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Abstract

This thesis presents two novel nonlinear modal analysis methods,

aimed at the identification of representative engineering structures.

The overall objective is to detect, localize, identify and quantify the

nonlinearities in large systems, based on nonlinear frequency response

functions (FRFs) as input data. The methods are first introduced

in a direct-path, by analyzing a general theoretical system. Then,

the concepts are extended to tackle a nonlinear identification via the

reverse-path of the same methodologies.

The nonlinear formulation of this work is based in first-order de-

scribing functions, which represent the nonlinearities by amplitude-

dependent coefficients. This formulation is the basic “engine” of the

methods and techniques developed here. For the sake of clarity, the

research has been restricted to deal with cubic stiffness and friction

damping nonlinearities, although the inclusion of other types should

be straightforward, given the generality of the developments.

The first direct-path method, the so-called “explicit formulation” (EF),

is conducted entirely in the physical domain. This technique manipu-

lates the physical coefficients stored in the system matrices, thus the

term “explicit”, yielding the nonlinear FRF at a selected DOF as a

closed-form expression, regardless of the system’s size. An optimized

version of this method has been validated against real measurements

taken from a test rig, and it was found that the nonlinear behaviour

was predicted with reasonable accuracy.

A reverse path of the “explicit formulation”, REF, was implemented

as a nonlinear identification tool. In spite of successful results, it was

concluded that the computational cost of this approach was too high



to gain acceptance in a practical analysis. Still, the method provides

a much needed bridge between a full-size theoretical model and the

relatively small number of experimental measurements that may be

available.

The second main method, operating in a direct-path, is called the

“hybrid modal technique” (HMT). It is based on a novel nonlinear

modal expansion, which is analogous to existing nonlinear modal su-

perposition techniques. The underlying linear system is expressed in

generalized modal coordinates, while the nonlinearities are kept in the

physical domain. The use of hybrid coordinates is a central feature,

by which the localization of the nonlinearities is fully addressed.

A reverse-path of this method, R-HMT, incorporates the successive

application of several “standalone” techniques, also developed here,

which can be used independently to tackle different aspects of non-

linear modal analysis. When gathered together, the individual tech-

niques provide a robust methodology, able to perform a nonlinear

identification within the usual experimental restrictions, while ex-

hibiting high computational efficiency.

The type of the nonlinearity can be identified by a newly introduced

technique, based in the geometrical “footprint” of the extracted non-

linear component. The localization of the nonlinearities is then achieved

by a linear least-squares calculation over a predefined nonlinear region

of arbitrary size. This technique provides an unambiguous localiza-

tion, provided that the analyzed frequency range is a fair representa-

tion of the system.

Although the nonlinear natural frequencies and modal damping are

not explicitly needed for identifying the system or regenerating the

responses at some other forcing level, a fast approximation technique

(FAT) is introduced, allowing the analytical derivation of these param-

eters via newly-developed expressions. The FAT establishes links with

other nonlinear methods and standard linear modal analysis tech-

niques.
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Glossary

Subscripts

i, j Indexes representing: a) the (i, j) element of a matrix, e.g. Kij , b)

the ith element of a vector, e.g. Yi, or c) the spatial coordinates of a

variable, e.g. g̃ij .

M Index representing the theoretical number of modes of a system (in-

finity, for a continuous system), e.g.
M∑

r=1

φir, see equation (6.8), page

98. Not to be confounded with [M], the mass matrix, which always

appears in bold style and between brackets, and never as an index.

r Index associated with a modal quantity of the rth mode, e.g. λr.

s Index associated with a resonant modal quantity, e.g. λs.

Superscripts

˜ Acknowledges the nonlinear nature of a variable, e.g. G̃.

Roman letters (uppercase)

A . . . Z By convention in this thesis, bold Roman uppercase letters (plus a few

standard Greek letters) represent matrices, while regular Roman up-

percase letters represent vectors. Both are listed under the ”Matrices

and vectors” heading. The ones listed here are exceptions to this

rule, due to their standardized use as variables.

N Total number of degrees of freedom (DOFs) of a system. Also used as

a vector representing all the degrees of freedom.

vi



GLOSSARY

Z̃ij = |Ỹi − Ỹj|, the magnitude of the relative amplitude of a nonlinear

element linked to coordinates i and j.

Roman letters (lowercase)

f The forced degrees of freedom (DOFs) in a multi-excitation test. Also

used as a vector representing these DOFs.

g̃ij Nonlinear restoring force between coordinates i and j.

g̃vi Total nonlinear restoring force at the coordinate i. It is also the ith

component of vector {G̃}, the nonlinear vector (NLV).

i
√
−1, the imaginary number, e.g. cosθ+i∙sinθ. Not to be confounded

with the spatial index i, which always appears in regular math mode.

The latter is frequently used in this thesis.

k Linear stiffness coefficient. See equation (3.6), page 34.

m Number of modes in the analyzed frequency range.

mNL Number of nonlinear modes as a subset of m.

n The degrees of freedom (DOFs) associated with nonlinear elements,

abbreviated as NL-DOFs. Also used as a vector representing the NL-

DOFs .

q The sampled frequency points in an FRF to be included in a nonlinear

analysis.

y The system’s response in the time domain.

Greek letters (uppercase)

Δ Not a variable by itself, but often used to express the nonlinear vari-

ation of an accompanying variable, e.g. ΔΦ̃.

Γ The nonlinear region. Also used as a vector representing all the degrees

of freedom inside this region.

vii



GLOSSARY

Π Trust-region, a neighbourhood in which a simplified function q(y) rea-

sonably mimics the behaviour of the original, more complex function

f(y). Used during a nonlinear minimization, see equation 4.17, page

55.

< Themeasured region. Also used as a vector representing all the degrees

of freedom inside this region.

Greek letters (lowercase)

β Coefficient of a cubic stiffness element.

φir Eigenvector corresponding to coordinate i, mode r. It is also the i, r

component of matrix [Φ].

γ Coefficient of a friction damping element.

η Linear hysteretic loss factor.

λr Eigenvalue corresponding to the rth mode. It is also the rth component

of the diagonal matrix dλc.

π Pi.

θ Angle.

σ Fourier coefficient. See equation (3.4), page 33.

ω Frequency of excitation.

Matrices and vectors

[ ] Matrix.

d c Diagonal matrix.

{ } Column vector.

[ ]T , { }T Transpose of a matrix/vector.
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GLOSSARY

[ ]−1 Inverse of a matrix.

[ ]+ Generalized (pseudo-inverse) of a matrix.

[α] Linear receptance.

[C] Linear viscous damping matrix.

[D] Linear hysteretic damping matrix.

dΔλ̃c Nonlinear variation of the eigenvalues (diagonal matrix).

[ΔΦ̃] Nonlinear variation of the eigenvectors.

{F} Excitation vector.

{χ̃} The extended nonlinear modal vector (extended NLMV).

{G̃} Nonlinear vector (NLV).

[H] Frequency response function (FRF).

[I] Identity matrix.

[J] Jacobi matrix.

[K] Linear stiffness matrix.

[Λ] Composite matrix. For the linear case, it’s equivalent to the inverse

of the linear receptance,Λ = α−1 .

dλc Eigenvalue’s diagonal matrix.

[M] Mass matrix.

[ν̃] The nonlinear matrix (NLM).

{P} Modal amplitude (also known as “modal responses” or “generalized

coordinates”). For the nonlinear case (P̃ ), it is often referred to as the

“nonlinear normal modes” (NNMs).

[Φ] Eigenvector’s matrix.
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GLOSSARY

{ΦTG̃} The nonlinear modal vector (NLMV). Although a function rather than

a single variable, it is listed here because it is often referred to as an

entity.

{R̃} Modified excitation vector, used in the optimized EF method, see

equation (4.13), page 52. Also used in the REF method with a slight

modification, see equation (5.9), page 77.

{Res} Residual of an FRF due to higher modes.

[τ̃ ] Matrix used during the localization of the nonlinear DOFs (NL-DOFs),

those DOFs associated with nonlinear elements, see equation (8.35),

page 171.

{Y } System’s response.

Abbreviations

DFM Describing Function Method.

DOF(s) Degree(s) Of Freedom.

EF Explicit Formulation.

FAT Fast Approximation Technique.

FE Finite Element.

FEM Finite Element Method.

FFT Fast Fourier Transform.

FRF Frequency Response Function.

HBM Harmonic Balance Method.

HMT Hybrid Modal Technique.

LMA Linear Modal Analysis.

MDOF Multi-Degree Of Freedom.

x



GLOSSARY

NL Nonlinear.

NL-FRF Nonlinear Frequency Response Function.

NLMA Nonlinear Modal Analysis.

NLMV Nonlinear Modal Vector, {ΦTG̃}.

NNM(s) Nonlinear Normal Mode(s).

NLV Nonlinear Vector, {G̃}.

REF Reverse Explicit Formulation.

R-HMT Reverse Hybrid Modal Technique.

SDOF Single-Degree Of Freedom.
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Chapter 1

Introduction

During the structural dynamics 2000 forum, published by Ewins & Inman (1), a

list of questions was submitted by prominent researchers. The questions covered a

variety of issues regarding the state of the art of structural dynamics and its future

direction. Most of these acknowledged the failure of the current mathematical

models to address real-life requirements. Some thought-provoking statements,

listed below, were made:

• “It is certainly a tribute to engineering savoir-faire (and a healthy dose of

safety factors) that planes fly and nuclear reactors remain contained given

the abiding inaccuracies in the mathematical models of complex technological

structures”, S. Cogan.

• “Is it time to accept defeat and have a fundamental review of the modelling

techniques?”, M. Imregun.

• “. . . or is a radically different methodology required to tackle the problems of

detecting, quantifying and identifying non-linearities in real structures?”, J.

E. Cooper.

• “The question is: How to make nonlinear analysis tools more accepted by

and more user friendly to practical engineers?”, B. Yang

Also in this forum, researchers were invited to submit ideas regarding grand

challenge problems in structural dynamics (2), which would not be readily solved

in the next few decades. Researchers such as D. Brown, I. Bucher, C. Farrar
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1.1 Modal analysis

and M. Imregun highlighted problems related to seismic activity, micro-electro-

mechanical systems, vibration-based damage assessment and noise minimization.

All of them underlined the need of a better understanding of the nonlinear

effects.

These arguments provide good grounds for conducting a research aimed to the

development of mathematical models of engineering structures, fully accounting

for nonlinearities. We are interested in developing the necessary theoretical back-

ground, but with an eye on its applicability to the practical identification of

nonlinear structures.

1.1 Modal analysis

In the context of structural dynamics, modal analysis can be defined as the gath-

ering of a variety of techniques, whose main aim is the dynamic characterization

of engineering structures. Although useful as a theoretical tool to obtain the sys-

tem’s response by means of a root-finding procedure, its applications are mostly

related to an experimental environment. In here, a system is identified (or char-

acterized) by measuring its response under a known excitation, which is basically

a reverse path of the theoretical approach.

Modal analysis as an engineering method has evolved considerably during the

last 50 years, and this trend has been accelerated by computational leaps of re-

cent decades and the development of robust measuring devices. Its success is

mainly due to a simple engineering approach combined with a strong mathemat-

ical foundation, which relies on proved linear analytical theory.

In particular, the modal superposition theorem has become a cornerstone in

the analysis of linear systems, allowing a relatively complex entity to be separated

into smaller and manageable building blocks. In the field of linear modal analy-

sis (LMA), this theorem is often applied to a multi-degree-of-freedom (MDOF)

system to “break it” into several independent single-degree-of-freedom (SDOF)

systems, each exclusively accounting for the behaviour of a given mode of the

original system.

The aforementioned approach not only simplifies the analysis of large sys-

tems, but it also reduces the set of equations to be solved. Indeed, the physical
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responses can be regenerated from the modal responses (or modal coordinates)

of the equivalent SDOF systems.

Although, theoretically, a linear system will have as many modes as DOFs,

the number of retained modes in practice is restricted to the measured frequency

range. Only a few dominant modes may be enough to obtain an adequate regen-

eration of the physical responses, the rest having a smaller effect on them. This

procedure is known as “modal truncation”, and the essential parameters needed

to describe a physical system in the modal space are called “modal parameters”,

namely, the eigenvalues and eigenvectors.

1.2 Nonlinear modal analysis (NLMA)

Methods such as the finite element method (FEM), LMA and other linear anal-

ysis techniques have established themselves as standard tools. They provide a

reliable path to deal with a large variety of cases, even those exhibiting a certain

degree of nonlinearity. Indeed, when the accuracy of the solution is not highly

compromised, one is still better off treating the system as linear even if it is not

(most probably it is not)1.

Unfortunately, when the accuracy of the predicted response is of paramount

importance, or the nonlinear effects are significant, a linear analysis will generally

prove to be unreliable. Moreover, the recent quantum leaps in computational

power have greatly raised the expectations on the analyst, who is under increasing

pressure to provide highly accurate results. At the very least, he/she will face the

situation of having to choose a suitable nonlinear method -from literally hundreds-

which best matches his/her particular problem.

As pointed by Worden & Tomlinson (3), the last few decades have seen an

explosion of methods aimed to tackle nonlinear issues, and we have ended up with

a toolbox of powerful techniques capable of handling many particular situations.

