Mean-Field Games

Lectures at the Imperial College London

2nd Lecture: Formulation of the Mean-Field Games

François Delarue (Nice – J.-A. Dieudonné)

May 7 2015

Joint works with R. Carmona; J.F. Chassagneux and D. Crisan; P. Cardaliaguet

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Part I. Equilibria within a finite system

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Part I. Equilibria within a finite system

a. Several notions

General formulation

• Controlled system of *N* interacting particles with symmetric mean-field interaction through the global state of the population

• dynamics of particle number $i \in \{1, \ldots, N\}$

$$\underbrace{dX_t^i}_{\in \mathbb{R}^d} = b(X_t^i, \text{global state of the collectivity}, \alpha_t^i)dt$$

$$\in \mathbb{R}^d + \sigma(X_t^i, \text{global state}) \underbrace{dW_t^i}_{i\text{diosyncratic noises}} + \sigma^0(X_t^i, \text{global state}) \underbrace{dW_t^0}_{\text{common noise}}$$

- Rough description of the probabilistic set-up
 - $(W_t^0, W^1, ..., W^N)_{0 \le t \le T}$ independent B.M. with values in \mathbb{R}^d ◦ $(\alpha_t^i)_{0 \le t \le T}$ progressively-measurable processes with values in *A* ◦ simplicity \rightsquigarrow same deterministic initial conditions

Empirical measure

• Encode the global state of the population at time *t* through

$$\bar{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i} \quad \rightsquigarrow \quad \text{probability measure on } \mathbb{R}^d$$

 $\circ \mathcal{P}(\mathbb{R}^d) \rightsquigarrow$ set of probability measures on \mathbb{R}^d

 $\circ \mathcal{P}_2(\mathbb{R}^d) \rightsquigarrow$ set of probability measures on \mathbb{R}^d with second order moments

• Express the coefficients as

$$b: \mathbb{R}^{d} \times \mathcal{P}_{2}(\mathbb{R}^{d}) \times A \to \mathbb{R}^{d}, \quad \sigma, \sigma^{0}: \mathbb{R}^{d} \times \mathcal{P}_{2}(\mathbb{R}^{d}) \to \mathbb{R}^{d \times d}$$

$$\circ \text{ example 1: } b(x, \mu, \alpha) = b\Big(x, \int_{\mathbb{R}^{d}} \varphi d\mu, \alpha\Big), \varphi = \text{Id} \longrightarrow \text{ mean}$$

$$\circ \text{ example 2: } b(x, \mu, \alpha) = \int_{\mathbb{R}^{d}} b(x, v, \alpha) d\mu(v)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Cost functionals

• Rewrite the dynamics of the particles

 $dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma(X_t^i, \bar{\mu}_t^N)dW_t^i + \sigma^0(X_t^i, \bar{\mu}_t^N)dW_t^0$

• Cost functional to player $i \in \{1, ..., N\}$

$$J^{i}(\alpha^{1}, \alpha^{2}, \dots, \alpha^{N}) = \mathbb{E}\Big[g(X_{T}^{i}, \bar{\mu}_{T}^{N}) + \int_{0}^{T} f(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i})dt\Big]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

 \circ take the same f and g for all players to symmetrize

 \circ pay attention that J^i depends on the other controls through empirical measure

 \circ same kind of example for f and g as above

Nash equilibrium

- Each player is willing to minimize its own cost functional

 no chance that everybody can minimize at the same time
 need for a consensus → Nash equilibrium
- Say that a *N*-tuple of strategies (α^{1,★},..., α^{N,★}) is a consensus if

 no interest for any player to leave the consensus
 change α^{i,★} → αⁱ ⇒ Jⁱ ∧

$$J^{i}(\alpha^{1,\star},\ldots,\alpha^{i,\star},\ldots,\alpha^{N,\star}) \leq J^{i}(\alpha^{1,\star},\ldots,\alpha^{i},\ldots,\alpha^{N,\star})$$

- Existence \rightsquigarrow fixed point argument (see later on)
- Meaning of freezing $\alpha^{1,\star}, \ldots, \alpha^{i-1,\star}, \alpha^{i+1,\star}, \alpha^{N,\star}$

 \circ freezing the processes \rightarrow Nash equilibrium in open loop

 \circ means that the players observe the noises \rightsquigarrow what about if the players only observe the states?

Markov loop

• PDE \rightsquigarrow require that each α_t^i is a function of the private states X_t^1, \ldots, X_t^N at time *t*

 $\circ \, \alpha_t^i = \alpha^i(t, X_t^1, \dots, X_t^N)$

 \circ each function α^i is called a Markov feedback \rightsquigarrow notion of Markov loop

• New notion of Nash equilibrium

• freeze the Markov feedback function $\alpha^{\star,1}, \ldots, \alpha^{\star,N}$

• if change $\alpha^{\star,i}$ into $\alpha^i \Rightarrow$ all the players may move

• with this notion of Nash, the Markov feedback are frozen but not the control processes

• leads to different equilibria!

