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Abstract

This study investigates computational tools to predict forward-arc
fan noise from aero-engines. Efficient computational procedures are
needed to model sound propagating in the intermediate zone between
the fan assembly and the intake surroundings, where boundary-element
methods can then propagate it to the ground level. A high-order
method that is able to fully simulate the intake geometry’s non-
axisymmetric nature, while remaining faster than traditional meth-
ods, is investigated.

Following a review of the literature, a code solving the linearised Euler
equations, using a time-domain finite difference scheme, is developed.
For the solid wall boundary condition, an immersed boundary tech-
nique designed for aeroacoustics, with a careful extrapolation of values
from the fluid, allows a regular Cartesian grid to be used in the whole
domain. A novel 3D formulation of this method, suitable for the
aeroacoustics problems considered, was developed, and the algorithm
is described in detail.

This scheme is first applied to a series of standard benchmark cases,
of increasing complexity, for validation purposes. Some more repres-
entative 3D inlet cases are then simulated: a simple model of the
JT15D bellmouth turbofan and an elliptic profile. Finally, the effect
of an asymmetric inlet geometry on modal propagation is investig-
ated. Comparisons are made with results from a 2D aeroacoustics
code, and from a traditional computational fluid dynamic scheme,
evaluating the benefit of using the current approach. It is shown that
a high-order scheme is more computationally efficient than low-order
techniques, by at least one order of magnitude. But the wall bound-
ary condition is shown to be excessively dissipative in 3D, and further
work is needed to improve its accuracy.
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Chapter 1

Introduction

1.1 Background

1.1.1 The place of noise in civil aviation

The last 50 years have seen a dramatic evolution of the civil aeronautical sector,

with a constant increase in air traffic all around the world, by a factor of more

than 20 since the sixties. In that time, airplane noise has changed from a source of

wonder to a nuisance [1], as the zones surrounding airports are densely populated,

and it is now a major concern for the aeronautics industry. In 1969 the USA in-

troduced the first set of aircraft noise regulations: Federal Aviation Regulations

part 36. This was followed by several international agreements under the Inter-

national Civil Aviation Organisation (ICAO), the most relevant currently being

ICAO Chapter 4, requiring high bypass ratio engines for all new aircrafts to be

certified from January 2006 [3]. Regulations are becoming increasingly stringent,

and local regulations, such as the ones in effect in the London airports, are often

more demanding.

In an industry where large time scales are involved to get a return on invest-

ment, any major civil aircraft design must be able to comply with regulations

over a long period of time. These constraints are of far-reaching strategic im-

portance: noise significantly restricted usage of the Concorde supersonic aircraft

in the USA, which led to an unexpectedly bad commercial performance. A 1997

European regulation on “hush-kits” (adapting older aircrafts to more demanding
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1. INTRODUCTION

noise regulations) led to a 5-year cross-atlantic trade dispute.

Since the mid-sixties, significant progress has been made, and noise produced

by aircraft engines has been reduced overall by around 20dB: a reduction of two

orders of magnitude in the radiated acoustic energy, and a fourfold reduction in

perceived noise. This reduction in individually emitted noise has compensated

the effect of the increase in traffic. However, trends indicate that this might cease

to be the case in the next 10 to 20 years if usage increases at the same rate and sig-

nificant progress is not made in the acoustic performance of modern aircraft. This

is why noise is today one of the main design considerations. Indeed, the point has

been reached where performance and economics need to be compromised in order

to comply with noise requirements [4]. However, in the future, concerns about

climate change may put the reduction of greenhouse effect-causing emissions to

the top of the environmental agenda [3].

Because of the nature of civil aviation, the aeronautics industry is of course

conservative and risk-averse, operating in a competitive environment demanding

high investment costs; therefore in the near- to mid-term there will probably not

be any revolutionary modifications of the current classic turbofan airplane engine

design. A radical re-thinking of the civilian aircraft, driven by sustainability

concerns [5] is for the long-term. Therefore a lot of effort will be concentrated on

relatively small modifications of the existing engine design.

1.1.2 The importance of fan noise

Noise emitted by civil aircrafts can be classified [1, 6] into external noise, caused

by the flow around the aircraft and the jet exhaust, and internal engine noise

radiating outside. In the latter category, sound mainly originates from the rotor

and stator blades in the different compressor and turbine stages, and from the

fuel combustion. Jet noise is mainly caused by turbulence occurring as the high-

speed exhaust flow mixes with the surrounding air [7], and by the shocks present

in under-expanded supercritical jets [8].

The dramatic progress in noise reduction described above has mostly been

due to a transition (driven by the need for fuel economy) from pure turbojet

engines to turbofans. In the latter, a large fan stage, powered by a highly efficient
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1.1 Background

compressor/turbine core, pushes a relatively slow and cold flow into a secondary

surrounding bypass duct. This allows the exhaust jet velocity to be reduced, for

the same thrust, which dramatically reduces the noise created by the exhaust jet,

whose intensity is mostly proportional to the 8th power of the flow velocity. The

noise from the fan does increase because of the additional loading, but is more

amenable to design techniques, whereas jet noise is difficult to reduce without

altering the exhaust speed [1, 7, 9].

This has led to a greater emphasis on the study of blade-related noise. In

modern engines this mainly comes from the large main fan, as it interacts with

various flow features and blocks a lot of the sound from the compressor and

turbine. It is now a dominant source of flyover noise in the critical takeoff and

approach flight phases, when the aircraft has a relatively slow speed [10, 11]. It

is also during those phases, when the airplane is the closest to the ground level,

that the impact of noise on the community is the most significant. Therefore

reducing fan noise is crucial for airplane certification [1]. Fig. 1.1 shows a diagram

representing the importance of the different noise sources in a modern engine.

Fan

CompressorCompressorCompressor

Fan

 Turbine and  Tu

ompressor        core compressorompressorompressor        core compressorompressorompressor        core compressorompressor

Core

Jet

Figure 1.1: Approximate diagram of the noise radiation patterns from a typical
modern high-bypass aeroengine [1].

Most of the noise generating mechanisms are now well-known [1, 10, 12]. A

typical fan noise spectrum consists of a broadband spectrum, on top of which

is found a succession of high-pitched discrete frequency components and their
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harmonics. The first part is called broadband noise, generated by internal tur-

bulence impinging on structures, and the latter is tone noise: this loud whine

is composed of frequencies which are multiples of the engine rotation frequency

(engine orders). Tyler and Sofrin [13] have identified this turbine noise as ori-

ginating from forward and backward interactions between rotor and stator blade

rows: the main fan and associated guiding vanes, and the internal compressor

and turbine. The propagation of the associated “spinning” modes in the inlet

ducts is very complex [9, 12].

When the fan blade tips are supersonic, shocks are produced. This creates a

sound spectrum rich in discrete frequencies, often called “Multiple Pure Tone”

noise. Furthermore, the complex interaction of these N-waves amplifies blade-

to-blade variability, which adds low engine order components to the pure-tone

ones: “buzz-saw” noise [14]. This high-amplitude, relatively low-frequency noise

is highly disturbing because it is poorly attenuated by the cabin walls and by the

atmosphere.

When the mean flow coming in the inlet is not circumferentially uniform,

distortion noise can also be produced. This may occur when wind is blowing on

the side of the engine, or if an intake droop is disturbing the inflow. The blades,

in their rotating frame of reference, perceive this perturbation periodically, which

can produce a low engine-order (and therefore low-frequency) sound.

“Lined” walls, porous surfaces with resonant cavities, can absorb a large part

of the generated noise spectrum through absorbtion and dissipation mechanisms,

as illustrated in Ref. [1]. They were one of the earliest features used to reduce

fan noise [6], and are now systematically found in commercial aeroengine inlets.

Their design and tuning is delicate, but their presence is critical to the sonic

performance of the engine. However, there are limits to this approach, and some

other recent fan noise reduction techniques, investigated at the NASA [10] and

in European programs devoted to aeroacoustics [4, 15], include:

Fan design: lowering the tip speed or modifying the blade shape can reduce

shock strength.

Wake management consists of ensuring that the flow immediately downstream
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of blades is as smooth as possible to avoid strong noise-generating turbu-

lence.

Optimising the number of blades/bypass vanes: the nature of the modes

generated by rotor/stator interaction is related to the number of blades [13].

By carefully adjusting their relative numbers, it is possible to control which

modes are generated.

Increasing the rotor/stator distance to make use of the natural decay of

wakes.

Using swept/leaned guide vanes as opposed to straight ones, can effectively

reduce interaction effects in some cases.

An inversely scarfed inlet: traditionally, engine inlets are scarfed so that the

upper lip is longer, for aerodynamical reasons. However, negatively-scarfed

intakes are being investigated: the extended lower lip is intended to reflect

most of the sound away from the ground.

Active control: this regroups all methods trying to cancel out sound by the

means of diverse actuators or generators, responding to the noise levels

through a carefully designed feedback chain.

It should be noted that many of these modifications involve complex, strongly

3-dimensional effects. More importantly, many are also strongly linked to aero-

dynamic or aeroelastic aspects of the engine design [16]: concerns such as blade

vibration and robustness, the power regime and efficiency of the engine, etc. For

example, a negatively scarfed inlet might cause inflow distortion, and might also

affect the wing’s lift or create drag.

Because of progress in materials and techniques, fan blades are getting lighter;

this means higher vibrations, and aeroelastic interactions with the acoustic and

unsteady flow when there is a match (in shape and frequency) between struc-

tural and acoustic modes. Vahdati et al. [17], and later Wu et al. [18], examined

the influence of inlet acoustics on the fan blades’ “flutter”, or self-excited vi-

brations. Both domains of expertise, aeroelasticity and aeroacoustics, are now

closely linked, while the requirements for quieter engines get at the same time
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more important and more difficult to meet. This challenge demands an integrated

design solution.

1.2 Problem statement

1.2.1 The need for computational models

Analytical solutions of acoustic equations are complex, even in the simplest

cases [19]. In most realistic situations, a solution is out of reach, unless some

strongly simplifying assumptions are made, and the effects of the underlying flow

are rarely taken into account. Özyörük [9] presents a review of early fan noise

modelling methods; for example, Nayfeh presented several models [6]. More

recently, the multi-scales propagation model for slowly varying ducts of Rien-

stra [20], or in the case of high frequencies, ray theory [21, 22], have been used

to study propagation inside the duct, and the diffraction at the lip, for relat-

ively simple geometries. Empirical methods are also widely used in the industry;

several examples in the current domain of interest can be found in the literat-

ure [12, 23]. But these simple models have their limits.

On the other hand, experiments on aeroengines are very costly and lengthy to

set up [9]. Therefore, it is important to develop predictive computational models

to simulate these phenomena, for use in the design phase. A computed solution

is known over the whole domain of study, compared to experiments that can only

give a limited set of measurement points. This allows a better understanding of

the physical mechanisms underpinning certain behaviours. For example, numer-

ical experiments by Tam and Kurbatskii [24] have precisely identified the mech-

anisms providing sound dissipation through vortex shedding in certain acoustic

liners.

1.2.2 Computational aeroacoustics

As aeroacoustics is a particular branch of fluid mechanics, it is theoretically pos-

sible to use a traditional Computational Fluid Dynamics (CFD) code to study

noise. In the last 30 years this area of research has matured, and very efficient
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and robust CFD methods have been developed, and validated for a variety of

applications [25]. To include the effect of turbulence in viscous fluids, a Dir-

ect Numerical Simulation (DNS) approach can be taken, or a less computation-

ally expensive modelling of turbulence through Large Eddy Simulation (LES) or

Reynolds-Averaged Navier-Stokes (RANS) approaches [25].

A typical example is the AU3D code: it can solve the RANS equations with

a second-order accurate finite volume formulation on hybrid (structured and un-

structured) grids. A mix of adaptive Jameson second and fourth order dissipation

combined with a pressure sensor prevents odd-even oscillation, while preserving

accuracy in the smooth regions and reverting to first order near shocks. It ad-

vances the solution in time using a second-order backwards implicit formulation,

with dual time-stepping [26–28].

The fan region is home to many strongly non-linear noise-generating phe-

nomena, where vorticity, turbulence, solid-fluid interaction, shear layers, viscous

effects, etc. play a large part. A traditional CFD, viscid or inviscid solver can,

in principle, model sound generated by these effects, and propagate it over a

short distance. Rumsey et al. [29] describe the use of a similar code, CFL3D, de-

veloped in the NASA Langley Research Center, to model tone noise in a realistic

3D ducted-fan aeroengine geometry.

As many researchers have pointed out [9, 30–33], and as will be explained in

Chapter 2, traditional CFD codes cannot cope well with the nature of sound

signals. This is because they employ low-order discretisation schemes, for their

relative ease of development and coding. These schemes also do not require

highly accurate boundary conditions, grid metrics, or expensive computations

at each discretisation point; they are quite robust and have effectively modelled

many fluid phenomena. But when it comes to propagating the generated sound

waves, it became apparent that, unless a very fine spatial resolution is used (at

prohibitive computational cost), or large wavelengths are studied [17], important

phase and amplitude errors appear. Often, the waves, already of low amplitude

relatively to the ambient flow, are numerically dissipated after a few wavelengths.

The disparity between the length scales of the problem and the short acoustic

wavelengths is also a major problem. This explains the considerable interest in

dedicated, efficient numerical methods, and the relatively recent emergence of the
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field of Computational Aero-Acoustics (CAA) [30].

Although general CAA principles and methods are now starting to be well-

established, there still is a need for efficient techniques to model sound scattering

from complex geometries, while still retaining a high order of accuracy. Over-

all, two main approaches can be found: using unstructured grids, or using a

structured body-fitted grid mapped to a regular computational domain. These

techniques and the related discretisation schemes will be reviewed in Chapter 2

and 3. Curved grids, and to a lesser extent unstructured grids, are problematic

to generate, of poor quality except in the simplest cases, and can be the source of

numerical instability and distortions. In the current work, an alternative struc-

tured approach will be investigated, using techniques that allow the use of regular,

uniform grid in the whole domain. This means that strongly non-uniform prob-

lems would be difficult to model, but in most of the domain a discretisation with

good isotropy and resolution characteristics, adapted to acoustics, will be used,

avoiding the meshing problems outlined above.

1.2.3 The mid-field domain

A traditional CFD method can be used in the internal region of the engine (as

shown in the centre of Fig. 1.2), to simulate the aerodynamic and aeroelastic

behaviour of the forward region of the engine. This includes the generation of

sound and its accurate propagation in this limited region, where a fine grid can

be used. On the other hand, integral methods, described in Section 2.1.3, can

take, as input, the sound on a certain surface and propagate it to the far-field

very efficiently; however, they do not model acoustic/aerodynamic interactions

or the effects of propagation through complex non-uniform mean flows [9, 34].

There is therefore a need for methods that propagate sound in the mid-field :

between the near-field where the sources of sound reside, and the zone where the

flow is uniform; it must be able to model the complex refraction and wavelength-

shifting effects caused by non-trivial flows in the transition zone between the

internal and the external regions of the engine, as represented in Fig. 1.2. Work

of this type has been done, for complex 3D situations, by Özyörük [9, 35, 36] and

Stanescu [37–39]. Also of note is the 2D model of Bréard [40], and early studies
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1.3 Scope and aims of the thesis

made by assuming an irrotational flow [41].

It might also be interesting to use the method developed for the mid-field

domain in the bypass duct zone downstream of the main fan and the stator vanes.

Noise propagation is affected by the complex flow, and the geometry is curved,

and non-axisymmetric because of the presence of obstacles like the support pylon.

  Bypass duct

  Bypass duct

Compressor

and turbine
  Mean Flow

Mid-Field

zone

Figure 1.2: Description of the mid-field region in a typical modern aeroengine.

1.3 Scope and aims of the thesis

This work originated in the need for developing an integrated computational

design tool, combining well-established aerodynamic and aeroelastic models with

acoustic prediction capabilities. Linking both of these aspects of the design of

modern aeroengines would shorten the long feedback process that is now necessary

given the preponderance of noise concerns.

It is necessary, in such a complex environment, to focus on certain aspects of

the noise problem. This study is concerned with the front half of the aeroengine,
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as aeroelastic design mainly deals with the blades of the large low-pressure fan

and of the first stages of the compressor. This domain was studied for example by

Özyörük [9] and Keith [22]. The paramount importance of fan noise in modern

engine design has been stressed in this chapter. It was decided to focus on tone

noise, as broadband noise is of smaller magnitude in most cases, and, by its nature,

is less suited to direct numerical simulation. Given the importance of N-waves

caused by supersonic fan rotation and the resulting buzz-saw noise, the methods

described should also be considered for their ability to model these phenomena.

In the context of noise certification, the most important flight phases are takeoff

and approach, because of the proximity to the affected communities. This means

that the airplane is at relatively low speed, and the mean flow on which the

sound propagates will be of low Mach number (M< 0.3) [11]. The propagation

of these acoustic signals should be designed to be run in parallel to the aero-

elastic/dynamic computations, which would then provide the sound source. This

hybrid approach would be well-suited to the problem, allowing the use of methods

adapted to each part of the problem [34].

The current work concentrates on efficient schemes which are needed to propag-

ate sound in the mid-field region. They must be able to handle the great differ-

ence in amplitude between these acoustic perturbation and the flow on which

they propagate. The influence of the latter is of great importance, in the zone

of interest, since the complex effect this has on sound propagation is the main

reason simple models cannot be used. Crucially, the method must provide a great

level of accuracy in the resolved sound waves, up to the limit of the computa-

tional zone, where integral methods can take over. At the same time it must

be able to be used in realistic situations, to solve complex engineering problems.

Therefore issues such as implementation and the computational resources used

are critical. Finally, the overall scheme, no matter how refined, must be faster

than what would be obtained by simply using a traditional CFD scheme with a

very fine resolution.

Fully asymmetric inlet geometries, such those found in modern aeroengines,

need to be modelled. Furthermore, as has been pointed out above, many of

the noise generation mechanisms (like distortion noise) are highly 3-dimensional

but cannot be modelled by the many efficient 2D models that exist already.
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Therefore, not only must the simulations be fully 3D, but an efficient way to

represent complex 3D wall surfaces must also be found. The methods developed

here might also be used for other problems with similar requirements.

Outline of the thesis

In Chapter 2, an appropriate set of equations to model the problem at hand is

presented, after having separated the acoustic part. The next step is to discretise

these equations both in space and time: a review of popular CAA schemes is

presented. A finite difference method is implemented, following the requirements

described above. The importance, for the correct resolution of acoustic waves,

of the scheme’s order of accuracy is investigated in detail. This is followed by

some notes on implementation and stability, and a quick overview of the correct

boundary conditions to be used with this scheme.

In Chapter 3, the need for an efficient way to model complex wall boundaries

in the context of CAA is described, preserving the high order of accuracy of the

solution. One of the main contributions of the current work is the development

of a novel systematic method to deal with 3D wall boundaries. The associated

algorithmic and computational issues are addressed.

In Chapter 4, a validation of the code against benchmark results is presented.

The basic model and computational scheme, in 2D and 3D, are first considered.

Then, the treatment of the wall boundary condition is investigated in detail, first

by replicating basic 2D test cases, and then by validating the new 3D approach

against a standard benchmark. It is found that the performance of the 3D method

is inferior to the 2D one. The effects of complex mean flows are studied in both

cases, but instability is observed in the presence of mean flows with important

Mach numbers.

In Chapter 5, some more complex situations, of the type commonly en-

countered in studies of aero-engine noise, are investigated. This includes asym-

metric situations. The current scheme performs efficiently overall, but some im-

portant dissipation is found to be present close to the wall boundary.

This outline is summarised in Fig. 1.3.
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Figure 1.3: Outline of the thesis.
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Chapter 2

Model and discretisation

In this chapter, a numerical model is chosen to efficiently solve the problem

described in Chapter 1: the complexity of time-accurate sound propagation over

arbitrary non-uniform flows must be represented in 3D. First, an appropriate set

of equations is considered to this effect, given some acceptable hypotheses. If the

acoustic part of the fluid behaviour is treated separately, it is then possible to

use dedicated numerical CAA techniques, a review of which is made. Spatial and

temporal discretisation schemes are considered, as well as their stability. In both

cases, the advantages of using high-order accurate formulations become apparent.

Because of their nature, particular attention must be devoted to the boundary

conditions of the problem. The treatment of wall boundaries is delicate in this

context, and will be investigated in more detail in Chapter 3.

2.1 Equations for acoustic perturbations

It is necessary to find a model for the mid-field propagation: between the near-

field where the sources of sound reside (close to the turbine blades and the fan),

and the zone where the flow is uniform (away from the engine). The objective is

to propagate the interaction tone sound, and possibly the N-waves of buzz-saw

noise, while including the complex effects caused by non-uniform flows in the

transition zone between the internal and the external regions of the engine.
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2.1.1 Partition of variables

Essentially, sound consists of the unsteady, propagating perturbations Q ′ of a

quasi-permanent fluid state Q0. The latter is often called the mean flow. The

unknowns are the density ρ, the velocity components u, v and w, and the pressure

p. The total solution Q is then separated as:

Q = Q0 + Q ′ (2.1)

Not only is this consistent with the intuitive definition above, but it allows

decoupling of the two behaviours, and treating each part with methods best

adapted to their intrinsic characteristics. The perturbations often have amplitude

of several orders of magnitude less than that of the mean flow quantities, so

considering them separately avoids rounding-off errors. This also means that a

linear approximation is made possible by neglecting terms of second order or

more in Q ′.

