Imperial College London

Photogenerated hole dynamics in α-Fe₂O₃ photoanodes for water splitting

EPSRC

Stephanie Pendlebury,¹ Monica Barroso,¹ Alex Cowan,¹ David Klug,¹ Junwang Tang,² James Durrant¹

¹Department of Chemistry, Imperial College London; ²Department of Chemical Engineering, University College London

email: stephanie.pendlebury08@ic.ac.uk; j.durrant@imperial.ac.uk

Introduction to Solar Hydrogen

Photoelectrochemical solar hydrogen generation, using a semiconductor photoelectrode such as Fe_2O_3 , TiO_2 , or WO_3 , has the potential to directly split water using sunlight, providing a renewable source of hydrogen. Such "solar hydrogen" could be used as a fuel for fuel cells, or as a feedstock . Ideally, the semiconductor should have $E_g > 1.23$ eV which straddles the H_2O/O_2 and H^+/H_2 redox potentials.

Transient Absorption Spectroscopy - probing photogenerated charge carriers

- TAS is a pump-probe technique:
- 1. Sample is irradiated with short, intense pulse of light ("pump"), e.g. a laser pulse, to excite electrons across the semiconductor band gap.
- Resultant changes in sample's optical density (ΔOD), caused by light absorption by photogenerated charge carriers, are observed by monitoring the transmission of a second, weaker light ("probe"), e.g. from a tungsten lamp

The resulting Δ OD transient signals allow the trapping, recombination and reaction of photogenerated charge carriers to be probed on timescales of picoseconds to seconds, depending on the TA system employed.

Iron Oxide - an Introduction

Although undoped Fe₂O₃ absorbs visible light, it has very low efficiency:

Hole scavengers - no effect on TA decays

UV-vis and IPCE

Fig 1: Absorption (red) and IPCE (green; SE illumination, at +0.4 V vs Ag/AgCI in 0.1M NaOH, equivalent to +1.4 V vs RHE) spectra for undoped APCVD α -Fe₂O₃ films.

Advantages:

- absorption spectrum well-matched to solar spectrum: absorption edge ~600 nm – can absorb 38% of sunlight, unlike TiO₂, which can only absorb 4% of sunlight¹
- $E_g = 2.0-2.2 \text{ eV} \text{optimal band gap for solar photolysis}^2$
- stable under photolysis conditions
- non-toxic, abundant and cheap

Disadvantages:

- narrow d-bands result in poor charge carrier mobilities and rapid charge carrier recombination,³ resulting in low photocurrent and poor efficiency
- slow surface kinetics⁴
- conduction band edge lies below H⁺/H₂ redox potential
- applied bias necessary for H₂-evolution

Fig 2: TA decays probed at 580 nm (excitation pulse: 337 nm, 0.19 mJ cm⁻², 2 Hz, SE illumination) for Fe_2O_3 in argon and with various hole-scavengers; decays probed at 900 nm are similarly unaffected by scavengers. Inset: TA spectrum in argon.

Discussion: Fe₂O₃ charge carrier dynamics dominated by bulk recombination

• Hole scavengers - such as methanol and iodide - are expected to be oxidised at the semiconductor surface, causing a reduction in the lifetime of transient decays in the region of the TA spectrum associated with absorption by trapped holes. This results in a change in shape of the TA spectrum.

• However, without applied bias, neither the Fe₂O₃ TA decay dynamics nor the TA spectrum change in the presence of hole-scavengers (Fig 2). This indicates that oxidation of scavengers at the Fe₂O₃ surface does not compete with charge recombination.

• Iron oxide is an n-type semiconductor with high donor density (10¹⁸-10²¹ cm⁻³, depending on preparation method), and is thought to have a very short hole diffusion length (2-4 nm; ~20 nm). It is possible that Fe₂O₃ charge carrier dynamics are dominated by bulk electron-hole recombination, due to iron oxide's high electron density.

