
• Pd(A)/WO3 is the superior photoanode material with regards to:

 Incident photon to current efficiency (IPCE)

 Photocurrent generation

 Onset of electrocatalytic water oxidation

5. Photoelectrochemical (PEC) performance

6. Faradaic efficiency (FE) increase with PdO

co-catalyst addition

1. Background and aims

WO3 50% Pd(A)/WO3 92%

• WO3 suffers from poor FE due to the prevalence of side reactions

• The impressive FE of Pd(A)/WO3 identifies water oxidation as the

origin of the increased photocurrents and PdO as an effective

oxygen evolution co-catalyst (OEC)

8. Summary
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3 . XPS reveals a near complete oxidation of 

Pd following annealing treatment

Pd(A)/WO3 Pd/WO3 
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4. Optical properties

• The broad absorption feature from red

wavelengths of the visible region to the

near-IR is assigned to W5+ states

associated with oxygen vacancies

• This feature is reduced in Pd(A)/WO3,

implying a reduction in the oxygen

vacancy concentration

7d

PdO is identified as a promising OEC that dramatically increases

photocurrent generation and oxygen evolution capabilities

In addition to improving water oxidation selectivity, PdO enhances the

driving forces for charge separation:

• Electron extraction rates to the external circuit are increased

• Holes are extracted to PdO for water oxidation

We suggest that PdO addition improves electron extraction properties

by creating a favourable oxygen vacancy concentration in WO3

• A renewable source of hydrogen fuel can be obtained directly from

sun-light driven photoelectrochemical (PEC) water splitting

• WO3 is a low-cost, abundant and stable photoanode material that

can be employed in the process

• The impact of Pd co-catalysts on the PEC water oxidation properties 

of WO3 photoanodes has not been studied previously – this work 

aims to synthesise nanostructured WO3, deposit Pd nanoparticles, 

and investigate the impact of Pd species on performance
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7. Electron extraction rates

Note: faster electron extraction reduces the opportunity for

recombination of charges and can enhance efficiency!

• Pd(A)/WO3 achieves faster electron extraction rates (7c and 7d),

which could be due to the reduced oxygen vacancy concentrations

identified from the UV-Vis spectra and the XPS quantification of W5+

Electron extraction in WO3 is limited by:

• Electron transport through the nanoneedles, instead of losses at the

interfaces (7a)

• Excess oxygen vacancy concentrations (7b)

• Electron extraction rates of WO3 annealed twice were measured to

exclude this as the sole cause of these improvements
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• Thin nanoneedle WO3 films were grown via

aerosol assisted chemical vapour deposition

(AA-CVD) as an up-scalable method, and

annealed to modulate the oxygen vacancy

concentration

• Pd nanoparticles were deposited in a second

AA-CVD step, to obtain Pd/WO3, with those

annealed post-Pd deposition labelled

Pd(A)/WO3

2. Materials synthesis

20 nm

TEM of Pd(A)/WO3

1 m

Side-on SEM of WO3
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