Mean-Field Games

Lectures at the Imperial College London

4th Lecture: Master Equation and Convergence

François Delarue (Nice - J.-A. Dieudonné)

May 132015

Joint works with R. Carmona; J.F. Chassagneux and D. Crisan; P.
Cardaliaguet

Part I. Master Equation

Part I. Master Equation

a. Revisiting the PDE interpretation

Reminder

- Recall MFG when $\sigma^{0} \equiv 0$
- Define the asymptotic equilibrium state of the population as the solution of a fixed point problem
(1) fix a flow of probability measures $\left(\mu_{t}\right)_{0 \leq t \leq T}$ (with values in $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$)
(2) solve the stochastic optimal control problem in the environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$

$$
d X_{t}=b\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t+\sigma\left(X_{t}, \mu_{t}\right) d W_{t}
$$

- with $X_{0}=\xi$ being fixed on some set-up $(\Omega, \mathbb{F}, \mathbb{P})$ with a d-dimensional B.M.
- with $\operatorname{cost} J(\boldsymbol{\alpha})=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T} f\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t\right]$
(3) let $\left(X_{t}^{\star, \mu}\right)_{0 \leq t \leq T}$ be the unique optimizer (under nice assumptions)
\leadsto find $\left(\mu_{t}\right)_{0 \leq t \leq T}$ such that

$$
\mu_{t}=\mathcal{L}\left(X_{t}^{\star, \mu}\right), \quad t \in[0, T]
$$

PDE point of view: HJB

- PDE characterization of the optimal control problem when σ is the identity
- Value function in environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$

$$
U(t, x)=\inf _{\alpha \text { processes }} \mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} f\left(X_{s}, \mu_{s}, \alpha_{s}\right) d s \mid X_{t}=x\right]
$$

- U solution Backward HJB

$$
\begin{aligned}
& \left(\partial_{t} U+\frac{\partial_{x x}^{2} U}{2}\right)(t, x)+\underbrace{\inf _{\alpha \text { scalar }}\left[b\left(x, \mu_{t}, \alpha\right) \cdot \partial_{x} U(t, x)+f\left(x, \mu_{t}, \alpha\right)\right]}_{\text {standard Hamiltonian in HJB }}=0 \\
& \circ \alpha \leadsto \alpha=\alpha^{\star}\left(x, \mu_{t}, \partial_{x} U(t, x)\right)
\end{aligned}
$$

- Terminal boundary condition: $U(T, \cdot)=g\left(\cdot, \mu_{T}\right)$
- Pay attention that U depends on $\left(\mu_{t}\right)_{t}$!

Fokker-Planck

- Need for a PDE characterization of $\left(\mathcal{L}\left(X_{t}^{\star, \mu}\right)\right)_{t}$
- Dynamics of $X^{\star, \mu}$ at equilibrium

$$
d X_{t}^{\star \mu}=b\left(X_{t}^{\star, \mu}, \mu_{t}, \alpha^{\star}\left(X_{t}^{\star, \mu}, \mu_{t}, \partial_{x} U\left(t, X_{t}^{\star \mu}\right)\right)\right) d t+d W_{t}
$$

- Law $\left(X_{t}^{\star, \mu}\right)_{0 \leq t \leq T}$ satisfies Fokker-Planck (FP) equation

$$
d_{t} \mu_{t}=-\operatorname{div}(\underbrace{b\left(x, \mu_{t}, \alpha^{\star}\left(x, \mu_{t}, \partial_{x} U(t, x)\right)\right.}_{b^{\star}(t, x)} \mu_{t}) d t+\frac{1}{2} \partial_{x x}^{2} \mu_{t} d t
$$

- MFG equilibrium described by forward-backward in ∞ dimension
- ∞ dimensional analogue of

$$
\begin{aligned}
& \dot{x}_{t}=b\left(x_{t}, y_{t}\right) d t, \quad x_{0}=x^{0} \\
& \dot{y}_{t}=-f\left(x_{t}, y_{t}\right) d t, \quad y_{T}=g\left(x_{T}\right)
\end{aligned}
$$

- $\sigma^{0} \equiv 0 \sim$ deterministic FB system
- if $\sigma^{0} \not \equiv 0 \leadsto$ stochastic FB system

MFG as characteristics of a PDE

- Find the decoupling field of the ∞ dimensional FB system
- Find a function \mathcal{U} such that

$$
\underbrace{U}_{\mathrm{HJB}}(t, \cdot)=\mathcal{U}(t, \cdot, \underbrace{\mu_{t}}_{\mathrm{FP}})
$$

- $\mathcal{U}:[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow C\left(\mathbb{R}^{d}, \mathbb{R}\right)$
- $\mathcal{U}\left(T, \cdot, \mu_{T}\right)=g\left(\cdot, \mu_{T}\right)$
- Write (master?) PDE for \mathcal{U}
- Procedure for the formal identification of the PDE
- martingale increment

$$
d \mathcal{U}\left(t, X_{t}^{\star}, \mu_{t}\right)+f\left(X_{t}^{\star}, \mu_{t}, \alpha^{\star}\left(X_{t}^{\star}, \mu_{t}, \partial_{x} \mathcal{U}\left(t, X_{t}^{\star}, \mu_{t}\right)\right)\right) d t
$$