In cases of interest for aeroengine acoustic certification, the mean flow is

considered steady, and given as an input. This allows a hybrid system, with a

traditional CFD program computing the steady flow while the propagation of the

acoustic perturbations is computed separately by a CAA code [34].

2.1.2 Nature of the model

The generation of the sound is an area of research in its own right, separate

from the propagation. For the problem considered, sound is generated by the

complex, often non-linear, interaction phenomena around the fan region outlined

in Chapter 1. This can be given by a CFD program, solving the full viscous

equations in the near-field region. In this case, to obtain a total design solution,

the programs computing the source and the propagation should both run in par-

allel. This is why a time-domain implementation is chosen for the latter, as in

Özyörük’s work [9]; this treatment allows multiple modes and frequencies to be

considered at the same time. However, frequency-domain models can be very

useful to study the propagation of a single mode or frequency once it has been

isolated, and the effect of a specific inlet configuration. For example, see the study
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of Lan, Guo and Bréard [42]. Furthermore, the implementation of porous wall

boundary condition is much more straightforward in the frequency domain, as

described in Section 2.3.2. On the other hand, a time-domain formulation allows

for the possibility of a straightforward implementation of the full non-linear equa-

tions, for further extensions (see Section 2.1.4); although there has been recently

investigations into non-linear frequency-domain methods [40].

Ray theory provides a good model of high frequency sound propagation [21],

but implementing complex geometries is mathematically very complex [22]; fur-

thermore, most of the acoustic energy is contained in the lower harmonics [1, 9].

From now on, as in the majority of similar sound scattering or propagation

studies referenced therein, the perturbations Q ′ are assumed to behave in an

inviscid manner. It is possible to consider the effects of viscosity and temper-

ature gradients, but they are not important in most studies of scattering and

propagation (except for very long distances, when dissipation becomes appar-

ent). Viscous effects are fundamental in some of the noise generation mechanism,

especially from turbulence, like in jet noise studies [7, 43, 44] or broad-band noise

effects [1]. In small-scale studies of unsteady vortex-shedding or when unsteady

boundary layer effects are important, the viscous terms should be considered, as

in Refs. [45] and [24], but this will not be done here. The perturbation equations

can however take as input a fully viscous mean flow, without needing to change

them [46].

2.1.3 Formulation

The need for a complete model

Many of the existing methods used to predict forward noise propagation from

engine inlets use simplifying assumptions that will not capture the more complex

wave phenomena induced by the mean flow, aerodynamic/acoustic couplings, etc.

When the mean flow is perfectly still, and the acoustics are assumed linear,

inviscid and isentropic, the problem can be reduced to a traditional wave propaga-

tion problem [47, 48]. This is also true for a uniformly convective flow (constant

mean flow velocity ~v0 = [u0 v0 w0] everywhere), after an appropriate Galilean

coordinate transformation [9]. These equations are solved with Green’s functions,
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and an integral representation of the solution can be found, depending only on

the time history of the variables on a certain control surface. The sound field at

any distance is obtained from a very computationally efficient surface quadrat-

ure. This is the basis of the widely used integral or Boundary Element Methods

(BEM), of which Lyrintzis presents a review [34]. There are no dispersion or dis-

sipation errors introduced during the propagation and the accuracy only depends

on that of the source.

The Kirchhoff method, modified to allow for a moving control surface [49], is

often used to propagate sound to an arbitrary distance in the far-field (for ex-

ample see Özyörük [9, 36] and Rumsey [29]). The porous surface Ffowcs-Williams

Hawking method [50, 51], with the quadrupole source term neglected, is equival-

ent, but it might be preferable for reasons of reduced sensitivity to the quality and

linearity of the input solution. It is also less sensitive to vorticity disturbances,

and therefore well adapted to exhaust noise problems [52, 53].

In both cases the control surface must include all regions of sound generation,

non-linear behaviour, and inhomogeneous flow. The flow going in the inlet mouth

of a typical aero-engine is highly non-uniform, and aerodynamic/acoustic coup-

lings occur: refraction, wavelength modifications or more complex effects. These

phenomena are rarely taken into account by analytical or empirical models: it is

in those cases that a full computational assessment is most useful.

It is possible to include all these effects while still using the BEM approach: by

re-arranging the Navier-Stokes equations, a wave-type equation can be obtained,

with the noise generation and flow effects appearing as a source term. This is the

basis of the “acoustic analogies”, the equations of Lighthill and Lilley and their

modifications or simplifications [7, 54]. But a Green’s function is still assumed to

be found, so this approach can be only used in certain wall-bounded problems,

and only for simple mean flows. Lilley’s equation has the advantage of separating

the mean flow effects from the source term, but, as a third order differential

equation, it is difficult to solve numerically. These formulations are mostly used

to evaluate noise generated by turbulence.

Many early CAA studies used perturbed potential equations, which assume

that the mean flow is irrotational [41, 55]. But this limits the type of input flows

that may be used upstream of the fan. Redonnet [46] presents a comprehensive
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review of more elaborate perturbation equations based on Euler or Navier-Stokes

equations. In the light of the current study’s objectives, the non-conservative

Linearised Euler Equations (LEE) will be considered. They are well-suited to

the modelisation of the mid-field region [34].

The linearised Euler equations

The inviscid behaviour of small acoustic perturbations (Q ′) is considered in three

dimensions, on top of a stationary mean flow (Q0). Eq. (2.1) is introduced into

the non-conservative Euler equations, and all quadratic terms in Q ′ are neglected.

The equations are then arranged in a pseudo-conservative fashion, for reasons of

numerical stability [46], by introducing the pseudo-flux vectors E, F and G. The

following is obtained:
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ρ0

v0w
′

v0p
′ + γp0v

′





















, G =





















ρ0w
′ + ρ ′w0

w0u
′

w0v
′

w0w
′ +

p ′

ρ0

w0p
′ + γp0w

′





















(2.3)
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S represents a possible source term. H = 0 if the mean flow is uniform. Other-

wise [46, 56]:

H =



























0

u ′

(

∂u0

∂x
−∇~v0

)

+
1

(ρ0)2

(

ρ ′
∂p0

∂x
+ p ′

∂ρ0

∂x

)

v ′

(

∂v0

∂y
−∇~v0

)

+
1

(ρ0)2

(

ρ ′
∂p0

∂y
+ p ′

∂ρ0

∂y

)

w ′

(

∂w0

∂z
−∇~v0

)

+
1

(ρ0)2

(

ρ ′
∂p0

∂z
+ p ′

∂ρ0

∂z

)

(γ − 1)
[

p ′∇~v0 − ~v ′∇p0

]



























(2.4)

2.1.4 Possible extensions

Using conservative variables generally leads to more robust numerical schemes for

CFD [46]; however, the author has not encountered a study that directly proves

the necessity of such a formulation for the type of applications considered here.

Tam [57] notes that they should be used in cases of strong shocks to correctly

assess the shock’s velocity. In computational acoustics [30], the important met-

ric is the accuracy of the phase and amplitude of the propagated waves, and not

the numerical conservation of the variables. Furthermore, with a non-conservative

formulation, the equations are expressed in terms of the primitive variables (dens-

ity, velocity, pressure) [7, 33, 40, 52, 54]. This will allow a direct implementation

of the solid wall boundary condition using the pressure values (see Chapter 3).

The partition into mean flow and fluctuations does not imply that the per-

turbations are small; indeed some researchers have investigated equations where

the non-linear terms are retained. Morris et al. [58] described the “non-linear

disturbances equations”, and Long [59] derived a non-conservative formulation.

This treatment has many advantages over using the Euler equations for the total

variable Q: as described above, adapted methods can be used for each part, with

a much more efficient result. This is useful because sometimes the propagation

is non-linear: high sound pressure levels are often present in aero-engine inlets

(more than 160dB). In this case, the small perturbation assumption is not valid,

and wave-steepening effects can occur. This is the case for N-waves produced by

supersonic fan blade tips (and buzz-saw noise). Also, in cases where the mean
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flow is highly sheared (such as those found in the aft zone of the engine), neg-

lecting the non-linear effects can lead to instability [54], unless some of the LEE

terms are suppressed [52, 56].

A linear scheme is investigated here: this can represent a very good approx-

imation of the propagation of an N-wave if its amplitude has decayed sufficiently.

This depends on the point where the mid-field zone is set to start; usually half-

way up the inlet is satisfactory. This means neglecting the interaction of the

harmonic components of the wave as it progresses. It is probably overall much

less computationally expensive to extend the non-linear CFD region up to the

right point than to perform a full non-linear treatment of the propagation. Not

only must the non-linear terms be added to the equations, and conservative vari-

ables used, but also specific shock-capturing schemes are needed to handle the

discontinuities of the solution, as will be explained in Section 2.2.1.

2.2 Literature survey: spatial and temporal dis-

cretisation

The chosen set of acoustic equations must now be discretised, in order to solve it

numerically. The inefficiency of traditional CFD codes in propagating sound over

several wavelengths will be illustrated with a simple example in the following

pages. Using very fine grids with a traditional, low-order scheme, to obtain

the accuracy needed for acoustics computations, is impractical, so the choice of

integration scheme is really important. There is now a large body of work [30, 31,

33, 60, etc.] showing that high-order accurate discretisations capture the waves

much more accurately, for a lower overall computational effort.

Some commonly used methods will be reviewed. Several workshops on bench-

mark computational acoustics problems have provided a very interesting platform

for the direct comparison of different methods, and their resolution of several typ-

ical CAA problems [33, 60, 61].

Intuitively, using a low-order discretisation is equivalent to building a solution

with a piecewise linear function; this is badly suited to the oscillating nature of

acoustic signals. High-order methods use more elaborate representations, which
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are more appropriate for these problems, hence their efficiency. One problem

is that unless filtering or dissipative mechanisms are used, instability will occur

next to discontinuities because of the creation of spurious high-frequency waves.

This is similar to Gibb’s phenomenon, which occurs when trying to approximate

a discontinuous function with a truncated Fourier series [62].

2.2.1 Spatial discretisation

Overview

The crucial part of the numerical treatment resides in the spatial discretisation

of the equations. Many different methods are adapted for this purpose, and some

well-known methods have been re-designed specifically for CAA purposes. They

will be examined in this study, considering that a computationally economic 3-

dimensional method is needed, to replace low-order CFD schemes.

A good metric to characterise how efficient the scheme performs is the number

of Points-per-Wavelength (PPW ) required to propagate sound accurately over

several wavelengths, allowing a certain maximal error in phase (dispersion) and

amplitude (dissipation).

Rumsey et al. [29] refer to results indicating that the CFL3D code, from

NASA Langley Research Center, needs resolutions of around 25 PPW in each

spatial direction to propagate sound correctly in the near-field. This is typical

of traditional, low-order CFD codes, and even more would be needed to cover

longer distances. Lockard [63] shows that, to have less than 10% relative phase

and amplitude error, for a propagation over 20 wavelength, a second-order central

difference scheme needs 91PPW. He also points out that, for a given distance,

increasing the frequency leads to surprisingly large PPW requirements because it

represents a propagation of several more wavelengths, which requires even more

stringent criteria to avoid numerical errors.

A simple study of propagation using a low-order discretisation was made us-

ing the AU3D code described in Section 1.2.2. Originally designed to study

aero-elasticity in axial turbomachinery, it can model many viscous or inviscid

fluid mechanics problems, and has been used successfully in some low-frequency
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acoustic cases [17, 18]. A simple plane wave, of wavelength λ = 49 cm, is im-

posed at one end of a hexahedral 3D domain, of dimensions 10 m×1 m×1 m, to

propagate along the ~x axis in the negative direction. On half the domain (x from

0 to -5 m), the grid is fine, with uniform grid spacing along ~x of size ∆, and 15

grid-points in both the ~y and ~z directions. In the rest of the domain (x from -5 m

to -10 m), the grid becomes increasingly stretched in the x direction to prevent

artificial reflections, as shown in Fig. 2.1.
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Figure 2.1: 2D slice (constant z plane) of the grid used to model plane wave
propagation, shown here for the 10 PPW resolution.

The mean flow is considered at rest. A symmetric boundary condition is

imposed on all boundaries parallel to ~x, and the two other boundaries have 1-D

non-reflecting boundary conditions using a characteristics method, which allows

the imposition of an incoming wave at x = 0. It was decided, after numerical

tests, to use 150 time steps per oscillation period, and the computation was done

for 10 wave periods. The acoustic pressure p ′ = p− p0 is computed, for different

resolutions: a very fine grid with ∆ = 0.6 cm, which is nearly 82 PPW, then

∆ = 1.667 cm or around 30 PPW, and ∆ = 5 cm which represents 10 PPW. As
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with all following AU3D results, p ′ is non-dimensional, normalised by a reference

pressure of pref = 10000 Pascals. The resulting acoustic pressure, along the

centerline, is shown in Fig. 2.2, along with an exact solution.
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Figure 2.2: Plane wave computation with a low-order scheme.

The results very clearly show the strong numerical dissipation and dispersion

that arise when a coarse mesh is used. For 10 PPW the wave is very quickly

damped and becomes more than half a wavelength out of phase. Even when

the wave is not strongly dissipated (30 PPW), an increasing phase error appears

as the wave propagates (up to 6% of the wavelength): as Lockard pointed out,

dispersion errors are much more important than dissipation ones for low-order

discretisations [63]. Using even 30 PPW is impractical in demanding aeroacous-

tics cases, where the Helmholtz number ᾱ = αa = 2πa/λ can go up to 20 or more

(where a is a length scale of the problem, for example the duct radius, and α the

wavenumber).

It is therefore necessary to investigate more efficient methods for realistic CAA

computations. Typically, high-order methods permit using less than 10PPW, and

even with this resolution, large problems remain quite a challenge. When directly
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computing the noise generated by turbulence, for example from LES computa-

tions, a very high level of accuracy is needed to resolve the length-scales all the

way to the limits of the sub-grid model; this means typically a 7th order or more

scheme capable of resolving 4 PPW [64, 65]. But in this project, the objective is

to get overall more efficiency than a low-order scheme; a good compromise seems

to be around 7 to 10 PPW.

The order of accuracy can be raised by increasing the number of points used to

compute the derivative, or by using, in an implicit fashion, the values from neigh-

bouring points. Another approach is to construct the solution using more complex

and appropriate “test” functions. These methods introduce many mathematical,

algorithmic and numerical difficulties, and the resulting schemes are often less

robust than their low-order counterparts, so careful work is needed.

Commonly used schemes (as summarised in Fig. 2.3) will now be reviewed:

Explicit finite difference: this is the most straightforward formulation, based

on a truncated Taylor series. To extend the order of accuracy, more points are in-

cluded in the derivations stencil [25]. However, the resulting extended stencils can

be the source of many new algorithmic difficulties, near boundaries mostly. They

also prohibit the use of unstructured meshes. Those schemes will be described in

more detail below.

MacCormack schemes: integrate equations both in space and time using an

extended asymmetric stencil and a predictor-corrector method. High-order ac-

curate versions were used in early CAA applications [66], but they were found

to perform less well than some finite difference methods [67], and they are not

commonly used in recent CAA applications.

Compact scheme: an implicit finite difference scheme. The derivative at each

point is expressed proportionally to the derivatives on the immediately neigh-

bouring points [68]. After solving the resulting tridiagonal linear system, a very

accurate representation is obtained (even for resolutions as low as 4 PPW). Fur-

thermore, a 3-point stencil can be used, hence the name. This means that mesh-

ing techniques used with low-order schemes can be retained, and the algorithmic
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High Order
Discretisation
schemes for
CAA

High order
test function

"McCormack"
Predictor/corrector

Extended
stencil

E.N.O. schemes

Finite elements
method

Spectral elements
method

Finite Difference
methods

Optimised

GFD method

Implicit
methods

Compact
method

Optimised:

   DRP

Figure 2.3: Popular high-order accurate spatial discretisations for CAA. In grey,
chosen scheme for this study.
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difficulties associated with large stencils are avoided. This type of scheme has

been used with success to model downstream propagation in axisymmetric en-

gine noise problems [52]. However, inverting the tri-diagonal matrix comes at

a computational cost; Redonnet showed that using implicit finite difference is

2.5 times more costly, per spatial direction, than a similar explicit scheme, and

that, for a given frequency, the marginal gain in PPW used does not compensate

this [46]. So, in 3D cases, when the grid is not fixed but a specific wavelength

must be resolved, an explicit scheme will be more computationally efficient, and

should be used unless the problems introduced by large stencils are deemed to be

more important.

Essentially Non-Oscillating (ENO) methods: specifically designed to rep-

resent shocks and discontinuities accurately; by reverting to a low-order approx-

imation of the solution near them, while retaining a high-order accuracy in most

of the domain [69], they avoid the oscillations associated with other high-order

schemes. They have been specifically adapted for use in CAA [63, 70], and re-

cently, more accurate “weighted” formulations have been developed [71]; but

flux-splitting and an evaluation of the solution is required at each point in order

to build an appropriate reconstruction polynomial, and this will come at a certain

computational cost [30].

Finite or spectral elements: such elements are popular in CFD because they

lead to robust and compact schemes that can be used, with finite volume formula-

tions, to discretise complex geometries using unstructured grids [25]. It is possible

to obtain a high-order accuracy with such schemes by increasing the order of the

test functions inside each element. For example, wave envelope methods were

widely used in early CAA studies [9, 55, 72]. But implicit finite element methods

are computationally expensive to extend to 3D because of the quadrature process,

resulting in large matrices that are very costly to invert [9]. There is however

ongoing research on quadrature-free methods [73], and explicit methods such as

the discontinuous-Galerkin techniques are increasingly popular.

The spectral-element method supersedes traditional spectral methods, which

were only capable of handling simple geometries [37, 74]. Highly accurate acous-
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tic scattering computations are then possible [37, 38, 75]. Stanescu [39] uses a

parallelized spectral element code to compute the 3D scattering of tone noise

by an airplane’s engine inlet and wing. Difficulties with traditional tetrahedral-

based unstructured grids has led to the development of spectral/hp element meth-

ods [76].

Other methods: The GFD scheme is a recently developed method that uses

Green’s functions, local solutions of the wave equation, as test functions for the

discretisation [77]. By writing compatibility equations for all the points in the

domain, a unique solution is found. Because the test functions are so well adapted

to the problem, the resolution can be as low as 3 PPW. There is an ongoing

research effort to adapt this scheme for inlet wave propagation problems [78].

The CIP scheme [79], developed for convection problems, seems very adapted,

but its efficacy in a CAA context has not been evaluated yet.

Scheme choice

In this work, it was decided to assess the use of an explicit finite differ-

ence scheme. Computational efficiency is crucial, since the goal is to compute

propagation in the mid-field faster than low-order schemes with a very fine res-

olution. Compact and implicit finite element methods were excluded, as they

generally become relatively more expensive when extended to 3D. Finite differ-

ence schemes are associated with structured methods, and a uniform grid, with

good resolution characteristics, can be retained in the whole domain. In the next

chapter this approach will be explained in more detail, based on the fact that

grid quality considerations become crucial for high-order accurate CAA prob-

lems. Finite difference schemes appear efficient and versatile [33, 60], and it is

the main technique used for many complex, demanding 2D [8, 42, 54, 80] and 3D

models [7, 9, 35, 43, 53, 58].

The first derivative of a function f along the x axis is expressed, at a point

x0, as [25]:

∂f

∂x
(x0) ≃

1

∆x

3
∑

j=−3

ajf(x0 + j∆x) (2.5)
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for a 7-point stencil. The aj coefficients are determined through a Taylor ex-

pansion by specifying the order of the truncation error (in this case {aj} =

{− 1
60

, 3
20

,−3
4
, 0, 3

4
,− 3

20
, 1

60
}).

Finite-element treatment of fully 3D CAA problems can be computed more

easily thanks to parallel computation, for example see Ref. [39]. Finite difference

schemes can also be sped up in the same way: this was studied in detail by

Özyörük [9]. Morris and Shieh [81] computed a 3D scattering test problem using

the following method: the hexahedral domain is separated in “slices”, each of

which is assigned to a different processor. Both of these studies show that the

computations scale well with the number of processors.

Optimised finite difference

In the context of acoustic applications, it is more illuminating to examine the

wavenumber resolution characteristics of the scheme instead of focussing on the

order of the truncation error [31, 32, 46, 68]. A Fourier transform of Eq. (2.5) can

be used to show when the theoretical wavenumber α differs from the computed

one ᾱ [32]:

α ≃ −i

∆x

3
∑

j=−3

aj eijα∆x = ᾱ (2.6)

If the group velocity cg is not accurately resolved, then the waves will be

predicted to propagate at the wrong speed. This means that the slope dᾱ
dα

also

has to be very accurate [30]:

dᾱ

dα
=

M
∑

j=−N

jaj eijα∆x ≃ 1 (2.7)

A significant resolution gain can be obtained by designing the aj coefficients

for an optimal accuracy over a certain wavenumber range, by relaxing the order

constraint. More specifically, the widely-used “Dispersion-Relation Preserving”

(DRP) scheme [30, 32] is employed in this study. It is a 7-point stencil method,

optimised over a certain range, while only being formally 4th-order accurate in

terms of truncation error. The range is usually taken to be |α∆x| ≤ 1.1 after
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some researchers [57, 63] pointed out that the initial range of |α∆x| ≤ π/2 [32]

was too stringent. The resulting coefficients can be found in Ref. [30]. Resolutions

as low as 7 PPW can be used, while still obtaining a better representation of the

wavenumber than with a standard 9-point stencil, as can be seen on Fig. 2.4.

