs , µs, αs)

)
dWs

−
1
2

∫ T

0

∣∣∣∣b(Xαs , µs, α
?
s ) − b(Xαs , µs, αs)

∣∣∣∣2ds
)

• Let W?
t = Wt −

∫ t

0

(
b(Xαs , µs, α

?
s ) − b(Xαs , µs, αs)

)
ds

◦ Under P?, (W?
t ,W

0
t )0≤t≤T 2d-dimensional B.M. w.r.t F

• Connection with (Xα
?

t )0≤t≤T

dXαt = b(Xαt , µt, α
?
t )dt + σ(Xαt , µt)dW?

t + σ0(Xαt , µt)dW0
t

and Yα
?

0 = E?
[
g(XαT , µT ) +

∫ T

0
f (Xαt , µt, α

?
t )dt

]
◦ reminiscent of (Xα

?

t )0≤t≤T under P and J(α?) (good point as aim
at comparing with J(α))



Hamiltonian
• Compute

Yα
?

0 − Yα0 = E
[∫ T

0

(
H

(
Xαt , µt, α

?
t ,Z

α
t σ
−1(Xαt , µt)

)
− H

(
Xαt , µt, αt,Zαt σ

−1(Xαt , µt)
))

dt
]

◦ H(x, µ, α, z) = f (x, µ, α) + z · b(x, µ, α) called Hamiltonian

• If

H
(
Xαt , µt, α

?
t ,Z

α
t σ
−1(Xαt , µt)

)
≤ H

(
Xαt , µt, αt,Zαt σ

−1(Xαt , µt)
)

◦ then Yα
?

0 − Yα0 ≤ 0

• Recall Yα
?

0 ! J(α?) (to be specified next) then optimality condition
should read as

α?t = argminα∈AH
(
Xαt , µt, α,Zαt σ

−1(Xαt , µt)
)

= α?
(
Xαt , µt,Zαt σ

−1(Xαt , µt)
)

◦ if α?(x, µ, z) = argminα∈AH(x, µ, α, z) uniquely defined



FBSDE for the optimal state
• Dynamics of (Xαt )0≤t≤T under P?

dXαt = b
(
Xαt , µt, α

?(Xαt , µt,Zα
?

t σ−1(Xαt , µt)
))

dt

+ σ(Xαt , µt)dW?
t + σ0(Xαt , µt)dW0

t

◦ coupled with the backward equation for (Yα
?

t )0≤t≤T

Yα
?

t = g(XαT , µT ) +

∫ T

t
f
(
Xαs , µs, α

?(Xαs , µs,Zα
?

s σ−1(Xαs , µs)
))

ds

−

∫ T

t
Zα

?

s dW?
s −

∫ T

t
Z0,α?

s dW0
s

• Reformulate the equation under (P, (Wt,W0
t )0≤t≤T ) instead of

(P?, (W?
t ,W

0
t )0≤t≤T )

◦ Claim: the forward process should be the optimal state



Statement
• Assume that, on (Ω,F,P), the FBSDE

X?
t = ξ +

∫ t

0
φ(Z?s )b

(
X?

s , µs, α
?(X?

s , µs,Z?s σ
−1(Xαt , µt)

))
ds

+

∫ t

0
σ(X?

s , µs)dWs + σ0(X?
s , µs)dW0

s

Y?
t = g(X?

T , µT ) +

∫ T

t
f
(
X?

s , µs, α
?(X?

s , µs,Z?s σ
−1(X?

s , µs)
))

ds

−

∫ T

t
Z?s dWs −

∫ T

t
Z0,?

s dW0
s

has a unique solution for any cut-off function φ with

◦ Z? bounded by some C (indep. of φ)

◦ α?(x, µ, z) is the unique minimizer of α 7→ H(x, µ, α, z)

• Then (X?
t )0≤t≤T is the unique optimal path when φ(z) = z for |z| ≤ C



Sketch of proof
• Given an admissible α = (αt)0≤t≤T , solve

Yα
?

t = g(XαT , µT ) +

∫ T

t
f (Xαs , µs, αs) ds

+

∫ T

t
φ(Zα

?