• In the framework of MFG, expect that there is no difference in the asymptotic setting

• when N tends to $+\infty$ and $\alpha^{\star,i}$ changed into $\alpha^i \Rightarrow$ other players hardly feel the modification

Social optimization and Pareto

• May also optimize the global wealth of the society

$$\sum_{i=1}^N J^i(\boldsymbol{\alpha}^1,\ldots,\boldsymbol{\alpha}^N)$$

 \circ a social optimizer is a Pareto equilibrium \sim no way to decrease one's cost without increasing somebody else's cost

• Example: one center of decision for one big company with small agencies all over an area

o center decides of the general policy, for instance

$$\alpha_t^i = \alpha^i(t, X_t^1, \dots, X_t^N) \text{ or } \alpha_t^i = \alpha^i(t, X_t^i, \bar{\mu}_t^N)$$

• choose $\alpha^i = \alpha$ symmetric $\Rightarrow ((X_t^i, \alpha_t^i, W_t^i)_{0 \le t \le T})_{1 \le i \le N}$ are exchangeable (invariance by permutation)

• may optimize the global wealth of the company over strategies $(\alpha^1, \ldots, \alpha^N)$ such that $((\alpha_t^i, W_t^i)_{0 \le t \le T})_{1 \le i \le N}$ are exchangeable

Part I. Equilibria within a finite system

b. Examples

Exhaustible resources

• N producers of oil $\rightsquigarrow X_t^i$ (estimated reserve) at time t

$$dX_t^i = -\frac{\alpha_t^i}{dt} dt + \sigma X_t^i dW_t^i$$

• $\alpha_t^i \rightarrow$ instantaneous production rate • σ common volatility for the perception of the reserve • should be a constraint $X_t^i \ge 0$

• Optimize the profit of a producer

$$J^{i}(\boldsymbol{\alpha}^{1},\ldots,\boldsymbol{\alpha}^{N}) = \mathbb{E}\int_{0}^{T} (\alpha_{t}^{i}P_{t} - c(\alpha_{t}^{i}))dt$$

 $\circ P_t$ is selling price

 \circ mean-field constraint \rightsquigarrow selling price is a function of the mean-state of the reserves

$$P_t = P(\frac{1}{N}\sum_{i=1}^N X_t^i)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Growth model

• Consider the labor productivity (Z^1, \ldots, Z^N) and the wealth $(A^1, \ldots,)$ of *N* workers

$$dZ_t^i = b(Z_t^i)dt + \sigma(Z_t^i)dW_t^i$$
$$dA_t^i = (w_t Z_t^i + r_t A_t^i - c_t^i)dt$$

 $\circ w_t \rightsquigarrow$ wage rate

 $\circ r_t \sim \text{interest rate}$

 $\circ c_t \sim \text{consumption}$

• Optimize utility of consumption and final wealth

$$J^{i}(\boldsymbol{c}^{1},\ldots,\boldsymbol{c}^{N}) = \mathbb{E}\left[\int_{0}^{T} u(c_{t}^{i})dt + U(A_{T})\right]$$

• may impose state constraint on $(A_t)_{0 \le t \le T}$

 \circ utility functions *u* and *U*

mean-field constraint

$$w_t = F_W \left(\frac{1}{N} \sum_{i=1}^N A_t^i \right), \quad r_t = F_R \left(\frac{1}{N} \sum_{i=1}^N A_t^i \right)$$

Carbon markets

• N producers of energy

• Producer *i*: X_T^i global emissions of carbon on [0, T]

 $\circ \Lambda$: number of permits received by producer *i*

• Cap rule

• if $N^{-1} \sum_{j=1}^{N} X_T^j > \Lambda$

• penalty for *i*: $\lambda (X_T^i - \Lambda)^+ \mathbf{1}_{(\Lambda,\infty)} \left(N^{-1} \sum_{j=1}^N X_T^j \right)$

• Dynamics of 'perceived' emissions

$$dX_t^i = (b_t - \alpha_t^i)dt + \sigma dW_t^i$$

 $\circ \, \alpha^i \,{\sim}\,$ abatement by investment in green technology \bullet Minimize

$$\mathbb{E}\left[\int_0^T c(\alpha_t^i) dt + \lambda (X_T^i - \Lambda)^+ \mathbf{1}_{(\Lambda,\infty)} \left(N^{-1} \sum_{j=1}^N X_T^j\right)\right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Part I. Equilibria within a finite system

c. Seeking equilibria

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reminder from the first chapter

• Hamiltonian

$$H(x,\mu,\alpha,z) = b(x,\mu,\alpha) \cdot z + f(x,\mu,\alpha)$$

 $\circ \, \alpha^{\star}(x,\mu,z) = \mathrm{argmin}_{\alpha \in A} H(x,\mu,\alpha,z)$

- Two ways to handle stochastic optimal control
- Interpretation of the value function <--> interpretation of the HJB equation

 o sounds like a PDE method → reformulate it in the framework of Nash equilibria with Markov closed loop

• Use of the stochastic Pontryagin principle

• very much demanding in terms of assumption but very robust (no need of a Markov structure behind)

• implement it in the framework of Nash equilibria with open loop

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hamiltonian associated with Markov loop

• As in last part of Chapter 1 \rightarrow assume that $\sigma^0 \equiv 0$

• Assume that $\alpha^{1,\star}, \ldots, \alpha^{N,\star}$ Nash equilibrium in Markov feedback form

$$dX_t^j = b(X_t^j, \bar{\mu}_t^N, \alpha^{j, \star}(t, X_t^1, \dots, X_t^N))dt + \sigma(X_t^j, \bar{\mu}_t^N)dW_t^j$$

 \circ change feedback function $\alpha^{i,\star}$ into α^{i}

• just facing a standard optimization problem but with a diffusion process with values in $(\mathbb{R}^d)^N \rightsquigarrow$ the control is just through the player number *i*

• Write the Hamitonian

$$b\left(x_{i}, \frac{1}{N}\sum_{j=1}^{N}\delta_{x_{j}}, \boldsymbol{\alpha}\right) \cdot z_{i} + f\left(x_{i}, \frac{1}{N}\sum_{j=1}^{N}\delta_{x_{j}}, \boldsymbol{\alpha}\right)$$
$$+ \sum_{\ell \neq i} b\left(x_{\ell}, \frac{1}{N}\sum_{j=1}^{N}\delta_{x_{j}}, \boldsymbol{\alpha}^{\ell, \star}(t, x_{1}, \dots, x_{N})\right) \cdot z_{\ell}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

o can forget the second line!