These techniques are, for the same reason, extremely case sensitive.

The sources of nonlinearities in a typical engineering structure are so diverse

that it would be practically impossible to account for all of them, thus the eager-

1“Trying to divide systems into linear and nonlinear, is like trying to divide the world into
bananas and non-bananas”. R. M. Rosenberg.
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ness of engineers to neglect them whenever they are encountered. This attitude

is partly caused by the lack of a unified theory that can handle general nonlin-

ear cases while still providing a link with well-known, standardized linear tools

documented by Ewins (4) and others.

Some of the issues that make a NLMA a puzzling task are listed below:

• A localized nonlinearity in a structure can have a significant global impact,

while leaving some areas largely unaffected. Examples of local nonlinearities

are: joints, shock absorbers, geometric discontinuities, regions undergoing

large displacements, discrete spring/dampers, etc.

• The nonlinear effects are usually confined to just a few modes and coordi-

nates, while the rest behave in a linear fashion.

• There is a lack of standardized parameters which can define, in an objective

and sensible way, the “strength” of the nonlinearity.

• Finally, there is not an easy way to express a nonlinear response as a general

closed-form algebraic function.

Because of the lack of a well-developed nonlinear theory, most efforts towards

the establishment of a standard NLMA methodology have been done by incorpo-

rating nonlinear parameters into a linear frame. While this approach guarantees

compatibility with LMA methods, it does not necessarily represent the best path.

Some authors (5) have raised serious questions about the validity of stretch-

ing linear concepts to analyze nonlinear systems, as there are some nonlinear

phenomena that have no counter-part in linear systems. As an example, the

“bifurcating nonlinear modes” are essentially nonlinear motions and cannot be

regarded as analytic continuations of any linear modes. In such cases a lineariza-

tion of the system either might not be possible, or might not provide all the

possible resonances that can be realized.

In spite of this evidence, the development of nonlinear techniques analogous to

the linear superposition would be of interest to express general transient responses

as the algebraic addition of nonlinear modal responses, provided that a stable and

periodic response dominates the nonlinear behaviour. Such an approach would
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also provide an order reduction by possibly achieving decoupled equations of

motion. These lines of research have gained momentum among specialists, often

being revisited and expanded.

1.3 Nonlinear frequency response functions (NL-

FRFs)

The frequency response function (or FRF) is, perhaps, the single most used tool

in the field of modal analysis to describe the input-output relation of a system

(Fig. 1.1).

Figure 1.1: Simplified representation of a system, operating at frequency ω

Although its applications go far beyond the vibrations field, structural engi-

neers use it almost invariably as a first step for assessing the dynamic features of

a structure, as it offers highly condensed information at a glance:

• The resonances and anti-resonances, indicating the frequencies at which the

highest and lowest amplitudes occur.

• The amount of damping, as a mechanism for absorbing energy.

• The phase-lag of the response relative to the input excitation.

These and other main characteristics can be visually observed in a single FRF

plot (Fig. 1.2).

Further on, by obtaining several responses at different points of a structure,

its predicted motion at any natural frequency can be animated in a computer;
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Figure 1.2: A typical FRF of a mechanical structure

this provides an invaluable tool for visualizing the experimental mode-shapes,

making it possible to compare them with the analytical ones (Fig. 1.3).

One of the central features that makes the FRF so appealing for analyzing lin-

ear systems is its invariantness to the input excitation, because of the assumption

of linearity. This fact makes it possible to use a wide range of excitations (step

sine, random noise, impulse, etc.) and still obtain the same function. Another

desirable characteristic is the so-called “modal orthogonality”, in which an FRF

can be decomposed (or expanded) in several terms (or modal responses). Each

term exclusively accounts for an individual mode, greatly simplifying the analysis

by invoking modal superposition.

It would be very convenient if we could extend the definition of the FRF to de-

scribe nonlinear systems. Unfortunately, this is not so simple and the main single

problem is that the coefficients contained in the mathematical model of a linear
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Figure 1.3: Visualization of an experimentally derived mode-shape

FRF (natural frequencies, damping factors and mode-shapes) are constant, as op-

posed to the nonlinear case in which such coefficients are amplitude-dependent.

Also, it can no longer be assumed that the nonlinear modes are orthogonal,

but rather of a coupled nature, so the original concept of “normal modes” is

somewhat lost. As a result of the nonlinearities, a plot of an FRF will appear

distorted when compared to the linear case (Fig. 1.4).

In order to develop an effective NLMA method, a simple but general repre-

sentation of a nonlinear FRF must be sought. Such expression would contain a

mixture of linear and nonlinear coefficients. To this end, the describing function

method (DFM) has demonstrated good results for obtaining amplitude-dependent

coefficients of nonlinear elements, by averaging the nonlinear forces occurring in

one load-cycle. These coefficients could be incorporated into a general formula-

tion, allowing a nonlinear extension of the classical definition of the FRF.
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Figure 1.4: A distorted FRF due to a cubic stiffness nonlinearity

1.4 Identification of nonlinear systems

Benchmark nonlinear methods, such as the harmonic balance method (HBM), can

handle general problems with a systematic approach, allowing an almost “one-

size-fits-all” procedure, or at least, quite consistent guidelines for its solution.

This happens because this class of methods are more suitable for a theoretical

analysis (direct path) in which idealized models are already available (i.e., FEM),

containing highly processed and organised input data, usually in the form of

matrices.

Solving an identification problem is a much more blurred issue, mainly because

it belongs to an experimental environment, in which the differences between a

theoretical model and its experimental counterpart must be conciliated somehow

(reverse path). Engineers know very well that most experimental models do not

necessarily behave according to theory, sometimes providing more questions than
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answers. A reliable identification method, therefore, must be able to get away

with these uncertainties, still providing unambiguous results.

Any system can be fully described by the state [x, y,H ] (see Fig. 1.5). Actu-

ally, this set is over-determined, as by knowing two variables, it would be possible

(at least in principle) to calculate the other one. This basic idea is the starting

point for the vast majority of the identification problems.

Figure 1.5: Simplified system

A linear system can be represented as an uncoupled transfer function (Fig.

1.5), in which the output y is fully characterized by the system’s features H and

the input excitation x. The identification of linear systems is a relatively estab-

lished procedure, seeking to detect/quantify a set of linear coefficients which best

describe H. This is done by measuring [x, y] for several states, while observing

the corresponding behaviour of H.

Problems start when the system is found to be amplitude dependent (Fig.

1.6). This condition is representative of most engineering structures containing

nonlinearities. The introduced complexities can be represented by adding a closed

loop with a feedback of the output, thus generating nonlinear effects in the re-

sponse. The identification of this class of systems is the main subject of this

thesis.

Specifically, we are faced with the problem of identifying the nonlinear com-

ponent of H by knowing x, y and the linear component of H. In a NLMA context,

the identification problem can be posed as follows: Given some basic information

of the system (its linear description) and the way it behaves under a known ex-

citation (the measured responses), find the nonlinear elements inside the system

which make it behave in a nonlinear fashion.
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Figure 1.6: System with a closed loop

Typically, the location of nonlinear elements within the system is unknown, so

before attempting an identification process it is a good idea to first detect where

they are. This procedure is known as nonlinear detection. Also, the nature of the

nonlinear elements (a physical description of the amplitude dependency) has to

be assessed before establishing the parameters to be found.

Roughly speaking, the identification methods can be divided into parametric

and nonparametric:

• Parametric methods assume a specific mathematical shape of the system

(e.g., a SDOF oscillator) and aim to identify the parameters (m, c, k) in-

cluded in the assumed model. The nonlinear mechanism is represented by

a known analytical function and the measurements are used to generate a

least-squares fitting to find its (usually constant) parameters. It is assumed

that the nonlinearities are a-priori localized.

• Nonparametric methods are more general in nature, as the system is re-

garded as a black box. Both the type and location of the nonlinearities are

unknown, thus creating favourable conditions for either an undetermined

problem or an ill-posed one. An ideal nonparametric method has not been

found but a number of techniques, such as the Hilbert transform or the

Volterra kernels, are increasingly seen as feasible.

The technique introduced in this work can be regarded as parametric in a

linear context, but nonparametric in the nonlinearity. In other words, it requires
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some basic information about the underlying linear system, but assumes nothing

about the nonlinearities (type and location).

When dealing with large systems, data incompleteness is invariably an issue.

Usually, the experimental model is of a much reduced size than its theoretical

counterpart, so the set of measured responses describes only a subset of the

analytical responses. To further complicate things, it has been acknowledged

that local nonlinearities can have a global effect, making nonlinear detection a

very complex issue.

On the other hand, it is also known that some regions within the system

are more likely to contain nonlinearities. Some of these were already identified

as joints, shock absorbers, geometric discontinuities, etc. This feature can be

exploited to manage a large identification problem much more efficiently, by ap-

proximately delimiting nonlinear regions prior to the analysis.

Depending on the degree of data incompleteness, a nonlinear identification

can offer two types of solutions:

• For significantly incomplete data (e.g., few measurements), a modal identi-

fication is usually the best one can get, providing a solution in the form of

identified modal coefficients. These are capable of explaining the nonlinear

behaviour of the individual modes and even regenerate/predict the physi-

cal responses within a limited range, but the physical nonlinear components

remain a black box.

• For fairly complete data (e.g., enough measurements), a physical identifi-

cation should be possible, in principle. This solution would unveil the core

of the nonlinear system, allowing the detection and quantification of the

individual nonlinear elements. This would represent a full description of

the nonlinear system, achieving unlimited prediction capabilities.

1.5 Frequency domain vs. time domain meth-

ods

The identification methods can be divided into two major groups, according to

the nature of the input data they require:
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1. Time domain methods. The input data is in the form of time signals,

describing the motion of the structure as a function of time. This is ad-

vantageous, as these signals are directly provided by current measurement

devices.

These methods provide very accurate results, due to the explicit nature

of the data. However, the solution is sought via direct integration of the

system’s equations, usually carried out by Montecarlo integration or similar.

This requires a huge computational effort for lightly or moderately damped

systems, representing the vast majority of engineering structures.

Time domain methods were favoured in the early ages of modal analysis,

due to its physical insight and direct interpretation of the results. Another

decisive factor was the difficulty in performing a Fourier transform in real

time, which is a requirement for the frequency domain methods.

2. Frequency domain methods. Recent developments in measuring devices

such as frequency response analyzers (FRA) plus the advent of the fast

Fourier transform (FFT) have led to a resurge in the frequency domain

methods, which are increasingly seen as the most viable.

This class of methods requires an FFT of the raw time signals, before they

can be handled as input data. This process separates the time response

into a number of harmonic components, each with a specific amplitude and

frequency. Due to the periodic nature of this data, the computational effort

is greatly reduced.

The solution of these methods is regarded as approximate, as the events

happening in one load-cycle are represented by average quantities. The

accuracy will depend, among other issues, on the number of harmonics

included in the analysis. For a large class of systems, including linear, a

fundamental analysis (the first harmonic) provides workable results.

The methods developed in this research fall within the frequency domain group,

chosen because of their good accuracy and computational capabilities. We will

take advantage of the well-developed describing function theory (DFM) to for-

mulate the nonlinear elements in the frequency domain.
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1.6 Physical coordinates vs. modal coordinates

The identification methods can also be divided into two major categories, this

time according to the type of coordinates in which the analysis takes place:

1. Physical coordinates. The analysis is based on the coefficients stored in

the system’s matrices, obtained by spatial discretization. The immediate

advantage of this approach is its physical insight, due to the manipulation

of mass, damping and stiffness coefficients. It follows that the solution will

always be physically meaningful, this being a significant advantage.

The disadvantages are also significant. Depending on the quality of the

discretization, the amount of input data can be huge, easily in the order

of tenths of thousand coefficients, which are inextricably tied by complex

differential equations. Each one of these coefficients has a certain influence

on every DOF of the system, resulting in a heavy algebraic manipulation

and expensive computing requirements.

2. Modal coordinates. The analysis is carried out in the modal space, based

on the so-called “generalized coordinates” and modal parameters (eigen-

values and eigenvectors). Usually, a relatively small number of modes are

required to regenerate the system’s response, and this feature greatly re-

duces the computational cost involved. In addition, the orthogonal property

of the eigenvectors means that a given DOF is fully described by its own

eigenvector, reducing even more the algebraic burden.

If one disadvantage must be associated with such a powerful approach, is

perhaps that the modal responses have little physical meaning; this is an

issue during an updating or identification analysis, in which the differences

between an experimental model and its theoretical counterpart must be

conciliated. More often than not, implementing a modal correction leads to

impossible physical arrangements, such as a new spring across previously

unconnected internal nodes.

In this work, both approaches are analyzed, and their advantages and draw-

backs are thoroughly reviewed.
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1.7 Some remarks about higher-order harmon-

ics

For a wide class of nonlinear systems subjected to a harmonic excitation, the

response remains essentially harmonic, although there is a leakage of energy to

frequencies other than the linear natural frequencies. This phenomena -called

“higher order harmonics”- is a well known fact occurring in nearly all nonlin-

ear systems and its existence can be mathematically proved by means of the

Volterra-Weiner kernels (6). These functions predict resonances at certain mul-

tiples (depending on the type of nonlinearity) of the nonlinear natural frequency

ωn:

...,
1

3
ωn,
1

2
ωn, ωn, 2ωn, 3ωn, ...

