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Conclusions I

• For the ground state energy and density there is an exact
mapping between the many body system and a fictitious non-
interacting system.

- DFT-people study the fictitious system !

• The fictitious system is subject to an unknown potential derived
from the exchange-correlation functional

• The energy functional may be approximated as a local function
of the density !



Density Functional Theory II

• Why does the LDA work ?
• The exchange correlation hole
• Comparison with exact exchange and correlation energy

densities
• Generalised gradient approximations – GGA’s
• Semi-local interactions: Meta-GGA’s
• Hybrid-exchange functionals
• Performance in molecules and solids



The Local Density Approximation - LDA
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Picture courtesy of Andreas Savin



The Exchange-Correlation Hole

The pair density determines the total energy – does the LDA
reproduce the pair density ?

The exchange correlation hole is the conditional probability – the
probability of finding an electron at r2 given that these is an
electron at r1

( )
)(

)(
,

),( 2
212

21 r
r

rr
rr

1

ρ
ρ

−=
P

Pxc

It is the hole the electron at r1 digs for itself in the surrounding
density.



Exact Properties of Pxc

There are a number of properties which will be satisfied by the
exact exchange correlation hole. For instance it should normalise
to exactly one electron:
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Both the LDA and Hartree-Fock theory satisfy this sum-rule.



Pxc is very poorly estimated in the LDA ?

Gunnarsson et. al.  1979



How can Vee be reasonable if Pxc is wrong ?

The Coulomb operator depends only on u= r1-r2 ….
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So V ee depends only on the spherical average of the pair density,
P(u)



The Spherical Average of Pxc

The LDA works in part because it generates a reasonable estimate of
the spherical average – despite being a poor approximation to the
pair density

Gunnarsson et. al.  1979



The LDA energy densities in direct space ?

The difference between the exact (V-QMC) and LDA energy
density in bulk silicon (au)

Exchange Correlation

Hood et al PRB 57 8972 ’98



Why does the LDA work ?

• Exact properties of the xc-hole maintained

• The electron-electron interaction depends only on the spherical
average of the xc-hole – this is reasonably well reproduced

• The errors in the exchange and correlation energy densities tend
to cancel

Improving on the LDA is non-trivial.



Why not Hartree Fock Exchange + Ec[ρ]  ?

The semi-local component of HF-exchange is excellent.
The non-local part is often very poor (eg: metals).
The correlation correction to HF is mostly trying to fix this.
So, Treat XC together, locally = >  LDA

The xc-hole in H2 at a
large bond length

HF‘exact’ x-LDA

P(r1,r2)/ ρ (r1)ρ (r2)

r =

Ec <  Ex ; error less important?

Picture courtesy of Andreas Savin
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Role of GGA
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Families of Approximations to Exc[ρ]

LDA
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GGA (generalized gradient approximation)
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meta-GGA
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Hybrid Functionals – the best of both worlds !!

Exact Exchange VHF(r1, r2)

LDA VLDA(ρ(r))

GGA VGGA(ρ(r),∇ρ (r))

B3LYP(exchange) 20% VHF +  58% VLDA +  22% VGGA

Becke 1993



Producing functionals

LDA from uniform electron gas calculations

Two broad philosophies:

Fit to known experimental data
• Examples: Becke, Pople, Scuseria, ...: ansatz(even

polynomial)+ parameters
—‘training’ set of molecules (some problems with transition metal

elements)

Use of exact properties
• Examples, Levy, Perdew,…

—not free of arbitrariness: ansatz



Performance of several functionals

From recent publications making comparisons between
LDA, GGAs, m-GGAs, and B3LYP:

• S. Kurth, J. P. Perdew, P. Blaha,
Int. J. Quantum. Chem 75 (1999) 889: atoms, molecules, crystals

• C. Adamo, M. Ernzerhof, G.E. Scuseria,
J. Chem. Phys. 112 (2000) 2643: larger set of molecules



Mnemonics !

light – 3hybridHybrid

light – 1mGGAPKZB

heavy – 21mGGAVS98

heavy – 18GGAHCTH

-GGAPBE

lightGGABLYP

-localLDA

parameterisationfamily



Atomisation Energies

3 (20)-Hybrid

5 (38)3%PKZB

3 (12)2%VS98

-3%HCTH

17 (51)7%PBE

5%BLYP

22%LDA

Adamo m.a.e (max) kcal/mol
G2 set of 148 molecules

Kurth  - m.r.e %
20 molecules



Structures

0.007 (0.062)-hybrid

0.019 (0.111)3%PKZB

0.008  (0.08)8%VS98

6%HCTH

0.011 (0.064)4%PBE

8%BLYP

5%LDA

Adamo m.a.e (Max) – Ang.
Bond lengths
23 molecules

Kurth  - m.r.e %
Unit cell volumes
12 crystals (incl. T-metals)

Is the molecular fit a good guide to performance in the solid ?



Vibrations – E’’

40 cm-1  (-209)-Hybrid

72 cm-1  (+ 144)9%PKZB

33 cm-1  (-109)29%VS98

20%HCTH

65 cm-1  (-194)10%PBE

22%BLYP

19%LDA

Adamo – Harmonic frequencies
m.a.e (cm-1) (Max)
55 molecules

Kurth  Bulk Moduli
- m.r.e %
12 crystals (incl. T-metals)



Conclusions II

• Approximations to DFT are currently the state of the art for
materials simulation but do not provide a systematic approach
to the exact result.

•  With a judicious choice of functional atomisation energies are
typically accurate to 3-5 kcal/mol, structures to  0.01 Ang.,
frequencies to 40-60 cm-1

• Much larger errors are possible in ‘difficult’ systems

• Heavily parameterised functionals gain a little for the training
set but appear to be less transferable

• Hybrid and meta-GGA look very promising.



Hybrid Functionals and Band Gaps

2.01.0FeS2

3.43.0TiO2

3.23.4ZnO

3.53.7ZnS

3.93.8NiO

3.83.6MnO

7.37.8MgO

3.43.3Cr2O3

8.5~ 9.0Al2O3

1.51.4GaAs

5.85.5Diamond

3.8~ 3.5Si

Hybrid (eV)Expt (eV)



The Band Structure of Silicon

Hybrid-DFT lines

GW theory o

QMC ¡

Expt ∇

J. Muscat, A. Wander, N.M. Harrison  Chem. Phys. Lett 2001.