FBSDE associated with Markov loop

• Forget the cut-off function discussed in Chapter 1 and write the FBSDE

$$\begin{split} dX_t^i &= b \Big(X_t^i, \bar{\mu}_t^N, \alpha^{\star} (X_t^i, \bar{\mu}_t^N, Z_t^{i,i} \sigma^{-1} (X_t^i, \bar{\mu}_t^N)) \Big) dt + \sigma (X_t^i, \bar{\mu}_t^N) dW_t^i \\ dY_t^i &= -f \Big(X_t^i, \bar{\mu}_t^N, \alpha^{\star} (X_t^i, \bar{\mu}_t^N, Z_t^{i,i} \sigma^{-1} (X_t^i, \bar{\mu}_t^N)) \Big) dt + \sum_{j=1}^N Z_t^{i,j} dW_t^j \end{split}$$

with $Y_T^i = g(X_T^i, \mu_T^N)$ as terminal condition \circ may discuss sufficient conditions (won't do it in the lectures) \circ part of the difficulty again consists in controlling the smoothness of the decoupling field

$$(Y_t^1,\ldots,Y_t^N)=u(t,X_t^1,\ldots,X_t^N)$$

• difficulty to handle the quadratic setting as *Y* is multi dimensional (series of works due to Bensoussan and Frehse)

• within MFG \sim deterioration of the smoothness as $N \nearrow \infty$

三 わへの

Open loop

- Consider a very simple case when $b(x, \mu, \alpha) = b(x, \alpha)$, σ and σ^0 constant (typical framework for stochastic Pontryagin principle)
- When freezing $\alpha^{1,\star}, \ldots, \alpha^{i-1,\star}, \alpha^{i+1,\star}, \ldots, \alpha^{N,\star}$

 $\circ (X_t^{1,\star}, \dots, X_t^{i-1,\star}, X_t^{i+1,\star}, X_t^{N,\star})$ remain the same (would be false with Markov loop)

• again, we are facing a standard optimization problem \sim optimization of α^i

 \circ may use the same Hamiltonian H

$$\begin{split} dX_t^i &= b \Big(X_t^i, \bar{\mu}_t^N, \alpha^{\star} (X_t^i, \bar{\mu}_t^N, Y_t^i) \Big) dt + \sigma dW_t^i + \sigma^0 dW_t^0 \\ dY_t^i &= -\partial_x H \Big(X_t^i, \bar{\mu}_t^N, \alpha^{\star} (X_t^i, \bar{\mu}_t^N, Y_t^i) \Big) dt + \sum_{j=0}^N Z_t^{i,j} dW_t^j \\ \text{with } Y_T^i &= \partial_x g(X_T^i, \bar{\mu}_T^N) \end{split}$$

• if Lipschitz coefficients (and growth conditions) and $\sigma \neq 0 \rightsquigarrow$ unique solution

Part II. From propagation of chaos to MFG

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Part II. From propagation of chaos to MFG

a. Handling an example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Systemic risk model

• Recall the dynamics of the (log)-reserve

$$dX_t^i = a \left(\bar{X}_t^N - X_t^i \right) dt + \alpha_t^i dt + \sigma \, dW_t^i + \sigma^0 dW_t^0$$

• Recall the cost functional

$$J^{i}(\alpha^{1}, \dots, \alpha^{N}) = \mathbb{E}\Big[g(X_{T}^{i}, \bar{X}_{T}^{N}) + \int_{0}^{T} f(X_{t}^{i}, \bar{X}_{t}^{N}, \alpha_{t}^{i})dt\Big]$$
$$\tilde{f}(x, m, \alpha) = \alpha^{2} + \epsilon^{2}(m - x)^{2} - 2q\epsilon\alpha(m - x), \quad q \le \epsilon^{2}$$

$$\circ g(x,m) = c^2 (x-m)^2$$

 $\circ f$

• Linear quadratic \Rightarrow explicitly solvable

 \circ ansatz \rightarrow seek optimal Markov feedback (both in the open loop and Markov closed loop case) of the linear form (derivative of quadratic functions)

$$\alpha_t^{\star,i} = \eta_t X_t^i + \chi_t$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \circ by symmetry, expect same coefficients η and χ

Solving the systemic risk model

- Inject the ansatz into the FBSDE and proceed
- Nash equilibria over Markov loop
 - $\circ (\eta_t)_{0 \le t \le T}$ solves Riccati equation

$$\dot{\eta}_t = 2(a+q)\eta_t + (1-N^{-2})\eta_t^2 + q^2 - \epsilon, \quad \eta_T = c$$

• equilibrium has the shape

$$\alpha_t^{\star,i} = \left(q + (1 - \frac{1}{N})\eta_t\right) \left(\frac{1}{N}\sum_{j=1}^N X_t^j - X_t^i\right)$$