- compare with Itô's formula
- requires a chain rule on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

MFG as characteristics of a PDE

- Find the decoupling field of the ∞ dimensional FB system
- Find a function \mathcal{U} such that

$$
\underbrace{U}_{\mathrm{HJB}}(t, x)=\mathcal{U}(t, x, \underbrace{\mu_{t}}_{\mathrm{FP}})
$$

- $\mathcal{U}:[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$
- $\mathcal{U}\left(T, x, \mu_{T}\right)=g\left(x, \mu_{T}\right)$
- Write (master?) PDE for \mathcal{U}
- Procedure for the formal identification of the PDE
- martingale increment

$$
d \mathcal{U}\left(t, X_{t}^{\star}, \mu_{t}\right)+f\left(X_{t}^{\star}, \mu_{t}, \alpha^{\star}\left(X_{t}^{\star}, \mu_{t}, \partial_{x} \mathcal{U}\left(t, X_{t}^{\star}, \mu_{t}\right)\right)\right) d t
$$

- compare with Itô's formula
- requires a chain rule on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

Part I. Master Equation

b. Deriving the master equation

Reminder

- Recall Lions differentiation on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
- Consider $\mathcal{U}: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$
- Lifted-version of \mathcal{U}

$$
\hat{\mathcal{U}}: L^{2}(\Omega, \mathbb{P}) \ni X \mapsto \mathcal{U}(\operatorname{Law}(X))
$$

- \mathcal{U} differentiable if $\hat{\mathcal{U}}$ Fréchet differentiable (Lions)
- Differential of \mathcal{U}
- Fréchet derivative of $\hat{\mathcal{U}}$

$$
\begin{aligned}
& D \hat{\mathcal{U}}(X)=\partial_{\mu} \mathcal{U}(\mu)(X), \quad \partial_{\mu} \mathcal{U}(\mu): \mathbb{R} \ni x \mapsto \partial_{\mu} \mathcal{U}(\mu)(x) \quad \mu=\mathcal{L}(X) \\
& \quad \text { o derivative of } \mathcal{U} \text { at } \mu \leadsto \partial_{\mu} \mathcal{U}(\mu) \in L^{2}\left(\mathbb{R}^{d}, \mu ; \mathbb{R}^{d}\right)
\end{aligned}
$$

- Finite dimensional projection

$$
\partial_{x_{i}}\left[\mathcal{U}\left(\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}}\right)\right]=\frac{1}{N} \partial_{\mu} \mathcal{U}\left(\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}}\right)\left(x_{i}\right), \quad x_{1}, \ldots, x_{N} \in \mathbb{R}^{d}
$$

Chain rule on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

- Itô process $d X_{t}=b_{t} d t+\sigma_{t} d W_{t}, \quad \int_{0}^{T} \mathbb{E}\left[\left|b_{t}\right|^{2}+\left|\sigma_{t}\right|^{4}\right] d t<\infty$
- $\mu_{t}=$ law of X_{t}
- $\hat{\mathcal{U}}$ twice Fréchet differentiable
- chain rule for $\left(\mathcal{U}\left(\mu_{t}\right)\right)_{t \geq 0}$?
- Approximate μ_{t} by particle system

$$
\mu_{t} \sim \frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}} \quad \text { and } \quad d_{t}\left[\mathcal{U}\left(\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}}\right)\right]
$$

- expand the right-hand side and pass to the limit
- Chain rule
- need $\mathbb{R}^{d} \ni x \mapsto \partial_{\mu} \mathcal{U}(\mu)(x) \in \mathbb{R}^{d}$ differentiable

$$
\frac{d}{d t} \mathcal{U}\left(\mu_{t}\right)=\mathbb{E}\left[\left\langle b_{t}, \partial_{\mu} \mathcal{U}\left(\mu_{t}\right)\left(X_{t}\right)\right\rangle\right]+\frac{1}{2} \mathbb{E}\left[\operatorname{Trace}\left(\sigma_{t} \sigma_{t}^{\dagger} \partial_{x}\left(\partial_{\mu} \mathcal{U}\left(\mu_{t}\right)\right)\left(X_{t}\right)\right)\right]
$$

Shape of the master equation

- Formal identification of zero $d t$ term in expansion of

$$
d \mathcal{U}\left(t, X_{t}^{\star}, \mu_{t}\right)+f\left(X_{t}^{\star}, \mu_{t}, \alpha^{\star}\left(X_{t}^{\star}, \mu_{t}, \partial_{x} \mathcal{U}\left(t, X_{t}^{\star}, \mu_{t}\right)\right)\right) d t
$$