By considering these extra-resonances, a worst-case scenario is given when one

of these multiples coincides with the location of another natural frequency. This

condition leads to an internal feedback phenomenon and higher-than-predicted

amplitudes. However, there are currently some difficulties preventing the wide

spreading of this theory in an engineering context, namely:

• Despite the amount of research in this field, so far there is little evidence

suggesting that this is more than an academic issue in real structures. The

author spent a significant amount of time searching for a representative

engineering case where the aforementioned problem was relevant, without

great success.

• The higher-order FRFs are not directly measurable using current measuring

techniques, such FRFs being polluted by higher-order terms. Moreover,

they are not directly comparable with each other -because of their different

units-, making it difficult for the method to have a real impact.

Considering these arguments, the developments in this research neglect the

effect of higher-order harmonics, this being one of the very few -but nevertheless

main- assumptions. However, once the central issues developed here have been

dealt with, accounting for higher-order harmonics will be just a natural, and

possibly straightforward, extension.
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1.8 Objectives of thesis

The three main objectives of this thesis can be listed as follows:

1. To develop an experimental method able to detect, characterize, localize

and quantify the nonlinearities in an engineering structure.

2. To generate an explicit mathematical model of a nonlinear engineering

structure, able to regenerate/predict its response under a different exci-

tation.

3. The methods and models should handle general cases with a systematic ap-

proach. They should be compatible with established LMA and FE methods,

as well as with existing nonlinear methods.

In order to comply with compatibility requirements, the input data should

be based in measured nonlinear responses (NL-FRFs). Also, the method should

deliver the nonlinear modal parameters (natural frequencies and modal damping)

of the structure, as they are of standard use in other nonlinear methods.

In order to comply with the term “experimental”, the method should deal

effectively with the uncertainties arising from highly incomplete measurements,

which is the rule under typical testing procedures.

1.9 Overview of thesis

The specific subjects addressed by this thesis can be visually observed in the flow

chart of Fig. 1.7.

Chapter 2 presents a literature survey of the most recent developments in

NLMA, specifically in those subjects related to this research.

Chapter 3 introduces the mathematical formulation of the nonlinear elements,

based in the describing function method (DFM). It also presents essential con-

cepts for subsequent developments, such as the nonlinear vector (NLV) and the

nonlinear matrix (NLM). In addition, basic definitions such as the nonlinear re-

gion and the measured region are explained, needed to tackle large systems. This

can be considered as the “reference” chapter of this thesis.
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In Chapter 4, the “explicit formulation” (EF) is introduced. This is a direct-

path method based in physical coordinates, which uses the linear coefficients

stored in the system’s matrices to represent the nonlinear FRF. An optimized

version of the EF method is validated against nonlinear measurements taken

from a test rig, successfully predicting the nonlinear behaviour.

Chapter 5 introduces a reverse-path of the explicit formulation, REF, to ex-

plore its suitability as an identification tool. The method is exemplified by solving

a large virtual model of a thin plate containing cubic stiffness nonlinearities. The

advantages and drawbacks of this physical coordinates-based method are thor-

oughly reviewed.

Chapter 6 presents a novel nonlinear modal expansion in the frequency domain

called the “hybrid modal technique” (HMT), introduced here as a direct-path

tool. This expansion expresses the linear part of the system in modal coordinates,

while the nonlinearities are kept in the physical domain. This approach greatly

reduces the computational requirements, by representing the nonlinear FRF in

hybrid (modal/physical) coordinates.

Chapter 7 presents a novel technique for extracting nonlinear modal param-

eters (natural frequencies and modal damping) from measured responses, called

“fast approximation technique” (FAT). The nonlinear parameters are analytically

extracted via newly-developed equations, thus obviating the need of a nonlinear

optimization1. In the author’s opinion, the FAT is the most important theoretical

contribution of this thesis.

In Chapter 8, the previously introduced techniques and methods are framed

into a single identification method, called the “reverse-HMT” (R-HMT). By ana-

lyzing a large virtual model of a plate, the performance of this method is demon-

strated, delivering both a modal and physical identification. The R-HMT is the

single main contribution of this thesis to the field of NLMA.

Chapter 9 reviews the new developments and contributions made in this thesis,

also suggesting avenues for future work.

Finally, three appendixes are included, containing information which is re-

ferred to throughout the thesis. These are:

1Currently the standard approach.
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• Appendix A, containing the data of the Sample Cases #1 and #2. These

small, virtual nonlinear systems are used recurrently to demonstrate, via

numerical calculations, the performance of the introduced techniques. The

nonlinearities considered in this research are restricted to cubic stiffness1

and friction damping2, although the developments are general enough to

include most nonlinearities.

• Appendix B, containing the data of the Sample Case #3, a large virtual

model of a plate. This model is used to demonstrate the performance

of the REF and R-HMT methods as identification tools in a large-scale

environment.

• Appendix C, describing the experimental validation of the EF method,

which is the core of the nonlinear formulation in this thesis. Although

restricted both in size and scope, this appendix represents a few months of

work. It documents the design, construction, measurement and validation

of a test rig containing cubic stiffness nonlinearities.

1Sample Case #1.
2Sample Case #2.
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1.9 Overview of thesis

Figure 1.7: Overview of thesis
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Chapter 2

Literature survey

Following is a brief review of the existing literature relevant to the topics covered

in this thesis. The list is by no means exhaustive, but contains selected sources

that either provided a starting point for this research or triggered ideas in a

different direction.

2.1 The describing function method (DFM)

The main problem when dealing with nonlinear elements is their amplitude-

dependence, which makes a traditional LMA a cumbersome task. This condition

generates stiffness/damping coefficients which varies continuously with the level

of the response. The DFM seeks to “describe” the relation between the funda-

mental harmonics of the response and the excitation, by calculating the average

restoring force occurring in one cycle.

One of the first applications of the DFM for analyzing nonlinearities can be

found in the work of Van der Pol (7), in his method of slowly-varying coefficients;

he linearized a NL system by assuming certain parameters to remain constant

when compared to the rate of change of the response. Bogoliubov & Mitropolsky

(8) used a similar approach to find an equivalent linearization. Later on, Kul &

Chen (9) developed a method for evaluating the describing functions of hysteretic-

type nonlinearities, based on circular geometry shapes whose radius is a measure

of the nonlinearities.

Watanabe & Sato (10) linearized the effects of nonlinear stiffness in a beam

by the use of a first-order describing function. They used their results to develop
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2.1 The describing function method (DFM)

a nonlinear version of the “building block approach” (BBA), the NL BBA, for

coupling NL structures.

Through their joint and independent work, Ozguven & Budak (11), (12), (13),

(14), (15), (16), (17), were among the first to introduce describing functions in the

context of a practical modal analysis. Working mainly in the physical domain,

their approach to structural modification and non-proportional damping problems

provided grounds for the development of a nonlinear matrix formulation, whose

coefficients were amplitude dependent.

Kuran & Ozguven (18) developed a superposition approach for MDOF sys-

tems introducing describing functions for the cubic stiffness nonlinearity, which

they called a “quasi-linearization”. Tanrikulu et al (19) further developed this

approach by including a wider range of first-order describing functions. More re-

cently, Besancon-Voda & Blaha (20) presented a multi-input describing function

for the friction damping nonlinearity by superimposing the effect of the excita-

tions for two nonlinear electric components.

Also recently, Nassirharand & Karimib (21) introduced a software in the MAT-

LAB environment for the input/output characterization of highly nonlinear multi-

variable systems, aimed to obtain the sinusoidal-input describing function (SIDF)

of a nonlinear liquid propellant engine.

There are a number of researchers who have expanded the concept of the

describing function to account for higher-order harmonics, developing the so-

called “multi-harmonic describing function”. Kuran & Ozguven (18) extended

their aforementioned method to account for higher-order terms. J. Vaqueiro (22)

presented a detailed construction of first and third-order coefficients for the cubic

stiffness nonlinearity, which better approximates the nonlinear response in the

time domain.

Unfortunately, the addition of each higher harmonic results in doubling the

set of NL equations to be solved, seriously questioning their impact. Although

it is relatively straightforward to include them, there are many other important

aspects worth analyzing that could be obscured by the added complexity.
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2.2 Nonlinear normal modes (NNMs)

The development of nonlinear techniques analogous to the linear superposition

has been the focus of much research in recent decades. Provided that the nonlinear

response remains oscillatory and periodic, a nonlinear modal superposition would

allow an order reduction by possibly achieving decoupled equations of motion.

Following is a brief description of previous work in the field of NNMs:

Based in the concept of invariant manifolds, Shaw & Pierre (23), (24) pre-

sented a unique1 and systematic approach to the definition and generation of

NNMs for continuous systems. Using asymptotic series expansions, the method

preserves the physical nature of the nonlinear mode-shapes and the associated

modal dynamics. An interesting feature of this method is that scaled eigen-

vectors are calculated prior to the eigenvalues. However, the method provides

accurate results only for weakly nonlinear systems, exhibiting growing divergence

as the strength of the nonlinearities increased.

A year later, Boivin (25) complemented Shaw & Pierre’s work by introducing

some modifications enabling the same method to perform a “legitimate” modal

analysis of the free response of nonlinear systems based on specific characteristics

of such systems. Based on a geometric approach, he “recovered some desirable

properties of the linear modal analysis of linear systems”. In particular, this

methodology leaves the modelled modes invariant from the non-modelled ones

and vice versa, so that a reduced set of equations can be obtained. On the

other hand, interactions between the modelled modes are accounted for, and for

instance, internal resonances between them are treated without additional work.

Pesheck et al (26) also used the invariant manifold approach for the generation

of reduced-order models for nonlinear vibrations of MDOF systems, extending the

original concept to the so-called “multi-mode” manifolds. The dynamic models

obtained from this technique allegedly capture the essential coupling between

modes of interest, while avoiding coupling from other modes. Such an approach

is useful for modelling complex system responses, and is essential when internal

resonances exist between the modes. The results showed that the method is

1As claimed by the authors.
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2.2 Nonlinear normal modes (NNMs)

capable of accurately representing the nonlinear system dynamics with relatively

few degrees of freedom over a range of vibration amplitudes.

The applicability of nonlinear modal parameters goes far beyond the field of

modal analysis, as demonstrated by Shalev & Unger (27). He introduced a new

method for solving nonlinear problems of structures subjected to buckling, in-

plane and out-of-plane loads, using eigenfunctions as trial functions for solving a

nonlinear FE problem; these were computed by a linear free vibration solution

by using a standard FE code (MSC/NASTRAN). The system of equations was

reduced dramatically and the governing equations, rendered by the Ritz method,

represented the problem continuously by considering energy relations, thus not

requiring an iterative or incremental solution.

Slaats et al (28) proposed three mode types for reducing nonlinear dynami-

cal system equations resulting from finite element discretizations: tangent modes,

modal derivatives and static modes. Tangent modes were obtained from an eigen-

value problem with a “momentary” tangent stiffness matrix, where the derivatives

with respect to modal coordinates contained the reduction information. The ap-

proach taken in this time domain method could be compatible with the current

research, in which modal increments are also analytically estimated1. This link

represents a direction worth exploring in the future.

Pilipchuk & Ibrahim (29) examined different regimes of non-linear modal in-

teractions of shallow suspended cables. Because of a high-energy level, the equa-

tions of motion in terms of in-plane and out-of-plane coordinates are strongly

coupled and cannot be linearized. For this type of problem, a special coordinate

transformation was introduced to reduce the number of strongly non-linear differ-

ential equations by one. The resulting equations of motion were written in terms

of stretching, transverse (geometrical bending) and swinging coordinates, those

equations being suitable for analysis using standard quantitative and qualitative

techniques. Both free and forced vibrations of the cable were considered for in-

plane and out-of-plane motions. The cable stretching free vibrations resulted in

parametric excitation to the cable transverse motion. Under in-plane forced exci-

tation the stretching motion was found to be directly excited while the transverse

motion was parametrically excited.

1Although the expressions derived in this thesis are quite different.
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2.3 Identification of nonlinear systems

Chong & Imregun (30) presented a general methodology for the coupling anal-

ysis of systems with relatively weak non-linearities, of the cubic stiffness type, by

assuming that the response remains harmonic under harmonic excitation. The

authors tackled the coupling problem by two different approaches: profile con-

structing (which uses the system’s spatial data directly) and parameter extracting,

which are based on their earlier method (31) for extracting nonlinear modal pa-

rameters from measured data. Both methods yielded virtually identical results

and were able to predict the response of a coupled structure at various force levels,

exhibiting good agreement with the standard harmonic balance method (HBM)

and, most importantly, with measured data.

The current research has strong links with a method also introduced by Chong

& Imregun (31), who explored the applicability of a superposition technique in

which the NNMs are considered to behave nonlinearly at resonance and linearly

elsewhere. The coupled nature of the nonlinear modal space was accounted for,

by expressing the resonant nonlinear modal amplitude as a function of a few

neighbouring modes. The nonlinear eigenvalues and eigenvectors were separately

extracted from measured data and the physical response was expressed as an

algebraic addition of the nonlinear modal coordinates. This method was able to

successfully regenerate the response of the system at a different level of excitation

(Fig. 2.1).