• Nash equilibria over open loop

$$\circ (\eta_t)_{0 \le t \le T} \text{ solves Riccati equation}$$
$$\dot{\eta}_t = (2(a+q) - \frac{1}{N}q)\eta_t + (1-N^{-1})\eta_t^2 + q^2 - \epsilon, \quad \eta_T = c$$

• equilibrium has the same shape but with the solution of the new Riccati equation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

About the Riccati equation

• Convexity of the coefficients \Rightarrow Riccati equation is unique solvable

 \circ solution depends upon N and differs according to the sense given to the Nash equilibrium

• explicitly solvable (combination of exponentials)

• Riccati equations have the same asymptotic behavior

∘ label η with superscript $N \Rightarrow (\eta_t^N)_{0 \le t \le T}$ (whatever the sense of the Nash equilibrium is)

$$\circ \, \eta^N_t \to \eta^\infty_t, \, t \in [0,T]$$

$$\dot{\eta}^\infty_t = 2(a+q)\eta^\infty_t + \left(\eta^\infty_t\right)^2 + q^2 - \epsilon, \quad \eta_T = c$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• explicitly solvable as well

Particle system for the Nash equilibrium

• Inject the shape of the optimal feedback into the particle system

$$dX_{t}^{i} = \left(a + q + (1 - \frac{1}{N})\eta_{t}^{N}\right)\left(\bar{X}_{t}^{N} - X_{t}^{i}\right)dt + \sigma \, dW_{t}^{i} + \sigma^{0}dW_{t}^{0}$$

• whatever the meaning of the Nash equilibrium is

• Take the empirical mean $\bar{X}_t^N = \frac{1}{N} \sum_{i=1}^N X_t^i$

$$\bar{X}_t^N = \bar{X}_t^0 + \frac{\sigma}{N} \sum_{i=1}^N W_t^i + \sigma^0 W_t^0$$

∘ choose
$$X_0^i = x_0 \Rightarrow$$

 $\bar{X}_t^N \to x + \sigma^0 W_t^0 =: m_t$

• Expect in the limit

$$dX_t^i = (a + q + \eta_t^{\infty}) (m_t - X_t^i) dt + \sigma dW_t^i + \sigma^0 dW_t^0$$

• particles are exchangeable and independent given $(W_t^0)_{0 \le t \le T}$ • m_t is conditional mean of any X_t^i given common noise

Part II. From propagation of chaos to MFG

b. McKean-Vlasov SDEs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General uncontrolled particle system

• Remove the control in the original particle system!

 $dX_t^i = b(X_t^i, \overline{\mu}_t^N)dt + \sigma(X_t^i, \overline{\mu}_t^N)dW_t^i + \sigma^0(X_t^i, \overline{\mu}_t^N)dW_t^0$

•
$$X_0^1, \dots, X_N^i$$
 i.i.d. (and independent of the noises)
• $\bar{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$ (empirical measure)

• Assume the coefficients are Lipschitz in all the variables

• need to say what it means in terms of the measure (connection with Lipschitz property with respect to the measure argument)

o unique solution!

• Find the asymptotic behavior of the particle system as N tends to ∞

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Wasserstein distance

- Several distances on the space of probability measures
- Here distance on $\mathcal{P}_2(\mathbb{R}^d)$ probability measures μ with a second order moment)

$$\int_{\mathbb{R}^d} |x|^2 d\mu(x) < \infty$$

use the Wasserstein distance

$$\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d), \quad W_2(\mu, \nu) = \left(\inf_{\pi} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 d\pi(x, y)\right)^{1/2},$$

where π has μ and ν as marginals on $\mathbb{R}^d \times \mathbb{R}^d$

 $\circ X$ and X' two r.v.'s $\Rightarrow W_2(\mathcal{L}(X), \mathcal{L}(X')) \le \mathbb{E}[|X - X'|^2]^{1/2}$

 \circ CV in Wasserstein \Leftrightarrow weak CV + square unif. integrability

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• Example
$$W_2\left(\frac{1}{N}\sum_{i=1}^N \delta_{x_i}, \frac{1}{N}\sum_{i=1}^N \delta_{x'_i}\right) \le \left(\frac{1}{N}\sum_{i=1}^N |x_i - x'_i|^2\right)^{1/2}$$

yields the required Lipschitz property

McKean-Vlasov SDE

• Start with the case without common noise

 \circ on the model of (II a) expect some decorrelation in the particle system as $N\nearrow\infty$

• replace the empirical measure by the theoretical measure of the solution

 $dX_t = b(X_t, \mathcal{L}(X_t))dt + \sigma(X_t, \mathcal{L}(X_t))dW_t$

• Cauchy-Lipschitz theory

 \circ assume *b* and σ Lipschitz continuous on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \Rightarrow$ unique solution for any given initial condition in L^2

o proof works as in the standard case taking advantage of

 $\mathbb{E}\Big[\left|(b,\sigma)(X_t,\mathcal{L}(X_t))-(b,\sigma)(X_t',\mathcal{L}(X_t'))\right|^2\Big] \le C\mathbb{E}[|X_t-X_t'|^2]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

o permits to exhibit a contraction

Propagation of chaos

• Prove that the solution of the particle system converges to the solution of the MKV SDE when $\sigma^0 \equiv 0$

• Main statement

• each $(X_t^i)_{0 \le t \le T}$ converges in law to the solution of MKV SDE • particles get independent in the limit \rightsquigarrow for *k* fixed:

 $(X_t^1, \dots, X_t^k)_{0 \le t \le T} \xrightarrow{\mathcal{L}} \mathcal{L}(\mathrm{MKV})^{\otimes k} = \mathcal{L}((X_t)_{0 \le t \le T})^{\otimes k} \text{ as } N \nearrow \infty$

- $\circ \lim_{N \nearrow \infty} \sup_{0 \le t \le T} \mathbb{E}[(W_2(\bar{\mu}_t^N, \mathcal{L}(X_t))^2] = 0$
- Proof relies on a coupling argument

 $\circ N$ copies $(\tilde{X}_t^1, \dots, \tilde{X}_t^N)_{0 \le t \le T}$ of MKV SDE with $(W_t)_{0 \le t \le T}$ replaced by $((W_t^i)_{0 \le t \le T})_{1 \le i \le N}$

$$\mathbb{E}[\sup_{0 \le t \le T} |X_t^i - \tilde{X}_t^i|^2] \to 0 \Rightarrow \sup_{0 \le t \le T} \mathbb{E}\left[\left(W_2(\bar{\mu}_t^N, \frac{1}{N}\sum_{i=1}^N \delta_{\tilde{X}_t^i})\right)^2\right] \to 0$$

 \circ LLN may replace $\frac{1}{N}\sum_{i=1}^N \delta_{\tilde{X}_t^i}$ by $\mathcal{L}(X_t)$

Case with a common noise

• MKV SDE \rightsquigarrow conditional MKV SDE

 $dX_t = b(X_t, \mathcal{L}(X_t | \mathbf{W}^0))dt$ $+ \sigma(X_t, \mathcal{L}(X_t | \mathbf{W}^0))dW_t + \sigma^0(X_t, \mathcal{L}(X_t | \mathbf{W}^0))dW_t^0$

 $\circ \mathcal{L}(X_t | \boldsymbol{W}^0)$ conditional law of X_t given the realization of $(\boldsymbol{W}_t^0)_{0 \leq t \leq T}$

• Set the equation on $(\Omega^0\times\Omega^1,\mathbb{F}^0\otimes\mathbb{F}^1,\mathbb{P}^0\otimes\mathbb{P}^1)$

 $\circ \Omega^0$ carries W^0 and Ω^1 carries W and X_0

$$\circ \mathcal{L}(X_t | \mathbf{W}^0) = \mathcal{L}_{(\Omega^1, \mathbb{R}^1, \mathbb{P}^1)}(X_t(\omega^0, \cdot))$$

 $\circ \mathcal{L}(X_t|W^0) \text{ is also } \mathcal{L}(X_t|(W^0_s)_{0 \leq s \leq t})$

• Propagation of chaos revisited

 \circ asymptotically \rightsquigarrow conditional independence given W^0 instead of independence

 \circ convergence of the empirical measure to the conditional law

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ろくぐ

Part II. From propagation of chaos to MFG

c. Formulation of the asymptotic problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ansatz

- Start with the case when $\sigma^0 \equiv 0$
- Ansatz \rightsquigarrow at equilibrium

$$\alpha_t^{i,\star} = \alpha^N(t, X_t^i, \bar{\mu}_t^N) \approx \alpha(t, X_t^i, \bar{\mu}_t^N)$$

o particle system at equilibrium

$$dX_t^i \approx b \Big(X_t^i, \bar{\mu}_t^N, \alpha(t, X_t^i, \bar{\mu}_t^N) \Big) dt + \sigma \Big(X_t^i, \alpha(t, X_t^i, \bar{\mu}_t^N) dW_t^i$$

◦ particles should decorrelate as $N
imes \infty$

 $\circ \bar{\mu}_t^N$ should stabilize around some deterministic limit μ_t

• What about an intrinsic interpretation of μ_t ?

• should describe the global state of the population in equilibrium

• in the limit setting, any particle that leaves the equilibrium should not modify $\mu_t \sim$ leaving the equilibrium means that the cost increases \sim any particle in the limit should solve an optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

Matching problem of MFG

• Assume again that $\sigma^0 \equiv 0$

• Define the asymptotic equilibrium state of the population as the solution of a fixed point problem

(1) fix a flow of probability measures $(\mu_t)_{0 \le t \le T}$ (with values in $\mathcal{P}_2(\mathbb{R}^d)$)

(2) solve the stochastic optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma(X_t, \mu_t)dW_t$$

• with $X_0 = \xi$ being fixed on some set-up $(\Omega, \mathbb{F}, \mathbb{P})$ with a *d*-dimensional B.M.

• with cost $J(\alpha) = \mathbb{E}\left[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \alpha_t)dt\right]$ (3) let $(X_t^{\star, \mu})_{0 \le t \le T}$ be the unique optimizer (under nice assumptions) $\rightarrow \text{ find } (\mu_t)_{0 \le t \le T}$ such that

$$\mu_t = \mathcal{L}(X_t^{\star, \mu}), \quad t \in [0, T]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Not a proof of the convergence!

