Density Functional Theory II

Nicholas M. Harrison

Department of Chemistry, Imperial College London, & Computational Materials Science, Daresbury Laboratory

nicholas.harrison@ic.ac.uk

Conclusions I

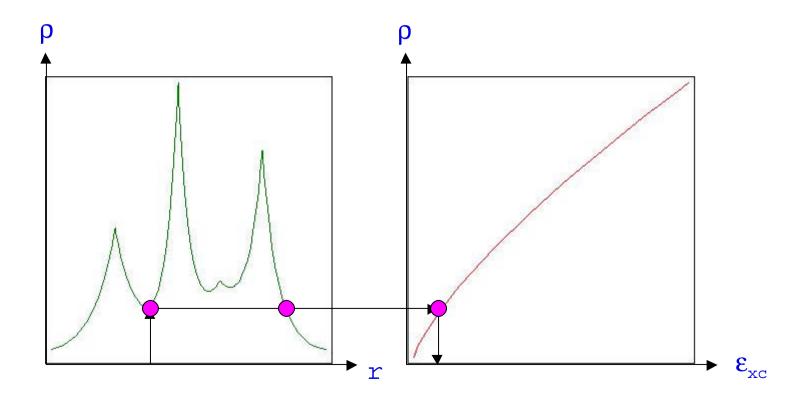
- For the ground state energy and density there is an exact mapping between the many body system and a fictitious non-interacting system.
 - DFT-people study the fictitious system!
- The fictitious system is subject to an unknown potential derived from the exchange-correlation functional
- The energy functional may be approximated as a local function of the density!

Density Functional Theory II

- Why does the LDA work?
- The exchange correlation hole
- Comparison with exact exchange and correlation energy densities
- Generalised gradient approximations GGA's
- Semi-local interactions: Meta-GGA's
- Hybrid-exchange functionals
- Performance in molecules and solids

The Local Density Approximation - LDA

$$E_{xc}^{LDA}[\mathbf{r}] = \int \mathbf{r}(\mathbf{r})\mathbf{e}_{xc}(\mathbf{r}(\mathbf{r}))d\mathbf{r}$$



Picture courtesy of Andreas Savin

The Exchange-Correlation Hole

The pair density determines the total energy – does the LDA reproduce the pair density ?

The exchange correlation hole is the conditional probability – the probability of finding an electron at r_2 given that these is an electron at r_1

$$P_{xc}(\mathbf{r}_1,\mathbf{r}_2) = \frac{P_2(\mathbf{r}_1,\mathbf{r}_2)}{\mathbf{r}(\mathbf{r}_1)} - \mathbf{r}(\mathbf{r}_2)$$

It is the hole the electron at r_1 digs for itself in the surrounding density.

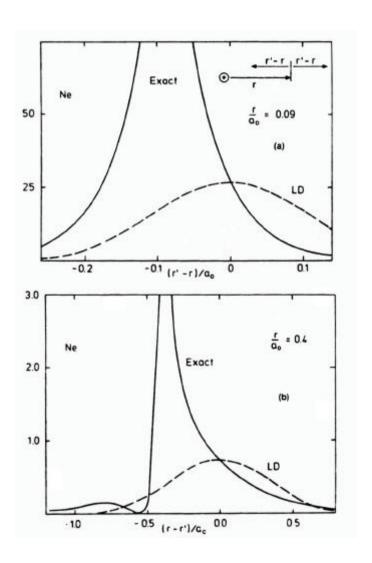
Exact Properties of P_{xc}

There are a number of properties which will be satisfied by the exact exchange correlation hole. For instance it should normalise to exactly one electron:

$$\int P_{xc}(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_2 = -1$$

Both the LDA and Hartree-Fock theory satisfy this sum-rule.

P_{xc} is very poorly estimated in the LDA?



How can V_{ee} be reasonable if P_{xc} is wrong?

$$E_{ee} = \frac{1}{2} \int \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} P_2(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$

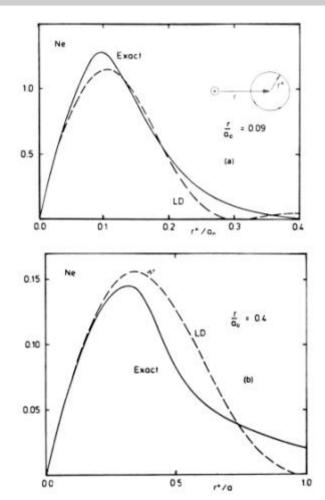
The Coulomb operator depends only on $\mathbf{u} = \mathbf{r_1} - \mathbf{r_2} \dots$

$$E_{ee} = \frac{1}{2} \int_0^\infty 4\mathbf{p} u^2 \cdot \left[\frac{\int P_2(\mathbf{r}_1, \mathbf{r}_1 + \mathbf{u}) d\mathbf{r}_1}{u} \frac{d\Omega_u}{4\mathbf{p}} \right] du$$

So V_{ee} depends only on the spherical average of the pair density, $P(\mathbf{u})$

$$.P(u) = \int P_2(\mathbf{r}_1, \mathbf{r}_1 + \mathbf{u}) d\mathbf{r}_1 \frac{d\Omega_u}{4\mathbf{p}}$$