- requires an extension of Itô's formula to handle all the coordinates \leadsto no bracket!
- Formal derivation \leadsto first-order master equation:

$$
\begin{aligned}
& \partial_{t} \mathcal{U}(t, x, \mu)+\underbrace{\int_{\mathbb{R}^{d}}\left\langle b^{\star}(t, v), \partial_{\mu} \mathcal{U}(t, x, \mu)(v)\right\rangle d \mu(v)}_{\text {transport in } \mu} \\
& +\underbrace{\left\langle b^{\star}(t, x), \partial_{x} \mathcal{U}(t, x, \mu)\right\rangle+f\left(x, \mu, \alpha^{\star}\left(t, x, \partial_{x} \mathcal{U}(t, x, \mu), \mu\right)\right)}_{\text {standard Hamiltonian }} \\
& +\frac{1}{2} \operatorname{Trace}(\underbrace{\partial_{x}^{2} \mathcal{U}(t, x, \mu)}_{\text {standard diffusion }})+\underbrace{\int_{\mathbb{R}^{d}} \operatorname{Trace}\left(\partial_{v} \partial_{\mu} \mathcal{U}(t, x, \mu)(v)\right) d \mu(v)}_{\text {bracket }}=0
\end{aligned}
$$

- Not a HJB! (MFG \neq optimization)

Part I. Master Equation

c. Sketch of the proof

Program

- Prove existence of a classical solution
- holds in small time if smooth coefficients
- Long time \leadsto emergence of singularities
- no singularity in $x \leftrightarrow$ Laplace ∂_{x}^{2}
\circ if Laplace \sim use convexity in x in cost functional
- regularity in $\mu \leadsto$ Laplace does not help need monotonicity condition

$$
\text { main issue is to control } \partial_{\mu} \mathcal{U}!
$$

- Lasry Lions monotonicity condition
- b doesn't depend on μ
$\circ f(x, \mu, \alpha)=f_{0}(x, \mu)+f_{1}(x, \alpha)$ (μ and α are separated)
- monotonicity property for f_{0} and g w.r.t. μ

$$
\int_{\mathbb{R}^{d}}\left(h(x, \mu)-h\left(x, \mu^{\prime}\right)\right) d\left(\mu-\mu^{\prime}\right)(x) \geq 0, \quad h=f_{0}, g
$$

Master equation in linear case

- Forget forward-backward and consider the decoupled case

$$
d X_{t}^{\star}=b\left(X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star}\right)\right) d t+d W_{t}, \quad X_{0}^{\star}=X_{0}
$$

- choose $\sigma=$ Id for simplicity
- Analogue with the master equation?
- notice that $\mathcal{L}\left(X_{t}^{\star}\right)$ only depends on $\mathcal{L}\left(X_{0}\right)$
- define the semi-group

$$
\left(P_{t} \phi\right)\left(\mathcal{L}\left(X_{0}\right)\right)=\phi\left(\mathcal{L}\left(X_{t}^{\star}\right)\right), \quad t \in[0, T], \quad \phi: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}
$$

- dynamics of $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \ni \mu \mapsto P_{t} \phi(\mu)$?
- Shape of the master equation

$$
\begin{aligned}
& \partial_{t}\left(P_{t} \phi\right)(\mu)-\int_{\mathbb{R}^{d}} b(v, \mu) \cdot \partial_{\mu}\left(P_{t} \phi\right)(\mu)(v) d \mu(v) \\
& \quad-\frac{1}{2} \int_{\mathbb{R}^{d}} \operatorname{Trace}\left(\partial_{v} \partial_{\mu}\left(P_{t} \phi\right)(\mu)(v)\right) d \mu(v)=0, \quad\left(P_{0} \phi\right)(\mu)=\phi(\mu)
\end{aligned}
$$

Derivative of the semi-group of a MKV SDE

- Regularity of $P_{t} \phi$ when ϕ is smooth \leadsto investigate smoothness of the flow of the MKV SDE
- Lift of $\phi \leadsto \hat{\phi}: L^{2}\left(\Omega, \mathcal{A}, \mathbb{P} ; \mathbb{R}^{d}\right) \ni X \mapsto \hat{\phi}(X)=\phi(\mathcal{L}(X))$

$$
\circ P_{t} \phi\left(\mathcal{L}\left(X_{0}\right)\right)=\hat{\phi}\left(X_{t}^{\star}\right)
$$

- Perturbation of X_{0} in direction $\zeta \in L^{2}$

$$
\circ X_{0}^{\varepsilon}=X_{0}+\varepsilon \zeta \leadsto\left(X_{t}^{\star, \varepsilon}\right)_{0 \leq t \leq T} \Rightarrow \partial_{\zeta} X_{t}^{\star}=\left.\frac{d X_{t}^{\star, \varepsilon}}{d \varepsilon}\right|_{\varepsilon=0}
$$

- Derivative of $P_{t} \phi$ reads

$$
\mathbb{E}\left[\left\langle\partial_{\mu}\left(P_{t} \phi\right)\left(\mathcal{L}\left(X_{0}\right)\right)\left(X_{0}\right), \zeta\right\rangle\right]=\mathbb{E}\left[\left\langle\partial_{\mu} \phi\left(\mathcal{L}\left(X_{t}^{\star}\right)\right)\left(X_{t}^{\star}\right), \partial_{\zeta} X_{t}^{\star}\right\rangle\right]
$$