MFG with a common noise

• Same probabilistic set-up as for conditional MKV

$$\Omega=\Omega^0\times\Omega^1,\;\mathbb{F}=\mathbb{F}^0\otimes\mathbb{F}^1,\;\mathbb{P}=\mathbb{P}^0\otimes\mathbb{P}^1$$

(1) fix an adapted continuous process on $(\Omega^0, \mathbb{F}^0, \mathbb{P}^0)$

$$\boldsymbol{\mu}:[0,T]\ni t\mapsto \mu_t\in\mathcal{P}_2(\mathbb{R}^d)$$

(2) solve the stochastic optimal control problem in the random environment $(\mu_t)_{0 \le t \le T}$

$$\begin{split} dX_t &= b(X_t, \mu_t, \alpha_t) dt + \sigma(X_t, \mu_t) dW_t + \sigma^0(X_t, \mu_t) dW_t^0 \\ &\circ \text{ with } X_0 = \xi \in L^2(\Omega^1, \mathcal{F}_0^1, \mathbb{P}^1; \mathbb{R}^d) \end{split}$$

• with $(\alpha_t)_{0 \le t \le T}$ -progressively measurable with values in *A* (square integrable) on Ω

• same cost functional (under the double expectation)

(3) let $(X_t^{\star,\mu})_{0 \le t \le T}$ be the unique optimizer (under nice assumptions) \rightarrow find $(\mu_t)_{0 \le t \le T}$ such that, \mathbb{P}^0 almost surely,

 $\mu_t(\omega^0) = \mathcal{L}_{\Omega^1}(X_t^{\star,\mu}(\omega^0,\cdot)), \quad t \in [0,T]$

Social optimization

• Assume again that $\sigma^0 \equiv 0$

• Recall that one center of decision imposes some Markov feedback function to all the agents

• the ansatz must be the same!

• the difference is in the interpretation of the measures $(\mu_t)_{0 \le t \le T}$

• In the social optimization, when one moves \rightarrow everybody moves! No way to fix the flow of measures!

• the flow of measures describe the collective state of population under the decision of the center

$$dX_t = b(X_t, \mathcal{L}(X_t), \alpha_t)dt + \sigma(X_t, \mathcal{L}(X_t))dW_t$$

• optimize the cost $J(\alpha) = \mathbb{E}[g(X_T, \mathcal{L}(X_T)) + \int_0^T f(X_t, \mathcal{L}(X_t), \alpha_t)dt]$

o optimization of McKean-Vlasov diffusion processes!

Part III. McKean-Vlasov FBSDEs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Part III. McKean-Vlasov FBSDEs

a. Within the framework of MFG

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

New program without common noise

• Make use of the results from the first chapter in order to characterize the optimal paths in the fixed point

 \circ in the FBSDE formulation of the optimization problem \rightsquigarrow replace the environment by the law of the solution

 \circ derive an FBSDE of the McKean-Vlasov type of the general form

$$\begin{aligned} X_t &= \xi + \int_0^t b\left(X_s, \mathcal{L}(X_s), Y_s, Z_s\right) ds \\ &+ \int_0^t \sigma(X_s, \mathcal{L}(X_s), Y_s) dW_s \\ Y_t &= g(X_T, \mathcal{L}(X_T)) + \int_t^T f\left(X_s, \mathcal{L}(X_s), Y_s, Z_s\right) ds \\ &- \int_t^T Z_s dW_s \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Choose the coefficients accordingly

New program with common noise

• Make use of the results from the first chapter in order to characterize the optimal paths in the fixed point

 \circ in the FBSDE formulation of the optimization problem \rightsquigarrow replace the environment by the conditional law of the solution

 \circ derive an FBSDE of the McKean-Vlasov type of the general form

$$\begin{aligned} X_{t} &= \xi + \int_{0}^{t} b\left(X_{s}, \mathcal{L}(X_{s}|\boldsymbol{W}^{0}), Y_{s}, Z_{s}\right) ds \\ &+ \int_{0}^{t} \sigma(X_{s}, \mathcal{L}(X_{s}|\boldsymbol{W}^{0}), Y_{s}) dW_{s} + \sigma^{0}(X_{s}, \mathcal{L}(X_{s}|\boldsymbol{W}^{0}), Y_{s}) dW_{s}^{0} \end{aligned}$$
$$\begin{aligned} Y_{t} &= g(X_{T}, \mathcal{L}(X_{T}|\boldsymbol{W}^{0})) + \int_{t}^{T} f\left(X_{s}, \mathcal{L}(X_{s}|\boldsymbol{W}^{0}), Y_{s}, Z_{s}\right) ds \\ &- \int_{t}^{T} Z_{s} dW_{s} - \int_{t}^{T} Z_{s}^{0} dW_{s}^{0} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Choose the coefficients accordingly

MKV FBSDE for the value function

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{split} X_t &= \xi \\ &+ \int_0^t b\left(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))\right) ds \\ &+ \int_0^t \sigma(X_s, \mathcal{L}(X_s)) dW_s \\ Y_t &= g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T f\left(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))\right) ds \\ &- \int_t^T Z_s dW_s \end{split}$$

 $\circ \alpha^{\star}(x,\mu,z)$ is the unique minimizer of $\alpha \mapsto H(x,\mu,\alpha,z)$

 \bullet Under assumptions of Chapter 1 \rightsquigarrow solution to MKV FBSDE is MFG equilibrium