Fig 3: TA decays of Fe_2O_3 under applied bias, probed at 580 nm and (inset) 900nm (excitation pulse: 355 nm, 0.19 mJ cm⁻² at Fe_2O_3 , SE illumination). 580 nm decay lifetime is increased from microsecond timescale at -0.1 V vs Ag/AgCl, to seconds timescale at +0.4 V. A much smaller increase in lifetime is seen at 900 nm.

Fig 4: Photocurrent/voltage curves for APCVD α -Fe₂O₃ in 0.1M NaOH (*vs* Ag/AgCI); dark current is negligible. Addition of methanol results in significant photocurrent increase from ~0.1 mA cm⁻² to 0.15 mA cm⁻², and cathodic shift of onset potential by ~100 mV. Inset: SEM image of APCVD Fe₂O₃ film showing nanostructure⁵

Fig 5: TA decays of Fe_2O_3 at +0.4 V vs Ag/AgCl in 0.1 M NaOH, probed at 580 nm (excitation pulse: 355 nm, 0.19 mJ cm⁻² at Fe_2O_3 , SE illumination). Without methanol, the TA decay has a lifetime on the seconds timescale; methanol causes attenuation of the lifetime to 100s of milliseconds.

Discussion: effect of applied bias

• Application of positive bias to Fe₂O₃ results in an increase in TA decay lifetime, particularly in the ~580 nm region (Fig 3), suggesting that this region of the TA spectrum may be due to absorption by trapped holes. Further evidence for this assignment is provided by the effect of methanol on the TA decay lifetime in this region (Fig 5).

• Under positive applied bias, addition of methanol to the electrolyte causes an attenuation of the lifetime of the TA decay probed at 580 nm (Fig 4), attributed to oxidation of methanol by trapped holes in Fe₂O₃. (There is no change in decay dynamics under negative applied bias.) This indicates that the timescale of methanol oxidation on nanostructured α-Fe₂O₃ is on the order of 100s milliseconds.

• Application of a positive bias to the Fe₂O₃ film lowers the Fermi level, reducing the occupancy of conduction band/trap states by electrons. This reduction in the electron density of the film decreases the rate of electron-hole recombination (as observed in dye-sensitised solar cells⁸), increasing the hole diffusion length and allowing oxidation of scavengers to become competitive with electron-hole recombination (Fig 6).

Fig 6: schematic representation of occupation of conduction band/trap states of Fe_2O_3 and the effect of applying a positive bias. This situation occurs either within the **depletion region** at the surface of the iron oxide nanoparticles, or - more likely - throughout the nanoparticles if the nanoparticle diameter is smaller than the width of the space-charge layer (i.e. **no band bending** occurs). Application of a positive bias lowers the Fermi level, reducing the occupation of electron-trap states and hence reducing the rate of electron-hole recombination.

Concluding remarks

 Iron oxide is dominated by bulk recombination, such that oxidation of scavengers at the surface does not compete with electron-hole recombination.

 Positive applied bias is necessary to reduce the electron density and so increase hole diffusion length, increasing the hole lifetime (probed at 580 nm) from a timescale of microseconds to seconds.

References

¹W.B. Ingler, S.U.M. Khan, *Intl. J. Hydrogen Energy* 2005 30 821-827
²O.K. Varghese, C.A. Grimes, *Sol. Energy Mater. Sol. Cells* 2008 92 274-28
³Y. Matsumoto, *J. Solid State Chem.* 1996 126 227-234
⁴M.P. Dare-Edwards *et al., Faraday Trans. I* 1983 79 2027-2041
⁵A. Kay *et al, JACS* 2006 128 15714-15721
⁶J. H. Kennedy, K. W. Frese, *J. Electrochem .Soc.*1978 125 709-714
⁷M. P. Dare-Edwards, J. B. Goodenough *et al, J. Chem. Soc. Faraday Trans.* 1983 79 2027-2041
⁸S. A. Haque, Y. Tachibana *et al, J. Phys. Chem. B* 2000 104 538-547

Acknowledgements

Leng Wenhua, Li Xiao'e, Piers Barnes and Stephen Dennison for helpful discussions. Also Michael Grätzel and Kevin Sivula At EPFL. Funding from EPSRC is gratefully acknowledged.