2.3 Identification of nonlinear systems

This subject is most relevant to the present work, having a wide range of practical

applications. Given its importance, there has been a vast amount of research in

this field and huge advances have been made. Following is a brief description of

some of the main methods currently in use:

Masry & Caughey (32) are among the pioneers in the field of modern system

identification, for they laid the basis of one of the most used methods today, the

RFS (Restoring Force-Surface). This time domain technique seeks to characterize

the nonlinear component of a SDOF system by measuring different states [y, ẏ, t]

and plotting them in a 3D diagram. The resulting surface is then characterized

by Chebyshev polynomials, representing the nonlinear force for each state; the
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2.3 Identification of nonlinear systems

Figure 2.1: NL modal analysis and curve fit, by Chong & Imregun

shape of the diagram can shred some light about the type of nonlinearity in

action. Crawley & Aubert (33) independently developed a similar approach by

mapping the nonlinear force into complete polynomials, using a direct parametric

identification approach.

The RFS method was also applied by Masry & Caughey to the identification

of an MDOF system, by transforming the equations of motion into the space

of modal coordinates; this approach can still build a surface and identify the

nonlinear mechanism, but the identification and localization of the nonlinear ele-

ments becomes difficult because generally it is not possible going back to physical

coordinates.

Dimitriadis & Cooper (34) also tackled the identification of MDOF systems,

following a variant of the RFS method. By considering time responses at simi-

lar amplitudes, they achieved a constant nonlinear restoring force. This feature

allowed the identification of small systems by means of a simple least-squares

computation. However, the application of this method to large systems required

a trial-and-error approach to spot the location of the nonlinearity, thus limiting
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2.3 Identification of nonlinear systems

its generality.

Lin, Ewins & Lim (35) presented a method aimed to the identification of

nonlinearity from analysis of complex modes. By considering two points of equal

magnitude before and after resonance, 2 complex NL equations were constructed

for a SDOF mode. The method can handle complex eigenvectors, which is the

case for most practical structures. MDOF systems were also considered, and a

numerical case for a 2 DOF system was successfully solved. The author of this

thesis tried a similar approach, but concluded that the method only applies to

systems with friction damping or weak stiffness nonlinearity. For strongly cubic

stiffness systems, the jump condition destroys the symmetry of the resonance,

thus being impossible two locate a point of similar magnitude after resonance.

Rice (36) used a first order describing function of a cubic stiffness nonlinearity

for the identification of weakly nonlinear systems. This method received input-

data in the time domain for several levels of excitations and constructed the

variation of stiffness and damping ratios as an output.

Soize & Le Fur (37) described an identification technique based on equivalent

stochastic linearization with constant coefficients. Although the model leads to a

good identification of the total power of the stationary response, it can also give

an incorrect identification of the matrix-valued spectral density functions. The

authors improved the method by defining a multi-dimensional linear second-order

dynamical system with random coefficients, which are found by an optimization

procedure specifically developed to that end. A few numerical examples were

successfully analyzed, although only weak nonlinearities were considered.

Richard & Singh (38) developed a spectral approach for identifying nonlinear

systems when excited by a Gaussian random signal. The method obtains the

underlying linear system without been contaminated by the nonlinearities. Once

the conditioned FRFs have been estimated, the nonlinearities can be identified

by estimating the coefficients of prescribed analytical functions which exist at or

away from the excitation point.

Rosa et al (39) used an optimization technique to estimate the modal param-

eters of a nonlinear system. The estimation, performed in the frequency domain,

seeks to minimize the total squared error between experimental and estimated
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2.3 Identification of nonlinear systems

values of the nonlinear FRFs, its main purpose being to obtain greater accu-

racy than classical methods in complex cases such as highly damped systems,

systems of high modal density and noisy experimental data. The results were

compared with those obtained through a classical modal parameter estimation

method, the orthogonal polynomials method. It was found that the introduced

technique compares favourably to already established methods.

Al-Hadid & Wright (40) developed a force-state mapping technique for non-

linear systems and provided an extension to achieve the localization of nonlinear

elements in a lumped-parameter system. The authors claimed that the use of

Chebyshev polynomials for mapping the restoring surface is unnecessarily re-

strictive and that a simple approach, based on ordinary polynomials, provides

a faster and more accurate identification for most nonlinearities. Moreover, it

is mentioned that this improvement allows a simple methodology for localizing

lumped nonlinear elements in MDOF system. Although no examples were shown,

the authors used a matrix called the “possible locations of nonlinearities”, resem-

bling the concept of a nonlinear region developed in this thesis1.

McEwan, Wright & Cooper (41) introduced a combined modal/finite element

analysis technique for the dynamic response of a nonlinear beam subjected to

harmonic excitation. A proprietary FEM code was used to construct static “non-

linear test cases” subjected to prescribed modal forces; the resultant modal dis-

placements were used to construct a multi-dimensional surface, thus accounting

for inter-modal coupling. The SVD decomposition was required to perform a

backward elimination technique, finding an optimum series for a particular non-

linear modal restoring force. This approach is somewhat similar to the “polyno-

mial” fitting developed in this thesis (R-HMT method, Chapter 8), although the

reviewed method was restricted to a modal identification only.

Wright, Cooper & Desforges (42) presented a comprehensive review of sev-

eral identification techniques using the normal-mode force appropriation. This

method can measure the undamped natural frequencies and normal mode shapes

of a structure, by applying a specific multi-excitation force, designed to neutral-

ize the damping effects. Several approaches, such as the Square and Rectangular

FRF matrix methods, were compared and the effect of a rank reduction was also

1The author reached this concept independently, and the approaches are still different.
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explored. The authors concluded that the rectangular FRF matrix methods are

superior to the square FRF ones, because the former considers all the responses

simultaneously. It was found that the Multivariate Mode Indicator Function

(MMIF) is the easiest to interpret for the identification of the undamped natural

frequencies. The main drawback of this class of methods is the longer measure-

ment time due to a multi-point excitation.

The classical force appropriation method was extended by Atkins, Wright

& Worden (43) for the identification of nonlinear systems. The authors demon-

strated that, given the right multi-excitation vector calculated in the modal space,

it is possible to isolate a single nonlinear normal mode, for which a simple nonlin-

ear SDOF method (such as the RFS) can be used. They illustrated the use of the

Volterra kernels to identify the nonlinearity, although a number of optimization

methods were considered to account for larger systems.

Wright et al (44) proposed an identification method for weakly nonlinear

MDOF systems using a force appropriation approach. They extended the reso-

nant decay method (RDM) to obtain the damping and nonlinear coupling during

the response decay, allowing a large model to be identified approximately in a

piecewise manner by curve-fitting a series of relatively small modal models. The

authors demonstrated the method by analyzing a five DOF system. However,

the identification was restricted to the modal space, while the physical nonlinear

coefficients remained unknown.

Marchesiello et al (45) considered the conditioned reverse path method (CRP)

to identify structures with different types of nonlinearities. One of the advantages

of this particular method over similar ones is its ability to treat single-point

excited systems with any kind of nonlinear topology. Also, the choice of a random

noise excitation allowed a short measurement time. However, a major drawback

is that the type of nonlinearity and its location is assumed to be known, which

is a serious limitation in practice.

Platten, Wright & Cooper (46), presented a method for identifying nonlin-

earities in MDOF simulated and experimental systems, operating in the time

domain. Interestingly enough, the authors mention that “. . . the use of a model

based upon modal (or possibly mixed physical / modal) space is arguably a pow-

erful contender for being an identification algorithm with the potential of meeting
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2.3 Identification of nonlinear systems

the [ideal] criteria set out above [in this same paper] . . . ”. The author of this

thesis could not agree more1, and this has been reflected in the development of

the HMT and R-HMT methods, both presented in this thesis. However, these

methods operate in the frequency domain.

One of the most popular identification methods working in the time domain is

the so-called “Auto-Regressive with eXogenous inputs” (ARX), where the present

output value is partly determined by or regressed on previous output values, as

reviewed in (3). Billings et al (47) extended the ARX method to analyze nonlinear

systems, the NARMAX, developing a wide range of applications to include any

type of nonlinearity.

The Hilbert transform (48) has become a promising tool for identifying the

presence and type of nonlinearity, because it considers the Fourier transform of

a complex function (e.g., a nonlinear FRF) as a “Hilbert pair”, where the real

and imaginary part of the Fourier transform are intimately linked to the Hilbert

transform of the same time signal. This feature allows the direct comparison

of both transforms to spot the nonlinear function. However, it suffers from an

expensive computational cost.

Lately, there has been an increasing research in the field of neural networks

for nonlinear identification. The technique aims to identify the nonlinear restor-

ing forces without any previous assumptions, thus classified as non-parametric.

However, this approach requires a long “training” of the software before it can

predict accurate results and offers little or no insight into the physics of the prob-

lem. Moreover, of all the available techniques, it is the less compatible with a

standard LMA. Liang, Feng & Cooper (49) combined fuzzy theory with artificial

neural network techniques, showing that such an approach is a feasible alternative

for estimating nonlinear restoring forces. A good review of other methods in the

field is shown in (3).

The main identification method introduced in this thesis took not a few ideas

from the RFS method of Masry & Caughey (32), but it rather works in the

frequency domain, thus making it more attractive from a computational point

of view. Although the identification process of our method is carried out in the

1Although he was unaware of this paper at the time of developing the present research.
Still, the reviewed paper and the developed methodologies follow different approaches.
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modal space, the localization of the nonlinear elements is addressed by going back

to physical coordinates. This is achieved by a newly-developed technique, which

is applicable to general MDOF systems and most nonlinearities.

2.4 The harmonic balance method (HBM)

The HMB has become the closest to a standard methodology for analysing theo-

retical nonlinear systems. The main idea behind the method is to “balance” the

different harmonics terms arising in the equations of motion due to nonlinearities.

A common approach is to neglect higher-order terms, thus solving a fundamen-

tal (first harmonic) problem. Recently, there have been increasing developments

towards a multi-harmonic approach, which renders more accurate results at the

expense of a heavier computational cost.

Although the method is more suitable for a theoretical analysis, it is reviewed

here due to its importance, and because some guidelines could be extended to an

experimental methodology.

Ferri & Dowell (50) obtained frequency domain solutions to MDOF, dry

friction damped systems. They used the so-called Galerkin/Newton-Raphson

method, which is equivalent to the HBM when considering the fundamental term

only. The set of NL equations was obtained by the “component mode synthe-

sis” method, and solved by a Newton-Raphson scheme. The initial estimate was

provided by a ramp function whose behaviour resembled that of the nonlinear

friction element, thus improving the convergence rate.

Wang & Chen (51) investigated the vibration of a blade with friction damping

by the HBM. In this formulation, a simplified FEM model was used, and further

simplifications were made by considering the behaviour of a single mode. A micro-

slip model was used to predict the response of the nonlinear element. The authors

showed that, regardless of the number of harmonics considered, the problem was

reduced to a set of two nonlinear equations plus a set of 2h linear equations, h

being the number of harmonics.

Ren & Beards (52) presented a multi-harmonic version of the HBM. They

used receptance-based information instead of spatial data, which reduces the size

of the system to be solved and obviates the need of a FEM model. A perturbation
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approach was implemented to achieve a close estimation of the response, which

is an essential requirement of the Newton-Raphson algorithm used to solve the

nonlinear set of equations. They showed that the nonlinear problem is completely

defined by those DOFs associated with nonlinear elements, a claim independently

confirmed by this research via a different path.

Hiamang & Mickens (53) considered a second-order nonlinear ODE, and ob-

tained its solution by the HBM. A second approach was taken by solving the

corresponding first-order energy relation. Although both problems are equivalent

and were constrained by the same initial conditions, they led to different results.

The authors concluded that this provides evidence of the ambiguities posed by a

linearised problem.

Rice & Xu (54) improved a method originally presented by Budak, Ozguven

et al (19), by including a technique which assured convergence in otherwise di-

vergent nonlinear cases. The main improvement consisted in approximating the

Jacobian by incorporating a “relaxation” matrix in the Newton-Raphson solver.

The authors showed results for an experimental test-bed (an insulated plate),

which compare well with time marching results.

Sanliturk, Imregun & Ewins (55) analysed the effect of friction dampers in

turbine blades. The authors compared the results of the HBM and time marching

methods, and found them to be in close agreement with experimental data. The

nonlinear elements were modelled as a complex stiffness, using the linearised

micro-slip and macro-slip models. The analysis indicated that both models

achieve similar results, provided that the response surpasses the critical amplitude

of the nonlinear elements.

Sanliturk & Ewins (56) developed a friction joint model exhibiting planar mo-

tion. Although both macro- and micro-slip elements were considered to demon-

strate the proposed method, it can also consider experimental data in the form

of a loading curve. The authors extended the HBM formulation to include a two-

dimensional motion. Comparisons with the time marching method demonstrated

a close agreement.
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Chapter 3

The nonlinear formulation

3.1 Introduction

The spatial discretization of a linear system is a well-known procedure, and is

the basis of standard methods such as FEM and LMA. This can be achieved

by a number of techniques (e.g. Ritz, Galerkin, variational formulations), which

provide a systematic approach for yielding the ordinary differential equations

(ODE).