The Spherical Average of P_{xc}



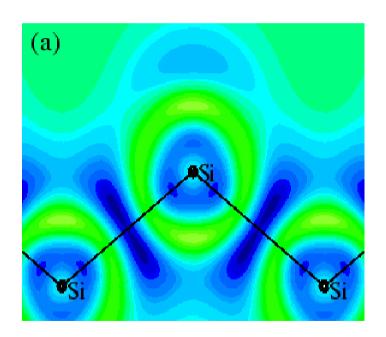
Gunnarsson et. al. 1979

The LDA works in part because it generates a reasonable estimate of the spherical average – despite being a poor approximation to the pair density

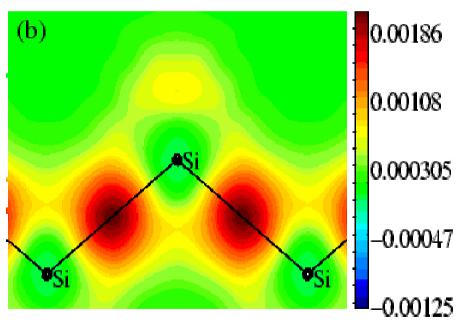
The LDA energy densities in direct space?

The difference between the exact (V-QMC) and LDA energy density in bulk silicon (au)

Exchange



Correlation



Why does the LDA work?

- Exact properties of the xc-hole maintained
- The electron-electron interaction depends only on the spherical average of the xc-hole this is reasonably well reproduced
- The errors in the exchange and correlation energy densities tend to cancel

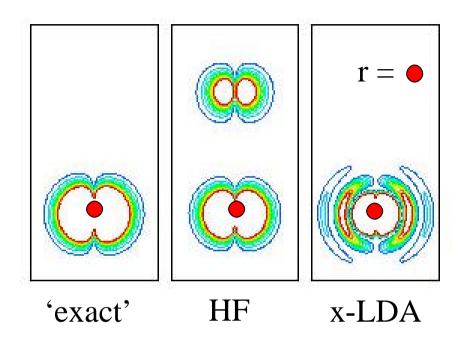
Improving on the LDA is non-trivial.

Why not Hartree Fock Exchange + $E_c[r]$?

The xc-hole in H₂ at a large bond length

$$P(r_1,r_2)/\rho(r_1)\rho(r_2)$$

 $E_c < E_x$; error less important?

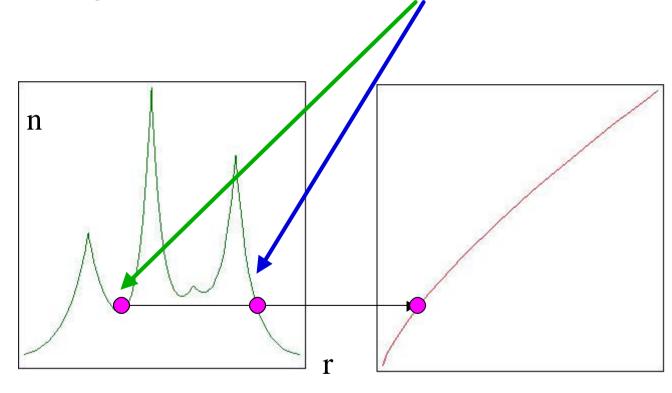


- The semi-local component of HF-exchange is excellent.
- The non-local part is often very poor (eg: metals).
- The correlation correction to HF is mostly trying to fix this.
- So, Treat XC together, locally = > LDA

Picture courtesy of Andreas Savin

Role of GGA

$$E_{xc}^{GGA}[\mathbf{r}] = \int \mathbf{r}(\mathbf{r}) \mathbf{e}_{xc}(\mathbf{r}(\mathbf{r}), |\nabla \mathbf{r}(\mathbf{r})|) d\mathbf{r}$$



Families of Approximations to $E_{xc}[r]$

$$E_{xc}(\mathbf{r}) = \int \mathbf{r}(\mathbf{r}) \mathbf{e}_{xc}(\mathbf{r}) d\mathbf{r}$$

LDA

$$e_{xc} = e_{xc}(r(r))$$

GGA (generalized gradient approximation)

$$\mathbf{e}_{xc} = \mathbf{e}_{xc}(\mathbf{r}(\mathbf{r}), |\nabla \mathbf{r}(\mathbf{r})|)$$

meta-GGA

$$\mathbf{e}_{xc} = \mathbf{e}_{xc}(\mathbf{r}(\mathbf{r}), |\nabla \mathbf{r}(\mathbf{r})|, \nabla^2 \mathbf{r}(\mathbf{r}), \sum_{i} |\nabla \mathbf{j}_{i}|^2)$$

Hybrid Functionals – the best of both worlds !!