s )Zα
?

s σ−1(Xαs , µs)
(
b(Xαs , µs, α

?
s ) − b(Xαs , µs, αs)

)
ds

−

∫ T

t
Zα

?

s dWs −

∫ T

t
Z0,α?

s dW0
s

◦ with α?s = α?(Xαs , µs,Zα
?

s σ−1(Xαs , µs))

• Under (P?, (W?
t ,W

0
t )0≤t≤T ), get a solution to the FBSDE

◦ Generalization of Yamada-Watanabe{ weak uniqueness

P? ◦
(
Xαt ,Y

α?
t ,Zα

?

t
)−1
0≤t≤T = P ◦

(
X?

t ,Y
?
t ,Z

?
t
)−1
0≤t≤T

◦ J
((
α?(X?

t , µt,Z?t σ
−1(X?

t , µt))0≤t≤T
)

= Yα
?

0 ≤ Yα0 = J(α) (strict)



Extension and complements
• Extension on the same model to the case when A is not bounded

◦ Need to localize over the control or use quadratic BSDE

• Extension to the case when F is larger than the filtration generated
by (ξ, µ0, (Wt,W0

t )0≤t≤T )

◦ loose martingale representation theorem∫ T

t
ZsdWs +

∫ T

t
Z0

s dW0
s {

∫ T

t
ZsdWs + MT −Mt

◦ (Mt)0≤t≤T is a square-integrable martingale orthogonal to
σ((Wt)0≤t≤T )

• Scope of application{ σ invertible and H strictly convex in α

◦ f strictly convex in α and b linear in α

• Connection with HJB equation when no common noise{ next
section
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c. Stochastic Pontryagin principle



Perturbation in deterministic control
• First order optimality condition when no noise (σ ≡ σ0 ≡ 0)

◦ find (α?t )0≤t≤T such that

dJε

dε
≥ 0 with Jε = J

((
α?t + ε

(
βt − α

?
t
)))

◦ (βt)0≤t≤T is another A valued control

• Let (formally) x?t = Xα
?

t , ∂x?t =
d
dε

Xα
?+ε(β−α?)

t and d = k = 1

dJε

dε
|ε=0 = ∂xg(x?T , µT )∂xx?T

+

∫ T

0

(
∂xf (x?t , µt, α

?
t )∂xx?t + ∂αf (x?t , µt, α

?
t )(βt − α

?
t )

)
dt

◦ with ∂xx?t =
(
∂xb(x?t , µt, α

?
t )∂xx?t + ∂αb(x?t , µt, α

?
t )(βt − α

?
t )

)
dt



Deterministic Hamiltonian system
• C1 path (yt)0≤t≤T s.t. yT = ∂xg(x?T , µT ){ integration by parts

dJε

dε
|ε=0 =

∫ T

0

(
ẏt + ∂xf (x?t , µt, α

?
t ) + yt∂xb(x?t , µt, α

?
t )

)
∂xx?t dt

+

∫ T

0

(
∂αf (x?t , µt, α

?
t ) + yt∂αb(x?t , µt, α

?
t )

)
(βt − α

?
t )dt

◦ recognize ∂xH(xt, µt, α
?
t , yt) and ∂αH(xt, µt, α

?
t , yt)

• Solve yt = ∂xg(x?T , µT ) +
∫ T

t ∂xH(x?s , µs, α
?
s , ys)ds

dJε

dε
|ε=0 =

∫ T

0
∂αH(x?t , µt, α

?
t , yt)(βt − α

?
t )dt

•
dJε

dε
|ε=0 ≥ 0 for any (βt)0≤t≤T if and only if

∀β ∈ A ∂αH(x?t , µt, α
?
t , yt)(β − α?t ) ≥ 0

with ẋ?t = ∂yH(x?t , µt, α
?
t , yt)



Stochastic version
•With (α?t )0≤t≤T candidate for being the optimal control, associate
(Yα

?

t )0≤t≤T

Yα
?

t = ∂xg(Xα
?