MKV FBSDE for the value function

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{split} X_t &= \xi \\ &+ \int_0^t b\left(X_s, \mathcal{L}(X_s|W^0), \alpha^{\star}(X_s, \mathcal{L}(X_s|W^0), Z_s\sigma^{-1}(X_s, \mathcal{L}(X_s|W^0)))\right) ds \\ &+ \int_0^t \sigma(X_s, \mathcal{L}(X_s|W^0)) dW_s + \sigma^0(X_s, \mathcal{L}(X_s|W^0)) dW_s^0 \\ Y_t &= g(X_T, \mathcal{L}(X_T|W^0)) \\ &+ \int_t^T f\left(X_s, \mathcal{L}(X_s|W^0), \alpha^{\star}(X_s, \mathcal{L}(X_s|W^0), Z_s\sigma^{-1}(X_s, \mathcal{L}(X_s|W^0)))\right) ds \\ &- \int_t^T Z_s dW_s - \int_t^T Z_s^{0, t} dW_s^0 \end{split}$$

 $\circ \alpha^{\star}(x,\mu,z)$ is the unique minimizer of $\alpha \mapsto H(x,\mu,\alpha,z)$

 \bullet Under assumptions of Chapter 1 \rightsquigarrow solution to MKV FBSDE is MFG equilibrium

MKV FBSDE for the Pontryagin principle

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{split} X_t &= \xi + \int_0^t b\left(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s)\right) ds \\ &+ \int_0^t \sigma(\mathcal{L}(X_s)) dW_s \\ Y_t &= \partial_x g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T \partial_x H\left(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s), Y_s\right) ds \\ &- \int_t^T Z_s dW_s \end{split}$$

• Under assumptions of Chapter 1 → solution to MKV FBSDE is MFG equilibrium

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

MKV FBSDE for the Pontryagin principle

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b\left(X_s, \mathcal{L}(X_s|W^0), \alpha^{\star}(X_s, \mathcal{L}(X_s|W^0), Y_s)\right) ds \\ &+ \int_0^t \sigma(\mathcal{L}(X_s|W^0)) dW_s + \sigma^0(\mathcal{L}(X_s|W^0)) dW_s^0 \\ Y_t &= \partial_x g(X_T, \mathcal{L}(X_T|W^0)) \\ &+ \int_t^T \partial_x H\left(X_s, \mathcal{L}(X_s|W^0), \alpha^{\star}(X_s, \mathcal{L}(X_s|W^0), Y_s), Y_s\right) ds \\ &- \int_t^T Z_s dW_s - \int_t^T Z_s^0 dW_s^0 \end{aligned}$$

 \bullet Under assumptions of Chapter 1 \rightsquigarrow solution to MKV FBSDE is MFG equilibrium

Seeking a solution

• New two-point-boundary-problem \rightsquigarrow

• Cauchy-Lipschitz theory in small time only

 \circ if Lipschitz coefficients (including the direction of the measure) \rightsquigarrow existence and uniqueness in short time

 \rightarrow existence and uniqueness of MFG equilibria in small time

• Third lecture \rightarrow what about arbitrary time?

 \circ existence \rightsquigarrow fixed point over the measure argument by means of compactness arguments

Schauder's theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \circ uniqueness \rightsquigarrow require additional assumption

• Other question ~> what about social optimization?

• don't write the HJB equation (infinite dimension)

o use Pontryagin principle instead

Part III. McKean-Vlasov FBSDEs

b. Lions derivative overs $\mathcal{P}_2(\mathbb{R}^d)$

Differentiation on $\mathcal{P}_2(\mathbb{R}^d)$

- Consider $\mathcal{U}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$
- \bullet Lifted-version of $\boldsymbol{\mathcal{U}}$

$$\hat{\mathcal{U}}: L^2(\Omega, \mathbb{P}) \ni X \mapsto \mathcal{U}(\operatorname{Law}(X))$$

U differentiable if *Û* Fréchet differentiable (Lions)
independent of the choice of (Ω, P) (rich enough)

 \bullet Differential of ${\boldsymbol{\mathcal U}}$

• Fréchet derivative of $\hat{\mathcal{U}}$ with $\mu = \text{Law}(X)$

 $D\hat{\mathcal{U}}(X) = \partial_{\mu}\mathcal{U}(\mu)(X), \quad \partial_{\mu}\mathcal{U}(\mu) : \mathbb{R}^{d} \ni x \mapsto \partial_{\mu}\mathcal{U}(\mu)(x) \in \mathbb{R}^{d}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

• Derivative of \mathcal{U} at $\mu \rightsquigarrow \partial_{\mu} \mathcal{U}(\mu) \in L^{2}(\mathbb{R}^{d}, \mu; \mathbb{R}^{d})$

Differentiation on $\mathcal{P}_2(\mathbb{R}^d)$

- Consider $\mathcal{U}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$
- \bullet Lifted-version of $\boldsymbol{\mathcal{U}}$

$$\hat{\mathcal{U}}: L^2(\Omega, \mathbb{P}) \ni X \mapsto \mathcal{U}(\operatorname{Law}(X))$$

U differentiable if *Û* Fréchet differentiable (Lions)
independent of the choice of (Ω, P) (rich enough)

 \bullet Differential of ${\boldsymbol{\mathcal U}}$

• Fréchet derivative of $\hat{\mathcal{U}}$ with $\mu = \text{Law}(X)$

 $D\hat{\mathcal{U}}(X) = \partial_{\mu}\mathcal{U}(\mu)(X), \quad \partial_{\mu}\mathcal{U}(\mu) : \mathbb{R}^{d} \ni x \mapsto \partial_{\mu}\mathcal{U}(\mu)(x) \in \mathbb{R}^{d}.$