Exact Exchange $V_{HF}(r_1, r_2)$

 $LDA \hspace{1cm} V_{LDA}(\rho(r))$

GGA $V_{GGA}(\rho(r), \nabla \rho(r))$

B3LYP(exchange) $20\% V_{HF} + 58\% V_{LDA} + 22\% V_{GGA}$

Becke 1993

Producing functionals

LDA from uniform electron gas calculations

Two broad philosophies:

Fit to known experimental data

- Examples: Becke, Pople, Scuseria, ...: ansatz(even polynomial)+ parameters
 - —'training' set of molecules (some problems with transition metal elements)

Use of exact properties

- Examples, Levy, Perdew,...
 - —not free of arbitrariness: ansatz

Performance of several functionals

From recent publications making comparisons between LDA, GGAs, m-GGAs, and B3LYP:

- S. Kurth, J. P. Perdew, P. Blaha, Int. J. Quantum. Chem 75 (1999) 889: atoms, molecules, crystals
- C. Adamo, M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 112 (2000) 2643: larger set of molecules

Mnemonics!

	family	parameterisation
LDA	local	-
BLYP	GGA	light
PBE	GGA	-
НСТН	GGA	heavy – 18
VS98	mGGA	heavy – 21
PKZB	mGGA	light – 1
Hybrid	hybrid	light – 3

Atomisation Energies

	Kurth - m.r.e %	Adamo m.a.e (max) kcal/mol
	20 molecules	G2 set of 148 molecules
LDA	22%	
BLYP	5%	
PBE	7%	17 (51)
НСТН	3%	_
VS98	2%	3 (12)
PKZB	3%	5 (38)
Hybrid	_	3 (20)

Structures

	Kurth - m.r.e %	Adamo m.a.e (Max) – Ang.
	Unit cell volumes	Bond lengths
	12 crystals (incl. T-metals)	23 molecules
LDA	5%	
BLYP	8%	
PBE	4%	0.011 (0.064)
НСТН	6%	
VS98	8%	0.008 (0.08)
PKZB	3%	0.019 (0.111)
hybrid	_	0.007 (0.062)

Is the molecular fit a good guide to performance in the solid?

Vibrations - E"

	Kurth Bulk Moduli	Adamo – Harmonic frequencies	
	- m.r.e %	m.a.e (cm ⁻¹) (Max)	
	12 crystals (incl. T-metals)	55 molecules	
LDA	19%		
BLYP	22%		
PBE	10%	65 cm ⁻¹ (-194)	
НСТН	20%		
VS98	29%	33 cm ⁻¹ (-109)	
PKZB	9%	72 cm ⁻¹ (+ 144)	
Hybrid	_	40 cm ⁻¹ (-209)	

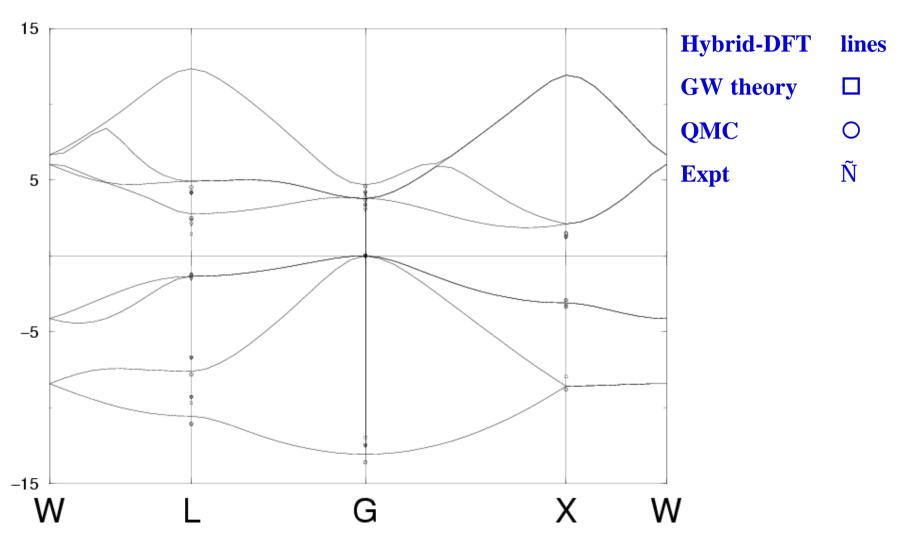
Conclusions II

- Approximations to DFT are currently the state of the art for materials simulation but do not provide a systematic approach to the exact result.
- With a judicious choice of functional atomisation energies are *typically* accurate to 3-5 kcal/mol, structures to 0.01 Ang., frequencies to 40-60 cm⁻¹
- Much larger errors are possible in 'difficult' systems
- Heavily parameterised functionals gain a little for the training set but appear to be less transferable
- Hybrid and meta-GGA look very promising.

Hybrid Functionals and Band Gaps

	Expt (eV)	Hybrid (eV)
Si	~ 3.5	3.8
Diamond	5.5	5.8
GaAs	1.4	1.5
ZnO	3.4	3.2
Al_2O_3	~ 9.0	8.5
Cr ₂ O ₃	3.3	3.4
MgO	7.8	7.3
MnO	3.6	3.8
NiO	3.8	3.9
TiO ₂	3.0	3.4
FeS ₂	1.0	2.0
ZnS	3.7	3.5

The Band Structure of Silicon



J. Muscat, A. Wander, N.M. Harrison Chem. Phys. Lett 2001.