Using a similar but non-optimised scheme can lead to the need for 12 PPW [36],

which represents a large increase in computational cost, especially for large 3D

problems.
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Figure 2.4: Comparison of different finite difference schemes. — : exact solution,
· · ·: standard 4th order,−−−: 6th order, − · −: DRP scheme.

Because of its symmetric stencil, this finite difference scheme has no intrinsic

dissipation. But, as was pointed out earlier, near discontinuities of any kind,

spurious short waves, unresolved by the scheme, can appear and contaminate the

solution1: this leads to instability and a failure of the computation. This can be

controlled by adding dissipative terms that only suppress high-frequency waves:

what is called “artificial selective damping” [30]. This technique is effective, and

has been used in most applications of the DRP scheme. The amount of dissipa-

tion is controlled by a mesh Reynolds number R∆, as described in Section 2.2.4.

Tam and Shen [57] even used a modified, pressure-sensitive version to compute

1This is because the fourth order finite difference method assumes solutions that are at least
of class C4 (i.e. continuously differentiable 4 times). Alternatively, this can be seen as the
scheme failing to resolve high-frequency components of the solution.
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shocks [8] without resorting to a dedicated scheme such as the ENO. This suc-

cess points towards a possible computation of non-linear steepening or N-waves,

without the computational effort associated with shock-capturing methods.

Another approach is to modify the DRP scheme to make it inherently more

stable; for example: through a staggered-grid approach [82], or by upwinding [83].

Boundaries

The extended stencils cause problems near outer or wall boundaries, where they

cannot overrun. Instead of using smaller stencils, large 7-point, asymmetric shif-

ted stencils can be used in the boundary region [30]. For 7-point stencils, this

region is 3 mesh-point thick, as shown in Fig. 2.5. The following derivation

will show that this treatment is still high-order accurate, but introduces some

instability which will need to be suppressed.
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Figure 2.5: Representative shifted finite difference stencils in a corner region.

The numerical dispersion error is determined by the difference between the
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real group velocity cg = c0 of the waves, as given by the original equations, and

the effective computed one c̄g [30]. The latter is obtained from Eq. (2.7) as:

c̄g = c0
dᾱ

dα
(2.8)

After a time tp, this represents an error in position of δx = (c̄g − c0)tp. If a

wave is propagated for a distance of N grid points, the non-dimensional error on

the position δx is equal to :

δx =
δx

∆x
= N

(

ℜ
(

dᾱ

dα

)

− 1

)

= N

(

ℜ
(

M
∑

j=−N

jaj eijα∆x

)

− 1

)

(2.9)

A good criterion for the accuracy of numerical propagation would be that δx < 1

(one grid length), in a given wavenumber range.

The numerical error induced by the shifted stencils will be evaluated for a

simple 1D model of a wave reflecting off a wall, as represented in Fig. 2.6. For the

sake of this derivation, the reflection is considered perfect, as the wall boundary

condition will be considered in Chapter 3. Appropriately shifted stencils must be

used close to the wall, as in Fig. 2.5. δx is computed for a total propagation of

N grid points, with a wavenumber α = 2π/λ (case A). For comparison, the same

calculation is made using smaller, non-optimised stencils, which are shortened

instead of being shifted, using 4, 5 and 6 points (case B). It is also interesting

to compute, as reference, the numerical error for a free-field propagation over N

points, without any shifted stencils, for several schemes: the DRP first (case C),

then standard 4th (case D) and 2nd (case E) order schemes.

As can be seen in Figs. 2.7 and 2.8, and in Table 2.1, the accuracy remains

of high order for the wavenumber range of interest (α∆x < 1.0 which is 6 PPW

or more). δx remains under 1, which represents a dispersion error of less than

one grid-length, while the low order schemes introduce significant errors even for

large wavelengths. Using the smaller shifted stencils appears to lower the accuracy

close to the 4th order curve, and push δx over 1, which proves the importance of

using large shifted stencils. It is however clear that the shifted stencils introduce
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Figure 2.6: Schematic of shifted stencil accuracy derivation.

a higher error in the high wavenumber range (α∆x > 2.5), and this can lead

to numerical instability [84]. This instability comes from the asymmetric nature

of the shifted stencils, and indicates the need for increased artificial selective

damping next to the boundaries, to damp out the spurious short waves which are

created [30].

α N/λ δx: Case A Case B Case C Case D Case E
2π/7 6.43 0.53 1.39 0.14 4.25 16.94
2π/10 4.5 0.22 0.57 0.12 1.09 8.59
2π/15 3 0.02 0.14 0.04 0.22 3.89

Table 2.1: Non-dimensional dispersion error δx with N=45
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Figure 2.7: Non-dimensional dispersion error δx with N=20. Solid line: case A,
- ·· -: case B, - · -: case C, · · ·: case D, - - -: case E.
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Figure 2.8: Same as Fig. 2.7, with N=45.
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2.2 Literature survey: spatial and temporal discretisation

Inhomogeneous Grid

The finite difference scheme, in its basic form, requires a structured, uniform and

orthogonal Cartesian grid in the whole domain. Even disregarding the problem of

including wall boundaries, which will be discussed in Section 3.1.1, in some cases

a range of different length scales is present throughout the computational domain.

For example, when strong flow inhomogeneities are present, some areas will carry

shorter acoustic wavelengths because of local Doppler effects. There are also

strongly local viscous effects with boundary layers: using local grid refinements

would be very efficient. It is then possible to have patched zones of different

grid densities, while preserving a basic DRP scheme in each one of them by

using a multiple-size mesh/multiple time-step method as investigated by Tam

and Kurbatskii [85] and further by Berland [65]. It represents a very efficient

scheme, as the time-marching is adapted to the grid-length in each zone. These

issues will not be investigated in the current work, but it is worth noting that a

finite difference approach does not prevent from dealing with them.

2.2.2 Temporal discretisation

Using a spatial scheme results in a discretised equation of the form

∂Q ′

∂t
= F(Q ′) (2.10)

which needs to be advanced in time. The right-hand side vector F is often called

the “residual”. Here as well, a high level of accuracy is needed to efficiently rep-

resent the oscillatory nature of the acoustic signals. Except for the low-frequency

range [86], explicit methods are best suited to solve Eq. (2.10) because the time

step is restricted by accuracy, and not stability constraints, as will be explained

in the next section.

There are two main methods used in CAA, both described in detail in Ref. [46]:

Adams-Bashforth finite-difference type schemes, and the Runge-Kutta methods.

Both types of schemes have been optimised for acoustics applications, for max-

imum accuracy in the frequency domain, similar to what was done for the DRP

scheme.
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2. MODEL AND DISCRETISATION

The Optimised Adams-Bashforth (OAB) four levels time-marching scheme

was described by Tam and Webb [32]. It uses, at the time level n, the residual

values of the 3 preceding time steps:

Q ′n+1 = Q ′n + ∆t
3
∑

j=0

bj F(Q ′n−j) (2.11)

where ∆t is the time step chosen, and bj are the optimised coefficients. This

means that the three previous values of the residual need to be stored in memory.

A linearised version of the Runge-Kutta algorithm allows a low-storage imple-

mentation, while retaining its accuracy for linear problems. Hu et al. [87] designed

optimised versions of these algorithms: “Low-Dissipation and -Dispersion Runge-

Kutta” (LDDRK). If s is the number of Runge-Kutta stages, at each time step

the quantities

Kj = ∆t F(Q ′n + βj Kj−1) (2.12)

for j = {1 . . . s} are computed (with β1 = 0). The optimised {βj}j=2...s coefficients

can be found in Ref. [87]. Then the final step is:

Q ′n+1 = Q ′n + Ks (2.13)

In this study, s = 4 and s = 5 will be used. The unused Kj can be overwritten, so

only two levels of storage are needed. For large 3D problems this might provide

a significant gain. It should be noted that Stanescu [88] and Berland [65] have

studied similar schemes that retain their high accuracy for non-linear problems.

The LDDRK integration has greater stability, lower memory usage and higher

resolution than the modified Adams-Bashforth scheme, but needs s computations

of the equation residuals per time step, whereas the latter only needs one. So,

compared to the scheme above, this will a priori represent a gain in computational

time only if the greater stability and accuracy allow time steps more than s times

larger.
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2.2 Literature survey: spatial and temporal discretisation

2.2.3 Stability

In this subsection, both the temporal and spatial discretisation are combined. For

a uniform underlying flow, Redonnet [46] shows that once the scheme is space-

accurate and time-accurate, the overall solution is accurate and the evolution

of the variables in time will give the correct solution. In other words, if the

wavenumber and the frequency are well approximated, then the wave will be

correctly simulated.

The combinations of the optimised Adams-Bashforth and the LDDRK schemes

with the DRP scheme are studied respectively in Refs. [32] and [87]. A theoretical

study of their resolution of the simple one-dimensional wave equation is made:

this gives an indication of their performance and stability. For the whole range of

wavenumbers represented by the DRP scheme (α∆x < 1.65, cf. Fig. 2.4(a)) the

temporal integration is stable if the time step is smaller than a certain value ∆tst.

But in both cases, a smaller time step ∆tac is needed for an accurate evaluation

of the frequency for the range of wavenumbers resolved by the scheme (7 PPW

or more). ∆tac is calculated by allowing, for the first scheme, a maximum error

on the amplitude of 0.5dB for a propagation of 100 mesh spacings, and, for the

LDDRK, a 10−3 maximum relative error for phase and amplitude.

The computed values of those limits are presented in Table 2.2. M represents

the Mach number of the convective flow, if present. For the OAB scheme, the

derivation of Ref. [32] was modified to take into account the new wavenumber

optimisation range of ±1.1 (cf. Section 2.2.1). The limits of the LDDRK scheme

are given in Ref. [87] as function of the the Courant-Friedrichs-Lewy number

CFL= c(1 + M)∆t/∆x. To compare how effective the different schemes are, the

accuracy limit is divided by the number of stages s, which gives the number of

residual evaluations per time step.

It is clear that the accuracy constraint on the time step (∆t < ∆tac) is more

demanding than the stability constraint (∆t < ∆tst) [9]. The large time steps

allowed by implicit methods will not be needed, which justifies the choice of ex-

plicit time-marching. Furthermore, implicit methods have a larger computational

cost, and often introduce a large numerical distortion for large time-steps [9].

In theory, to resolve a given wavenumber, all other considerations being equal,
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2. MODEL AND DISCRETISATION

M Time integration Scheme ∆tst ∆tac ∆tac/s
0 Optimised A.-B. 0.17 0.1 0.1

4-stage LDDRK 1.73 0.73 0.18
5-stage LDDRK 2.15 1.16 0.232

0.5 Optimised A.-B. 0.13 0.06 0.06
4-stage LDDRK 1.15 0.49 0.12
5-stage LDDRK 1.43 0.77 0.154

Table 2.2: Maximum time steps, using the DRP spatial scheme, to have stability
and sufficiently low dispersion/dissipation.

the 4 stage Runge-Kutta scheme will be overall twice as effective as the OAB

scheme. But if the time-step is restricted, for any reason, below 4 times the

∆tac of the OAB scheme, using the LDDRK method leads to a higher overall

computational time, so it should not be used, unless the memory saving is a

more important consideration. In the following chapters, this is the case when

spurious, unresolved short waves contaminate the solution when the curved wall

boundary condition is used: smaller time steps are needed. Great care must be

taken to suppress those waves next to any discontinuity or sudden change.

2.2.4 Implementation

The variables are non-dimensionalised according to the following parameters:

length scale ∆x = ∆y = ∆z , time scale ∆x
c∞
0

, velocity scale c∞0 , pressure scale

ρ∞

0 c∞0
2, density scale ρ∞

0 . The ∞ symbol refers to upstream, undisturbed quant-

ities. This leads to identical LEE equations for the non-dimensional quantit-

ies [46]. From now on, unless specified otherwise, numerical results will refer to

the non-dimensional quantities.

The resulting LEE equations, Eqns. (2.2)–(2.4), are discretised using the DRP

spatial scheme, Eq. (2.5), on a uniform Cartesian grid. They are then integrated

in time using either of the explicit schemes described in Section 2.2.2: Eq. (2.11)

or Eqns. (2.12)–(2.13).

The artificial selective damping is implemented by modifying the residual

equation (2.10) at point l, for the spatial direction x, by adding a dissipative
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term [30]:

∂Ql
′

∂t
= F(Ql

′) − c∞
∆xR∆

3
∑

j=−3

dj Q ′

l+j (2.14)

with the artificial Reynolds number R∆ controlling the amount of dissipation. The

same is done for y and z. As Tam and Shen showed [57], although this is designed

to eliminate the spurious short waves, there will still be a small effect on the

frequencies of interest, and at length this might affect the quality of the solution

by adding some numerical dissipation and dispersion. Therefore the amount of

dissipation must be chosen as low as stability will allow. A low background

value (typically R∆ = 0.01) is used in the whole domain, adding a Gaussian

distribution (typically of amplitude R∆ = 0.15 and half-width 8) near the edge

of the computational domain [33, 60].

2.3 Boundary conditions

Boundary conditions are a very important aspect of CAA problems, because

they need to have the same high fidelity as the numerical schemes used to solve

the problem in the main domain [30, 68]. Additionally, any error or spurious

reflection will propagate in the main domain with little dissipation. There is

often no universal solution functioning in every case, although a large amount of

research is done in this area. The external boundaries must be able to let outgoing

waves exit the computational domain, and, because of the engine geometries being

studied, the modelling of solid walls and of the in-duct interface must also be

considered.

2.3.1 Sound radiation

It is particularly crucial to implement the Sommerfeld condition: outgoing wave

radiating towards infinity. Numerical simulations need to be run on a finite

domain, but the outer limits must be transparent to outgoing waves, as if the

domain extended to infinity. If wrongly expressed, artificial reflections occur at

the boundaries. In the case of finite element methods, infinite elements [38, 55] can

provide an appropriate boundary treatment. Otherwise, three main approaches
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2. MODEL AND DISCRETISATION

are found in the CAA literature [30]:

Characteristics analysis is a popular approach in traditional steady-state

CFD, rarely used in CAA investigations. It uses the propagational speed ei-

genvalues of the governing equations near the boundary (see Thompson [89] or

Giles [90]). In practice, it is seldom used in a fully 3-dimensional implementation,

and this can cause significant reflections when waves are not exactly normal to

the boundary [9, 30].

Absorbing boundary layers prevent reflections by damping out any wave

reaching the boundary. This can be done by stretching the grid in a “sponge

zone”, or by progressively reducing the order of the spatial discretisation (Redon-

net [46]). But this can create instability, and introduce low-frequency, parasite

waves. A suitable progressive damping can be introduced: Bogey [7]. Zhang [52]

implemented a similar “buffer zone”, using an explicit damping formulation, as

did Stanescu [37, 39].

Another method in this category is the Perfectly Matched Layer (PML) [91].

This method, developed for computational electrodynamics, consists of adding, in

the absorbtion zone, a dissipative term to the main equations after they have been

split along all spatial directions. It avoids reflections at the interface by matching

the eigensolutions in both domains. It has been used in many applications, for

example Ref. [43]. However, Tam et al. [92] among others have shown that

in certain cases in which the main flow is normal to the boundary, instability

phenomena can generate parasite waves. Particularly, inside a duct with non-

zero flow, the PML condition can actually amplify waves. There is an ongoing

research on how to transform the PML equations to obtain unconditional stability,

even for non-trivial mean flows [93].

Asymptotic boundary conditions: presented by Bayliss and Turkel [94],

and Tam and Webb [32], they assume that the boundaries are far enough from

all sources of sound (in the center of the domain) for an asymptotic form of the

equations to be used. They were later extended to non-homogeneous mean flows

by Tam and Dong [95]. It is also possible to formulate a non-linear version of the
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asymptotic conditions, as done by Tam and Shen [8].

They are fully three-dimensional, and were found to be efficient in many

applications [7, 9, 33, 35, 96] with less than a few percent reflections at most. They

come in two forms: “radiation” and “outflow”, with the former allowing acoustic

waves to exit, while the latter is found downstream of the mean flow in cases

where convected entropy and vorticity modes of excitation need to exit as well.

The 3D formulation of the radiation condition is given by Bogey [7] as:

1

c̄g

∂Q ′

∂t
+ (

∂

∂r
+

1

r
)Q ′ = 0

With: c̄g = ~v0.~er +
√

c2
0 − (~v0.~eθ)2 − (~v0. ~eϕ)2

(2.15)

where r is the radial distance and (~er, ~eθ, ~eϕ) the unit vectors of the spherical

coordinate system centered in the approximate location of the sources.

The efficiency of this asymptotic approximation depends on the distance

between the sources of sound and the boundaries, although Tam and Webb [32]

show that they still give good results if the source is 20 grid-lengths from the

boundary. Using a larger domain leads to an increased computational effort, so

for certain problems, absorbing boundary conditions might be more efficient in

that respect [43, 91]. One solution would be to combine an asymptotic treatment

with a damping layer, as it was necessary to do in some jet noise cases, where

strong vortical disturbances are convected downstream [7, 96]. Some instability

problems for long-time integration have also been reported [37], due to the spuri-

ous waves created by the presence of the boundary, but this can be remedied

by the use of artificial selective damping [30]. In the following, the asymptotic

radiation condition will be implemented.

2.3.2 Solid walls

Since the perturbations are assumed to be inviscid, the slip boundary condition

needs to be enforced close to the wall. If the normal direction is indicated by ~η,

the condition is:

~v ′.~η =
∂p ′

∂η
= 0 (2.16)
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2. MODEL AND DISCRETISATION

The difficulties involved in numerically enforcing this condition will be examined

in Chapter 3.

As described in Section 1.1.2, using porous, absorbing walls is a major tech-

nique of noise reduction. These liners can be modelled by a frequency-dependant

impedance, often obtained experimentally. This makes their implementation in

time-domain schemes difficult. Popular approaches include using z-transforms [35],

differential equations [97] or a 1D model of the liner cavity [98]. Because of time

constraints, none of these has been implemented in the current work, but the wall

boundary condition described in chapter 3 will be assessed for compatibility with

these models.

2.3.3 In-duct boundary condition

An important problem is how to numerically impose an incoming wave on the

boundary situated inside the duct. This “matching plane” is the principal source

of sound for the problem considered. It must therefore be accurate, and also allow

scattered waves to exit the computational domain. The latter come from the

reflections at the inlet mouth of the different acoustic modes, occurring because

of the impedance mismatch between the inside of the duct and the free-field

domain. This is more important close to cut-off conditions [99]. The modes

can be obtained by a modal decomposition technique, such as that developed by

Ovenden and Rienstra [100]. If the modes considered are not strongly cut-on,

artificial reflections can occur if the incoming waves are simply imposed on the

boundary, through a Riemann problem [37] or simply by imposing the values

directly on the surface [9].

An alternative approach is to apply an appropriate radiation boundary condi-

tion to the outgoing waves only: by subtracting from the main unknowns vector

Q ′ the desired incoming solution Q ′

in, the desired treatment is then applied to

Q ′

out = Q ′ − Q ′

in, as in Ref. [95]. Dong [101] proved that, in a perfectly thin

cylindrical duct of finite length, aligned with the x axis, carrying a simple flow of

Mach number M , the condition:

[

∂

∂t
+ (M − 1)

∂

∂x

]

Q ′

out = 0 (2.17)
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allows incoming modes to enter and reflected modes to exit. It is accurate to

the order of the square of the cut-off ratio. It has been used for example by

Li et al. [96] with good results. Other researchers use a 1-D formulation of the

asymptotic boundary conditions, on the matching surface, which is very close to

Eq. (2.17) [102].

Zhang [52] studied different methods to be used in this fashion for the gener-

ation of modes in an annular duct for the downstream radiation of internal tone

noise. Amongst these was an implicit formulation, which introduces a progressive

damping, whilst generating the correct acoustic input Q ′

in. For each time step,

the solution vector Q ′ is damped, at the end of the time integration process, to

obtain the final vector Q ′

e through the following formulation:

Q ′

e = Q ′ − σ(Q ′ − Q ′

in) (2.18)

The absorbtion coefficient σ is given by

σ = σm

( |x − L|
L

)β

(2.19)

where σm is the amplitude of the dissipation, L the length of the absorbtion

zone and β a power coefficient. It compares favorably to several other absorbing

boundary conditions, including PML and implicit formulations, generating very

little spurious reflections over a large variety of wave angles [52]. It has already

been pointed out that the PML formulation, applied inside a duct will lead to

instability in the presence of mean flow, unless group velocities are carefully

adjusted [92, 93].

A fully accurate, non-reflecting boundary condition for acoustics in bounded

flows is still an open topic of research, and partial solutions often involve a com-

plex analysis of all in- and out-going modes, with non-local treatments in space

or time [103, 104], which will lead be computationally expensive.