The main advantage of the aforementioned procedure is the compact repre-

sentation of a large system in matrix format. The coefficients of the system’s

matrices represent local mass, damping or stiffness elements, and are all constant

for a linear system. The spatial distribution of these elements is accounted for

by their matrix indexes.

When considering nonlinear systems, it is just natural to attempt a matrix

description of the nonlinearities. In this approach, the system is separated into

linear and nonlinear components, where the last is based on a matrix containing

a discrete representation of the nonlinearities. This nonlinear matrix is populated

by local nonlinear coefficients (typically stiffness and/or damping related), which

are amplitude-dependent.

The construction of a nonlinear matrix (NLM) has been addressed by some

researchers, most notably by Ozguven & Budak (15), (16), (17), Kuran & Ozgu-

ven (18) and Tanrikulu & Imregun (19), who used the well-developed describing

function theory (DFM) to obtain equivalent first-order coefficients of common
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nonlinearities such as cubic stiffness and friction damping. These coefficients rep-

resent the basic “engine” of a nonlinear analysis, allowing the “merging” of linear

and nonlinear components into a single matrix representation.

This chapter presents the formulation of nonlinear elements based on first-

order describing functions, for cubic stiffness and friction damping types only.

These are further used to construct a nonlinear matrix (NLM) and its associated

nonlinear vector (NLV), representing the nonlinear component of an MDOF sys-

tem. These concepts will provide the basic ingredients for the NLMA methods

developed in this thesis.

The concepts introduced here are essential for subsequent derivations through-

out this work. The reader is advised to revisit this chapter as often as needed,

treating it as reference material.

3.2 Formulation of nonlinear coefficients via the

describing function method (DFM)

The basic theory of the DFM relies on the fact that, when subjected to a harmonic

excitation, a wide variety of nonlinear systems exhibit a periodic, oscillatory

response that is sufficiently close to a pure sinusoidal. Although it is recognized

that the response of a genuine nonlinear system will exhibit several harmonics

of a given natural frequency, it is also true that the amplitudes of the sub/super

harmonics are relatively small when compared with the fundamental.

The DFM then seeks to “describe” the relation between the fundamental

harmonics of the response and the excitation, and calculates the average restoring

force occurring in one cycle. It is clear that, because of a first-order assumption,

the multi-harmonic behaviour will neither be captured, nor predicted, though

extensions to such situations have been proposed by J. Vaqueiro (22), Kuran &

Ozguven (18) and others.

Obtaining first-order coefficients for the cubic stiffness and friction damping

nonlinearities is not novel, already being done by a variety of methods ranging

from the HBM (57), (58) to the method of slowly-varying parameters (7), but it

will be presented here for:
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• the sake of completeness, and

• for elucidating some vague definitions in the current literature regarding

non-grounded nonlinear elements (more on this later).

The analysis will be exemplified by considering the equation of motion of a

simple oscillator subjected to a harmonic excitation:

mÿ + g̃ (ẏ, y) = f sinωt (3.1)

where g̃ (ẏ, y) encloses all the restoring forces, assumed to be a nonlinear function

of the velocity and displacement (ẏ, y) of the mass m. Its nonlinear nature is

acknowledged by a “ ˜ ” symbol on top.

If the response y is sufficiently close to a pure sinusoidal, and provided that

little energy is leaked to frequencies other than the fundamental, then it is rea-

sonable to assume that the nonlinear function g̃ (ẏ, y) is also of a periodically-

oscillating nature. It is possible to find a linearized coefficient ν̃ (ẏ, y) which

provides the best average of the true restoring force. This coefficient acts on the

fundamental harmonic of the nonlinear response (Ỹ 1
st
) for a single load-cycle, in

such a way that:

g̃ (ẏ, y) ≈ ν̃ (ẏ, y) ∙ y, for y ≈ Ỹ 1
st

sin(ωt+ θ) = Ỹ 1
st

sin τ (3.2)

In order to find the NL coefficient ν̃ (ẏ, y), the restoring force g̃ (ẏ, y) is ex-

panded around y via a Fourier series, neglecting all the higher-order terms:

g̃ (ẏ, y) ≈ ν̃ (ẏ, y) ∙ y = σ1
st

a y + σ
1st

b y + σ
2nd

c y + σ
2nd

d y + ...︸ ︷︷ ︸
Neglected terms

(3.3)

where the σ functions are given by:

σ1
st

a =
1

πỸ 1
st

∫ 2π
0
g̃(Ỹ 1

st
sin τ, ωỸ 1

st
cos τ) sin τdτ

σ1
st

b =
1

πỸ 1
st

∫ 2π
0
g̃(Ỹ 1

st
sin τ, ωỸ 1

st
cos τ) cos τdτ

(3.4)

so the NL coefficient ν̃ (ẏ, y) is uniquely defined by

ν̃ (ẏ, y) = σ1
st

a + σ
1st

b (3.5)
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3.2 Formulation of nonlinear coefficients via the describing function
method (DFM)

3.2.1 Cubic stiffness describing function

The mathematical model of a cubic stiffness element can be expressed as:

g̃ (ẏ, y) = ky + βy3 (3.6)

where the coefficient k represents the linear component of the spring, while the

coefficient β accounts for the nonlinear effects due to the term y3. Fig. 3.1

represents both the linear (dotted line) and the nonlinear (solid line) behaviour

of a cubic stiffness element.

Figure 3.1: Behaviour of a cubic stiffness element

Notice that, while the overall stiffness of the spring indeed changes with the

amplitude y, the stiffness coefficients k and β remain constant and are not fre-

quency dependent. Otherwise, the differential equation (3.1) would be far more

difficult to solve, this being of the type “time-varying coefficients”. Introducing
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3.2 Formulation of nonlinear coefficients via the describing function
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(3.6) into (3.4), and dropping the superscript 1st for the sake of clarity, we have:

σa =
1
πỸ

∫ 2π
0
(ky + βy3) sin τdτ

σb = 2sin(π)cos(π) =0

(3.7)

Introducing these functions into (3.5) and developing further (the subscript k

in ν̃k meaning a stiffness-related coefficient):

ν̃k (ẏ, y) =
1

πỸ

∫ 2π

0

(kỸ sin τ + βỸ 3 sin3 τ) sin τdτ

ν̃k (ẏ, y) =
1

πỸ

∫ 2π

0

kỸ sin2 τdτ +
1

πỸ

∫ 2π

0

βỸ 3 sin4 τdτ

ν̃k (ẏ, y) =
k

π

∫ 2π

0

sin2 τdτ +
βỸ 2

π

∫ 2π

0

sin4 τdτ

ν̃k (ẏ, y) =
k

π
(π) +

βỸ 2

π

(
3

4
π

)

and we finally arrive to the first-order representation of a cubic stiffness element:

ν̃k (ẏ, y) = k +
3

4
βỸ 2 (3.8)

where the nonlinear part of the coefficient is given by:

ν̃k (ẏ, y) =
3

4
βỸ 2 (3.9)

The meaning of the NL coefficient ν̃k (ẏ, y) can be better illustrated by ob-

serving that, according to (3.2), the restoring force has been approximated by

the use of a linearized coefficient such as:

g̃ (ẏ, y) ≈ ν̃k (ẏ, y) ∙ y (3.10)

(
k ∙ Ỹ sin τ + β ∙ Ỹ 3 sin3 τ

)
≈

(

k +
3

4
βỸ 2

)

∙ Ỹ sin τ (3.11)

with the resulting fact that the true restoring function has both a sin τ and a

sin3 τ terms while the linearized function has only a sin τ term. Both functions are

shown in Figure 3.2, where it can be seen that the linearized coefficient effectively

averages the changes in the NL function.
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3.2 Formulation of nonlinear coefficients via the describing function
method (DFM)

Figure 3.2: First-order describing function of a cubic stiffness element

3.2.1.1 Cubic stiffness non-grounded elements

Developments hitherto apply to a grounded element in which its only coordinate

in motion is y. If the NL element is attached between two moving nodes y1 and

y2 (meaning it is not grounded), a variable change is needed to apply the same

procedure:

z = y1 − y2, where y1 = Ỹ1 sin(ωt+ θ1), y2 = Ỹ2 sin(ωt+ θ2)
and

z = Z̃ sin(ωt+ θz) = Z̃ sin τ, where Z̃ = |z| = |y1 − y2| , θz = ] (y1, y2)
(3.12)

and the NL restoring force becomes:

g̃ (ż, z) ≈ ν̃k (ż, z) ∙ z (3.13)
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3.2 Formulation of nonlinear coefficients via the describing function
method (DFM)

Introducing this variable change and following a similar procedure, the fol-

lowing expression is readily available:

ν̃k (ż, z) = k +
3

4
βZ̃2 (3.14)

where the nonlinear part of the coefficient is given by:

ν̃k (ż, z) =
3

4
βZ̃2 (3.15)

As before, the approximation is better understood when stated as a mathe-

matical equality:

(
k ∙ Z̃ sin τ + β ∙ Z̃3 sin3 τ

)
≈

(

k +
3

4
βZ̃2

)

∙ Z̃ sin τ (3.16)

There are some subtleties involved when dealing with non-grounded elements,

but they will be explained in later sections, when the nonlinear matrix (NLM) is

introduced.

3.2.2 Friction damping describing function

Obtaining the first-order describing function for the friction damping nonlinearity

presents no significant additional difficulties. The restoring force is now given by

the function:

g̃ (ẏ, y) = cẏ + γ
ẏ

|ẏ|
, for y > Ỹlimit (slip condition) (3.17)

where the |ẏ| term is used to ensure that the restoring force always opposes the

direction of motion. This model is only valid during the “slip” stage, occurring at

displacements over a certain limit Ỹlimit, which is related to the properties of the

surfaces in contact. Barely below this threshold, a phenomenon known as “stick-

slip” exists, characterized by intermittent motion and stationary behaviour. Such

a condition invalidates (3.17).

For very small displacements, corresponding to the “stick-slip” stage, the

nonlinear component γ ẏ|ẏ| in (3.17) is usually replaced by a linear elastic force

proportional to the current amplitude of motion. The “stick” and “stick-slip”

stages will not be included here, because the aim of the research is to focus
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3.2 Formulation of nonlinear coefficients via the describing function
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Figure 3.3: Behaviour of a friction damping element

in nonlinear descriptors. Fig. 3.3 illustrates the behaviour of a typical friction

damping element.

The relation between the restoring force and its describing function is:

g̃ (ẏ, y) ≈ ν̃c (ẏ, y) ∙ y (3.18)

where the subscript c in ν̃c stands for a damping-related coefficient. The Fourier

expansion produces:

σa = 0

σb =
1
πỸ

∫ 2π
0
(cẏ + γ ẏ|ẏ|) cos τdτ

(3.19)

The non-zero integral must be solved by parts, to properly handle the |ẏ|

term. Further developing the algebra:

ν̃c (ẏ, y) =
c

πỸ

∫ 2π

0

(
ωỸ cos τ

)
cos τdτ +

γ

πỸ

∫ 2π

0



 ωỸ cos τ∣
∣
∣ωỸ cos τ

∣
∣
∣



 cos τdτ
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3.2 Formulation of nonlinear coefficients via the describing function
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ν̃c (ẏ, y) =
ωc

π

∫ 2π

0

cos2 τdτ +
γ

πỸ

∫ 2π

0

(
cos2 τ

|cos τ |

)

dτ

ν̃c (ẏ, y) =
ωc

π

∫ 2π

0

cos2 τdτ +
γ

πỸ

[

2

∫ π
2

0

cos τdτ −
∫ 3π

2

π
2

cos τdτ

]

and we finally arrive to the first-order representation of a friction damping ele-

ment:

ν̃c (ẏ, y) = iωc+ i
4γ

πỸ
(3.20)

where the imaginary number “i” has been added to account for the phase-shift

introduced by the cosine term in (3.19). The nonlinear part of the coefficient is

given only by:

ν̃c (ẏ, y) = i
4γ

πỸ
(3.21)

The approximation involved is better understood when (3.20) is introduced

in (3.18):



c ∙ ωỸ sin τ + γ ∙
ωỸ sin τ
∣
∣
∣ωỸ sin τ

∣
∣
∣



 ≈

(

iωc+ i
4γ

πỸ

)

∙ Ỹ cos τ (3.22)

As seen in (3.22), the original restoring force -containing both a sin τ and a
sin τ
|sin τ | terms- have been approximated by the use of a linearized coefficient which

contains only the term cos τ . This is further exemplified in Fig. 3.4, showing that

the describing function represents the best average of the varying restoring force.