T , µT ) +

∫ T

t
∂xH(Xα

?

t , µt, α
?
t ,Y

α?
t )dt

−

∫ T

t
Zα

?

t dWt −

∫ T

t
Z0,α?

t dW0
t

◦ martingale component{ the dual variable is adapted!

◦ backward equation in (Yα
?

t )0≤t≤T { existence and uniqueness if
Lipschitz (quite natural)

• Require now α?t = α?(Xα
?

t , µt,Yα
?

t )

◦ α?(x, µ, y) is the unique minimizer of α 7→ H(x, µ, α, y)

◦ implicit condition{ new FBSDE

◦ is the forward component an optimal path? Turn the first-order
necessary condition into a sufficient condition{ convexity



Statement
• Let σ and σ0 indep. of x and F generated by (ξ, µ0, (Wt,W0

t )0≤t≤T )

• Assume that, on (Ω,F,P), the FBSDE

X?
t = ξ +

∫ t

0
b
(
X?

s , µs, α
?(X?

s , µs,Y?
s
))

ds

+

∫ t

0
σ(µs)dWs + σ0(µs)dW0

s

Y?
t = ∂xg(X?

T , µT ) +

∫ T

t
∂xH

(
X?

s , µs, α
?(X?

s , µs,Y?
s
))

ds

−

∫ T

t
ZsdWs −

∫ T

t
Z0

s dW0
s

has a solution with

◦ H convex in (x, α) and strictly in α and g convex in x

◦ α?(x, µ, z) is the unique minimizer of α 7→ H(x, µ, α, z)

• Then (X?
t )0≤t≤T unique optimal path with α?t = α?(X?

t , µt,Y?
t )



Sketch of proof
• Consider an arbitrary control α = (αt)0≤t≤T

• write

J(α) − J
(
α?

)
= J(α) − J

(
α?

)
− E

[
(XαT − X?

T ) · ∂xg(X?
T , µT )

]
+ E

[
(XαT − X?

T ) · Y?
T
]

• Itô expansion of the last term

J(α) − J
(
α?

)
= E

[
g(XαT , µT ) − g(X?

T , µT ) − (X?
T − XαT ) · ∂xg(X?

T , µT )

+

∫ T

0

[
H(Xαt , µt, αt,Y?

t ) − H
(
X?

t , µt, α
?
t
)

−
(
Xαt − X?

t
)
· ∂xH

(
X?

t , µt, α
?
t
)
− 0︸︷︷︸
≤

(
αt − α

?
t
)
· ∂αH

(
X?

t , µt, α
?
t
)
]
dt

]
≥ 0



Extension and complements
• Extension to the case when F is larger than the filtration generated
by (ξ, µ0, (Wt,W0

t )0≤t≤T )

◦ loose martingale representation theorem∫ T

t
ZsdWs +

∫ T

t
Z0

s dW0
s {

∫ T

t
ZsdWs + MT −Mt

◦ (Mt)0≤t≤T is a square-integrable martingale orthogonal to
σ((Wt)0≤t≤T )

• Scope of application{ no need for σ invertible but indep. of x and
H convex in (x, α)

◦ f convex in (x, α) and b linear in (x, α)

• Connection with HJB equation when no common noise{ next
section



Part III. Analysis of FBSDEs



Part III. Analysis of FBSDEs

a. Small time analysis



General form of the FBSDE
• On (Ω,F,P) with F generated by (ξ, µ0, (Wt,W0

t )0≤t≤T )

Xt = ξ +

∫ t

0
b
(
Xs, µs,Ys,Zs

)
ds

+

∫ t

0
σ(Xs, µs,Ys)dWs + σ0(Xs, µs,Ys)dW0

s

Yt = g(XT , µT ) +

∫ T

t
f
(
Xs, µs,Ys,Zs

)
ds

−

∫ T

t
ZsdWs −

∫ T

t
Z0

s dW0
s

◦ no Z in σ and σ0!