59



2. MODEL AND DISCRETISATION
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Chapter 3

Three-dimensional wall

treatment for noise propagation

Free-field sound propagation has been described in Chapter 2 but the accurate

representation of wall boundaries is more delicate, and represents a major topic

of research in CAA. The use of high-order discretisation schemes introduces many

difficulties, mainly because they are very sensitive to the properties of the dis-

cretisation grid used, particularly compared to overly diffusive low-order methods.

In this chapter, popular practices are reviewed, focusing on structured immersed

boundary techniques, which allow the use of a uniform Cartesian grid. One of

the main contribution of this research work is described: a novel algorithm to

systematically treat immersed wall boundaries in 3D, specifically designed for

acoustic problems.

3.1 Literature survey

3.1.1 Wall boundary condition and finite difference

Tam and Dong [105] described a well-posed way of enforcing the inviscid wall

boundary condition: a row of virtual pressure values (called ghost values) is

added just behind the wall, as shown in Fig. 3.1. They are only included in the

stencils used to compute pressure derivatives, and their value is determined so as

to enforce the condition of zero normal velocity on the wall surface, through the
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momentum equations. As described in Section 2.2.1 on page 47, shifted stencils

are used near the wall.
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����������������������������
����������������������������
����������������������������

Ghost point row

Shifted stencil
for pressure 
derivative

Shifted stencil
for velocity/density
derivative

Figure 3.1: Finite difference stencils next to a straight wall.

In practice, the wall geometry does not coincide with grid lines, and finding

efficient ways to accommodate this is currently a major topic of research in CAA.

Using a staircase boundary [59, 81] is an easily implementable, but only zero-order

accurate approximation [106]. In simple cases, cylindrical [9, 46] or spherical [71]

coordinates systems can be used, although they can be highly skewed in the azi-

muthal direction, and introduce a singularity in the equations, creating instability

problems [9].

A popular way to ensure that grid lines are orthogonal to the surface is to

use a structured body-fitted grid. However, the generation of good quality grids

is often complex and expensive, in some cases taking more time than solving

the flow equations. It is a process that is hard to automate. Even the genera-

tion of unstructured grids can be very complex in 3D if high-order elements are

sought [107]. If several different complex configurations need to be assessed in a

product design phase, the time spent generating a grid becomes a problem; this

is even more acute when automated optimisation searches are performed [102].
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Standard grid-generation algorithms introduce excessive clustering near singu-

lar points when dealing with complex curved geometries (see Refs. [9] and [29]).

Özyörük [9, 35] uses conformal grids, which are of a very good quality, but a large

part of his work in Ref. [9] deals with the analytic generation of the grid in a

specific case, so this is not a very flexible technique. This has led to the investig-

ation of overset multiple grid (“chimera”) techniques: connecting several simple

grids together, each one adapted to the wall geometry or to free-field propaga-

tion [45, 108, 109]. This technique is well-suited to viscous problems, where the

flow and noise of the boundary layer are important, as the strong gradients re-

quire more grid clustering next to the wall. But the interface between the different

grids is delicate to handle, and losses can occur.

The particular sensitivity of high-order schemes to grid properties, compared

to the generally more dissipative low-order schemes, is an important problem [46,

110–112]. Excessively deformed grids and sudden transitions can lead to crip-

pling instability, if smoothness constraints are not respected. Additionally, noise

propagation is intrinsically isotropic [2]. Traditionally generated grids have some

preferred directions, which are often close to those of a convective flow, but this is

not suitable to the nature of the sound waves. Artificial refraction and scattering

will be introduced: non-physical clustering and warp can be present, even far from

the walls. This is exacerbated by the increased sensitivity of high-order schemes,

and contributes to the inaccurate evaluation of the wavenumber. These concerns

have led some researchers to perform a complex optimisation of the scheme for

optimum wavenumber accuracy on the specific deformed grid used [110].

In summary, the meshing techniques developed for traditional CFD, already

quite challenging for complex 3D geometries, should be used with caution in the

context of CAA, where more sensitive schemes are used and the waves propagate

isotropically. In the current research, a structured approach is taken, which allows

the use of the simple regular grids described in the following section.

3.1.2 Immersed boundary methods

The alternative to body-fitted grids or multi-domain implementations is to retain

a regular, orthogonal grid and to implement the boundary condition at the inter-
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sections between the grid and the surface. The boundary is said to be immersed

inside the grid system. There has been recent interest in this type of method, for

example in the field of biological fluid mechanics. This was driven by the need

to handle complex and even moving geometries, like blood vessels, without the

need for a lengthy meshing procedure [113].

Various methods can be regrouped under the “immersed boundary” label:

they use a reconstruction of the solution at the boundary of the solid surface,

overlayed on a fixed regular grid. Virtual “ghost” points, situated close to the

solid surface, exert a force determined to induce the desired boundary condi-

tion [106, 113–116]. “Cut-cell” methods are similar, but typically used with finite

volume discretisations. They take into account the way the surface intersects the

Cartesian cells to form smaller, irregular ones. This necessitates merging those

smaller cells with the main ones, to avoid the small time steps associated with

the former [117, 118].

These schemes were not designed to solve CAA problems, and use low-order

spatial discretisations, with almost invariably the equivalent of a simple linear

interpolation to estimate the values on the boundary from those in the surround-

ing fluid. For example, Fadlun et al. [106] use a linear interpolation between

the desired boundary velocity and the surrounding known quantities. The res-

ulting solution is correct because the global second-order accuracy is preserved,

as is the case for many Cartesian boundary treatments [119]. Tran and Udayku-

mar [114] describe an immersed boundary method associated with a high-order

ENO scheme. They use low-order extrapolation along the normal direction to

determine the values of the ghost points. The order of the scheme is reduced

locally by the boundary treatment, but a high order scheme is retained in most

of the domain, so they claim an overall good accuracy should be maintained.

Lombard and Piraux [120] briefly review the immersed interface methods

which are used to model acoustic behaviour in inhomogeneous media, and present

a method designed specifically to deal with the discontinuities involved with in-

homogeneous, solid/fluid interfaces. A Cartesian grid is used throughout and a

polynomial reconstruction is made near the surface, to obtain a stable and overall

second-order accurate solution.
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3.1.3 Cartesian-grid preserving method for aeroacoustics

For the treatment of acoustic propagation problems, the relevant consideration

is the spatial resolution needed to accurately represent the wavenumber of the

acoustic signals [30]. It is important to retain a high-order accuracy to maintain

small levels of dissipation and dispersion errors, and perform more efficiently than

low-order schemes. With this in mind, Kurbatskii [121] designed an immersed

boundary method for aeroacoustics that preserves the Cartesian grid in the whole

domain. The method uses a description of how the surface intersects with the

grid lines. A systematic algorithm determines on which segment of the boundary

to implement the boundary condition, using an exhaustive classification of the

different geometrical situations around the ghost points [2]. The result, in a

typical situation, is represented in Fig. 3.2.

Fluid

Ghost Point

Inside the wall

Extrapolation

Extrapolation

Figure 3.2: Ghost points and the corresponding normal vectors behind a smooth,
slightly curved wall. The extrapolation procedure is schematised in bold.
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Pressure gradient values are extrapolated, from inside the fluid, to the en-

forcement point on the surface to determine ghost values of pressure. Tam and

Kurbatskii [84] found that it is necessary to use an optimised high-order extrapol-

ation scheme, to obtain good accuracy for the desired wavenumber range, and to

suppress the instability caused by spurious short wavelengths. This wavenumber-

optimised approach performs better than a traditional B-Spline method [109].

3.2 3D algorithm for CAA

Modelling 3D walls is a challenge but it is important because few real intake or

bypass ducts are axisymmetric, for aerodynamic or acoustic design reasons, and

it was pointed out in Section 1.1.2 that many noise generation and propagation

mechanisms are three-dimensional, so an axisymmetric analysis can be insuf-

ficient. Additionally, the explicit finite difference method then has a distinct

advantage over implicit schemes for which the computational effort increases dra-

matically when going from 2D to 3D.

A 3D cut-cell method was developed by Yang et al. [117], but it approximates

the discretised surface with quadrilaterals to obtain an estimate of the normals

and the volume fraction of solid/liquid in each cut cell, which might be too

inaccurate. Casalino [78] has taken a 3D immersed boundary approach, but

in conjunction with the GFD method. Complex, moving 3D boundaries can be

represented by a level set method, together with an immersed boundary approach,

although obtaining the level set representation can be complex [79]. The method

of Fadlun et al. [106] is also 3D, but like most of schemes of this type found in

the literature, uses a low-order local reconstruction of the solution near the wall.

Because of the demands of acoustic problems, a higher order of accuracy would

be needed, so in this section an algorithm for 3D wall geometries is presented,

developed for CAA as part of the present research.

3.2.1 Description of the 3D immersed boundary algorithm

The method developed in this work is based on an extension of Kurbatskii’s

2D method described above, involving some additional challenges because of the
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complexity of 3D geometries, and some different algorithmic and computational

issues. The main difficulty is that performing a 3D analysis means a much larger

number of situations need to be assessed and classified compared to 2D geomet-

ries. But obtaining a systematic and efficient method is worth the effort in design

and programming.

The intersection of the wall surface with the regular Cartesian grid-lines, along

the x, y and z axes, and the nature of each grid point (in or out of the wall),

are supposed to be known. In all the cases studied in this work, this is straight-

forward because a mathematical description of the surface is known. Such a de-

scription is used in parametric optimisation of a surface’s shape [102]. However,

in many practical engineering applications, the surface of an object is discretised

by a Computer Assisted Design (CAD) program as an unstructured collection of

triangles. From this, the desired description can be extracted using techniques

inspired by research in computer graphics, such as those given by Aftosmis et

al. [122] or Yang et al. [117].

First, some assumptions will be made: the curvature radii of the surface(s)

are assumed to be large relative to the grid spacing; the surface is also assumed to

be smooth and regular. This is justified not only by the nature of the geometries

to be modelled, engine inlets, but also because in scattering problems, details of

the surface have little impact if their characteristic length is much smaller than

the wavelength considered: they are in effect not “seen” by the waves. And here,

only wavelengths of more than 7 grid-lengths are considered. This is different

from the general 2D method of Ref. [120] which requires a smooth surface for the

reconstruction scheme. The surfaces can be convex or concave, connected or not.

Overall, the method requires the solution of a matrix equation, obtained in

a pre-processing phase, to implement the slip boundary condition. The latter is

enforced, for each ghost point, on a neighbouring surface element. The method

also allows the use of parallel machines to speed up the computation, as the

computation of the ghost values, made before the residuals are computed (and

which could also be parallelised), would not interfere.
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Choosing a normal direction

Ghost points are exterior grid-points (in the wall) which are immediately sur-

rounded by one or more fluid points. For each of these points, the associated

ghost value of pressure is determined by applying the inviscid wall boundary con-

dition on an enforcement point E situated on the discretised surface. A correct

normal direction, along which it is situated, must be chosen in each case. A

discretisation of the normals is made: there are several facets surrounding each

ghost point, but only one direction must be chosen, as representative of the local

nature of the surface as possible, as illustrated in Fig. 3.2. The approach used in

2D by Kurbatskii, summarised in Fig. 3.3, picks a normal according to the local

situation: a systematic algorithmic can be implemented, replacing the meshing

process [2].

E1

E2

C

A

B

G

d2 d1

d3

(a) Convex situation.

E

G

d2 d1 d3

(b) Symmetric situation.

E

G

d2
d3

d1

(c) Concave situation.

E

Y

XG

(d) Double intersection case.

Figure 3.3: Typical situations in the 2D algorithm of Ref. [2].
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Overall, when there is a locally convex situation, such as in Fig. 3.3(a), the

boundary condition is enforced on the segment or vector with the shortest distance

to the ghost point (
−−→
CB in this example). If the surface is symmetric (Fig. 3.3(b)),

or locally convex (Fig. 3.3(c)), then the normal direction will coincide with one

of the axes. This cannot be the case if there are two intersections on both axes:

Fig. 3.3(d).

Situations similar to those of Figs. 3.3(a)–3.3(c) arise often, and for the these

cases, the vector on which the enforcement point E is obtained by projection

can be determined by comparing the intersections coordinates d1, d2 and d3

(cf. Fig. 3.3(a)), according to the following rule:

• E=orthogonal projection of G on
−→
CA

IF d2 6= 0 AND d2 < d1 AND (d2 < d3 OR d3=0)

• E=orthogonal projection of G on
−−→
CB

IF d3 6= 0 AND d3 < d1 AND (d3 < d2 OR d2=0)

• E=C in all other cases

d2 or d3 being set to zero if there are no intersections. For the situations similar

to Fig. 3.3(d), the projection is simply made on the vector
−−→
XY .

There are other cases in the method of Ref. [2] where sharp corners and highly

curved surfaces are present, and are modelled using multiple ghost points with

several normal directions. But this will not be considered in the current 3D

method because of the assumptions made in the previous section.

In the 3D extension described therein, a similar approach will be taken. Each

ghost point is surrounded by eight 3D cells, and the wall surface intersects each of

them in several points, which are rarely co-planar. The discretised surface can be

considered as an assembly of triangles, connecting the intersection points three

by three.

According to the situation around the ghost-point considered, there are three

different possibilities. The boundary condition will be either enforced on a tri-

angular facet, on a segment, or on a point: see Fig. 3.4. These configurations,

and the reason why they are used, are similar to the 2D situations of Fig. 3.3. In

the general case (Fig. 3.4(a)), the projection will be made on a triangular facet
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defined by 2 vectors ~a =
−→
OA and ~b =

−−→
OB, as described in Fig. 3.4(b). The relev-

ant triangle is the one closest to G. The enforcement point E is the projection of

the ghost point G on the facet, and this defines the normal direction. In the case

of Fig. 3.4(c), one of the vectors (~a or ~b) is null, and the triangle reduces to a line.

In the last case (Fig. 3.4(d)), both vectors are null and the triangle is reduced to

the single point O, the normal direction coinciding with a coordinate axis.

G

EEEE

(a) Enforcement on a triangular facet.

�
�
�
�

��

��

��

O

A

G
B

��
E

~a

~b

~xc

~η

δ

(b) Parameters in the general case.

G

E

(c) Enforcement on a segment.

G

E

(d) Enforcement on a point.

Figure 3.4: Typical situations in the 2D algorithm of Ref. [2] and corresponding
normal.

The subsequent interpolation and extrapolations used to obtain the pressure

gradient at point E will be described below, but first, the systematic algorithm

which determines vectors ~a and ~b (or their absence) will be outlined in the fol-
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lowing section. Generally, when the facet geometry is convex, the closest triangle

facet is chosen, but in concave or symmetric cases, the choice is more complex.

Determining the local surface geometry type

First, an analysis is done in the (G,~x,~y) plane (in blue in Figs. 3.6–3.8): G is

classified according to the nature of the immediately surrounding points. This

particular plane was chosen arbitrarily, but it will be observed later that this

does not introduce anisotropy in the normal directions. This initial analysis

limits the number of subsequent possibilities, particularly given the low curvature

hypothesis made above. A base point O is also determined: this fixes the origin

of the ~a and ~b vectors, and the ~xc axis on which it is situated.

Depending on these results, ~a and ~b (or their absence) are then chosen using

the procedure described below. The presence of ~a or ~b determines points A or

B, used for extrapolation. If absent, the triangle reduces to a line or a point as

explained above.

G

O

Figure 3.5: Examples of double intersection situation.

The 2D analysis rule of page 69 (illustrated in Figs. 3.3(a)–3.3(c)) will be

used several times to choose a vector according to the intersection coordinates on

neighbouring axes: a vector (~a or ~b) or a point (null vector) is chosen. In cases

where there are double intersections on the same axis, as in Fig. 3.5, a symmetric

configuration will be chosen (null vector), since sharp points are not modelled.
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Each point G (coordinates (l,m, n)) is first classified according to the number

Ne of exterior points immediately surrounding it on the x and y axes (coordinates

(l± 1,m± 1, n)). This is related to the number of surface/grid lines intersections

immediately surrounding G. In Fig. 3.6–Fig. 3.8, these exterior points are repres-

ented by squares, and intersection points by crosses. Four types of situations are

found:

Type 1: Ne = 3

There is only one intersection next to G, which immediately determines the point

O and the ~xc axis (either ~x or ~y). Then, a 2D analysis is made in the (G,~x,~y)

plane to choose ~a, comparing the intersection deltas along the ~xc axis, for both

neighbouring ghost points situated on the other axis (i.e. ~x if ~xc=~y). After this:

• If there is an intersection on the ~z axis, it is used as point B and ~b =
−−→
OB.

For example see Fig. 3.6(a).

• If not, a 2D analysis is done in the (G,~xc,~z) plane to determine ~b, using the

two neighbouring ghost point along ~z. For example see Fig. 3.6(b).

Type 2: Ne = 2

Here, there are two intersections, on the axes neighbouring G. A choice of the

point O must be made, between Ox (~xc = ~x) and Oy (~xc = ~y). The following

method is used:

• If there is an intersection on the ~z axis, it is used as point B, and O=Ox

is arbitrarily chosen , and then ~b =
−−→
OB, and ~a =

−−−→
OxOy. For example, see

Fig. 3.7(a).

• If not, a 2D analysis is made in both the (G,~x,~z) and (G,~y,~z) planes. If two

potential ~b vectors are found, the triangle with the shortest distance to G

must be chosen: the one with the highest difference |d1−d2/3|. If the chosen

point B is in plane (G,~y,~z) then O=Oy, and vice-versa. For example, see

Fig. 3.7(b), where O=Oy.

Type 3: Ne = 4

There is no intersection in the (G,~x,~y) plane. For example, see Fig. 3.8. There is
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3.2 3D algorithm for CAA

(at most)one intersection on the ~z axis: this determines the point O. Then, two

2D analysis are made:

• one in the (G,~x,~z) plane to determine ~a

• one in the (G,~y,~z) plane to determine ~b

G

A
O

B

(a) Type 1a

G

A
O

B

(b) Type 1b

Figure 3.6: Examples of 3D type 1 situation around a ghost point G (general case
of a triangular facet).
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G A

O

B

(a) Type 2a

GOx=A

Oy=O
BB'

(b) Type 2b

Figure 3.7: Examples of 3D type 2 situation around a ghost point G (general case
of a triangular facet).

G

A

O

B

Figure 3.8: Examples of 3D type 3 situation around a ghost point G (general case
of a triangular facet).
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Interpolation and Extrapolation

In the general case, ~a and ~b have been determined; the normal vector ~η is then

obtained by the normalized vector-product:

~η =
~a ×~b

‖ ~a ×~b ‖
(3.1)

The orientation of ~η is not important here, since only an orthogonality condition is

needed. The vector ~η intersects the OAB triangle at point E, where the boundary

condition (Eq. (2.16)) is expressed.

The following method was inspired by ray-tracing algorithms in the field of

computer graphics [123]. The enforcement point E, orthogonal projection of the

ghost point G on the OAB triangle, is described by Λa and Λb parameters, the

natural coordinates of E in the triangle:

−−→
OE = Λa~a + Λb

~b (3.2)

O

B

E

A~a

~b

Λa

Λb

Figure 3.9: The OAB triangle with interpolation parameters.

Those parameters, as represented in Fig. 3.9, represent the interpolation

quantities needed to obtain the pressure derivative, and thus the velocity, at

point E, from values inside the fluid. Indeed, any function f , defined on the

triangle, can be approximated as:

f(E) ≃ Λaf(A) + Λbf(B) + (1 − Λa − Λb)f(O) (3.3)

The values of these parameters are obtained by expressing the orthogonality

75



3. THREE-DIMENSIONAL WALL TREATMENT FOR NOISE
PROPAGATION

condition with the unit normal vector ~η (Eq. (3.1)) as:

(GE) ⊥ OAB ⇔ −−→
GE × ~η = (

−→
GO +

−−→
OE) × ~η = ~0 (3.4)

Defining ac = ~a.~xc and bc = ~b. ~xc, and using Eq. (3.2) leads, after solving a simple

linear system, to:

Λa =
δ(bc(~a.~b) − ac|~b|

2
)

|~a|2|~b|2 − (~a.~b)
2 (3.5)

Λb =
δ(ac(~a.~b) − bc|~a|2)
|~a|2|~b|2 − (~a.~b)

2 (3.6)

When the triangle reduces to a single segment, point E then becomes the

orthogonal projection of the ghost point G on either ~a or ~b (and Eq. (3.6) remains

valid). In other cases, the enforcement point is simply coincident with O, on the

~xc axis (and ~η = ~xc).

The values of the pressure derivatives at points A, B and O are then needed;

they are estimated from values inside the fluid with the same carefully designed

extrapolation used in the 2D method. It uses the values at 7 points along the

appropriate coordinate axis, and is optimised for maximum accuracy in the range

of wavelength of interest (λ ≥ 7). An extrapolation based on high-order Lagrange

polynomial is unsuitable as it leads to instability, because of numerical errors in

the high wavenumber range [84].

When the slip boundary condition of Eq. (2.16) is fully developed, using

Eq. (3.3) and the appropriate extrapolations, the following equation is obtained:

∂p

∂n
(E) =

∂p

∂x
(E)ηx +

∂p

∂y
(E)ηy +

∂p

∂z
(E)ηz = 0

=

(

Λa
∂p

∂x
(A) + Λb

∂p

∂x
(B) + (1 − Λa − Λb)

∂p

∂x
(O)

)

ηx + . . .