3.2.2.1 Friction damping non-grounded elements

Following a similar approach to the cubic stiffness development, the variable

change expressed in (3.12) is introduced. The NL restoring force becomes:

g̃ (ż, z) ≈ ν̃c (ż, z) ∙ z (3.23)

After applying the describing function formulation, the linearized coefficient

ν̃c (ż, z) is found to be:

ν̃c (ż, z) = iωc+ i
4γ

πZ̃
(3.24)
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Figure 3.4: First-order describing function of a friction damping element

where the nonlinear part of the coefficient is given only by:

ν̃c (ż, z) = i
4γ

πZ̃
(3.25)

The approximation involved is:



c ∙ ωZ̃ sin τ + γ ∙
ωZ̃ sin τ
∣
∣
∣ωZ̃ sin τ

∣
∣
∣



 ≈

(

iωc+ i
4γ

πZ̃

)

∙ Z̃ cos τ (3.26)
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3.3 The nonlinear vector (NLV) and the nonlinear matrix (NLM)

3.3 The nonlinear vector (NLV) and the nonlin-

ear matrix (NLM)

Expanding the idea of the simple oscillator introduced in (3.1) to an MDOF

system, we have:

[M] {ÿ}+ {G̃ (ẏ, y)} = {F} eiωt (3.27)

where [M] is the mass matrix, {ÿ}, {ẏ} and {y} are the acceleration, velocity

and displacement vectors (respectively), and {F} is a harmonic excitation vector

operating at frequency ω.

{G̃ (ẏ, y)} is a vector containing all the restoring forces in the system and,

in general, being a function of all the displacements and velocities. We will

abbreviate this nonlinear vector as the NLV.

For additive nonlinearities, g̃(ẏ, y) = g̃c(ẏ)+ g̃k(y), it is possible to expand the

NLV into individual nonlinear restoring forces, as follows:

{G̃ (ẏ, y)} =






g̃v1(ẏ, y)
g̃v2(ẏ, y)
g̃v3(ẏ, y)
...

g̃vN(ẏ, y)





N

=






g̃11 + g̃12 + g̃13 + ∙ ∙ ∙+ g̃1N
g̃21 + g̃22 + g̃23 + ∙ ∙ ∙+ g̃2N
g̃31 + g̃32 + g̃33 + ∙ ∙ ∙+ g̃3N

...
g̃N1 + g̃N2 + g̃N3 + ∙ ∙ ∙+ g̃NN





N

(3.28)

where N is the size of the system (in DOFs). Each nonlinear function g̃ij repre-

sents a restoring force acting between DOFs i and j, while terms with repeated

indexes g̃ii represent a restoring force between DOF i and ground. So, the ith

row of the NLV, containing the function g̃vi(ẏ, y), represents the combined effect

of all the elements connected to DOF i (g̃i1 + g̃i2 + g̃i3 + ∙ ∙ ∙+ g̃iN). By applying

Newton’s third law, we also recognize that g̃ij = −g̃ji.

At this stage, it is advantageous to replace each individual restoring func-

tion g̃ij with the linearized coefficients already developed in Section 3.2. If

the system is assumed to have a harmonic response {y(t)} = {Ỹ }eiωt, where

{Ỹ } = {|Ỹ |eiθ} is a nonlinear complex vector allowing it to accommodate phase,

then it is straightforward to re-define the describing coefficients for this condition.

For “grounded” NL elements, the re-definition is almost trivial:

ν̃ii (ẏi, yi) ∙ yi =

(

kii +
3

4
βii

∣
∣
∣Ỹ
∣
∣
∣
2

i

)

Ỹi (3.29)

41



3.3 The nonlinear vector (NLV) and the nonlinear matrix (NLM)

or1

ν̃ii (ẏi, yi) ∙ yi =



iωcii + i
4γii

π
∣
∣
∣Ỹi
∣
∣
∣



 Ỹi (3.30)

where the dependence of Ỹ on the harmonic term eiωt has been obviated. For

non-grounded NL elements, the NL coefficients can be redefined by “borrowing”

from the FEM method the “direct stiffness” approach, in which the elements are

formulated via a transformation matrix acting on all of its active coordinates

(DOFs). For discrete nonlinear elements having only two active nodes (i and j)

as local coordinates, the notation is as follows:

g̃ij ≈ ν̃ij(żij, zij) ∙ zij = ν̃ij(ẏi, ẏj, yi, yj) ∙ (yi − yj) (3.31)

which leads to:

ν̃ij (żij , zij) ∙ zij =
{
kij −kij

}
{
Ỹi
Ỹj

}

+
{
3
4
βij

∣
∣
∣Z̃ij

∣
∣
∣
2

−3
4
βij

∣
∣
∣Z̃ij

∣
∣
∣
2 }

{
Ỹi
Ỹj

}

(3.32)

or

ν̃ij (żij, zij) ∙ zij =
{
iωcij −iωcij

}
{
Ỹi
Ỹj

}

+
{
i
4γij

π|Z̃ij|
−i 4γij
π|Z̃ij|

}{
Ỹi
Ỹj

}

(3.33)

where it can be seen that this formulation produces symmetrical coefficients, i.e.

ν̃ij = −ν̃ji. Introducing the newly re-defined NL coefficients into (3.28), a matrix

of NL coefficients is formed:

{G̃ (ẏ, y)} =



















N∑

j=1

ν̃1j ν̃12 ν̃13 ∙ ∙ ∙ ν̃1N

ν̃21
N∑

j=1

ν̃2j ν̃23 ∙ ∙ ∙ ν̃2N

ν̃31 ν̃32
N∑

j=1

ν̃3j ∙ ∙ ∙ ν̃3N

...
...

...
. . .

...

ν̃N1 ν̃N2 ν̃N3 ∙ ∙ ∙
N∑

j=1

ν̃Nj



















N,N






Ỹ1
Ỹ2
Ỹ3
...

ỸN





N

(3.34)

1Do not confound “i” (the imaginary number) with “i” (an spatial index), both appearing
for the first time together in (3.30).
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3.4 The NL-DOFs (n), the nonlinear region (Γ) and the measured
region (<)

The summation in the main diagonal of the matrix of coefficients is explained

by the fact that, as seen in (3.32) and (3.33), each off-diagonal (non-grounded)

coefficient ν̃ij introduces an additive component (of equal magnitude but opposite

sign) into the main diagonal (grounded) coefficient ν̃ii. Because of the assumption

of additive nonlinearities, any NL coefficient ν̃ij can be stiffness and/or damp-

ing related, both acting on the response vector
{
Ỹ
}
. We will call the square

and symmetrical matrix of nonlinear coefficients the NLM (nonlinear matrix),

designated by the symbol ν̃:

ν̃ =



















N∑

j=1

ν̃1j ν̃12 ν̃13 ∙ ∙ ∙ ν̃1N

ν̃21
N∑

j=1

ν̃2j ν̃23 ∙ ∙ ∙ ν̃2N

ν̃31 ν̃32
N∑

j=1

ν̃3j ∙ ∙ ∙ ν̃3N

...
...

...
. . .

...

ν̃N1 ν̃N2 ν̃N3 ∙ ∙ ∙
N∑

j=1

ν̃Nj



















N,N

(3.35)

where the NLV G̃ and the NLM ν̃ are linked by the following expression:

{G̃} = [ν̃]
{
Ỹ
}

(3.36)

An important remark:

• In order to maintain generality, the NLV {G̃} and its associated NLM [ν̃]

have been defined as containing all the restoring forces in the system, lin-

ear and nonlinear. In later developments, however, the linear component is

usually explicitly written in the form of the well-known [K], [C], [D] (stiff-

ness, viscous damping and hysteretic damping) matrices. In this case, the

NLV and the NLM will represent nonlinear restoring forces exclusively.

3.4 TheNL-DOFs (n), the nonlinear region (Γ)

and the measured region (<)

One of the most difficult issues during a nonlinear analysis is the precise local-

ization of the nonlinearities, this being recognized by most experts in the field.
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Given that just a few nonlinear local agents can have a significant global impact,

an uncompromised search would require measurements in nothing less than all

the DOFs.

However, when dealing with large systems, relatively few measurements are

available. In order to deal effectively with these uncertainties, the following main

assumptions will be made throughout this work:

• The global nonlinear effects observed in the system’s response are generated

by relatively few nonlinear elements. Although their position is strictly

unknown, they can be approximately delimited within a nonlinear region Γ

prior to the analysis, where:

Γ ∈ N, typically Γ� N (3.37)

• The DOFs associated with nonlinear elements are defined as n, the nonlin-

ear DOFs (NL-DOFs), where:

n ∈ Γ ∈ N, typically n� Γ� N (3.38)

Note that the exact position of n within Γ remains unknown.

• As demonstrated later1, the NL-DOFs n need to be measured in order to

be detected. Therefore, measurements in the whole nonlinear region Γ are

mandatory for a successful localization.

Measurements outside Γ, while useless during a detection stage, are helpful

to improve the quality of the nonlinear quantification, as well as to reduce

the size of the analyzed system. All of the measured DOFs, both inside and

outside Γ, will be represented by the measured region <, where:

n ∈ Γ ∈ < ∈ N typically n� Γ ≤ < � N (3.39)

1But also dictated by common sense.
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3.4 The NL-DOFs (n), the nonlinear region (Γ) and the measured
region (<)

Experience shows that the assumption of a pre-defined nonlinear region is

feasible in the context of an engineering structure. It has been observed that the

nonlinearities are often caused by a few local agents1, which can be approximately

localized prior to the analysis. The areas associated with nonlinearities can be

enclosed in a nonlinear region Γ of arbitrary size. Outside it, the system is

assumed to be free of NL elements, although not free of NL effects!.

This assumption can be used to perform a dramatic size-reduction during

a nonlinear analysis. Splitting the rows/columns of (3.36) into Γ and (N − Γ)

DOFs, we have:
{
G̃N−Γ
G̃Γ

}

=

[
0(N−Γ),(N−Γ) 0(N−Γ),Γ
0Γ,(N−Γ) ν̃Γ,Γ

]{
ỸN−Γ
ỸΓ

}

(3.40)

where the nonlinear coefficients ν̃i,j outside the nonlinear region Γ are assumed

to be zero. This leads to the reduced expression:

{G̃Γ} = [ν̃Γ,Γ]{ỸΓ} (3.41)

where:

{G̃Γ} =






g̃v1(ẏ, y)
g̃v2(ẏ, y)
g̃v3(ẏ, y)
...

g̃vΓ(ẏ, y)





Γ

=






g̃11 + g̃12 + g̃13 + ∙ ∙ ∙+ g̃1Γ
g̃21 + g̃22 + g̃23 + ∙ ∙ ∙+ g̃2Γ
g̃31 + g̃32 + g̃33 + ∙ ∙ ∙+ g̃3Γ

...
g̃Γ1 + g̃Γ2 + g̃Γ3 + ∙ ∙ ∙+ g̃ΓΓ





Γ

(3.42)

and:

ν̃Γ,Γ =



















Γ∑

j=1

ν̃1j ν̃12 ν̃13 ∙ ∙ ∙ ν̃1Γ

ν̃21
Γ∑

j=1

ν̃2j ν̃23 ∙ ∙ ∙ ν̃2Γ

ν̃31 ν̃32
Γ∑

j=1

ν̃3j ∙ ∙ ∙ ν̃3Γ

...
...

...
. . .

...

ν̃Γ1 ν̃Γ2 ν̃Γ3 ∙ ∙ ∙
Γ∑

j=1

ν̃Γj



















Γ,Γ

(3.43)

In expressions (3.42) and (3.43), g̃ij and ν̃ij are now the restoring force and

NL coefficient corresponding to DOFs Γi and Γj.

1See Chapter 1.
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3.5 Concluding remarks

The nonlinear elements have been formulated based in an already proven “en-

gine”, the describing function method (DFM). The formulation introduced in

this work neglects the existence of sub/super harmonics, this being one of our

main assumptions, otherwise recognizing the amplitude-dependency of the co-

efficients. This assumption, while inaccurate for a time domain representation,

works very well in the frequency domain, which considers average quantities in a

single load-cycle.

This nonlinear formulation allows the construction of a nonlinear vector (NLV)

and a nonlinear matrix (NLM), which in turn will achieve the “merging” of linear

and nonlinear components into a single matrix representation. Special techniques

will be developed in coming chapters to take advantage of such representation.

Finally, the definition of the NL-DOFs n within a nonlinear region Γ (both

included in the measured region <) allowed a size-reduction in the nonlinear

formulation. This feature will be exploited to achieve an efficient identification

when dealing with large systems.
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Chapter 4

The explicit formulation (EF) of
nonlinear FRFs for MDOF
systems (a direct-path approach)

4.1 Introduction

The basic ingredient of any modal analysis method is a set of FRF measurements

for the system under study. Currently, the derivation of mathematical models

based on linear FRFs is a well-established procedure, and linear modal analysis

(LMA) is recognized as a robust and effective identification tool (4),(59). How-

ever, a general nonlinear model from available FRFs of a nonlinear system has

yet to be found, this being a main obstacle towards the establishment of a general

nonlinear methodology. Many of the existing methods can only deal with specific

cases.

A severe problem for experimental nonlinear identification is that the rela-

tively few measurements available must be compared to FRFs from large theo-

retical formulations. However, due to the coupled nature of a nonlinear prob-

lem, a theoretical approach, such as the harmonic balance method (HBM), must

compute all responses at once. For large systems, this results in a nonlinear

optimization problem with a large number of unknowns, a major computational

challenge even by today’s standards.