- get the estimate

$$
\begin{aligned}
& \underbrace{\mathbb{E}\left[\left|\partial_{\mu}\left(P_{t} \phi\right)\left(\mathcal{L}\left(X_{0}\right)\right)\left(X_{0}\right)\right|^{2}\right]^{1 / 2}}_{\text {derivative of semigroup at } \mathcal{L}\left(X_{0}\right)} \\
& \leq \underbrace{\mathbb{E}\left[\left|\partial_{\mu} \phi\left(\mathcal{L}\left(X_{t}^{\star}\right)\right)\left(X_{t}^{\star}\right)\right|^{2}\right]^{1 / 2}}_{\text {derivative of } \phi \text { along SDE }} \underbrace{\sup _{\zeta: \mathbb{E}\left[\zeta \zeta^{2}\right] \leq 1} \mathbb{E}\left[\left|\partial_{\zeta} X_{t}^{\star}\right|^{2}\right]^{1 / 2}}_{L^{2} \text { flow of SDE }}
\end{aligned}
$$

Derivative of the flow of MKV SDE

- Recall MKV dynamics

$$
d X_{t}^{\star}=b\left(X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star}\right)\right) d t+d W_{t}, \quad X_{0}^{\star}=X_{0}
$$

- Dynamics of $\partial_{\zeta} X^{\star}$

$$
\begin{aligned}
d \partial_{\zeta} X_{t}^{\star}= & \partial_{x} b\left(X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star}\right)\right) \partial_{\zeta} X_{t}^{\star} d t \\
& +\hat{\mathbb{E}}\left[\partial_{\mu} b\left(X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star}\right)\right)\left(\hat{X}_{t}^{\star}\right) \partial_{\zeta} \hat{X}_{t}^{\star}\right] d t, \quad \partial_{\zeta} X_{0}^{\star}=\zeta
\end{aligned}
$$

$\circ(\hat{\Omega}, \hat{\mathcal{A}}, \hat{\mathbb{P}})$ auxiliary space with copies of the r.v. \leadsto
McKean-Vlasov derivative system

- L^{2} estimate of $\mathbb{E}\left[\left|\partial_{\zeta} X_{t}^{\star}\right|^{2}\right]$

$$
\begin{aligned}
d \mathbb{E}\left[\left|\partial_{\zeta} X_{t}^{\star}\right|^{2}\right]= & 2 \mathbb{E}\left[\left\langle\partial_{\zeta} X_{t}^{\star}, \partial_{x} b\left(X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star}\right)\right) \partial_{\zeta} X_{t}^{\star}\right\rangle\right] d t \\
& +\mathbb{E} \hat{\mathbb{E}}\left[\left\langle\partial_{\zeta} X_{t}^{\star}, \partial_{\mu} b\left(X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star}\right)\right)\left(\hat{X}_{t}^{\star}\right) \partial_{\zeta} \hat{X}_{t}^{\star}\right\rangle\right] d t
\end{aligned}
$$

- deduce $\mathbb{E}\left[\left|\partial_{\zeta} X_{t}^{\star}\right|^{2}\right] \leq C \mathbb{E}\left[|\zeta|^{2}\right]$ with

$$
C=C\left(T, \sup _{x, \mu}\left|\partial_{x} b(x, \mu)\right|^{2}, \sup _{x, \mu} \int\left|\partial_{\mu} b(x, \mu)(v)\right|^{2} d \mu(v)\right)
$$

Higher-order derivatives

- Master equation \leadsto differentiate once again w.r.t. v

$$
(\mu, v) \mapsto \partial_{\mu} P_{t} \phi(\mu)(v)
$$

- Derivatives in the direction v / X_{0}
- freeze ζ and consider new perturbation $X_{0} \leadsto X_{0}^{\varepsilon}$
$\mathcal{L}\left(X_{0}^{\varepsilon}\right) \quad$ independent of $\quad \varepsilon \Rightarrow \mathcal{L}\left(X_{t}^{\star, \varepsilon}\right)$ independent of ε
- differentiate the formula for the derivative

$$
\begin{aligned}
\mathbb{E}[& {\left.\left[\partial_{\nu} \partial_{\mu}\left(P_{t} \phi\left(\mathcal{L}\left(X_{0}^{0}\right)\right)\right)\left(X_{0}^{0}\right),\left.\zeta \otimes \frac{d X_{0}^{\varepsilon}}{d \varepsilon}\right|_{\mid \varepsilon=0}\right\rangle\right] } \\
=\mathbb{E} & {\left[\left\langle\partial_{\nu} \partial_{\mu} \phi\left(\mathcal{L}\left(X_{t}^{0, \star}\right)\right)\left(X_{t}^{0, \star}\right), \partial_{\zeta} X_{t}^{0, \star} \otimes \frac{d}{d \varepsilon}\right| \varepsilon=0\right.} \\
& \left.\left.X_{t}^{\varepsilon, \star}\right\rangle\right] \\
& +\mathbb{E}\left[\left\langle\partial_{\mu} \phi\left(\mathcal{L}\left(X_{t}^{0, \star}\right)\right)\left(X_{t}^{0, \star}\right), \frac{d}{d \varepsilon \mid \varepsilon=0} \partial_{\zeta} X_{t}^{\varepsilon, \star}\right\rangle\right]
\end{aligned}
$$