◦ (Xt,Yt,Zt) : Ω→ Rd × Rm × Rd×m

• Call a (Xt,Yt,Zt)0≤t≤T a solution if progressively-measurable and

E
[

sup
0≤t≤T

(
|Xt|

2 + |Yt|
2) +

∫ T

0
|Zt|

2dt
]
< ∞



Cauchy-Lipschitz theory in small time
• Assume that the coefficients are at of most of linear growth∣∣∣(b, f , σ, σ0, g)(x, µ, y, z)

∣∣∣ ≤ C
(
1 + |x| + dX(0X, µ) + |y| + |z|

)
• Assume that the coefficients are measurable in all the variables and
L-Lipschitz continuous in (x, y, z) (uniformly in µ)

• There exists c(L) such that unique solution for any initial condition
provided that

T ≤ c(L)

• Two-point-boundary problem{ no way to expect better

ẋt = yt, ẏt = −xt, yT = xT , T = π/4

◦ ẍt = −xt,
xt = A cos(t) + B sin(t)
yt = −A sin(t) + B cos(t)

⇒ A = 0⇒ x0 = 0

◦ no solution if x0 , 0 and∞ many if x0 = 0



Sketch of proof
• Construction a contraction mapping

◦With (Xt)0≤t≤T solve the backward equation

◦With (Yt,Zt)0≤t≤T , solve the forward equation

X′t = ξ +

∫ t

0
b
(
X′s, µs,Ys,Zs

)
ds

+

∫ t

0
σ(X′s, µs,Ys)dWs + σ0(X′s, µs,Ys)dW0

s

◦ Seek (Xt)0≤t≤T such that X ≡ X′

• Forward-backward constraints⇒ no way to use Gronwall!

◦ Given (X1
t )0≤t≤T and (X2

t )0≤t≤T , prove that for T ≤ 1

E
[

sup
0≤t≤T

|X1′
t − X2′

t |
2] ≤ c(L) T E

[
sup

0≤t≤T
|X1

t − X2
t |

2]
• Denote solution by (Xξ

t ,Y
ξ
t ,Z

ξ
t )0≤t≤T



Decoupling field
• Stability estimates for T ≤ c(L)

E
[
|Yξ

0 − Yξ′

0 |
2|F0

]
≤ C |ξ − ξ′|2

• Let u(0, x) = Yx
0 , x ∈ Rd

◦ x 7→ u(0, x) is a random field, F 0
0 -measurable (reduce the

filtration u(0, x, µ0)), deterministic if no common noise

◦ Lipschitz continuous

• Choose ξ′ =
∑N

i=1 1Aixi, with Ai ∈ F0

◦ Yξ′

0 =
∑N

i=1 1AiY
xi
0 =

∑N
i=1 1Aiu(0, xi) = u(0, ξ′)

◦ approximation argument{ Yξ
0 = u(0, ξ)

• Extension to any time t ∈ [0,T], u(t, x) = Y t,x
t is F 0

t -measurable

◦ (Xt,ξ
s ,Y t,ξ

s ,Zt,ξ
s )t≤s≤T solution with Xt,ξ

t = ξ ∈ L2(Ω,Ft,P;Rd)

◦ Y t,ξ
t = u(t, ξ)



Connection with PDE
• Assume that no common noise W0 (σ0 = 0)

•Write Y0,ξ
t = Y t,X0,ξ

t
t = u(t,X0,ξ

t )

• If u smooth enough{ expand as a semi-martingale and compare
with dY0,ξ

t

◦ compare dWt terms{ Z0,ξ
t = ∂xu(t,X0,ξ

t )σ(x, µt)

◦ compare dt terms{ nonlinear PDE

∂tu(t, x) +
1
2

trace
(
σσ†(x, µt, u(t, x))∂2

xxu
)

+ ∂xu(t, x)b
(
x, µt, u(t, x), ∂xu(t, x)σ(x, µt)

)
+ f

(
x, µt, u(t, x), ∂xu(t, x)σ(x, µt)

)
= 0

◦ terminal boundary condition u(T , x) = g(x, µT )

• If (µt)0≤t≤T random{ backward SPDE!