It makes more sense, at least when dealing with experimentally derived data,

to be able to formulate the theoretical responses at the measured coordinates
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4.1 Introduction

only. This approach will yield a reduced number of nonlinear equations to be

solved, simplifying the process of nonlinear identification. The method described

in this chapter tackles this issue by deriving the nonlinear response at selected

coordinates, given a fully described theoretical system (a direct-path approach).

The introduced technique, called “explicit formulation” (EF), provides a dis-

crete representation of a nonlinear FRF as a closed-form algebraic expression, for

a selected DOF. This is done in a systematic way regardless of the system’s size.

The term “explicit” arises from the fact that the proposed model is based on

the physical coefficients stored in the [M] , [K] , [C] (mass, stiffness and damping)

matrices, thus classified as a physical-coordinates method. The nonlinearities are

represented by a nonlinear matrix (NLM) and its associated nonlinear vector

(NLV)1, allowing the seamlessly merging of the linear and nonlinear components

into a single matrix formulation.

A matrix inversion, commonly associated with a standard modal analysis, is

avoided by defining the nonlinear FRF as the ratio of two determinants instead.

Although not particularly efficient in computational terms, the technique offers

an unparalleled degree of robustness. An optimized EF method will also be

developed, aimed to maintain computational economy when dealing with large

systems.

The optimized EF will be validated against real measurements taken from a

test rig containing cubic stiffness nonlinearities, whose design, construction and

testing are detailed in Appendix C. The nonlinear formulation of this research

is fully contained in the EF method; therefore, its experimental validation will

support subsequent developments, which are all based in the same nonlinear

“engine”.

The proposed methodology shares a common philosophy found in other NL

methods: first, the equations of motion are derived by model discretization via

FEM, Galerkin or Ritz methods; then the NL ordinary differential equations

(ODE) are converted into a set of NL algebraic equations, which is usually solved

by a Newton-Raphson scheme, or more specialized algorithms. The current tech-

nique was programmed in MATLAB (60) and a modified Newton-Raphson ap-

proach was used to deal with a large set of nonlinear equations, incorporating the

1Both introduced in Chapter 3.
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4.2 The explicit formulation of nonlinear FRFs

so-called “trust-regions” and “pre-conditioned gradients” (PCG) (61), (62), (63)

to find a global solution.

However, it must be said that the emphasis of this chapter is not related to the

optimum solution of a NL set of equations, a major subject by itself, but rather

to a new approach for the inclusion of nonlinearities into a general formulation.

The EF method can be summarized in the flow chart shown in Fig. 4.1.

4.2 The explicit formulation of nonlinear FRFs

The equation of motion of a general nonlinear system subjected to harmonic exci-

tation can be described by the following nonlinear ordinary differential equation:

[M] {ÿ}+ [C] {ẏ}+ i [D] {y}+ [K] {y}+ {G̃ (ẏ, y)} = {F} eiωt (4.1)

where [M],[C], [D] and [K] are the mass, viscous damping, hysteretic damping

and stiffness matrices -respectively- of the underlying linear system; {ÿ}, {ẏ} and

{y} are the acceleration, velocity and displacement vectors, and {F} is a harmonic

excitation vector operating at frequency ω.

The nonlinear component of the system is represented by the nonlinear vector

(NLV) {G̃}1, which is a function of all displacements and velocities in the general

case.

Considering a harmonic response {y(t)} = {Ỹ }eiωt, where {Ỹ } = {|Ỹ |eiθ} is

a nonlinear complex vector allowing it to accommodate phase, the equation of

motion is further reduced to:

(
−ω2 [M] + iω [C] + i [D] + [K]

){
Ỹ
}
+ {G̃(ω, Ỹ )} = {F} (4.2)

The linear receptance can be defined as (4):

[α] = (−ω2 [M] + iω [C] + i [D] + [K])−1 (4.3)

and its inverse, [Λ] = [α]−1, as:

[Λ] = −ω2 [M] + iω [C] + i [D] + [K] (4.4)

1Introduced in Chapter 3
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4.2 The explicit formulation of nonlinear FRFs

Figure 4.1: Flow diagram of the EF method (a direct-path approach)
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4.2 The explicit formulation of nonlinear FRFs

According to (3.36), the nonlinear vector (NLV) {G̃} can be expressed in

terms of the nonlinear matrix (NLM) [ν̃] and the response vector:

{G̃} = [ν̃]
{
Ỹ
}

(4.5)

Introducing (4.4) and (4.5) into (4.2), we have:

([Λ] + [ν̃])
{
Ỹ
}
= {F} (4.6)

leading to the final compact representation of the NL system:
[
Λ̃
]{
Ỹ
}
= {F} , where

[
Λ̃
]
= [Λ] + [ν̃] (4.7)

[
Λ̃
]
is a composite matrix, enclosing linear and nonlinear coefficients, and it

is formulated for the current state [ẏ, y, ω]. It can be considered to be the system

matrix. Obtaining the roots of the determinant of
[
Λ̃
]
yields the frequency-

dependent nonlinear natural frequencies and damping ratios.

Using (4.7), it can be shown that the response at any given DOF i can be

described by the ratio of two determinants (64):

↓ ith column

Ỹi =

det


















Λ̃1,1
...
...
...

Λ̃N,1

∙ ∙ ∙
. . .

∙ ∙ ∙
. . .

∙ ∙ ∙






...

...
F
...
...






∙ ∙ ∙
. . .

∙ ∙ ∙
. . .

∙ ∙ ∙

Λ̃1,N
...
...
...

Λ̃N,N


















N,N

det(Λ̃)

(4.8)

where N is the size of the system and the matrix in the numerator is formed by

replacing the force vector {F} in the ith column of the composite matrix
[
Λ̃
]
.

Equation 4.8 is the core expression of the EF method.

For a typical engineering structure containing localized nonlinearities (joints,

geometric discontinuities, shock absorbers, etc.), the nonlinear matrix [ν̃] is highly

sparse, with just a few nonzero entries. The notation:

Λij = (−ω2mij + iωcij + idij + kij)
Λ̃ij = (−ω2mij + iωcij + idij + kij + ν̃ij)

(4.9)

distinguishes between linear (Λij) and nonlinear (Λ̃ij) coefficients, both contained

in [Λ̃].
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4.3 Extension of the EF method to large systems: the optimized EF

4.3 Extension of the EF method to large sys-

tems: the optimized EF

Equation (4.8) is both suitable and instructive for the analysis of small-sized sys-

tems because it maintains the physical connectivities. In other words, a nonlinear

coefficient Λ̃ij represents a physical link (linear and nonlinear) acting between

DOFs i and j. However, for large systems, the fact that the nonlinearities are

scattered throughout [Λ̃] makes a nonlinear analysis cumbersome and computa-

tionally expensive. This can be overcome by further manipulation of (4.7), as

follows:

Defining n as those DOFs associated with nonlinear elements1, (4.7) can be

split into n and (N − n) components:
[
Λ(N−n),(N−n) Λ(N−n),n
Λn,(N−n) Λ̃n,n

]{
ỸN−n
Ỹn

}

=

{
FN−n
Fn

}

(4.10)

where the nonlinearities have been concentrated in sub-matrix [Λ̃n,n], the remain-

ing terms being linear. Splitting (4.5) in the same fashion, we obtain:
{
G̃N−n
G̃n

}

=

[
0(N−n),(N−n) 0(N−n),n
0n,(N−n) ν̃n,n

]{
ỸN−n
Ỹn

}

(4.11)

where the scattered nonlinear coefficients have been concentrated in sub-matrix

[ν̃n,n]. Inserting (4.11) to (4.10) and transferring the nonlinear terms to the RHS,

we finally arrive at:

↓ ith column

Ỹi =

det

















Λ1,1
...
...
...
ΛN,1

∙ ∙ ∙
. . .

∙ ∙ ∙
. . .

∙ ∙ ∙






R̃






∙ ∙ ∙
. . .

∙ ∙ ∙
. . .

∙ ∙ ∙

Λ1,N
...
...
...
ΛN,N

















N,N

det(Λ)

(4.12)

where:

R̃ =

{
FN−n

Fn − ν̃n,nỸn

}

(4.13)

1The NL-DOFs, see Chapter 3.
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4.3 Extension of the EF method to large systems: the optimized EF

Equations (4.12) and (4.13) represent the enhanced method (called here the

“optimized EF”) which allows a more efficient calculation of the nonlinear re-

sponses when dealing with large systems. Although the size of the matrix [Λ] is

still N , the solution technique has been greatly simplified because of the following

reasons:

1. Expressions (4.12) and (4.13) represent a reduced system of n nonlinear

equations (Ỹi, defined for the DOFs i ∈ n) with n unknowns, the nonlinear

responses at the same n DOFs {Ỹn} being contained in {R̃}, where typically

n� N . This demonstrates that a nonlinear system can be fully described

by first calculating the nonlinear responses at the n DOFs only.

2. The fact that the unknowns {Ỹn} are concentrated in the numerator of

(4.12), in vector {R̃}, is very convenient during a nonlinear optimization.

This greatly reduces the computational cost of the solution by updating a

local region of the numerator’s matrix in (4.12). The matrix in the denom-

inator ([Λ]) remains unchanged for a given frequency ω.

3. Once the nonlinear responses {Ỹn} are calculated, the problem has been

reduced to a linear one. The remaining responses {ỸN−n} can be found all

at once by solving the top equation of (4.10), or by employing (4.12) on an

individual basis, for i ∈ (N − n).

4. Despite the relatively high computational effort in obtaining a determinant,

the ability to calculate just a few discrete analytical responses to match their

experimental counterparts is well worth the cost. Professor J. R. Wright

has pointed out that the determinant of a large matrix can be calculated

from the trace of its eigenvalues, an approach which is likely to improve

the method dramatically. This issue is well worth exploring as an avenue

of future work.

5. This technique allows the inclusion of any kind of damping (viscous and/or

hysteretic, proportional or not) without any special consideration.
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4.4 Minimization of a large set of nonlinear equations

4.4 Minimization of a large set of nonlinear equa-

tions

The Newton-Raphson method is among the most popular for solving nonlinear

functions, providing a simple mechanism for iteratively converging to the solution

from a sufficiently close initial guess. Currently, there are no methods which

can guarantee global convergence in a nonlinear problem, so the importance of

estimating a proper initial guess can not be over-stressed (62).

If the algebraic set is equated to zero by transferring the RHS to the LHS, the

solution vector is also called the roots of the system; in the context of a numerical

problem, a residual term is often found instead of an exact solution (zero). By

comparing different residuals in several local minima, the global solution can be

assigned to that point containing the minimum residual; the advantage in doing

so is that convergence is achieved, even if the algorithm is unable to find an exact

solution (because of noisy data or because the system simply does not have a

zero).

The Newton-Raphson problem can be mathematically stated as finding the

vector {y} which is the best solution (minimum residual) for the function {f(y)},

{f(y)} ≈ {0} (4.14)

The iterative scheme is based in the equation

{
y(k+1)

}
=
{
yk
}
− ε [J ]−1 {f(yk)}, 0 <ε< 1 (4.15)

where the updated vector {y(k+1)} corresponding to the (k + 1) iteration is pro-

duced from the actual vector {yk} and the Jacobian [J ]. The problem is reduced

to find the value of ε which minimizes the residual (4.14).

For a multi-variable problem, the Jacobian is defined by:

[J ] =
∂
{
f(yk)

}

∂ {yk}
=










∂f1
∂y1

∂f1
∂y2

∙ ∙ ∙ ∂f1
∂yn

∂f2
∂y1

∂f2
∂y2

∙ ∙ ∙ ∂f2
∂yn

...
...
. . .

...
∂fn
∂y1

∂fn
∂y2

∙ ∙ ∙ ∂fn
∂yn










(4.16)

54



4.4 Minimization of a large set of nonlinear equations

When dealing with a large number of equations, say more than 50, the rate of

convergence can be improved by adopting a “trust-region” approach (61), (63), in

which the function to minimize {f(y)} -usually of a higher order- is approximated

with a simpler function {q(y)} which reasonably mimics the behaviour of the orig-

inal function in a neighbourhood
∏
around the point {y}. This neighbourhood

is called a “trust region” and the trial step {s} is computed by minimizing the

function over
∏
. The problem is then transformed such as:

min{{f(y)}, {y} ∈
∏
} → min{{q(s)}, {s} ∈

∏
} (4.17)

Typically, {q(y)} is taken to be a quadratic approximation defined by the first

two terms of a Taylor expansion of {f(y)}, and the neighbourhood
∏
is usually

spherical or ellipsoidal in shape. Mathematically, the “trust-region” sub-problem

is defined as:

min

{
1

2
{s}T [T]{s}+ {s}T{g}, such that ‖As‖ ≤ Δ

}

(4.18)

where {g} is the gradient of {f(y)} at the current point {y}, [T] is the Hessian

matrix (the symmetric matrix of second derivatives), [A] is a diagonal scaling

matrix, Δ is a positive scalar and ‖ ‖ is the 2-norm. A successful iteration is

achieved if the following condition is met:

if {f(y + s)} ≤ {f(y)}, {y} = {y}+ {s} (4.19)

Because the computational cost of solving even the reduced problem is still

proportional to several factorizations of [T], the subspace S is usually restricted

to be two-dimensional and being determined with the aid of a preconditioned

conjugate gradient (PCG), described in (61), (62) and (63).