- example $X_{0}^{\varepsilon}=X_{0}+\delta\left(\cos (\varepsilon) Z+\sin (\varepsilon) Z^{\prime}\right)$
\circ with $\left(Z, Z^{\prime}\right) \sim \mathcal{N}(0,1)^{\otimes 2}$ and $\left(Z, Z^{\prime}\right)$ independent of X_{0}

Example in coupled case

- Linear-quadratic cost in $d=1$
- $b(x, \mu, \alpha)=\alpha, \quad f_{1}(x, \alpha)=\alpha^{2} / 2$
- g, f_{0} bounded, smooth and Lasry-Lions

$$
d X_{t}^{\star}=-\partial_{x} \mathcal{U}\left(t, X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star}\right)\right) d t+d B_{t}
$$

- Dynamics of $\partial_{\zeta} X^{\star}$

$$
\begin{aligned}
d \partial_{\zeta} X_{t}^{\star}= & -\partial_{x x}^{2} \mathcal{U}\left(X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star}\right), \cdot\right) \partial_{\zeta} X_{t}^{\star} d t \\
& -\hat{\mathbb{E}}\left[\partial_{\mu}\left(\partial_{x} \mathcal{U}\right)\left(t, X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star}\right)\right)\left(\hat{X}_{t}^{\star}\right) \partial_{\zeta} \hat{X}_{t}^{\star}\right] d t
\end{aligned}
$$

- $\partial_{x x}^{2} \mathcal{U}$ already estimated! (thanks to Laplace)
- Propagation of monotonicity

$$
\mathbb{E} \hat{\mathbb{E}}\left[\partial_{x}\left(\partial_{\mu} \mathcal{U}\right)\left(t, X_{t}^{\star}, \mathcal{L}\left(X_{t}^{\star}\right)\right)\left(\hat{X}_{t}^{\star}\right) \partial_{\zeta} \hat{X}_{t}^{\star} \partial_{\zeta} X_{t}^{\star}\right] \geq 0
$$

- Conclusion $\sim \mathbb{E}\left[\left|\partial_{\zeta} X_{t}^{\star}\right|^{2}\right] \leq C \mathbb{E}\left[|\zeta|^{2}\right]$
- gives a way to control derivative in $\mu \leadsto$ avoid any blow-up

Checking the monotonicity condition

- Lasry-Lions monotonicity condition (choose $d=1$)

$$
\int_{\mathbb{R}}\left(h\left(x, \mu^{\prime}\right)-h(x, \mu)\right) d\left(\mu^{\prime}-\mu\right)(x) \geq 0
$$

$$
\begin{aligned}
& \circ X \sim \mu \text { and } X^{\prime} \sim \mu^{\prime} \\
& \mathbb{E}\left[h\left(X^{\prime}, \mathcal{L}\left(X^{\prime}\right)\right)-h\left(X^{\prime}, \mathcal{L}(X)\right)-\left(h\left(X, \mathcal{L}\left(X^{\prime}\right)\right)-h(X, \mathcal{L}(X))\right)\right] \geq 0
\end{aligned}
$$

- Make a perturbation $X^{\prime}=X+\varepsilon Y$
- first step

$$
\mathbb{E} \hat{\mathbb{E}}\left[\partial_{\mu} h\left(X^{\prime}, \mathcal{L}(X)\right)(\hat{X}) \hat{Y}-\partial_{\mu} h(X, \mathcal{L}(X))(\hat{X}) \hat{Y}\right]+o(\varepsilon) \geq 0
$$

- need copies \hat{X} and \hat{Y} on another space
- second step

$$
\mathbb{E} \hat{\mathbb{E}}\left[\partial_{x} \partial_{\mu} h(X, \mathcal{L}(X))(\hat{X}) \hat{Y} Y\right] \geq 0
$$

Notes and complements

- Case with a common noise
- HJB and FP become stochastic PDEs
- but \mathcal{U} remains deterministic! decoupling field of a stochastic FBSDE in ∞ dimension
- Master equation with a common noise $\leadsto \rightarrow$ involves second-order derivatives in the direction of the measure \leadsto example

$$
\begin{aligned}
& \circ b(x, \mu, \alpha)=-x+b(m)+\alpha, m=\int x^{\prime} d \mu\left(x^{\prime}\right) \\
& \circ f(x, \mu, \alpha)=\frac{1}{2}\left[(x+f(m))^{2}+\alpha^{2}\right], g(x, \mu)=\frac{1}{2}(x+g(m))^{2}
\end{aligned}
$$

- Stochastic Pontryagin \leadsto strong solution if $Y_{t}=X_{t}+\chi_{t}$

$$
\begin{aligned}
& d m_{t}=\left(b\left(m_{t}\right)-2 m_{t}-\chi_{t}\right) d t+d W_{t}^{0}, \\
& d \chi_{t}=-(f+b)\left(m_{t}\right) d t+\zeta_{t} d W_{t}^{0}, \quad \chi_{T}=g\left(m_{T}\right)
\end{aligned}
$$