=

(

Λa

7
∑

1

κi(A)
∂p

∂x
(PA

i ) + . . . etc.

)

ηx + . . .
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where {PA
i }i=1→7 are the extrapolation points related to point A, with the corres-

ponding optimised extrapolation weights κi [84]. For each of these, the derivative
∂p
∂xj

(Pi) is expressed with the adequate DRP discretisation stencil, according to

their proximity to the boundaries. These stencils mostly include points in the

fluid, but also sometimes ghost points. Therefore the different ghost values are

interdependent, and this will lead to a linear system that should be expressed in

matrix form. By putting all the terms involving ghost values on the Left-Hand

Side (LHS) of the equation, and all the other terms on the Right-Hand Side

(RHS), the following is obtained:

Ã p̃g = b̃ (3.7)

The matrix Ã represents the interdependence of the ghost values of pressure p̃g.

The vector b̃ is related to the pressure values in the fluid surrounding the wall

surface through the array C̃ (see Section 3.2.3). Ã only needs to be inverted once,

at the start, and then the vector p̃g = Ã−1 b̃ is calculated at each time step, giving

the values of the pressure at all the ghost points. The implementation of arrays

Ã and C̃ will be described in Section 3.2.3.

3.2.2 Discretisation errors

Before the overall resulting accuracy obtained by the current method is assessed,

in the next chapter, through numerical experiments, it is interesting to verify if

the surface normal is correctly evaluated by the above algorithm. If the norm

‖~V ‖ of a vector is defined as
√

V 2
x + V 2

y + V 2
z , the maximum error, over all ghost

points, on the normal vector ~η is computed as:

Eη = max(‖−−→ηreal −−−−→ηcomp.‖) (3.8)

For a sphere of radius a = 20∆x, Eη = 3.2 × 10−2 is obtained; this represents

(at most) an angle of less than 1◦ between the true normal direction and the

computed one. Furthermore, as can be seen in Fig. 3.10, this error decreases

strongly as the sphere radius increases. This shows that the 3D algorithm used

to pick the appropriate triangle is effective, and does converge towards a correct

77



3. THREE-DIMENSIONAL WALL TREATMENT FOR NOISE
PROPAGATION

estimation of the normal, as a function of the curvature radius. Furthermore,

an examination of the errors and the normals, over the whole surface, showed

that starting with an analysis in the (~x,~y) plane does not introduce an artificial

asymmetry in this computation.
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Figure 3.10: Plot of Eη for a sphere as a function of the radius.

It is possible to estimate the error introduced by the triangular discretisation

of the real curved surface, in the same fashion as was done by Kurbatskii in

2D [121]. It should be noted that this type of error is common to most numerical

discretisation schemes, except for some finite element formulations that take into

account the surface’s curvature. In a grid cell of dimension ∆, the worst case

scenario, shown in Fig. 3.11, is considered. The osculating sphere S, of radius

R=CP, the local curvature radius, is tangential to the surface considered at point

P. The ratio ∆
R

has been assumed to be small. So it is possible to obtain an estim-

ation of the distance δ = PE between the point where the boundary condition

should be applied (P) and the point where it actually is (E).

Some simple trigonometry gives:

δ = PE ≈ 1

6

∆2

R
(3.9)
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E

P

C

R

∆

∆

Figure 3.11: Curvature and discretisation (the curvature is exaggerated here).

This is slightly larger than the 2D case, where the ratio was 1/8. For a wave

function of wavelength λ, the average error on amplitude over a period [121] is:

Edisc =
1

2

2π

λ
δ ≃ π

6

∆

λ

∆

R
(3.10)

In the case of the maximum resolution of the DRP scheme (∆
λ

= 1/7), and a typ-

ical curvature of R
∆

= 10, Edisc ≈ 0.0075. Therefore intrinsic discretisation errors

can be expected to be slightly larger than in the 2D case, where Edisc ≈ 0.0056

for the same conditions.

Apart from these issues, the main source of error comes from the extrapolation

and interpolation schemes. It will be observed in chapters 4 and 5 that, in 3D,

the errors become too important. A high-order 7-point extrapolation is used, but

for most ghost points, three will need to be done, instead of two maximum in 2D,

and errors can accumulate. Additionally, a linear interpolation is used within
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the triangle: cf. Eq. (3.3). This can be justified for practical reasons, and by the

small (sub-grid) distances involved. A similar approach was successful in the 2D

method, but it might contribute to a reduced order of accuracy.

3.2.3 Computational issues

To solve the simple matrix problem of Eq. (3.7) for 2D problems, a standard

Gauss-Jordan pivoting algorithm [62] can be used. This cannot be done for large

3D problems, with more than several thousand ghost points, because of escalating

memory and computational costs. The specific features of the Ã matrix can be

exploited: it is very sparse because it describes the inter-dependencies between

different ghost points that arise when the wall boundary condition is expressed,

and only neighbouring ghost points are related. In typical cases, it is less than 1%

full. Furthermore, since the indexing of the different ghost points is not directly

related to their spatial proximity, the matrix lacks any particular structure. It

was therefore chosen to only store in memory the non-zero values of Ã, along

with their position, using the special FORTRAN data structure of Fig. 3.12.

As speed was not essential in the pre-processing phase, a simple iterative

method was chosen to invert the matrix: the preconditioned bi-conjugate gradient

method [62]. This algorithm only requires the result of the multiplication of A

(or its transpose) by a vector x, which can easily be done with the data structure

chosen, using only the non-zero values of Ã. The resulting inverse matrix is also

stored in the sparse data structure of Fig. 3.12, after discarding negligible values

(less than 10−8). This saves time computing the ghost values p̃g = Ã−1 b̃.

TYPE sprsa

INTEGER :: length % number of elements

DOUBLE PRECISION, DIMENSION(:) :: val % value of element

INTEGER, DIMENSION(:) :: row % row of element

INTEGER, DIMENSION(:) :: col % column of element

END TYPE sprsa

Figure 3.12: Fortran data structure for Ã (and its inverse).
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The array C̃ is used to represent the contribution of non-ghost points to the

RHS of equation Eq. (3.7). When expressing the boundary condition for the

ghost point of index f and value p̃f , the RHS value b̃f is obtained by summing

the contribution of every point in the fluid zone, of coordinates (i, j, k), with the

weight coefficient C̃ijkf . This is done each time the residuals need to be computed.

Formally, this is expressed as:

∀f, b̃f =
∑

i,j,k

C̃ijkf pijk (3.11)

A naive computation of Eq. (3.11) would be very inefficient: in practice, only

points in the close neighbourhood of the relevant ghost point have a contribution.

Therefore the storage of the values and the summation of Eq. (3.11) should be

done only for the non-zero values of C̃. To this end, a new FORTRAN data

structure is needed: Fig. 3.13.

TYPE sprs

INTEGER :: length % number of elements

REAL, DIMENSION(:,:) :: val % value of element

INTEGER, DIMENSION(:,:) :: row % x-coordinate for element

INTEGER, DIMENSION(:,:) :: col % y-coordinate for element

INTEGER, DIMENSION(:,:) :: dep % z-coordinate for element

END TYPE sprs

Figure 3.13: Fortran data structure for C̃. The additional array column is for the
ghost value index, f in Eq. (3.11).

3.2.4 Artificial dissipation

In addition to the shifted stencils next to the boundary (Section 2.2.1), the dis-

continuity of the sudden fluid-wall transition and the extrapolation procedure

represent important sources of instability. Strong artificial selective damping

must be introduced to dampen the parasite short waves, as was done on the

domain’s boundaries. A Gaussian distribution of artificial Reynolds number, of

amplitude Rw
∆ and half-width 8∆x, is introduced around all wall surfaces.
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It is important to carefully balance the dissipation. If the damping terms

are added to the pressure equation, and the ghost values are included in the

damping stencils, they could be excessively dissipated [2, 121], which would lead

to under-predicted reflected waves. If a strong value of Rw
∆ is used, this might

introduce undesirable dispersion and dissipation errors [57]. A good compromise

is presented by Kurbatskii [121]: the ghost values are included in the dissipation

stencils used for the pressure equation, except in the small, 3-point stencils, closest

to the wall. This allows the use of low values of Rw
∆, typically 0.3–0.4, which leads

to more accurate results, as will be seen in the next chapter.

3.3 Locally concave geometry cases

In some cases, encountered in Chapter 5, the surface is sometimes locally concave

and the curvature radius becomes relatively small. The extrapolation procedure

described above cannot be used because, as represented in Fig. 3.14, the 7-point

extrapolation along the axes will exit the fluid domain. It would be preferable

to perform an extrapolation along the surface normal, as this direction naturally

points away from the concavity of the surface. This would replace the multiple

extrapolations along up to three axial directions by a single normal one.

Indeed, several low-order immersed boundary methods take this approach.

For example, Tran and Udaykumar [114] determine the ghost point values using

2 points along the direction normal to the surface; as these points are generally

not coinciding with grid points, their value is interpolated from the neighbouring

points. Gilmanov et al. [115] have a similar approach.

This type of technique was investigated in the context of the present study,

as described (for a 2D situation) in Fig. 3.15. The gradient at point E is deduced

from the values at points Ai. These are obtained from the surrounding grid points

by trilinear interpolation [62] if the Ai point inside a normal fluid cell (points A2–

A4 in Fig. 3.15), or by distance-weighted interpolation [114] if the cell is cut by

the solid surface (point A1). Each pressure derivative is computed with the DRP

stencil but, as is made clear in Fig. 3.14, shifted or restricted derivative stencils

must sometimes be used. Extensive numerical investigations were made, using

a known plane wave solution. The only stable option in this case was to use a
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5 points

3 points

Figure 3.14: Locally concave surface situation.

4-point extrapolation, as shown in Fig. 3.15.

Although the fact that only one extrapolation is performed should lead to

better accuracy, this appears to be compensated by the interpolations around

the Ai points, which are only low-order and involve a greater number of points.

The multidimensional, optimised high-order interpolation of Tam [109] was also

used instead of the low-order approach above, but it led to instability, probably

because of the high number of points used, which meant that the high-frequency

numerical errors would add up. Özyörük [9], in a similar situation, notes that a

low-order extrapolation was needed to avoid instability. The method of optim-

ised extrapolation along the Cartesian axes seems quite unique in having been

designed for high-order accuracy while remaining stable.

The method of Bin, Cheong and Lee deduces the normal pressure gradient

at point E directly, from the pressure values of the points Ai and the ghost

point, through a Taylor formulation [124]. The pressure values are computed by

a high-order accurate, optimised interpolation. It seems promising in the current
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context, but its results could not be replicated in the present study for lack of

time.

G

d2 E

d1

A1

A2

A3

A4

Figure 3.15: Extrapolation along the normal direction (in 2D).

Concluding remarks

A new immersed boundary algorithm was developed to meet the challenge of

representing 3D wall boundaries without the need for any meshing techniques,

while retaining a large order accuracy throughout most of the domain. This was

done by extending an existing 2D method, designing an appropriate systematic

algorithm to deal with all possible geometries (with some assumptions on the

curvature of the surface). This posed several computational problems which were

dealt with. For ghost points in locally concave areas, an alternative, low-order

normal extrapolation is used. This method will be validated in chapter 4 on

simple benchmark cases, and applied to more complex geometries in Chapter 5.
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Chapter 4

Validation cases

In Chapter 2, a high-order CAA numerical scheme was described, and in Chapter 3,

the wall boundary was examined in more detail and a new 3D treatment was de-

veloped. These methods are now implemented and tested on various benchmark

acoustic problems. Such test cases, often with known exact analytical solutions,

can be found in references [32, 33, 60, 61, 87]. Some of the methods used here,

particularly in 2D, were already thoroughly validated in the literature, therefore

it is only their implementation which is tested. Other cases are evaluated qualit-

atively. Free-field propagation problems are first considered, both in 2D and 3D,

including the effects of the underlying mean flow. The optimised Runge-Kutta

and Adams-Bashforth time integration methods are directly compared, which has

not been done in detail in the CAA literature. The solid wall boundary condi-

tion is then implemented, first for simple straight walls, and then with curved

immersed boundaries. The new 3D algorithm is assessed on a standard test case

before the more complex applications of Chapter 5, and the effects of adding a

convective mean flow around these immersed boundary are investigated.
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4. VALIDATION CASES

4.1 Free-field Propagation

4.1.1 2D propagation

Acoustic pulse

The propagation of a Gaussian pulse is computed, with the basic 2-D LEE code,

by prescribing the initial conditions as:

t = 0 : ρ ′ = p ′ = 0.01e−
ln 2

b2
r2

and u ′ = v ′ = 0 (4.1)

where r is the radial distance to the domain’s center. This allows comparison

with the exact solution of Tam and Webb in Ref. [32]. The half-width of the

Gaussian pulse is set at b = 4. This is first done for zero mean flow (u0 = v0 = 0,

and ρ0 = p0 = 1).

The computational domain used throughout is a Cartesian, regular, 200 x

200 grid. The computation is first made with the optimised Adams-Bashforth

(OAB) method, with a small time step (∆t = 0.05), up to t = 77. Excellent

agreement is found, as shown in Fig. 4.1. The pulse exits the computational

domain with negligible reflection (< 0.5% of the total amplitude), confirming

that the asymptotic radiation boundary conditions are effective.

The LDDRK time-marching schemes can also be used alongside the OAB

one. In both cases, the ideal accuracy limits of Table 2.2 on page 54 were tested:

∆t = 0.1 for the OAB, ∆t = 0.7 for the 4-stage LDDRK and ∆t = 1.1 for the

4-stage LDDRK. The LDDRK schemes were, overall, respectively 4 and 6 times

faster than the OAB scheme, and they used less memory. As shown in Fig. 4.2,

excellent agreement is found, with a slightly worse result for the OAB scheme,

probably because the corresponding accuracy constraint is not as stringent as for

the LDDRK scheme. Additionally, the theoretical stability limits of Section 2.2.3

were found to be a good indicator for this 2D problem, although for the LDDRK

schemes, they were slightly lower in practice: the 4-level scheme becomes unstable

from ∆t = 1.4, and the 5-level scheme from ∆t = 1.7. But in all cases, for the

frequencies of interest, the accuracy constraint is indeed more stringent.

The same test case is done with a uniformly convective mean flow, along the x

direction, as input: u0 = Mx = 0.5 and v0 = 0. The agreement is again excellent,
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Figure 4.1: Validation of simple linear scheme with a Gaussian pulse. M = 0.
Cut along y=0. —: exact solution, + +: OAB scheme with ∆t = 0.05.
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Figure 4.2: Same as Fig. 4.1, with —: exact solution, +: OAB ∆t = 0.1,
×: 4-stage LDDRK ∆t = 0.7, �: 5-stage LDDRK ∆t = 1.1.

87



4. VALIDATION CASES

as shown in Fig. 4.3. The presence of the flow does reduce the stability and

accuracy limits, as predicted in Section 2.2.3.
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Figure 4.3: Validation of simple linear scheme with a Gaussian pulse. Mx = +0.5.
Cut along y=0.

Acoustic oscillating source

Fig. 4.4 shows the propagation of a monopole acoustic source: the term of the

source vector S (in Eq. (2.2) on page 35) related to the pressure equation is an

oscillating term with a smooth Gaussian distribution of amplitude:

S4 = −0.01e−
ln 2

8
r2
s cos ωt (4.2)

where rs is the distance from the center of source which is at the origin of the

domain. ω is the circular frequency of the source. The computation is first done

with the OAB scheme using ∆t = 0.05, as shown in Fig. 4.4. It is also compared to

an analytical solution (Morris [125]), and no significant dispersion or dissipation

error can be seen, even for 7 PPW and a propagation over 13 wavelengths.
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4.1 Free-field Propagation
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Figure 4.4: Propagation of an acoustic monopole source in 2D (λ = 7) placed at
the domain’s center. + : OAB scheme with ∆t = 0.05, — : analytical solution.
Cut along y = 0 line.
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4. VALIDATION CASES

The time step is then increased within the theoretical accuracy limits of the

different schemes, and the results are shown in Fig. 4.5. Good results are obtained

as above, except in the source region for the 5-stage LDDRK because of the large

time-steps involved.
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Figure 4.5: Same as Fig. 4.4, with —: exact solution, +: OAB with ∆t = 0.1, ×:
4-stage LDDRK with ∆t = 0.5, �: 5-stage LDDRK with ∆t = 1.0.

A uniform mean flow (Mx = 0.3) in the positive x direction is added, and

the source is set to oscillate with a period T=15. The acoustic pressure contours

are plotted in Fig. 4.6. A pseudo-Doppler effect is apparent: the wavelength is

modified by a factor (1 ± M), in this case from 7.5 to 22.5, according to the

upstream/dowstream direction of propagation of the waves, as in Refs. [54] and

[46].
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Figure 4.6: Monopole oscillator (T=15) in center of computational domain. Mx =
+0.3. Pressure contours: 0, ±5 10−3, ±2 10−3. Negative contours are in dotted
lines.
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4. VALIDATION CASES

4.1.2 Non-uniform mean flow effects

If the mean flow is not static or uniformly convective, the full LEE need to be

used, including the inhomogeneous flow term H , from Eq. (2.4). This represents

complex refraction effects in the propagation, crucial in fan noise problems, and

which are difficult to evaluate other than with computational methods.

To illustrate this effect qualitatively, a symmetric horizontally sheared flow,

similar to those used by Bogey et al. [7], of maximum Mach number Ms, is given

as input (Fig. 4.7):

x

y

Figure 4.7: Simple shear flow used as a mean flow input.

u0 = Ms tanh(y/2) (4.3)

Because of the nature of the mean flow, its spatial derivatives are computed using

a simple 3-point stencil, as is the case with traditional CFD methods. Using the

large stencils used for the acoustic part would introduce unnecessary instability.

As shown in Fig. 4.8, a monopole situated in the center radiates with the expected

symmetric double Pseudo-Doppler effect, similar to the results obtained by Bogey

for example [7, 56].
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4.1 Free-field Propagation

X

Y

-50 0 50
-80

-60

-40

-20

0

20

40

60

80

Figure 4.8: Shear flow (Ms = 0.125) modifying a monopole’s radiation. Pressure
contours: 0, ±5 10−3, ±2 . 10−3. Negative contours are in dotted lines.
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4.1.3 3D propagation

The scheme was then extended to 3D, implementing the full LEEs (Eq. (2.2)–

(2.4)) on a similar Cartesian grid. The extension is relatively straightforward,

which is one of the main advantages of using a finite difference discretisation.

A monopole case similar to the one studied in Section 4.1.1 was done: Eq. (4.2)

can be used, r now being the radial distance to the origin. The results are

compared to the analytical solution of Morris [126], as shown in Fig. 4.9, and an

excellent agreement was found. The same parameters, and choices of scheme and

time-step, as the 2D case were found to give an accurate solution.
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Figure 4.9: Propagation of an acoustic monopole source (dimensionless
wavelength λ = 7) placed at the domain’s center in 3D. Plot along x = y = 0
line, —: analytical solution, + + +: computed solution.
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4.2 Wall boundary in 2D

4.2 Wall boundary in 2D

4.2.1 Straight wall boundaries

The wall boundary condition was then implemented, in the simple case of straight

walls coinciding with grid lines, as described in Fig. 3.1 on page 62. For example,

the left-side boundary of the domain can be set as a solid wall. In that case, the

boundary condition
∂p ′

∂x
= 0 (4.4)

is expressed on the boundary using the appropriate shifted boundary stencils,

and the ghost pressure value is deduced [105].

An oscillating monopole source (Eq. (4.2)) is placed next to the wall. After

marching to a periodic state, a characteristic interference pattern caused by the

reflection is observed. A reference solution is obtained by replacing the wall with

its equivalent: another monopole source, image by symmetry of the original one.

The source signal has a period of T = 7 which means that a resolution of 7

PPW is used: Fig. 4.10. An excellent match is obtained, with the OAB scheme

and ∆t = 0.05 or ∆t = 0.1, or with the LDDRK with ∆t = 0.5; however, using

larger time steps than this leads to noticeable errors, and then instability. Since

the large time steps allowed by the 5-stage LDDRK method cannot be used, the

4-stage one is now the optimal temporal scheme, nearly 3 times faster overall

than the OAB with ∆t = 0.1.

It is possible to get a good representation of the interference patterns caused

by the presence of the wall, by computing, over one signal period T , the Sound

Pressure Level (SPL) from the Root-Mean-Square (RMS) pressure prms [48].

SPL = 20 log10(prms/pref) = 20 log10

(

√

1

T

∫ t0+T

t0

p ′2(t) dt

/

pref

)

(4.5)
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Figure 4.10: Interference pattern created by a wall (x = 0) next to an oscillating
monopole (x = 50), with a wavelength of λ = 7. Contours of pressure: 0 and
±0.01, — computed value, - - reference solution.
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Figure 4.11: Sound pressure levels for the result of Fig. 4.10.

The reference pressure pref is typically chosen as 2 . 10−5 Pa, and t0 is an

arbitrary starting time. The resulting SPL is plotted in Fig. 4.11: this makes the

interference pattern introduced by the wall clearly visible. This phenomenon is

similar to the “ground effect” that disturbs noise measurements made close to

the ground [1].