Examples
• Revisit the FBSDEs of Section II when σ0 ≡ 0

• Interpretation of the value function

◦ PDE writes

∂tu(t, x) +
1
2

trace
(
σσ†(x, µt)∂2

xxu
)

+ inf
α∈A

[
∂xu(t, x) · b

(
x, µt, α

)
+ f

(
x, µt, α

)]
= 0

◦ HJB equation describing minimal cost when Xt = x

◦ optimal control α?t = α?(X?
t , µt, ∂xu(t,X?

t )) has Markov
feedback form!

• Use of the Stochastic Pontryagin principle

◦ Same shape for the Markov feedback form{ decoupling field
must be ∂xu(t, x)!

◦ PDE is the derivative of HJB



Part III. Analysis of FBSDEs

b. From small to long times



Principle for an iterative construction
• Let T arbitrary{ construct the decoupling field close to T

0 TT-δ

◦ for t ∈ [T − δ,T]{ unique solution with Xt = ξ{ define
decoupling field on [T − δ,T]

• Consider on [0,T − δ] new FBSDE with u(T − δ, ·) instead of
g(·, µT ) as terminal condition (forget µT−δ)

TT-δ0

◦ need to control the Lipschitz constant of u along the induction



Construction of a solution from the decoupling field

• Construction of the decoupling field by backward induction

• Construction of a solution by forward induction

T0

1 2 3

t1 t2

◦ solve first on 1 with X0 = ξ as initial condition and u(t1, ·) as
terminal condition

◦ restart at t1 with Xt1 as new initial condition and u(t2, ·) as
terminal condition . . .

• Uniqueness by backward induction



Part III. Analysis of FBSDEs

c. Convex framework



Revisiting the Pontryagin principle
• Assume

◦ σ, σ0 constant

◦ b(x, µ, α) = b0(µ) + b1x + b2α

◦ ∂xf , ∂αf , ∂xg L-Lipschitz in (x, α)

◦ f convex in (x, α) with λ-convexity in α

f (x′, α′) − f (x, α) − (x′ − x) · ∂xf (x, α) − (α′ − α) · ∂αf (x, α)

≥ λ|α′ − α|2

• Unique minimizer α?(x, µ, z) = argminα∈AH(x, µ, z, α)

◦ implicit function theorem{ α? is Lipschitz

• Existence and uniqueness hold in small time

◦ control of the decoupling field?



Using convexity
• Let t ∈ [0,T] and x, x′ ∈ Rd

E
[
g(X?,t,x′

T , µT ) +

∫ T

t
f (X?,t,x′

s , µt, α
?,t,x′
t )dt |Ft

]
− E

[
g(X?,t,x

T , µT ) +

∫ T

t
f (X?,t,x

s , µt, α
?,t,x
t )dt |Ft

]
≥ (x′ − x) · Y?,t,x

t

+ E
[
g(X?,t,x′

T , µT ) − g(X?,t,x
T , µT ) − (X?,t,x′

T − X?,t,x
T ) · ∂xg(X?,t,x

T , µT )

+

∫ T

0

[
H(X?,t,x′

t , µt, α
?,t,x′
t ,Y?,t,x

t ) − H
(
X?,t,x

t , µt, α
?,t,x,Y?,t,x

t
)

−
(
X?,t,x′

t − X?,t,x
t

)
· ∂xH

(
X?,t,x

t , µt, α
?,t,x
t

)
−

(
α?,t,x

′

t − α?,t,xt
)
· ∂αH

(
X?,t,x

t , µt, α
?,t,x
t

)]
dt

∣∣∣Ft

]
≥ (x′ − x) · Y?,t,x

t + λE
[∫ T

t

∣∣∣α?,t,x′s − α?,t,x
′

s

∣∣∣2ds |Ft

]



Lipschitz estimate in the convex setting
• Exchange the roles of x and x′ and make the sum