- $\partial_{x} \mathcal{U}\left(t, x, \mu_{t}\right)=x+v\left(t, m_{t}\right)$ with m_{t} mean of μ_{t}

$$
\partial_{t} v(t, m)+\frac{1}{2} \partial_{m m}^{2} v(t, m)+\partial_{m} v(t, m)(b(m)-2 m-v(t, m))+(f+b)(m)=0
$$

Part II. The convergence problem

Part II．The convergence problem

a．General prospect

Revisiting the N-player game

- Controlled dynamics (1d to simplify)

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t+\sigma\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d W_{t}^{i}
$$

- independent Brownian motion $\boldsymbol{W}^{1}, \ldots, \boldsymbol{W}^{N}$, progressively-measurable controls $\boldsymbol{\alpha}^{1}, \ldots, \boldsymbol{\alpha}^{N}$
- mean-field interaction $\leadsto \bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}$
- Cost functionals to player i

$$
J^{i}\left(\alpha^{1}, \ldots, \alpha^{N}\right)=\mathbb{E}\left[g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)+\int_{0}^{T} f\left(X_{s}^{i}, \bar{\mu}_{s}^{N}, \alpha_{s}^{i}\right) d s\right]
$$

\circ try to minimize \leadsto Nash equilibrium?

- Rigorous connection between Nash equilibria with N players and MFG?

Two roads for making the connection

- Prove the convergence of the Nash equilibria as N tends to ∞
- difficulty \leadsto no uniform smoothness on the optimal feedback function $\alpha^{\star, N}$ w.r.t to N

$$
\underbrace{\alpha_{t}^{\star, i, N}}_{\text {optimal control to player } i}=\alpha^{\star, N}(X_{t}^{i} ; \underbrace{X^{1}, \ldots, X^{i-1}, X^{i+1}, \ldots, X^{N}}_{\text {states of the others }})
$$

\leadsto no compactness on the feedback functions

- several attempts \leadsto weak compactness arguments on the control (notion of relaxed controls) for equilibria over open loop controls
- below \leadsto use the master equation
- Implement feedback function for MFG into finite player game
- limit setting \leadsto optimal control has the form

$$
\alpha_{t}^{\star}=\alpha^{\star}(X_{t}, \underbrace{\mu_{t}}_{\text {population at equilibrium }})
$$

\circ use $\alpha_{t}^{N}=\alpha^{\star}\left(X_{t}^{i}, \mu_{t}\right) \leadsto$ what about Nash?

Part II. The convergence problem

b. Convergence of the equilibria

Reminder

- Recall FBSDE associated with Markov loop

$$
\begin{aligned}
& d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha^{\star}\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, Z_{t}^{i, i} \sigma^{-1}\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right)\right) d t+\sigma\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d W_{t}^{i} \\
& d Y_{t}^{i}=-f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha^{\star}\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, Z_{t}^{i, i} \sigma^{-1}\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right)\right) d t+\sum_{j=1}^{N} Z_{t}^{i, j} d W_{t}^{j}
\end{aligned}
$$

with $Y_{T}^{i}=g\left(X_{T}^{i}, \mu_{T}^{N}\right)$ as terminal condition
$\circ \alpha^{\star}$ is the minimizing function of the Hamiltonian

$$
\alpha^{\star}(x, \mu, z)=\inf _{\alpha \in A} H(x, \mu, \alpha, z) \quad H(x, \mu, \alpha, z)=b(x, \mu, \alpha) \cdot z+f(x, \mu, z)
$$

- difficulty $Z_{t}^{i, i}=$

$\left(t, X_{t}^{1}, \ldots, X_{t}^{N}\right)$
derivative of x_{i} if i th value function
- Same assumption as for optimal control under non-degenerate σ (with A bounded) in 1st Lecture \leadsto existence and uniqueness
- again \leadsto no uniform control of $\partial_{x_{i}} u^{i, N}$

N-player game as a perturbation

- Idea is to use the master equation (if smooth solution)
- recall the meaning of Y and Z in the MFG

$$
Y_{t}=\mathcal{U}\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) \quad Z_{t}=\partial_{x} \mathcal{U}\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) \underbrace{\sigma\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right)}_{\text {choose } \sigma=\mathrm{Id}}
$$

- Perturbed version \leadsto go back to N-player game equilibrium

$$
\circ \text { FBSDE for } \begin{aligned}
& \mathcal{Y}_{t}^{i}=\mathcal{U}\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right) \\
& \mathcal{Z}_{t}^{i}=\partial_{x} \mathcal{U}\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)
\end{aligned} ?
$$