As was done in Refs. [105] and [46], an acoustic pulse (described by Eq. (4.1))

is placed next to the straight wall, with a flow parallel to it. It can be seen

being reflected and convected downstream at the same time in Fig. 4.12(a) and

Fig. 4.12(b). A reference solution was also produced in this case by using a

symmetric pulse, and there is excellent agreement with the one computed with

the wall boundary: Fig. 4.12(c).
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(c) t = 80, plot along y = 100, —: reference solution, + + +: computed
solution.

Figure 4.12: Reflection of an acoustic pulse by a wall along the left bound-
ary. Mean flow Mach number My = 0.5. a) and b): Density contours, —:
10−3, 8.10−4, 5.10−4, 2.5.10−4 and - - -: −10−4,−3.10−4,−4.10−4.
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4.2.2 Curved wall boundaries

The 2D curved wall method of Kurbatskii was then implemented. This method

has been validated thoroughly for a variety of different cases, even at high-order

resolutions (λ = 8∆x) [121]. To prove that the implementation was correctly

done, problem 1 from category 1 in the second CAA workshop on benchmark

problems [60] was considered; it consists of computing the scattering of the oscil-

lating acoustic source of Section 4.1.1 by a solid cylinder of radius a.

An interesting characteristic of the resolution is the dimensionless wavenum-

ber, or Helmholtz number:

α̃ = 2πa/λ (4.6)

The computation is first done with a resolution of 7 PPW with a = 20, which

gives α̃ ≃ 18, which represents a challenging test case. Using an insufficient

level of dissipation close to the wall boundary leads to crippling instability, as

shown in Fig. 4.13(a). If the optimal selective dissipation technique described

in Section 3.2.4 (with Rw
∆ in the range 0.3–0.4) is used then a correct solution

is obtained: Fig. 4.13(b). Once the computed solution has reached a periodic

state, the interference pattern caused by the scattering is apparent, as well as the

“shadow zone”: the silent zone created by the masking of the cylinder. Further-

more, the waves appear to exit the boundaries with no noticeable reflections. A

plot of the SPL is shown in Fig. 4.14, making the features of the scattered field

more clearly apparent.

In Fig. 4.15, the computed solution, cut along the y = 0 line, is compared to

an analytical solution by Morris [125]. It is clear that an excellent agreement is

obtained, even at this relatively low grid density.

Extensive numerical testing was performed for various test cases, to further

validate the method and to confirm the parameters of the artificial selective nu-

merical dissipation, as described in Section 3.2.4. The optimal set-up was found

in agreement with Kurbatskii [121]: the dissipation terms are applied to all equa-

tions, but the smallest, 3-point dissipation stencils do not include the ghost values

of pressure. The same distribution of Rw
∆ is used regardless of the Helmholtz num-

ber of the problem. If the dissipation is not applied to the pressure equation, then

a larger Rw
∆ amplitude (> 0.7) needs to be used to ensure stability, which leads,
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(a) Low dissipation leading to instability.
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(b) Optimised extrapolation leading to a periodic solution.

Figure 4.13: Monopole oscillator scattering on an infinite cylinder, α̃ ≃ 18.
8 contours of pressure between ±10−3. Negative contours are in dotted lines.
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Figure 4.14: Sound pressure levels of the computed solution of Fig. 4.13.
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Figure 4.15: Cut along the y = 0 line of a source of λ = 7 at x = 30, scattered
by a cylinder of radius a = 20. — : analytical solution; computed solution:
+ + + with optimal dissipation, ××× with large Rw

∆ coefficient.
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noticeably in Fig. 4.15, to a dissipated and dispersed solution; more particularly

in the shadow zone, because the sound waves must travel along the whole surface

of the cylinder.

The simulation was run with the (4-stage) LDDRK scheme, with time-steps

no larger than ∆t = 0.3, with no apparent difference with the result obtained

with a OAB scheme (∆t = 0.1), but the latter scheme runs faster overall because

it only evaluates one residual per time step, and gives slightly more accuracy and

stability. The instability introduced by the curved wall surface makes the use

of large time steps impossible, and makes the OAB scheme the optimal scheme

to use. One could argue that this does in effect reduce the effective temporal

order of the scheme. In the studies of Refs. [121] and [46], very small time steps

(∆t = 0.05) were also used in all cases. In the work of Özyörük [9], although high

CFL numbers are used (typically 0.5) with a Runge-Kutta method, this results

in small time steps (384 per period) because of the deformed grid: it is necessary

to use the smallest time step allowed by the grid metrics over the whole domain.

With the current approach, the instability is limited to the vicinity of the wall

boundaries, and not present in most of the domain where a simple uniform grid

is used. Chapter 3 presented many of the other advantages of such an approach.

4.2.3 Flow around the wall surface

The effect of a mean flow surrounding the immersed boundary will now be in-

vestigated (this was not done in Ref. [121]). In the general case, a steady solution

of the flow in the presence of the wall boundary can be obtained simply by using

a traditional CFD program; this can then be interpolated on the Cartesian grid

obtained. In the case of a 2D inviscid potential flow around a cylinder of radius

a, the solution can be expressed simply in the 2D cylindrical coordinate system

(r, θ) centered on the cylinder [127]:

vr = U∞

(

1 −
(a

r

)2
)

cos θ (4.7)

vθ = −U∞

(

1 +
(a

r

)2
)

sin θ (4.8)

p = p∞ + 1/2ρU2
∞

(1 − 4 sin2 θ) (4.9)
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(b) With Flow. The streamlines of the steady flow
(Eq. (4.7)–(4.9)) are shown in red.

Figure 4.16: Effect of the of a Mach 0.2 flow around the cylinder. 10 contours of
pressure between ±5 10−3. Negative contours are in dotted lines.
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(b) With Flow.

Figure 4.17: Effect of the Mach 0.2 flow around the cylinder on the SPL.
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4.2 Wall boundary in 2D

U∞ is the undisturbed velocity upstream of the cylinder. This flow modifies the

propagation and the scattering of the sound in complex ways; Redonnet [46] stud-

ied this effect for a monopole source, placed downstream and below the cylinder.

A similar study was done with the current code and is shown in Fig. 4.16, with

a mach number of 0.2 modifying the scattering of a monopole source (λ = 15).

The refraction effect of the flow is clearly apparent on the SPL plot of Fig. 4.17.

Furthermore, in both cases, the contours are very smooth near the boundaries:

the sound exits the boundary with no noticeable artificial reflections. In Fig. 4.18,

the pseudo-Doppler effects on the wavelength are apparent. A computation made

with double the resolution is superimposed, giving a similar result, which shows

the converged behaviour of the discretisation scheme: there appears to be less

dissipation and dispersion errors at this increased resolution. For Mach numbers

higher than 0.3, some instability appears on the downstream side of the circular

boundary, probably caused by the convection effects which accentuate its unstable

character.
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Figure 4.18: Plot along y = 0 of the solution of Fig. 4.16: −−×−−, and the
computation with double resolution: —+—.
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4.3 Wall boundary in 3D

4.3.1 Scattering from a sphere

The 3D method described in Section 3.2 was implemented. Basic tests have

already been performed in Section 3.2.2, making sure that the normals were

correctly evaluated and that no artificial asymmetry was introduced by the surface

analysis algorithm.

A scattering problem [126], similar to problems 3 and 4 of category 1 in

the second conference on acoustic benchmark tests [60], is used to validate the

boundary condition. In this case, a sphere scatters, in 3D, a monopole acoustic

source situated on the z axis. This problem has been used to validate other 3D

methods: Zhuang and Chen [83] use an adapted spherical coordinate system,

with excellent results, but this cannot be used in more complex cases. Morris [81]

used a simple staircase boundary.

After some iterations, a periodic state is obtained. The effects of the scattering

are apparent on Fig. 4.19: the interference pattern from the reflected signal and

the shadow zone behind the sphere. Fig. 4.20 and Fig. 4.21 show the computed

solution, compared to the analytic one, for different parameters. A range of

resolutions is studied, as described by the dimensionless wavenumber α̃ = 2πa/λ,

where a is the radius of the sphere. The case of Fig. 4.20(a) has α̃ = 6.8; in

Fig. 4.20(b) α̃ = 12.6; finally in Fig. 4.21, where the spatial resolution is 7 PPW,

α̃ goes up to 17.9. This performs a convergence study of this problem.

In all cases, there is excellent agreement in the zone closest to the source.

But, examining the solution on the x axis (Fig. 4.21(b)), or, more strikingly, in

the shadow zone behind the solid, it appears that increasing dissipation errors

seem to accumulate as the waves are diffracted around the wall surface. This

is similar to what was observed in 2D, but with an increased magnitude. This

is probably because three extrapolations need to be done for most ghost points,

instead of a maximum of two for the 2D method. The unavoidable error intro-

duced by discretising the curved surface, more important in 3D as was shown in

Section 3.2.2, is also probably a factor. The wave, as it travels along the wall,

is more dissipated than it is dispersed, which is consistent with general results
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4.3 Wall boundary in 3D

by Lockard concerning high-order methods [63]. The relative proximity of the

domain boundaries could be problematic, but increasing the domain’s size only

has a marginal effect, and mostly in the region closest to the source (z > 0).
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Figure 4.19: 3D scattering of a source (z = 34, wavelength of λ = 10) by a sphere
of radius a = 20. Plot in the y = 0 plane, of acoustic pressure contours: ±10−4,
the dashed lines represent negative values.
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(a) Sphere of radius a = 13, source at z = 34, of wavelength λ = 12: α̃ = 6.8.
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(b) Sphere of radius a = 20, source at z = 30, of wavelength λ = 10: α̃ = 12.6.

Figure 4.20: 3D scattering of a Gaussian monopole source by a sphere. Plot at
time t = 100, along the z axis. — computed values, −−− analytical solution.
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(a) Plot along the z axis.

-0.0004

-0.0003

-0.0002

-0.0001

0

1e-04

0.0002

0.0003

0.0004

-40 -30 -20 -10 0 10 20 30 40

P
re

ss
ur

e

x

(b) Plot along the x axis.

Figure 4.21: 3D scattering of a Gaussian monopole source (z = 30, wavelength
of λ = 7) by a sphere of radius a = 20: α̃ = 17.9. Plot at time t = 100. —
computed values, −−− analytical solution.
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Computations were also performed with double and half the spatial resolution,

for a fixed geometry, with a sphere of radius a = 20 and sources of wavelength

λ = 15: Fig. 4.22. Because of computational limitations, the domain could not

be extended as far, which results in artificial reflections degrading the solution.

But the area of interest in this case is the shadow zone. The dispersion and

dissipation errors appear to diminish, but not completely.

The results of Figs. 4.20 and 4.21 and the slow convergence exhibited indicate

that, although the full high-order accuracy could not be obtained here, it is still

quite important. Overall, the error diminishes as α̃ decreases, which indicates

some convergence of the algorithm according to this parameter; furthermore, the

overall quality of the solution in all cases is satisfactory. But the new 3D wall

boundary condition is not validated beyond any doubt at this stage.
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Figure 4.22: Computation with several resolutions of the 3D scattering by the
sphere. Same parameters as Fig. 4.21 with λ = 15.
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4.3.2 Mean flow effects

In Fig. 4.23(a), an undisturbed source of wavelength λ = 15 is situated next to

a sphere of radius a = 20. An inviscid potential flow is then added around the

solid boundary, as in Section 4.2.3. In this case as well, the flow has a far-field

velocity U∞ with a Mach number of 0.2. Supposing a symmetry around z, the

solution can be expressed in the polar coordinates (r, θ) of the y = 0 plane [128]:

vr = U∞

(

1 −
(a

r

)3
)

cos θ (4.10)

vθ = −U∞

(

1 +

(

a3

2r3

))

sin θ (4.11)

p = p∞ + a3U2
∞

4r3 − 5a3 + 3(4r3 − a3) cos 2θ

16r6
(4.12)

The full 3D LEE equations are solved, using smaller time steps of ∆t = 0.04,

to maintain a large enough CFL number (cf. Section 2.2.3). The effect that the

velocity gradient has on the acoustic propagation is apparent in Fig. 4.23(b), and

qualitatively similar to that of the 2D case. In this case as well, only low mach

numbers flows should be modelled, to avoid instability.
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Figure 4.23: Effect of the of a Mach 0.2 flow around the sphere. 10 contours of
pressure between ±4 10−3. Negative contours are in dotted lines.

112



4.3 Wall boundary in 3D

Concluding remarks

First of all, the implementation of the chosen numerical scheme was investigated

and verified using standard test cases found in the literature, as summarised in

Table 4.1. Its high accuracy was confirmed, and observations made by other

authors were replicated. A detailed analysis of two time integration schemes was

made, establishing that for simple cases, the theoretical stability and accuracy

limits are verified and that the frequency-optimised Runge-Kutta scheme was

the optimal choice. But when more complex cases including wall boundaries

were considered, smaller time steps needed to be used to prevent instability, and

the 4-level OAB scheme became the best option.

The 2D immersed boundary method of Kurbatskii was implemented, and

many results were replicated. It was also observed that the mean flow effects are

compatible with this boundary condition, for flows of low Mach numbers, which

could be a problematic limitation. The new 3D algorithm described in Chapter 3

was implemented, and tested on a standard benchmark problem. The high-order

accuracy that the immersed boundary condition possessed in 2D could not be

fully replicated in 3D, mainly because of extra inaccuracies in the extrapolation

process. The overall scheme remains high-order accurate in most of the domain.

The more representative applications in the following chapter will provide more

interesting validations, and assess the efficiency of the method compared to tra-

ditional CFD schemes.

Type 2D 3D
Pulse p. 86

Monopole p. 88 p. 94
Straight walls p. 95
Curved walls p. 99 p. 106

Table 4.1: Summary of the main validations cases used in this chapter.
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Chapter 5

Study of representative industrial

cases

The CAA LEE code described in Chapter 2, together with the 3D wall boundary

method described in Chapter 3, were applied in Chapter 4. This methodology

will now be referred to as the High-Order Propagation (HOP) method. In this

chapter, the HOP method is applied to representative industrial geometries. The

plane wave propagation case from Chapter 2 is first solved, illustrating the gains

obtained when a high-order discretisation is used. Then, the problem of sound

propagation from engine inlets, of great importance as described in Chapter 1, is

studied to further evaluate the wall algorithm of Chapter 3. The propagation of

several different acoustic modes is computed for two different axisymmetric inlet

geometries: one based on the JT15D engine, and the other on an elliptic profile.

The HOP results are compared with simple analytical results, and with results

obtained by a 2D frequency-domain CAA code and by a traditional CFD code.

Finally, a fully 3D problem is studied, investigating the effects of inlet scarfing

with a simple model.
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5. STUDY OF REPRESENTATIVE INDUSTRIAL CASES

5.1 Preliminary study

5.1.1 Simple plane wave propagation

The problem described in Section 2.2.1 will now be modelled with the HOP

method to compare the results to those obtained using the low-order code de-

scribed in Section 1.2.2: namely AU3D. The following parameters are used here:

∆x = ∆y = ∆z = 0.07m, so that the computational grid has the dimensions

80×28×28 to model the finely meshed region of the grid of Fig. 2.2. The wave

has a circular frequency of ω = 2π/7 which means that the maximum resolution

of 7 PPW is used, and the simulation is run for 10 periods. The mean flow is

perfectly at rest. The HOP computations were ran with ∆t = 0.05 to obtain 140

time-steps per period, as in the AU3D computations.

This is essentially a wave-guide problem, as symmetric boundary conditions

are imposed on all boundaries parallel to the direction of propagation. The con-

dition used, on the positive x boundary, to impose incoming waves is crucial

for the quality of the solution, as was described in Section 2.3.3. The computa-

tions were initially done with the non-reflecting formulation of Eq. (2.17), which

was applied in the 3-point wide boundary region. Such an approach introduces

a discontinuity in the transition from this boundary zone to the main domain,

which in turn creates spurious short waves contaminating the solution, and thus

instability. Therefore, the explicit absorbing boundary condition of Zhang et

al. [52], Eq. (2.18), was used. It is very well suited for use with the current type

of high-order method, because of the very smooth transition between the absorb-

tion zone and the main domain; furthermore, it does not require the computation

of any approximate derivatives (another potential source of inaccuracy). Numer-

ical tests were performed to establish the quality of the results with σm at least

equal to 0.4, β = 3 for a smooth transition and the absorbtion zone being at least

10 grid-lengths wide (see Eq. (2.19)).

Fig. 5.1 is a good illustration of the advantages of using a high-order discret-

isation. It shows the new solution superposed over the results of Section 2.2.1

(Fig. 2.2), and even at this low resolution, there is an excellent match with the the-

oretical solution and no significant dissipation or dispersion. The AU3D results,
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5.1 Preliminary study

here and in the rest of this Chapter, show the acoustic pressure p ′, normalised by

the reference pressure of pref = 10000 Pascals. A slight steepening of the solution

can be observed at the maximum resolution, because of the non-linear character

of the model. The HOP results, of arbitrary amplitude, were scaled to match

high-resolution AU3D ones at the input plane.

The running times obtained with the AU3D code were reduced by 12% to take

into account the stretched grid zone which has been added to prevent artificial

reflections (the running time being a linear function of the number of points in the

grid). They are shown in Table 5.1, together with HOP run-times, the dispersion

or phase error given as a percentage of the wavelength and the amplitude error.

The overall running time for HOP was around an order of magnitude smaller

than that of the traditional CFD method.

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

-4 -3.8 -3.6 -3.4 -3.2 -3

P
re

ss
ur

e

x

Exact solution
10 PPW

30 PPW
82 PPW

HOP
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parison of the different AU3D solutions, the 7 PPW HOP result and an analytical
solution.
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Method Running time Ratio Phase Amplitude
(minutes) error error

HOP, 7 PPW 11 1.0 0% < 1 %
AU3D, 10 PPW 26 2.4 60% 90 %
AU3D, 30 PPW 92 8.4 6% 2.5%
AU3D, 82 PPW 270 24.0 < 2% < 1%

Table 5.1: Computational times for the simple plane wave case, scaled for direct
comparison, and accuracy obtained.

The AU3D code uses a dual time-stepping technique [26]; the outer itera-

tion level, using a Newton method, determines the time accuracy of the code.

Computations were done using 3 outer iterations per time step, to ensure a good

convergence. Only doing 1 of these iterations cuts computing time nearly by

half, but, as can be seen in Fig. 5.2, this leads to a significant degradation of the

solution in terms of dissipation and, more importantly, dispersion, even though

relatively small time steps are used.
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The time step used in HOP can be increased from ∆t = 0.05 to 0.1 for

example, while retaining an accurate solution, thus doubling the computational

gains. However, as was explained in Chapter 4, this would be incompatible

with the curved boundary condition used in the rest of the study, and create

instability. This means that the gains obtained mainly come from the different

spatial schemes, as the time-step size used is of the same order. Nevertheless, the

superiority of the HOP method is still apparent. The observations made on this

simple case will be used for the more complex cases below.

5.1.2 Spinning modes of an infinite cylinder

Some of the essential nomenclature and conventions used in the rest of this chapter

will be now be clarified, by considering the eigensolutions of the convected wave

equation in an infinite cylindrical duct [9, 13]. These “spinning modes” are typical

of the sound field generated by the fan or rotor-stator interactions in the core of

the engine. Up to now, the source of sound Q ′

in, to be numerically propagated

through the inlet or the bypass sections, was assumed to be known or given by a

non-linear CFD computation. For the purpose of the study and validation of the

methodology, in the following sections the source will be directly imposed as one

or several modes, whose analytical formulation is described below.

Let rw be the radius of an infinite cylinder, centered on the ~x axis, in which

the mode propagates, cd the local speed of sound, Md the Mach number of an

eventual uniform convective flow. The acoustic pressure p ′ is expressed, in the

cylindrical coordinates (x, r, θ) of the duct, as a sum of modes

p ′ = ℜ
(

∑

n,m,µ

p̂nmµ

)

(5.1)

each of the form:

p̂nmµ = AnmµJm(αmµr)e
i[αx,mµx+mθ+φ]e−iωnt (5.2)

with Anmµ being the amplitude and φ an optional phase. A mode is usually refer-

enced by the (m,µ) pair, the azimuthal and the radial mode orders respectively,
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5. STUDY OF REPRESENTATIVE INDUSTRIAL CASES

and n is the time harmonic index. Jm is the bessel function of the first kind,

of order m. αmµ is the radial wavenumber, determined as the µth eigenvalue

that satisfies Jm
′(kr) = 0 at r = rw. In an engine inlet, the circular frequency

ω depends on the rotating frequency of the fan, generally characterised by the

Blade Passing Frequency (BPF), which depends on the operating conditions [9].

αx,mµ is the axial wavenumber. For waves propagating in the negative x-direction,

upstream in the traditional convention, it is given by:

αx,mµ =
−Mdα −

√

α2 − (1 − M2
d )α2

mµ

1 − M2
d

(5.3)

where α = nω
cd

is the wavenumber. Depending on the Mach number Md and the

ratio (αmµ/α), the axial wavenumber αx,mµ can sometimes be purely imaginary:

the mode is then cut off, i.e. it decays as it propagates; otherwise, it is cut on,

and it will effectively propagate. A cut-off ratio is then usually defined as

ξ =
√

(1 − M2
d )αmµ/α (5.4)

and will be less than 1 for propagating modes only. Modern aircraft engines are

designed so that most of the modes generated from the rotor/stator interactions

will be cut off under typical operating conditions.