• Derivative of \mathcal{U} at $\mu \rightsquigarrow \partial_{\mu} \mathcal{U}(\mu) \in L^{2}(\mathbb{R}^{d}, \mu; \mathbb{R}^{d})$

• Finite dimensional projection

$$\partial_{x_i} \left[\mathcal{U} \left(\frac{1}{N} \sum_{j=1}^N \delta_{x_j} \right) \right] = \frac{1}{N} \partial_{\mu} \mathcal{U} \left(\frac{1}{N} \sum_{j=1}^N \delta_{x_j} \right) (x_i).$$

Examples

• 1st example: $\mathcal{U}(\mu) = \int_{\mathbb{R}^d} h(x) d\mu(x)$

 \circ two r.v.'s X and Y with values in \mathbb{R}^d

$$\mathcal{U}(\mathcal{L}(X + \varepsilon Y)) = \mathbb{E}[h(X + \varepsilon Y)]$$
$$= \mathbb{E}[h(X)] + \varepsilon \mathbb{E}[\partial h(X)Y] + o(\varepsilon)$$

 $\circ \,\partial_{\mu} \mathcal{U}(\mu)(v) = \partial h(v)$

• 2nd example: $\mathcal{U}(\mu) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x - y) d\mu(x) d\mu(y)$

 \circ two r.v.'s X and Y with independent copies X' and Y'

$$\mathcal{U}(\mathcal{L}(X + \varepsilon Y))$$

$$= \mathbb{E}[h(X - X' + \varepsilon(Y - Y'))]$$

$$= \mathbb{E}[h(X - X')] + \varepsilon \mathbb{E}[\partial h(X - X')(Y - Y')] + o(\varepsilon)$$

$$= \mathbb{E}[h(X - X')] + \varepsilon \mathbb{E}[\partial h(X - X')Y] - \varepsilon \mathbb{E}[\partial h(X' - X)Y] + o(\varepsilon)$$

$$\circ \partial_{\mu} \mathcal{U}(\mu)(v) = \int_{\mathbb{R}^d} \partial h(v - y) d\mu(y) - \int_{\mathbb{R}^d} \partial h(y - v) d\mu(y)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Part III. McKean-Vlasov FBSDEs

c. Control of McKean-Vlasov and potential games

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Rough version of the Pontryagin principle

• Controlled MKV processes (no common noise)

$$dX_t = b(X_t, \mathcal{L}(X_t), \alpha_t)dt + \sigma(X_t, \mathcal{L}(X_t))dW_t$$

• optimize the cost $J(\alpha) = \mathbb{E}[g(X_T, \mathcal{L}(X_T)) + \int_0^T f(X_t, \mathcal{L}(X_t), \alpha_t) dt]$

• Optimize w.r.t. the measure as well

• Use the same *H* and the same $\hat{\alpha}(t, x, \mu, y)$

• Adjoint equations:

 $\begin{aligned} dX_t &= b(X_t, \mu_t, \hat{\alpha}(t, X_t, \mathcal{L}X_t, Y_t))dt + \sigma dW_t \\ dY_t &= -\partial_x H(X_t, \mathcal{L}(X_t), \hat{\alpha}(X_t, \mathcal{L}(X_t), Y_t), Y_t)dt \\ &\quad - "\partial_\mu H(X_t, \mathcal{L}(X_t), \hat{\alpha}(X_t, \mathcal{L}(X_t), Y_t), Y_t)"dt + Z_t dW_t \\ Y_T &= \partial_x g(X_T, \mathcal{L}(X_T)) + "\partial_\mu g(X_T, \mathcal{L}(X_T))" \end{aligned}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

• What do " $\partial_{\mu}H$ " and " $\partial_{\mu}g$ " mean?

Right version of the Pontryagin principle

• Adjoint equations take the form

$$\begin{aligned} dX_t &= b(X_t, \mathcal{L}(X_t), \hat{\alpha}(t, X_t, \mathcal{L}(X_t), Y_t))dt + \sigma dW_t \\ dY_t &= -\partial_x H(X_t, \mathcal{L}(X_t), \hat{\alpha}(t, X_t, \mathcal{L}(X_t), Y_t), Y_t)dt \\ &- \mathbb{E}'[\partial_\mu H(X'_t, \mathcal{L}(X_t), \hat{\alpha}(X'_t, \mathcal{L}(X_t), Y'_t))(X_t)]dt + Z_t dW_t \\ Y_T &= \partial_x g(X_T, \mathcal{L}(X_T)) + \mathbb{E}'[\partial_\mu g(X'_T, \mathcal{L}(X_T))(X_T)] \end{aligned}$$

 \circ (X'_t , Y'_t) independent copy of (X_t , Y_t) on (Ω' , \mathbb{F}' , \mathbb{P}')

• example $f(\mu, \alpha) = \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x - y) d\mu(x) d\mu(y) + \frac{1}{2} |\alpha|^2$, f symmetric $\circ g(\mu) = \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} g(x - y) d\mu(x) d\mu(y)$ $\circ b(\alpha) = \alpha$

$$\partial_{\mu}H(\cdot) = \partial_{\mu}f(\mathcal{L}(X_t))(X_t) = \mathbb{E}'[\partial f(X_t - X'_t)] = \partial_{|x = X_t}\mathbb{E}'[f(x - X'_t)]$$

 \circ same as an MFG with $\int_{\mathbb{R}^d} f(x - y)d\mu(y) + \frac{1}{2}|\alpha|^2 \rightsquigarrow$ potential game!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○