- Get it by applying Itô's formula to $\boldsymbol{Y}_{t}^{\star i}(d=1)$

$$
\begin{aligned}
& \partial_{x_{i}}\left[\mathcal{U}\left(t, x_{j}, \mu^{N, x}\right)\right]=\partial_{x} \mathcal{U}\left(t, x_{i}, \mu^{N, x}\right) \delta_{i}^{j}+\frac{1}{N} \partial_{\mu} \mathcal{U}\left(t, x_{j}, \mu^{N, x}\right)\left(x_{i}\right) \\
& \begin{array}{l}
\partial_{x_{i}}^{2}\left[\mathcal{U}\left(t, x, \mu^{N, x}\right)\right]=\partial_{x}^{2} \mathcal{U}\left(t, x_{i}, \mu^{N, x}\right) \delta_{i}^{j}+\frac{1}{N} \partial_{\nu} \partial_{\mu} \mathcal{U}\left(t, x_{j}, \mu^{N, x}\right)\left(x_{i}\right) \\
\circ \mu^{N, x}=N^{-1} \sum_{\ell=1}^{N} \delta_{x_{\ell}} \quad+O\left(N^{-1}\right) \delta_{i}^{j}+O\left(N^{-2}\right)
\end{array}
\end{aligned}
$$

Perturbed FBSDE

- Let

$$
\begin{array}{ll}
\alpha_{t}^{\star i, \infty}=\alpha^{\star}\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \mathcal{Z}_{t}^{i}\right) & \\
\text { artificial control } \\
\alpha_{t}^{\star i, N}=\alpha^{\star}\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, Z_{t}^{i, i}\right) & \\
\text { true control }
\end{array}
$$

- Itô expansion yields

$$
\begin{aligned}
& d \boldsymbol{y}_{t}^{i} \\
& =\left[b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, i, N}\right)-b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, i, \infty}\right)\right] \cdot \partial_{x} \mathcal{U}\left(t, X_{t}^{i}, \bar{\mu}^{N}\right) d t \\
& +\frac{1}{N} \sum_{j=1}^{N}\left[b\left(X_{t}^{j}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star j, N}\right)-b\left(X_{t}^{j}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, j, \infty}\right)\right] \cdot \partial_{\mu} \mathcal{U}\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\left(X_{t}^{j}\right) d t \\
& -f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, i, \infty}\right) d t+O\left(N^{-1}\right) d t \\
& +\mathcal{Z}_{t}^{\star, i} d W_{t}^{i}+\underbrace{\frac{1}{N} \sum_{j=1}^{N} \mathcal{Z}_{t}^{\star, i, j} d W_{t}^{j}}_{\text {bracket } \sim N^{-1}}
\end{aligned}
$$

- reminiscent of the expansion of $\left(Y_{t}^{i}\right)_{0 \leq t \leq T} \leadsto$ make the difference between both

Stability argument

- Difference between the two FBSDEs

$$
\begin{aligned}
& d\left(\mathcal{Y}_{t}^{i}-Y_{t}^{i}\right) \\
& =\left[b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star i,, N}\right)-b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, i, \infty}\right)\right] \partial_{x} \mathcal{U}\left(t, X_{t}^{i}, \bar{\mu}^{N}\right) d t \\
& +\frac{1}{N} \sum_{j=1}^{N}\left[b\left(X_{t}^{j}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, j, N}\right)-b\left(X_{t}^{j}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, j, \infty}\right)\right] \partial_{\mu} \mathcal{U}\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\left(X_{t}^{j}\right) d t \\
& -\left[f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, i, \infty}-f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, i, N}\right)\right] d t+O\left(N^{-1}\right) d t\right. \\
& +\left(\mathcal{Z}_{t}^{i}-Z_{t}^{i, i}\right) d W_{t}^{i}+\frac{1}{N} \sum_{j=1}^{N}\left(\mathcal{Z}_{t}^{i, j}-Z_{t}^{i, j}\right) d W_{t}^{j}
\end{aligned}
$$

- Lipschitz differences!

$$
\begin{aligned}
& \text { o recall }\left|\alpha^{\star i, i, \infty}-\alpha^{\star, i, N}\right| \leq C\left|\mathcal{Z}_{t}^{\star, i}-Z_{t}^{\star, i, i}\right| \\
& \text { o if }\left|\partial_{x} \mathcal{U}(t, x, \mu)\right| \leq C \text { and } \hat{\mathbb{E}}\left[\left|\partial_{\mu} \mathcal{U}(t, x, \mu)(\hat{X})\right|^{2}\right]^{1 / 2} \leq C \text { for } \hat{X} \sim \mu
\end{aligned}
$$

\circ use variation of Cauchy-Lipschitz \sim stability!

