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Hematite (α-Fe2O3) has several advantages as a photoanode material for solar water-splitting
photoelectrochemical (PEC) cells: it absorbs strongly in the visible region, with a bandgap of
~2.1 eV (590 nm); the valence band edge is appropriate for water oxidation;1 it is stable under
water photolysis conditions, and is formed from non-toxic, abundant and cheap materials.

However, efficiencies are thought to be limited by poor charge-transport properties,2 rapid
recombination3, 4 and slow charge transfer kinetics at the semiconductor-liquid junction.5

Positive applied potential is necessary to reduce the electron-hole recombination rate such
that water oxidation can occur,6 and because the conduction band edge is positive of the H+/H2

redox potential.1

We use transient absorption spectroscopy (TAS, a pump-probe technique) and transient
photocurrent (TPC) measurements of hematite photoanodes in a complete PEC cell to probe
photogenerated holes and electrons respectively.

Fig 1: schematic of PEC cell with 
hematite photoanode

Fig 2: schematic of transient absorption 
spectroscopy (TAS) of a photoelectrode in 
a complete PEC cell (0.1 M NaOH, pH 13)

Comparison of  transient photocurrent (e-) and transient absorption (h+) decays
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Fig 6: TPC decays (e-) overlaid on corresponding TA decays (h+) (355 nm EE excitation, APCVD Si-Fe2O3)

• Photogenerated electrons are monitored by transient photocurrent (TPC)

• TPC (e-) signals very similar to fast phase of transient absorption (h+) decay (Fig 6)

• Both TPC and fast phase of TA decay dominated by electron-hole recombination
→ transient absorption fast phase and TPC decays have the same shape

• Electron extraction and electron-hole recombination complete by ~20 ms
→ electron extraction >2 orders of magnitude faster than water oxidation

• Long-lived hole population (TA slow phase amplitude) limited by electron-hole
recombination8 at timescales <20 ms

• Significant recombination very likely occurs faster than the timescale of our TA
measurements (i.e. <1 μs), particularly at negative bias
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Correlation of  photogenerated hole population with photocurrent

Fig 3: TA decays of the photo-hole (EE 355 nm excitation, probed at 650 nm) as a 
function of applied bias for Si-doped APCVD hematite photoanodes (SEM7 inset)

Fig 4: Correlation of long-lived hole signal 
amplitude (at 100 ms) with photocurrent

Fig 5: Comparison of long-lived hole population with photo-
current at +0.4 VSSC for various different hematite photoanodes

• The photogenerated holes are monitored by transient absorption spectroscopy (TAS)

• Decay dynamics are strongly dependent on applied electrical bias (Fig 3)

• The fast phase of the TA photo-hole decay (1 µs – 20 ms) is associated with non-
geminate electron-hole recombination

• Increasing positive bias reduces the background electron density and increases band-
bending, so increasing hole lifetime

• The slow phase (>20 ms) of the TA photo-hole decay is associated with water oxidation

• Water oxidation occurs on a timescale of 100s ms to seconds on hematite
→ very long-lived holes required - positive applied bias necessary

• The timescale of water oxidation is independent of applied bias (Fig 3)

• There is a strong, quantitative correlation between the amplitude of the long-lived 
photo-hole signal and the photocurrent, as a function of applied bias (Fig 4)

• This correlation is general for different types of hematite (doped, undoped, 
nanostructured, solid; Fig 5), and also for nanoporous TiO2 – may be generally true for 
metal oxide photoanodes 
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Fig 7: TA h+ decay as a function of excitation intensity
(charge carrier density) at +0.4 VSSC . 

Inset: normalised slow phase TA decay.

• increasing excitation (charge carrier) density 
increases the TA fast phase decay rate

→ increases recombination rate

• Decay dynamics at two lowest excitation 
densities almost identical

→ approaching pseudo-first-order 
recombination

• water oxidation timescale is independent of 
hole density (excitation intensity; inset Fig 7)

→ RDS of water oxidation mechanism is a 
single-hole transfer step, to surface-bound or 
electrolyte water species, 
i.e. not concerted 4-hole oxidation mechanism
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Concluding remarks
• Charge carrier dynamics in hematite photoanodes are strongly 
dependent on electron density (controlled by bias and excitation intensity)

• Electron-hole recombination and electron extraction occur significantly 
faster than water oxidation; the recombination rate increases with 
increasing electron density

• There is a strong, quantitative correlation between long-lived hole 
population and photocurrent – limited by electron-hole recombination

• water oxidation timescale is independent of hole density, indicating RDS 
is a single-hole transfer, not concerted 4-hole mechanism

• optimisation efforts should concentrate on reducing recombination 
and/or increasing  the rate of electron extraction to the external circuit