In the case of an annular duct, described by an inner radius ri and outer

radius ro, a similar set of modes can be obtained [52]. To satisfy both boundary

conditions, the radial eigenfunction Jm is replaced by a sum of Bessel functions

of the first and second kind:

Jm(αmµr) −→ Jm(α ′

mµr) + ζYm(α ′

mµr) (5.5)

where ζ and the corresponding new radial wavenumber α ′

mµ are determined by

solving the equation:

ζ =
J ′

m(α ′

mµro)

Y ′

m(αmµro)
=

J ′

m(α ′

mµri)

Y ′

m(α ′
mµri)

(5.6)
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5.2 First case study: JT15D inlet

5.2 First case study: JT15D inlet

5.2.1 Description

The JT15D is a small Pratt & Whitney turbofan engine, with a bellmouth in-

let, whose acoustic behaviour has been studied extensively both experimentally

(NASA in static and flight configurations), and numerically to validate sound

propagation models [9, 41, 42, 72]. It was designed so that, for normal operations,

the acoustic modes generated by the rotor-stator interaction are cut-off and do

not propagate out of the inlet. In experimental settings, a certain number of rods

are added in the mouth to create a disturbance, whose interaction with the fan

is designed to generate a cut-on azimuthal mode. This allows a precise control of

the inlet acoustics.

As in Refs. [9] and [42], a simplified version of the axisymmetric bell-mouth

inlet, used for static testing, will be modelled here. A schematic diagram of the

approximate geometry, taken from Ref. [72], is shown in Fig. 5.3. The profile of

the centerbody can be approximated by the polynomial:

r = 1.228(L − x) − 0.0575(L − x)2 + 0.001025(L − x)3 (5.7)

where all quantities are expressed in cm.

The following problems could be solved with a 2D or 2.5D method, but the

full geometry will be considered to demonstrate the feasibility of large 3D com-

putations. Since HOP does not include a far-field integration method, it was not

possible to perform a comparison with experimental results in this study. In the

following sections, there will be a direct comparison, in the mid-field region, of

HOP with both a high-order CAA and a low-order CFD code. Qualitative com-

parison with theoretical predictions of the propagation will also be made. This

will allow further validation of the current code in realistic 3D situations, and give

an evaluation of the gain obtained when using the current high-order approach.

The current boundary treatment can deal with the centerbody; however, it

will first be omitted, as in Ref. [9], to simplify the problem and allow comparisons

with analytical results. In that case, the source plane is placed 23cm from the

inlet mouth, as indicated by the D line in Fig. 5.3. The resulting problem is
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Figure 5.3: Simplified schematic of the geometry of the JT15D static inlet. Ap-
proximate measurements are in cm.
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5.2 First case study: JT15D inlet

discretised with HOP using a uniform, regular Cartesian grid with ∆x = ∆y =

∆z = 0.012m. It contains 111×111×116 points, including 15940 ghost points, 24

of which need to be evaluated with the 4-point normal extrapolation described

in Section 3.3: this is 0.15% of all points, so it should not noticeably affect the

accuracy. The incoming waves are imposed with an absorbing boundary condition

because, as in Section 5.1.1, using the condition of Eq. (2.17) led to the generation

of spurious waves. For similar reasons, and in all the following cases, the initial

wave amplitude is smoothly increased from zero to its final value over t = 25.

5.2.2 Azimuthal modes

The propagation out of the inlet of several azimuthal, or “spinning”, acoustic

modes, as described by Eq. (5.2), is first computed, to study a type of 3D propaga-

tion found in typical fan noise problems (see Chapter 1). The nomenclature of

Section 5.1.2 will be used throughout. The computation was made until a peri-

odic regime is obtained, as is shown in Fig. 5.4. Several modes are studied, with

different azimuthal orders, wavelengths and increasing cut-off ratios: Table 5.2.

A frequency of 3150Hz (λ = 10.6 cm) is typical of the sound produced at normal

engine operating conditions [41, 72], and the associated large Helmholtz number

(α̃ = αa = 2πa/λ ≃ 16) would represents a challenging computational problem

for a low-order method. For atmospheric ambient conditions, it is represented by

8.84 points-per-wavelength with the HOP model.

Strongly cut-on modes

The main features of the radiation pattern can first be theoretically estimated.

Lordi and Homicz [129] obtained an approximate analytical solution for the ra-

diation to the far-field of acoustic modes from an infinitely thin cylinder of finite

length. The full result is complex, but the authors show that, for well cut-on

modes, most of the radiation is centered on a “principal lobe”, whose direction

is the same as the polar mode angle inside the duct1. If θ is the angle measured

1Non-planar modes are equivalent to a sum of several plane waves propagating at a certain
angle, which depends on the wavenumber and the modal order [22, 48].
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Figure 5.4: Convergence of the solution to a periodic state, for the (8,1) mode
(3150 Hz).
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from the inlet mouth, for no-flow cases this direction θp will be such as:

α cos θp = αx,mµ =
√

α2 − α2
mµ (5.8)

(using the nomenclature of Section 5.1.2). The resulting theoretical far-field dir-

ectivity of the main lobes is shown in Table 5.2 for several modes of increasing

cut-off ratio, along with the corresponding Helmholtz number α̃. As the cut-off

ratio (ξ in Eq. (5.4)) increases, the angle of radiation gets more important, the

principal lobe moves away from the centerline.

Mode, λ (cm) (4,1), 18 (8,1), 12 (8,1), 10.6 (13,1), 10.6
α̃ 9.3 14 15.8 15.8

PPW 15 10 8.8 8.8
θp (degrees) 35 44 38 71

Cut-off ratio ξ 0.57 0.69 0.61 0.95

Table 5.2: Modal parameters for the modes studied.

To validate the mid-field results, the propagation of several spinning modes

with HOP was compared to results2 obtained by ACTRAN, a commercially avail-

able linear CAA code [130]. It uses high-order finite and infinite elements, and

assumes an irrotational flow. It has been thoroughly validated, for example by

comparing the propagation of spinning modes from an unflanged, infinitely thin

cylindrical duct with a benchmark analytical solution [55]. An axisymmetric

model of the JT15D inlet was solved in the frequency domain with quadratic

elements and 15th order infinite elements at the boundary, to allow the waves to

exit the domain with minimal reflections. All the modes in the following cases

have a unit modal amplitude: Anmµ = 1 in Eq. (5.2).

The propagation of the (8,1) and (4,1) modes, at 3150 Hz (λ = 10.6 cm) and

1855.5 Hz (λ = 18 cm), is shown in Figs. 5.5 and 5.6 respectively. The results

obtained with HOP (rotated for comparison) are shown next to the real part of

the complex pressure obtained by the frequency-domain ACTRAN method. It

appears that, in the HOP computation, the acoustic mode is artificially dissipated

2Provided by Naoki Tsuchiya from the Institute of Sound and Vibration, University of
Southampton, U.K.
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as it propagates along the wall. However, apart from the presence of a low level

of pressure along the centerline in both HOP results, in both cases the solution

behaves similarly after it is diffracted by the inlet mouth, with good agreement

in the directivity pattern.

These observations are now confirmed by examining the radiation patterns

for both methods in more detail, for the first three modes of Table 5.2. A good

measure of the directivity of the modal radiation is given by the amplitude of

the complex pressure obtained by ACTRAN, which can be compared to the

root-mean-square (RMS) of the pressure signal in HOP, computed in the last

period of oscillation (see Fig. 5.4(a)). These quantities, taken along an arc of

radius 60 cm centered on the inlet mouth at z=48.9 cm, are plotted in Fig. 5.7.

The RMS values from the HOP computation were scaled by
√

2 to match the

pressure amplitudes given by ACTRAN. The modes appear highly dissipated

after propagation. This dissipation is more important as the cut-off ratio and

the modal angle increase. There is also a spurious amount of radiation along the

centerline (θ < 15 degrees), representing an artificial scattering into other radial

modes. The match in directivity, however, is very good for the main lobe, where

most of the acoustic energy is present. These results are also consistent with the

theoretical directivity trend of Table 5.2.
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Figure 5.5: Pressure contours (unit modal amplitude) in a symmetry plan for the
(8,1) mode at 3150Hz.
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Mode near cut-off and flow effects

A mode closer to cut-off will now be considered. In some experimental studies of

the JT15D inlet, 41 rods were placed upstream of the fan to force the generation of

the (13,1) propagating mode [72]. For a typical BPF of 3150Hz, this mode is very

close to cut-off (ξ = 0.95). In this case, the analysis of Lordi and Homicz [129]

indicates that the main radiation lobe will be larger, and situated far away from

the centerline (cf. Table 5.2).

This nearly cut-off mode was computed with HOP, and this solution is com-

pared to the ACTRAN result in Fig. 5.8. The resulting directivity, scaled in the

same manner as the results of Fig. 5.7, is shown in Fig. 5.9 (no flow results).

Compared to the previous results, the dissipation occurring during the propaga-

tion along the wall is more pronounced, probably because the mode is so close to

cut-off. This also means that the spurious centerline radiation becomes relatively

more important. However, the resulting directivity is mainly well estimated, with

the main lobe centered on the same very large polar angle.

A steady flow is now added in both computations. For the inlet case con-

sidered, a flow at rest in the far-field and with a Mach number of 0.18 at the

fan-face is also typical of static engine operating conditions [42]. This steady

flow is computed with the AU3D code, and the result is non-dimensionalised and

interpolated on the HOP grid: Fig. 5.10. This mean flow is used in the HOP com-

putation, as in Section 4.3.2. The same is done with ACTRAN, the steady flow

being computed by a finite-element, irrotational compressible flow solver (with

an identical result). The effect this has on the propagation is shown in Fig. 5.11:

the wavelength is shortened inside the duct, where the velocity is important, but

the diffracted wave past the bellmouth lip is essentially unchanged, and this is

reflected by the absence of significant change in the directivity (Fig. 5.9).
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Figure 5.8: Pressure contours in a symmetry plan for the (13,1) mode at 3150Hz
(unit modal amplitude).
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Figure 5.9: Directivity plot for the (13,1) mode at 3150Hz, with and without
mean flow (M=0.18), HOP and ACTRAN computations.
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Figure 5.10: Computed mean flow with M=0.18 at the fan-face, streamlines color-
coded with the Mach number values.
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Figure 5.11: Pressure contours in a symmetry plan for the (13,1) mode at 3150Hz
(unit modal amplitude), with the steady flow of Fig. 5.10.
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Full JT15D geometry

An example of a computation run with the full geometry, including the fan spin-

ner, will now be presented. The 110×110×95 grid contains 26337 ghost points.

For such a large geometry, the pre-processing phase, including the inversion of

the sparse matrix, took 3 hours on the 2.4GHz PC used throughout this study.

A 10-point long absorbtion zone inside the duct is imposing the annular modes

described by Eq. (5.5). The propagation of the (8,1) mode at 3150 Hz, as in

Fig. 5.5(a), is computed. The result is displayed in Fig. 5.12. Qualitatively, the

result is very similar to the no-centerbody one (Fig. 5.5(a)), because most of

the acoustic energy is situated close to the wall (above the “caustic radius” [22])

and is unaffected by the spinner; the main radiation lobe is similar. There is

more dissipation however, because of the long propagation across the wall, and

more acoustic pressure close to the centerline, which is probably due both to the

varying annular radius, and to additional spurious scattering. This result qualit-

atively illustrates the capabilities of the systematic 3D wall algorithm in handling

complex geometries.
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Figure 5.12: Solution for the (8,1) mode at 3150 Hz, full geometry.
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5.2.3 Plane wave cases

The computation of plane wave modes (m = 0), in the mid-field region of the

JT15D geometry used in Section 5.2.2, will now be compared to similar compu-

tations made using AU3D, for several frequencies, and using an increasingly fine

meshing. This code was used with success in similar problems for low-frequencies

cases [17, 18]. The waves are imposed through a 1D non-reflecting characteristic

boundary condition, but the investigation of 1D (m = 0) modes should limit the

errors introduced by the boundary condition.

A 30 degrees angular sector of the simplified axisymmetric inlet is meshed,

with most of the details being captured inside the inlet with an almost constant

mesh size ∆, as shown in Fig. 5.13. Elsewhere, the grid is increasingly stretched

to prevent artificial reflections. The grid shown in Fig. 5.13 is coarsely meshed,

with ∆=1.0 cm. Similar meshes were made with: ∆ = 1.5 cm, ∆ = 0.5 cm and

a very fine grid with ∆ = 0.2 cm. As in Section 5.1.1, 150 time steps per period

will be used, with 3 Newton iterations.

The computation was first done for a high-frequency case (BPF of 3150 Hz,

λ = 10.6cm), with a negligible mean flow, for 16 wave periods. Fig. 5.14 shows

the contours of acoustic pressure in an equivalent plane of symmetry for the HOP

solution (∆x=0.012 which means 8.84 PPW) and the equivalent AU3D one with

∆ = 0.2 cm (53 PPW). Here, and in the following cases, the HOP length-scales

were appropriately dimensionalised, and the results scaled to match the initial

amplitude of the AU3D non-dimensional acoustic pressure. The values of the

computed solutions along the centerline are shown in Fig. 5.15, with the full

range of AU3D resolutions.

As previously, the convergence of the spatial discretisation towards a con-

sistent solution, and the strong numerical dissipation and dispersion that arise

when a coarse mesh is used, are clearly shown. For 7 PPW, the wave is very

quickly damped and becomes half a wavelength out of phase. Even when it is

not strongly dissipated (21 and 11 PPW), an increasing phase difference with

the 53 PPW solution appears clearly along the propagation; this is again a con-

firmation that this type of error is dominant in low-order codes (Lockard [63]).

There is, overall, only a good match between the HOP solution and the 53 PPW
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Figure 5.13: 2D-section of the grid used in the low-order sound propagation
calculation, y = 0 plane. Coarsely meshed case with ∆=1.0 cm.

136



5.2 First case study: JT15D inlet

solution, as can be seen in Fig. 5.14. Some slight asymmetrical discrepancies,

visible in Fig. 5.15, indicate the presence of a low-frequency spurious compon-

ent. From x = −0.7, there is increasing dispersion appearing, because the grid is

progressively stretched.

The computation shown on Fig. 5.14(b) took 7 hours 15 minutes on a desktop

2.4GHz PC. The AU3D computation for the 21 PPW case took around 10 hours3

on the same machine, and because the running time scales linearly with the num-

ber of points, this is equivalent to 120 hours for the full 3D geometry, nearly 17

times more than with the HOP code. The 53 PPW case was run on a differ-

ent machine, therefore the running time cannot be directly compared, but it is

estimated to be twice as large as for 21 PPW. The 7 PPW case took around 1

hour, which means 12 hours for the full 3D geometry; this is slightly more than

the equivalent HOP calculation, even though the computational stencil is larger.

This is because HOP is a simpler linear code, dedicated to acoustic computations.

These results are summarised in Table 5.3.

Method Running time Ratio
HOP ∼ 7h 1.0

AU3D, ∆ = 1.5 cm 12h 1.6
AU3D, ∆ = 0.5 cm 120h 16.5
AU3D, ∆ = 0.2 cm 240h 33.0

(estimate)

Table 5.3: Computational times for the fully 3D JT15D plane wave cases.

3The running time is reduced by around 10% to avoid taking into account the extra, stretched
grid zone which is necessary to avoid reflections and instability in AU3D runs.
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Figure 5.14: Propagation of the (0,0) mode with λ = 10.6 cm. Contours of
non-dimensional acoustic pressure in a symmetry plane.
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Figure 5.15: Propagation of the (0,0) mode with λ = 10.6 cm. Acoustic pressure
along centerline for HOP with 8.84 PPW, and AU3D with several resolutions.
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The same computations are also made for λ = 13.2cm, which represents a

frequency of approximately 2532Hz, to study the evolution of the convergence

of both solutions (now α̃ ≃ 13). Results are displayed in Fig. 5.16: the AU3D

solution with a 66 PPW resolution, and 11 PPW for HOP. The pressure along

the centerline is shown in Fig. 5.18. Similar observations as for the λ = 10.6 cm

case can be made.

The computation was finally done for a low-frequency case, λ = 30 cm or

ν ≃ 1113.3 Hz (now α̃ ≃ 5.6), for 8 wave periods. Fig. 5.17 shows the pressure

contours in the symmetry plane. The match between the HOP computation with

25 PPW and the first three AU3D cases, as shown in Fig. 5.19, is not as good

as above, although the low-order solution seems to converge as the resolution is

increased from 20 and 30 PPW to 60.

The ratios of the running times for the last two cases are similar to those

presented in Table 5.3. Taking all these results together, it is clear that, as the

PPW resolution of the AU3D computations is increased, there is convergence

towards a single solution, with the dissipation and the dispersion errors being

reduced, in that order. As in the previous HOP computations, some dissipation

appears close to the wall, but there is an overall good match of both solutions,

and the diffraction seems to be correctly represented. Examining the solution

along the centerline, this match seems to degrade as the wavelength is increased,

with a slowly varying amplitude discrepancy appearing. Overall, this is not a

very serious problem, as the high-order HOP method is not as advantageous for

low-frequency problems. But it was not the case in Section 5.1.1, when no wall

was present, and the validation results of Section 4.3.1 showed that the errors of

the new wall boundary condition tended to disappear as α̃ decreased. It could

come from the AU3D boundary conditions, which are not designed for acoustic

computations, or from the limited size of the HOP domain which leads to artificial

reflections, particularly since the radiation depicted in Fig. 5.17 is very different

from a monopole source. The absorbing condition used to impose the incoming

acoustic solution could also be a source of low-wavelength error.
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(a) AU3D result with ∆ = 0.2 cm, 66 PPW.
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Figure 5.16: Propagation of the (0,0) mode with λ = 13.2 cm, contours of non-
dimensional acoustic pressure.
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(a) AU3D result with ∆ = 0.5 cm, 60 PPW.
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(b) HOP result (dimensionalised) with ∆x = 1.2 cm, 8.84 PPW.

Figure 5.17: Propagation of the (0,0) mode with λ = 30cm, contours of non-
dimensional acoustic pressure.
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Figure 5.18: Same as Fig. 5.15, with λ = 13.2 cm.
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Figure 5.19: Same as Fig. 5.15, with λ = 30 cm.
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Different configurations were investigated in this case to study boundary ef-

fects: Fig. 5.20. The previous computation is shown together with several other

cases, the first has a domain extended to z = −117, the second has the absorb-

ing boundary condition added to all borders, and the third uses the 1D in-duct

boundary condition of Eq. (2.17) instead of the absorbing one used above. No

significant change to the solution is observed, so a boundary problem is unlikely.

The error probably comes from the spurious centerline radiation which was ob-

served in previous modal results.
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Figure 5.20: (0,0) mode with λ = 30 cm: boundary conditions investigations.

Discussion

It appears that the HOP scheme correctly predicts the directivity of propagat-

ing azimuthal modes, both by comparing results to the theoretical far-field trend

(Table 5.2), and by direct comparison to ACTRAN results. But the spinning

modes lose some of their amplitude as they propagate along the wall. The amount

of dissipation depends on the modal angle and thus on the amount of modal
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5.2 First case study: JT15D inlet

reflections on the wall. This defect is related to the validation results of Sec-

tion 4.3.1: for important Helmholtz numbers, the wave is dissipated as it travels

along the wall boundary, more than it is dispersed (its phase is more accurate):

see Fig. 4.21(b) for example.

This probably comes from the extrapolation inaccuracies, exacerbated by the

fact that three are performed in 3D. The selective artificial dissipation, necessary

to maintain stability, could possibly also be a factor, but it is little different

to the 2D case. However, together with Section 5.1.1, these results effectively

show that, if a low-order discretisation is employed, it is necessary to use at

least 30 PPW to propagate an acoustic wave over 10 wavelengths, even for a low

target accuracy. Using such resolutions with acoustic problems of large Helmholtz

numbers (more than 10) leads to impractical situations in the mid-field region,

with large computational and memory costs. With the HOP code, gains of one

order of magnitude in the computational time are obtained (see Table 5.3), for

equivalent solutions. This ratio of around 20 to 30 times is also slightly under-

estimated because of the grid-stretching employed from x = −0.7, and could

become even larger if higher accuracy or a larger propagation distance are needed.

One of the defects appearing in the HOP solutions is the excessive radiation

appearing along the centerline, between 0 and 20 degrees, after the mode is

diffracted by the inlet mouth. It does not disappear as the wavelength is increased,

and represents, in a sense, a scattering of the incoming mode into higher radial

orders, probably caused by the dissipation occurring along the wall. The low-

order normal extrapolation, used on a few points which are situated around the

bellmouth inlet lip, could also be at the origin of this defect, but it is only used

for a limited amount of ghost points.

145



5. STUDY OF REPRESENTATIVE INDUSTRIAL CASES

5.3 Second case study: elliptic inlet models

Most early studies of inlet propagation with a high-order scheme were performed

on idealised, infinitely thin cylindrical inlets, for example Dong and Mankbadi [80]

or Li et al. [96]. They are simple to implement, and allow the inclusion of a simple

uniform convective mean flow as an approximation of real flows. This captures

most of the diffraction effects at the lip, but not the details of the geometry or the

complex effects of real inhomogeneous flow. The next step, made possible by the

current boundary method, is to study simple inlets with a finite thickness. An

elliptic profile can be used to model both thin and bell-mouth inlets, depending

on the parameters used, and this has been used by some researchers as a good

case study for the propagation and radiation of spinning modes, as Keith points

out in Ref. [22]. It also leads to a simple model of an asymmetric inlet: the scarfed

inlet. First, some preliminary tests on an axisymmetric geometry are made, using

comparisons with AU3D, as for the JT15D geometry in Section 5.2.3.