Conclusion

- Stability yields and symmetry

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\mathcal{Y}_{t}^{i}-Y_{t}^{i}\right|^{2}\right]+\mathbb{E} \int_{0}^{T}\left|\mathcal{Z}_{t}^{i}-Z_{t}^{i, i}\right|^{2} d t \underset{N \rightarrow \infty}{\longrightarrow} 0
$$

- Plug into the forward equation

$$
\begin{aligned}
d X_{t}^{i} & =b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha^{\star}\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, Z_{t}^{i, i}\right)\right) d t+d W_{t}^{i} \\
& \approx b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha^{\star}\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \partial_{x} \mathcal{U}\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right)\right) d t+d W_{t}^{i}
\end{aligned}
$$

- Recover the standard MKV setting!
- require $\partial_{x} \mathcal{U}$ to be Lipschitz
\circ then particles get independent in the limit with following dynamics

$$
d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t}\right), \alpha^{\star}\left(X_{t}, \mathcal{L}\left(X_{t}\right), \partial_{x} \mathcal{U}\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right)\right)\right) d t+d W_{t}
$$

- recover the dynamics of the MFG equilbrium

Part II. The convergence problem

c. Construction of quasi-equilibria

Implementing the limit optimal feedlback

- Shape of the optimal feed back in the limit MFG problem

$$
\alpha^{\star}\left(x, \mu_{t}^{\star}, \partial_{x} \mathcal{U}\left(t, x, \mu_{t}^{\star}\right)\right)
$$

- α^{\star} minimizes the Hamiltonian
- μ_{t}^{\star} is the law of the population at time when in equilibrium
- $\partial_{x} \mathcal{U}\left(t, x, \mu_{t}^{\star}\right)$ matches $\partial_{x} U^{\mu^{\star}}(t, x)$ where $U^{\mu^{\star}}$ is the value function in environment $\boldsymbol{\mu}^{\star}$
\circ under same assumptions as in Lecture $1 \leadsto \partial_{x} U^{\mu^{\star}}(t, \cdot)$ is Lipschitz continuous in x
- Go back to the dynamics of the finite player system
- assume that σ is identity (for simplicity)

$$
d X_{t}^{i}=b\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha^{\star}\left(t, X_{t}^{i}, \mu_{t}^{\star}, \partial_{x} U^{\mu^{\star}}\left(t, X_{t}^{i}\right)\right)\right) d t+d W_{t}^{i}
$$

- compute first $\partial_{x} U^{\mu^{\star}}$ and μ^{\star} numerically and plug them!

Propagation of chaos

- N-player system

$$
d X_{t}^{i}=b\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha^{\star}\left(t, X_{t}^{i}, \partial_{x} U^{\mu^{\star}}\left(t, X_{t}^{i}\right), \mu_{t}^{\star}\right)\right) d t+d W_{t}^{i}
$$

- fits the framework of MKV SDE
- As N tends to ∞
- for k fixed

$$
\left(X_{t}^{1}, \ldots, X_{t}^{k}\right)_{0 \leq t \leq T} \underset{\mathcal{L}}{\longrightarrow} \mathcal{L}\left(\left(X_{t}^{\star}\right)_{0 \leq t \leq T}\right)^{\otimes k}
$$

- where $\left(X_{t}^{\star}\right)_{0 \leq t \leq T}$ optimal dynamics in the limit

$$
d X_{t}^{\star}=b\left(X_{t}^{\star}, \mu_{t}^{\star}, \alpha^{\star}\left(X_{t}^{\star}, \mu_{t}, \partial_{x} U^{\mu^{\star}}\left(t, X_{t}^{\star}\right)\right)\right) d t+d W_{t}
$$

- moreover, for each $t \in[0, T], \bar{\mu}_{t}^{N} \underset{\mathcal{L}}{\longrightarrow} \mu_{t}^{\star}$

Quasi-Nash property

- Notations
- $\alpha_{t}^{i}=\alpha^{\star}\left(t, X_{t}^{i}, \partial_{x} U^{\mu^{\star}}\left(t, X_{t}^{i}\right), \mu_{t}^{\star}\right)$ controls taken from the limit feedback function
- call J^{\star} the optimal cost in the MFG setting
- under assumptions used throughout the lectures

$$
J\left(\alpha^{1}, \ldots, \alpha^{N}\right) \underset{N \rightarrow \infty}{\longrightarrow} J^{\star}
$$

- Check that $\left(\boldsymbol{\alpha}^{1}, \ldots, \boldsymbol{\alpha}^{N}\right)$ forms a quasi-Nash equilibrium
- change $\boldsymbol{\alpha}^{1}$ into $\boldsymbol{\beta}^{1}$ and freeze the others (Nash over open loop)
- $\exists N_{0}$ s.t. for $N \geq N_{0}, A>0, \exists C$ s.t.

$$
\mathbb{E} \int_{0}^{T}\left|\beta_{t}^{1}\right|^{2} d t \geq C \Rightarrow J^{1}\left(\beta^{1}, \alpha^{2}, \ldots, \alpha^{N}\right) \geq J^{\star}+A
$$

- for $A>0, \exists\left(\varepsilon_{N}\right)_{N \geq 1} \downarrow 0$ s.t. 0 , such that

$$
\mathbb{E} \int_{0}^{T}\left|\beta_{t}^{1}\right|^{2} d t \leq A \Rightarrow \begin{aligned}
& J^{1}\left(\beta^{1}, \alpha^{2}, \ldots, \alpha^{N}\right) \geq J^{\star}-\varepsilon_{N} \\
& J^{i}\left(\beta^{1}, \alpha^{2}, \ldots, \alpha^{N}\right) \geq J^{\star}-\varepsilon_{N}, \quad 2 \leq i \leq N
\end{aligned}
$$