0 ≥ (x′ − x) ·
(
Y?,t,x

t − Y?,t,x′
t

)
+ λE

[∫ T

t

∣∣∣α?,t,x′s − α?,t,x
′

s

∣∣∣2ds |Ft

]
• Stability of the forward equation

E
[

sup
t≤s≤T

|X?,t,x
s − X?,t,x′

s |2|Ft
]
≤ CE

[∫ T

t

∣∣∣α?,t,x′s − α?,t,x
′

s

∣∣∣2ds |Ft

]
• Stability of the backward equation

E
[

sup
t≤s≤T

|Y?,t,x
s − Y?,t,x′

s |2|Ft
]
≤ CE

[∫ T

t

∣∣∣α?,t,x′s − α?,t,x
′

s

∣∣∣2ds |Ft

]
≤ C(x′ − x) ·

(
Y?,t,x′

t − Y?,t,x
t

)
• Deduce |u(t, x′) − u(t, x)|2 ≤ C(x′ − x) ·

(
u(t, x′) − u(t, x)

)



Part III. Analysis of FBSDEs

d. Non-degenerate case



A simple case
• Assume (for simplicity)

◦ σ = Id , σ0 = 0 (no common noise)

◦ b(x, µ, α) = α

◦ f (x, µ, α) = f0(x, µ) + 1
2 |α|

2

◦ f0 and g bounded and Lipschitz

• Compute α?(x, µ, z) = −πA(z) (⊥ projection onto A)

◦ consider a cut-off function φ

dX?,t,x
s = −φ(Z?,t,xs )πA(Z?,t,xs )ds + dWs + σ0(X?,t,x

s , µs)dW0
s

dY?,t,x
s = −f0(X?,t,x

s , µs)ds −
1
2
|πA(Z?,t,xs )|2ds + Z?,t,xs dWs

Y?,t,x
T = g(X?,t,x

T , µT )

◦ unique solution in small time



Change of probability
• Let

dP?,t,x

dP
= exp

(∫ T

t

(
φπA

)
(Z?,t,xs )dWs −

1
2

∫ T

t

∣∣∣(φπA
)
(Z?,t,xs )

∣∣∣2ds
)

◦
(
W?,t,x

s = Ws −
∫ s

t

(
φπA

)
(Z?,t,xr )dWr

)
t≤s≤T

B.M. under P?,t,x

• Under P?,t,x

dX?,t,x
s = dW?,t,x

s

dY?,t,x
s = −f0(X?,t,x

s , µs)ds +
((
φπA

)
(Z?,t,xs ) · Z?,t,xs −

1
2
|Z?,t,xs |2

)
ds

+ Z?,t,xs dW?,t,x
s

Y?,t,x
T = g(X?,t,x

T , µT )

◦ same system but under P{ (X̃?,t,x
s , Ỹ?,t,x

s , Z̃?,t,xs )t≤s≤T

◦ same joint distribution{ Ỹ?,t,x
t = u(t, x) (PDE is the same)



Quadratic BSDE
• Consider x, x′ ∈ Rd and let

(δX̃?
s , δỸ

?
s , δZ̃

?
s ) = (X̃?,t,x′

s − X̃?,t,x′
s , Ỹ?,t,x′

s − Ỹ?,t,x′
s , Z̃?,t,x

′

s − Z̃?,t,x
′

s )

• Dynamics

d
(
δỸ?

s
)

= −δxfsδX̃?
s ds − δzfsδZ̃?s ds + δZ̃?s dWs

◦ |δX̃?
s |

2 ≤ C|x − x′|2

◦ |δxfs| ≤ C, |δzfs| ≤ C(1 + |Z?,t,xs | + |Z?,t,x
′

s |)

• New Girsanov argument to remove δZ̃?

◦ get a bound on Lip. x 7→ u(t, x)

◦ recall Z?,t,xs = ∂xu(s,Xt,x
s ) to get a bound on Z?,t,x



Extension
• A may not be bounded

• presence of common noise

• b, f and g bounded in (x, µ), C Lipschitz in x

• Regularity in α

◦ b linear in α and f
strictly convex
at most quadratic growth

in α

◦ f loc. Lip in α, with Lip(f ) at most of linear growth in α

• then FBSDE characterizing optimizer is uniquely solvable (forget
cut-off and focus on solutions with bounded Z?)

◦ decoupling field is Lipschitz and Z? is bounded

◦ forward path is the unique optimal path