5.3.1 Axisymmetric inlet

The parameters of the profile to be used are shown in Fig. 5.21. The surface is

described by the following equation:

( z

K

)2

+ (
√

x2 + y2 − R)2 = T 2 (5.9)

An inlet shape with parameters T 2 = 0.51, R = 3, K=4 (dimensionless

quantities) is modelled with ∆x = 0.1. The grid is composed of 97×97×100

points, and contains 13468 ghost points. An extrapolation along the normal

direction is needed for 56 of those (0.4%). The pre-processing phase in this case

took 1 hour 20 minutes on the 2.4GHz PC. The small curvature present at the tip

of the ellipse was handled well by the wall algorithm. A 10-point wide absorbing

zone, which introduces the input wave, was included, as in the JT15D cases.

The propagation of the m = 0 waves with the HOP model above will be

compared to AU3D results, for different frequencies (λ = 1 and 2, α̃ = 18.8

and 9.4). A 30 degree sector is meshed, using several resolutions to verify the

convergence towards a consistent solution. Around the inlet, a uniform grid
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Figure 5.21: Description of the elliptic inlet geometry.

resolution of ∆ is used, and the grid is stretched elsewhere. ∆ = 0.1, ∆ = 0.05

and ∆ = 0.033 will be used, to obtain respectively 10, 20 and 30 PPW for the first

case and 20, 40, 60 in the second. The low resolution grid is shown in Fig. 5.22.

λ = 1

The λ = 1 case is first computed, using the same time step parameters as in

Section 5.2.3, and running the computation for 16 wave periods. The results for

the HOP and the high-resolution AU3D computations are shown in Fig. 5.23,

and the pressure was scaled in the same way as for Section 5.2.3. Some amount

of artificial distortion appears in the HOP result because of aliasing from the low

resolution and contour plot artifacts near the elliptic boundary.

The match in most of the domain is good, even if an increasing phase difference

appears as the wave propagates. Examining the results along the centerline,

in Fig. 5.24, confirms this. It appears that the 10 PPW solution is strongly

numerically dissipated, and that increasing the grid resolution reduces this effect.
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Figure 5.22: 2D-section of the grid used in the low-order sound propagation
calculation. Coarsely meshed case with ∆=0.1.
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However, even the 30 PPW solution becomes out of phase with the HOP solution.

Dissipation also appears close to the wall. These trends are consistent with the

JT15D results above, showing that more than 30 PPW lead to an approximately

correct solution, although some discrepancies still exist. The 3D computational

times and gains obtained by using the high-order method are shown in Table

5.4. They were scaled as in Section 5.2.3, and the gains obtained are similar but

slightly higher, because the current grid is not as strongly stretched as for the

JT15D case (Fig. 5.13).

Method Running time Ratio
(hours)

HOP, ∆x = 0.1 9 1
AU3D, ∆ = 0.1 31 3.5
AU3D, ∆ = 0.05 106 12
AU3D, ∆ = 0.033 164 19

(estimate)

Table 5.4: Computational times for the plane wave computations with the 3D
elliptic inlet.

λ = 2

For the λ = 2 case, the results can be seen in Fig. 5.25 and Fig. 5.26. The match

in amplitude along the centerline is not as good as above, even though both

solutions are close in phase, and the AU3D solutions seems to converge as the

resolution increases up to 60 PPW. Similar observations as for the JT15D cases

of Section 5.2.3 are made: the match along the centerline is not as good for the

low-frequency case, with an apparent amplitude discrepancy. The overall quality

of the HOP results is satisfactory (Fig. 5.26), except close to the wall where once

more the waves are dissipated.
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Figure 5.23: (0,0) mode with λ = 1, acoustic pressure along centerline for the
HOP solution (10 PPW) and AU3D solutions.
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Figure 5.24: Same as Fig. 5.24 with λ = 2.
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(a) AU3D result with ∆ = 0.033, 30 PPW.
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Figure 5.25: Propagation of the (0,0) mode with λ = 1. Contours of non-
dimensional acoustic pressure in a symmetry plane, scaled for comparison.
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(a) AU3D result with ∆ = 0.05, 40 PPW.
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Figure 5.26: Propagation of the (0,0) mode with λ = 2. Contours of unsteady
pressure (arbitrary amplitude) in a symmetry plane.
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5.3.2 Scarfed inlet

The elliptic inlet above was then modified to represent a scarfed inlet. Tradition-

ally, this means that the inlet has a longer upper lip, for aerodynamic reasons.

But, as was pointed out in Chapter 1, negatively scarfed ones are being invest-

igated for their acoustic performance, as they can reflect some of the acoustic

energy away from the ground direction, as represented in Fig. 5.27. This is a

simple but representative example of an asymmetric geometry: in this case, a full

3D model is needed. A similar study was made by Keith [22] using ray theory,

for one high frequency mode (α̃ = 40), using some approximations, as it was very

mathematically intensive. A more complete study was also made in Ref. [22] for

an infinitely thin scarfed cylinder, which showed that the inverse scarf caused a

reduction in the peak amplitude radiated downwards (main lobe), but that this

effect was only small for well cut-on modes.

z

y

x

0

T

K.T

R

ϕ θ

(K + τ).T

Figure 5.27: Description of the negatively scarfed inlet model, and its effect on
radiated sound.
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The HOP scheme is very interesting for this problem. 30 PPW would be

required with a low-order scheme: this would represent a grid of more than 2 mil-

lion points, around 1.7Gb of memory and a run-time of several hundred hours,

because the full annulus would need to be included. As explained in Chapter

2, compact or quadrature-based methods also become very costly in 3D, as they

require solving large linear systems. Özyörük used a finite difference method

which could handle 3D inlets, using cylindrical coordinates, but did not invest-

igate asymmetrical geometries [9]. A good-quality body-fitted grid, structured

or unstructured, would be difficult to generate in this case, particularly for high

scarfing ratios. The Cartesian grid used here, containing the immersed boundary,

remains smooth and uniform in most of the domain.

The geometry is modelled by modifying the elliptic profile of Eq. (5.9), as

shown in Fig. 5.27. The radius is still R = 3, and T 2 = 51, but this time the

surface equation is modified by a scarfing ratio 0 < τ ≤ 1:

(

z

K + τ sin(ϕ)

)2

+ (
√

x2 + y2 − R)2 = T 2 (5.10)

if ϕ is the azimuthal angle around the z axis. The particular geometry studied

uses τ = 0.4. The grid is identical to that of the axi-symmetric case above, but

contains 13470 ghost points, 44 of which need extrapolation along the normal.

The wall algorithm used in HOP has no difficulty in handling this asymmetrical

geometry, shown in Fig. 5.28.

The effect of the scarfing on several acoustic modes will be investigated. First,

a plane wave mode is used as input, with λ = 0.9 (9 PPW, α̃ ≃ 21). The compu-

tation is run until a periodic regime is obtained. The mid-field SPL directivity

obtained along the domain’s boundary is shown in Fig. 5.29 as a function of the

polar angle θ (cf. Fig. 5.27). Most of the energy radiates in the center, so the

scarfed lip does not have a strong effect on the directivity of most of the sound,

which is in any case not radiated towards the ground. A small difference for the

secondary diffraction lobes is however noticeable.

The behaviour of spinning modes is more important, because, as was seen in

Section 5.2.2, most of the acoustic energy is directed away from the centerline

direction. The SPL obtained is shown in Fig. 5.30, for several different modes
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5.3 Second case study: elliptic inlet models

Figure 5.28: 3D scarfed elliptic inlet surface, overlayed with the intersections with
the Cartesian grid.
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Figure 5.29: Mid-field SPL plot for the plane wave mode with λ = 9, angle=θ.

with different cut-off ratios (table 5.5). As in the JT15D cases above, the modes

become more dissipated as ξ and the modal angle increase. It can be seen that the

scarfed lip causes a relative reduction of between 0.5 and 2 dB in the peak SPL

radiated downwards, and the overall reduction is higher for modes that radiate

with a large angle. The trend exhibited here is consistent with the results of

Ref. [22], and with intuition: the modes that radiate most strongly away from

the centerline are most affected by the extended inlet lip (see Fig. 5.27). A far-

field integration would be necessary to determine the amount of silencing obtained

on the ground level. This result is interesting because it is the modes radiating

from an engine inlet with a large downwards angle that will tend to cause a lot

of noise on the ground level.

Mode (4,1) λ = 0.9 (4,1) λ = 2.0 (8,1) λ = 1.1 (13,1) λ = 0.9
PPW 9 20 11 9

ξ 0.33 0.74 0.74 0.94

Table 5.5: Theoretical cut-off ratios ξ for the modes considered.
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Figure 5.30: Mid-field SPL plot for the modes of Table 5.5.

5.4 Concluding remarks

The first case studied in this chapter, a simple wave propagation problem with

no wall surfaces, confirmed classic CAA results by demonstrating the efficiency of

the high-order DRP scheme. The new wall boundary condition was then added

to HOP, and both the JT15D and the elliptic inlet geometries were modelled.

Although no direct comparison with far-field results could be made, mid-field

HOP computations were related to equivalent ones obtained with other schemes.

Similarly to the validation results of Chapter 4, comparisons with an extensively

benchmarked 2D CAA program, ACTRAN, showed that important dissipation,

caused by the extra extrapolations used in the 3D method, occurred as the sound

propagated. Probably because of this, a small quantity of spurious waves was

also found radiating at low angles, close to the centerline. However, the directiv-

ity patterns obtained with HOP were consistent with reference and theoretical

results.

Comparisons made for plane wave cases, in both geometries, with solutions

157



5. STUDY OF REPRESENTATIVE INDUSTRIAL CASES

obtained with the low-order AU3D method, showed that the dissipation occurred

close to the wall boundary, and was more important as the modal angle increased.

Centerline discrepancies appeared for large wavelengths, because of the spurious

radiation described above. A good overall match was obtained, but low-order

computations were found to need at least 30 PPW, which leads to an increase in

computational time of more than 15 times compared to 8 PPW HOP computa-

tions. The memory cost of solving a fully 3D problem with such a fine grid would

probably be a crucial limiting factor.

Potential instability leads to the use of reduced time steps, as shown in

Chapter 4, but this is also the case for traditional methods using body-fitted

grids. Even if the full resolution of 7 PPW, found in free-field problems, cannot

be used, the permitted resolutions are effective and still largely more efficient than

with a low-order code. For comparison, the non-optimised high-order scheme of

Özyörük was used with resolutions of 12 PPW [36]. However, the important

dissipation associated with the immersed boundary condition in 3D preclude its

immediate use in its present state of development.

The acoustic shielding effect of a negatively scarfed inlet for certain acoustic

modes was investigated using a simple but fully 3D model. The new 3D wall

boundary condition developed in chapter 3 handled the asymmetric geometry

while keeping a high-quality, uniform Cartesian grid in most of the domain. Re-

ductions of around 2 dB in the mid-field SPL were observed for spinning modes

that radiate strongly towards the ground direction. This case illustrates how

complex, multi-dimensional effects could be investigated with the current ap-

proach. To use a low-order or implicit method would be extremely costly for

similar problems, unless a 2.5D model with substantial simplifying assumptions

is used.

Overall, the duct cases presented in this chapter suggest that the wall bound-

ary developed in this work exhibits some important dissipation which is depend-

ant on the modal angle, and thus on the number of internal modal reflections

occurring. As currently implemented, the scheme’s accuracy is insufficient for

direct application to industrial problems.
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Chapter 6

Conclusions and further work

6.1 Conclusions

In the current work:

• A fully 3D sound propagation code (“HOP”) was developed. It uses a finite

difference discretisation to solve the time domain, non-conservative LEE

equations. Both spatial and temporal schemes are optimised for wavenum-

ber accuracy.

• This scheme was chosen after a review of existing computational aero-

acoustics schemes. These generally high-order accurate schemes were de-

veloped because of the inefficiency of traditional, low-order accurate CFD

methods when used for acoustics.

• A novel 3D wall boundary condition was developed, using a structured im-

mersed boundary approach, to enforce the slip boundary condition while

keeping a regular Cartesian grid in the whole of the computational domain.

It can model disconnected and concave surfaces, with no sharp edges. Few,

if any, existing immersed boundary method have been developed in con-

junction with a high-order scheme. The associated algorithm was described

in detail, and the discretisation errors were estimated.

• The effects of complex underlying steady flows, essential to the fan noise

problem, were studied in conjunction with the immersed boundary ap-
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proach, a first in the CAA literature to the author’s knowledge. The effects

of the presence of a low Mach-number underlying steady flow were shown,

but higher-speed flows caused instability.

• The HOP scheme was validated on a variety of classic test cases, of in-

creasing complexity (first in 2D and then in 3D), including, if needed, the

appropriate wall boundary condition.

• Two different time integration scheme were implemented and compared in

detail on a variety of validation cases. Although the optimised Runge-

Kutta schemes are theoretically the most efficient, when the time step is

restricted because of stability concerns, the optimised Adams-Bashforth

scheme becomes the optimal choice.

• Several test cases representative of sound propagation in turbofan engines

were also studied, and computations made with HOP were compared with

analytical and alternative computational solutions. It was also observed

that the wall algorithm could handle complex, realistic geometries, but

some important inaccuracies appeared close to the wall boundaries, which

caused a dissipation of acoustic modes as a function of their cut-off ratio.

• Two different boundary conditions, introducing the input acoustic modes

while minimising the reflections, were implemented. The explicit absorbing

boundary was found to perform better than a 1-D radiation condition.

• It was shown that using a high-order method meant obtaining a gain of at

least one order of magnitude in the computing time, when compared to a

traditional CFD method, AU3D.

As noise constraints become fundamental for the airlines and the aeronautics

industry, engines must become quieter; the associated design choices affect other

aspects of the turbomachinery’s behaviour, so computational modelling should

ultimately include all these effects and their interactions to obtain a complete

design solution. Robust computational methods already exist to simulate fluid

dynamics (CFD), and their interaction with structures (aeroelasticity). This
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includes the internal generation of sound, but not its propagation to the point of

observation.

In this study, dedicated, efficient acoustic propagation methods, to be used

in conjunction with these traditional CFD techniques, were investigated. Many

existing methods CAA employ 2D models, with simplifying assumptions (uniform

or irrotational mean flow etc.). To study more general interaction effects, a set

of 3D perturbed Euler equations was chosen here, making use of the increase

in available computing power. An hybrid linear approach splits the equations

between the steady mean flow (computed by a dedicated code) and the acoustic

perturbations (governed by the LEE equations).

The computational efficiency of the chosen discretisation method is then of

paramount importance. Traditional CFD techniques are inefficient for acoustic

computations, and many dedicated, high-order accurate methods have emerged.

Popular methods were reviewed, including implicit or explicit finite difference

and finite element schemes. In the current work, a structured, finite difference

approach that dispenses from using traditional meshing techniques was taken.

Finding correct ways of handling non-trivial wall geometries is an important

topic of research in CAA, even before 3D situations are considered. A 2D wall

boundary condition by Kurbatskii, designed for finite difference discretisations,

and allowing the use of a simple regular grid, was extended to 3D as described

in detail in Chapter 3. This represents one of the main contributions of the

current work. It is based on a complex but systematic algorithm that analyses

the geometrical situation for each relevant point behind the wall surface, and

determines the appropriate normal direction. The pressure gradient on the wall

surface is obtained using an extrapolation optimised in the wavenumber space,

performed along the coordinate axes. This is done in a pre-processing phase,

and the large resulting matrices are stored in a sparse fashion and inverted using

an appropriate iterative method. This approach allows the automatic treatment

of complex geometries without using lengthy meshing procedures, which can be

problematic, particularly with high-order discretisations. Furthermore, body-

fitted grids were developed for traditional, more dissipative CFD schemes and

can lead to instability and inaccuracy if used with high-order schemes, which are

generally less robust, particularly if the grid is highly stretched or of low quality.
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In Chapter 4, the results of several classic test cases, used to verify the cor-

rect implementation of the chosen CAA methods, were presented. The 3D wall

boundary condition of Chapter 3 was tested against a standard 3D scattering

benchmark. The results were overall correct, but the accuracy was inferior than

with similar 2D results. Because the normal directions were estimated correctly,

this is due to the additional extrapolations required. It was shown that the new

3D treatment converged as the Helmholtz number increased. It appeared that

small time steps were needed to prevent instability near the wall, which, in a

sense, reduces the overall temporal order of the method.

In Chapter 5, the developed code was used for cases directly representative of

the aero-acoustic problems described in the introduction. Detailed comparisons

of spinning mode propagation from an axisymmetric inlet with results from equi-

valent low- and high-order methods confirmed that dissipation occurred close to

the wall boundary. For plane wave propagation results, the overall scheme re-

mains more efficient than low-order approaches, as a gain of at least one order of

magnitude in the computational time needed was clearly established.

Because of the inaccuracies observed, the wall boundary in its present state

cannot be directly applied to practical engineering problems such as the fan noise

cases presented in Chapter 1. For now, traditional structured approaches using

body-fitted grids, or unstructured discontinuous Galerkin techniques remain the

principal solutions to be used. For the approach investigated in the current

work to be salvaged, the accuracy of the wall boundary in 3D would need to be

enhanced, probably orienting research along the directions outlined below. The

inclusion of steady flows with the immersed wall boundary condition, exhibited in

Chapters 4 and 5, is also an important contribution of this work, but instability

problems that occurred in the presence of steady flows with important Mach

number represent an important limitation of the method in its current state.

To evaluate wether an immersed boundary approach should be retained, it

should be kept in mind that other approaches also introduce errors: “chimera”

grids are connected using extrapolations, and traditional deformed or unstruc-

tured grids introduce errors. Furthermore, a body-fitted grid of good quality

is often very difficult to obtain, particularly for the inlet mouth region. In the

comparable study of Özyörük [9], it was generated with difficulty, in a specific
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axisymmetric case. This strongly limits the application of grid-mapping methods

to the design of modern inlets, where several asymmetric geometries need to be

investigated.

6.2 Recommendations for further work

Extrapolation scheme: compared to the 2D method, the accuracy of the 3D

extrapolation procedure is problematic because of the additional extrapolations

required. This is a major difficulty, and future research in this direction could

aim at improving results, while carefully maintaining stability (following the dis-

cussion of Section 3.3 at the end of Chapter 3). A more stable method would

allow the time step to be extended, with substantial gains on the computational

efficiency relative to low-order methods, but this must not be offset by a loss of

spatial accuracy. Attempts made in this direction during the current research

were inconclusive. It is too early to say wether the limitations of high-order ac-

curate 3D extrapolation are fundamental, and the present method represents the

best accuracy/stability compromise, or wether a better method can be found.

The approach of Bin et al. [124], using only one interpolation direction, seems

promising in that respect. Some dissipation is also probably caused by the se-

lective damping used at the boundaries, therefore the use of higher-order filters

which would preserve more of the frequencies of interest could be investigated.

In order to reduce the instability appearing close to the wall boundary, par-

ticularly in the presence of large Mach number flows, up-winding techniques such

as those of Ref. [83] could be investigated, and integrated in the algorithm of

Chapter 3. The use of conservative LEE equations could also possibly lead to

more numerical stability [46].

Liners: because of its wide use in modern aero-engines, the soft-wall bound-

ary condition, used to model absorbing panels (or “liners”), is of great interest

in CAA, and should be added to the current method. Difficulties arise when

frequency-domain impedance models are used with time-domain computations,

but several successful approaches now exist, as was discussed in Section 2.3.2,
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and their inclusion in the current immersed boundary would be straightforward:

Eq. (2.16) needs to be modified. But the presence of mean flow next to a porous

wall, in an inviscid model, leads to fundamental instability problems which might

be difficult to handle because of the current method’s lack of robustness.

Hybrid system: on a practical level, the connection between the propagation

scheme and the source of sound would need to be carefully designed, to obtain

the complete design system described in the introduction. Both codes would

need to run together, in the time domain, for optimal efficiency, with correct

data transmission between boundaries. The absorbing boundary condition used

in Chapter 5 makes this easier, since it can use an acoustic solution directly as

input. For certain cases, a feedback of the waves reflected at the inlet mouth into

the source domain could be necessary.

Non-linearities: although non-linear effects were not included in this study,

the current approach allows such an extension by adding the relevant correct-

ive terms. As pointed out in Chapter 2, shock-capturing techniques could also

be avoided through the careful use of pressure-sensitive selective dissipation. In

the context of noise propagation from the aircraft inlet, it is important to con-

sider where to set the limit of the middle-field domain, where the new CAA

method would be used for acoustic propagation. For example, if computing

N-wave propagation, the near field zone should include the region where the

propagation is non-linear because of the high amplitude of the waves.

Other applications: the immersed boundary approach developed here could

be applied to other problems; for example, 3D finite difference computations of

sound scattering from complex or disconnected geometries, which are difficult to

model with traditional structured grids. It would also be interesting to use this

approach for optimisation problems, where several geometries need to be assessed

automatically, by varying a parameter for example: the pre-processing could be

done automatically.
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