Applying the aforementioned scheme for solving the analytical responses
{
Ỹ
}

leads to the following procedure:

1. Establish a vector of unknown variables. In this case, given by the

nonlinear responses {Ỹn}

2. Construct the set of nonlinear algebraic equations. These are based

in (4.12), forming the vector {Ỹn}analytical. The objective function is {f(y)} =

{f(Ỹ1, Ỹ2, Ỹ3, ...Ỹn)}.
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4.5 Sample Case #1: a cubic stiffness example

3. Provide an initial guess {Ỹn}trial for the first iteration. The linear

response are chosen to this end.

4. Real-imaginary splitting. The standard minimization scheme used in

this work1 cannot handle complex variables, so the problem must be split

into real and imaginary parts before proceeding. This can be mathemati-

cally stated as:

{f(y)} =






fRe(y)
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
fIm(y)





2n

=






Re(Ỹ trialn − Ỹ analyticaln )
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Im(Ỹ trialn − Ỹ analyticaln )





2n

≈






0
∙ ∙ ∙
0





2n

(4.20)

5. Iterative procedure. The iterative procedure will conclude when the

objective function {f(y)} is less than a pre-defined tolerance (say, between

1-2%) away from the previous iteration. It will deliver the {Ỹn} responses

for the actual excitation frequency only, so a new minimization must be

applied for the next step-frequency. This time, the calculated responses

serve very well as an initial guess for the algorithm -instead of the linear

solution.

6. Linear solver. After the responses for all the frequency range have been

calculated, the n nonlinear FRFs are now available, and most importantly,

the problem has been transformed into a linear one. The remaining re-

sponses {ỸN−n} can be found all at once by solving the top equation of

(4.10), or by employing (4.12) on an individual basis, for i ∈ (N − n).

4.5 Sample Case #1: a cubic stiffness example

The EF method will be exemplified with its application to a small sample case.

Although in principle there is no restriction at all -other than the computational

cost- on the size of the system it can handle, having a small system is visually

instructive. Based on this same argument, the case will be restricted to include

1Provided by MATLAB (60).
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4.5 Sample Case #1: a cubic stiffness example

cubic stiffness nonlinearities while observing that mixed nonlinearities should not

represent a significant obstacle.

The Sample Case #1 is thoroughly described in Appendix A, and shown here

in Fig. 4.2 for convenience.

Figure 4.2: Sample Case #1

Our aim is to obtain the nonlinear FRFs, and we start by calculating the

nonlinear vector (NLV); given that the nonlinear springs (represented by the two

thick lines in Fig. 4.2) are located one at mass m3 and another between masses

m2 and m3, it follows that the only non-zero restoring forces in (3.28) are g̃23, g̃32

and g̃33:

{G̃ (ẏ, y)} =






g̃v1(ẏ, y)
g̃v2(ẏ, y)
g̃v3(ẏ, y)





=






g̃11 + g̃12 + g̃13
g̃21 + g̃22 + g̃23
g̃31 + g̃32 + g̃33





=






0
g̃23

g̃32 + g̃33






Next, we use (3.29) to express the nonlinear coefficient for the grounded ele-

ment represented by the restoring force g̃33:

g̃33 = ν̃33 (ẏ3, y3) ∙ y3 =

(
3

4
β33

∣
∣
∣Ỹ3
∣
∣
∣
2
)

Ỹ3

The restoring forces g̃23 and g̃32 due to the non-grounded spring are both

obtained by using (3.32):

g̃23 = ν̃23 (ż23, z23) ∙ z23 =
{
3
4
β23

∣
∣
∣Z̃23

∣
∣
∣
2

−3
4
β23

∣
∣
∣Z̃23

∣
∣
∣
2 }

{
Ỹ2
Ỹ3

}
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4.5 Sample Case #1: a cubic stiffness example

and

g̃32 = ν̃32 (ż32, z32) ∙ z32 =
{
3
4
β32

∣
∣
∣Z̃32

∣
∣
∣
2

−3
4
β32

∣
∣
∣Z̃32

∣
∣
∣
2 }

{
Ỹ3
Ỹ2

}

where
∣
∣
∣Z̃ij

∣
∣
∣ =

∣
∣
∣Ỹi − Ỹj

∣
∣
∣; we observe that, because β32 = β23 and

∣
∣
∣Z̃32

∣
∣
∣ =

∣
∣
∣Z̃23

∣
∣
∣,

Newton’s third law remains true such as g̃32 = −g̃23. Introducing all these ex-

pressions into the NLV (3.28), we obtain






g̃v1(ẏ, y)
g̃v2(ẏ, y)
g̃v3(ẏ, y)





=
3

4
∙








0 0 0

0 β23

∣
∣
∣Z̃23

∣
∣
∣
2

−β23
∣
∣
∣Z̃23

∣
∣
∣
2

0 −β23
∣
∣
∣Z̃23

∣
∣
∣
2
(

β33

∣
∣
∣Ỹ3
∣
∣
∣
2

+ β23

∣
∣
∣Z̃23

∣
∣
∣
2
)













Ỹ1
Ỹ2
Ỹ3






(4.21)

where the matrix containing the nonlinear coefficients is the NLM [ν̃], defined in

(3.35).

Given that we are dealing with a small system, we will use the non-optimized

EF (4.8), as it offers a more physical insight than its optimized counterpart (4.12).

By (4.8), the nonlinear FRFs are readily determined as:

Ỹ1 =

det




0
F2
0

Λ12
Λ̃22
Λ̃32

Λ13
Λ̃23
Λ̃33





det(Λ̃)
, Ỹ2 =

det




Λ11
Λ21
Λ31

0
F2
0

Λ13
Λ̃23
Λ̃33





det(Λ̃)
,

Ỹ3 =

det




Λ11
Λ21
Λ31

Λ12
Λ̃22
Λ̃32

0
F2
0





det(Λ̃)

or simply

Ỹ1

F2
=
Λ13Λ̃32 − Λ12Λ̃33

det(Λ̃)
,

Ỹ2

F2
=
Λ11Λ̃33 − Λ31Λ13

det(Λ̃)
,

Ỹ3

F2
=
Λ12Λ31 − Λ11Λ̃32

det(Λ̃)

where

det(Λ̃) = Λ11Λ̃22Λ̃33−Λ11Λ̃23Λ̃32−Λ21Λ12Λ̃33+Λ21Λ13Λ̃32+Λ31Λ12Λ̃23−Λ31Λ13Λ̃22
(4.22)
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4.5 Sample Case #1: a cubic stiffness example

From (4.9) and (4.21), we observe that:

Λ̃22 = Λ̃22(Λ22, Ỹ2, Ỹ3, β23),

Λ̃23 = Λ̃23(Λ23, Ỹ2, Ỹ3, β23),

Λ̃32 = Λ̃23,

Λ̃33 = Λ̃33(Λ33, Ỹ2, Ỹ3, β23, β33)

(4.23)

Equation (4.23) shows that the determinant of [Λ̃] is a square function of β23,

due to the determinant’s 1st and 2nd terms. However, β33, only shows up in a

linear fashion (e.g., determinant’s 3rd. term contains a single nonlinear element,

ν̃33). Such a feature suggests that the system will be, overall, much more sensitive

to variations in the non-grounded nonlinearity β23.

Another useful conclusion can be drawn from (4.23): the determinant of [Λ̃]

contains all the nonlinear coefficients in the system. Because it is a common

denominator, it follows that any change in any of the nonlinear elements will

influence all the responses at once, which is an expected result. However, the

extent at which each individual response will be influenced also depends on the

numerator, though this is a more subtle issue:

• Ỹ3
F2
will be much more sensitive to variations in β23 than in β33, because Λ̃33

does not appear in its numerator.

• Ỹ2
F2
will be much more sensitive to changes in β33 than in β23, because Λ̃23

does not appear in its numerator. This is not an obvious conclusion, since

mass m2 is not physically linked to element β33.

However, it could well be that smaller variations in the square variable

β23 (occurring in the denominator) override large variations in the linear

variable β33 (occurring in the numerator). Still, the first argument holds

true, when comparing the behaviour of the different nonlinear FRFs.

• When considering the nonlinear FRF Ỹ1
F2
we can only say that it will exhibit

the highest sensitivity to the nonlinearities, as judged by the presence of

both β23 and β33 in the numerator (both contained in Λ̃23 and Λ̃33). Intuition

has proved completely wrong in this case, since Ỹ1 would be expected to

be the least affected DOF in the system, given that it is the furthest away

from the “nonlinear region”.
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4.6 Sample Case #2: a friction damping example

The nonlinear FRFs Ỹ1
F2
, Ỹ2
F2
and Ỹ3

F2
together form a set of 3 complex nonlinear

equations with 3 complex unknowns (the responses Ỹ1, Ỹ2 and Ỹ3), valid for a

single frequency ω; the responses can be solved by using a standard Newton-

Raphson algorithm at the resonant regions only, where the nonlinearities are

expected to become active, everywhere else being replaced by the linear responses.

The performance of the EF method will be compared with the “harmonic

balance method” which is a recognized benchmark for nonlinear problems. The

particular HBM code used in this work was written by Dr. Evgeny Petrov (65)

under a long term research program at Imperial College London for the vibration

analysis of nonlinear structures with different types of nonlinearities, such as

friction damping and cubic stiffness.

After applying the minimization process for every step frequency Δω in the

vicinity of resonance, the nonlinear response is obtained and shown in Figs. 4.3

and 4.4.

The dotted line represents the linear response, while the solid line represents

the results obtained from the benchmark method, labelled as “HBM”. Finally,

the “�” marks around the resonances are the results from the EF method, which

are in excellent agreement with the benchmark. The calculations took about 8

seconds per resonance, with a 1.5GHz Pentium computer equipped with 500MB

of RAM.

4.6 Sample Case #2: a friction damping exam-

ple

The EF method will now be exemplified in a system containing friction damp-

ing nonlinearities. Sample Case #2 is identical to #1, except that the two NL

elements are of the friction damping type, as described in Appendix A.

Following a similar approach to the Sample Case #1, the nonlinear matrix
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4.6 Sample Case #2: a friction damping example
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Figure 4.3: Sample Case #1, calculated nonlinear response. A Zoom-In of the
individual resonances is shown in Fig. 4.4
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4.6 Sample Case #2: a friction damping example
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Figure 4.4: Sample Case #1, Zoom-In of the individual resonances of Fig. 4.3
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4.7 Experimental validation of the optimized EF method

(NLM) is built as:

[ν̃] = i
4

π
∙












0 0 0

0 γ23

|Z̃23|
− γ23

|Z̃23|

0 − γ23

|Z̃23|

(
γ33

|Ỹ3|
+ γ23

|Z̃23|

)












After applying (4.8), the nonlinear response is calculated and shown in Figs.

4.5 and 4.6. It can be seen that the EF method (“+” marks) is in complete

agreement with the benchmark HBM (solid line), both exhibiting NL distortions

when compared to the linear case (dotted line).

The effect of the nonlinearity is an overall reduction in the amplitudes, being

more noticeable in the first and second modes. This explains why this nonlinear

mechanism is so welcome (and even induced) in turbine bladed disks, where higher

amplitudes are a risk for the structure stability.

The third mode is less affected because, at higher frequencies, the NL damping

force is overwhelmed by the linear restoring forces; the more pronounced effect

in the second mode can be explained by the fact that two masses are in opposite

motion, generating an additive effect of the friction forces.

All the discussed issues for the Sample Case #1 (Section 4.5), regarding the

sensitivity of the nonlinear FRFs to the nonlinearities, remain valid.

4.7 Experimental validation of the optimized EF

method

The optimized EF method was experimentally validated against real measure-

ments taken from a test rig. The experiment is thoroughly described in Appendix

C, so in this section only the final results are shown.

Nonlinear FRFs were measured for several points on the structure, for differ-

ent force levels within the range 0.5 − 1.5N . The same FRFs were numerically

calculated by the optimized EF (4.12).

Fig. 4.7 shows the results for the point-FRF in the vicinity of the first mode,

for four increasing levels of excitation. The linear FRFs are shown for each
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4.7 Experimental validation of the optimized EF method
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Figure 4.5: Sample Case #2, calculated nonlinear response. A Zoom-In of the
individual resonances is shown in Fig. 4.6
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4.7 Experimental validation of the optimized EF method
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Figure 4.6: Sample Case #2, calculated nonlinear response (Zoom-In)
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4.7 Experimental validation of the optimized EF method

Figure 4.7: Experimental and EF-predicted nonlinear point-FRFs (dB), for four
increasing levels of excitation, covering the first mode of the test rig
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4.7 Experimental validation of the optimized EF method

case, both numerical (dashed line) and measured (“+” marks). Overlying are

the nonlinear counterparts, showing the numerical (solid line) and measured (“x”

marks) results. A reasonable agreement can be seen for the first bending mode

of the structure (the fundamental response).

Observe that the numerical excitation level Fth needed to match a measure-

ment taken at a level Fexp is, in general, lower. This is probably due to a pre-load

effect because of a defective assembly, as deduced from the increasing trend. Also,

the effect of a slow force control is more evident at higher levels of excitation, as

we move closer to resonance. The scattered points in this region are believed to

be caused by force-dropouts, rather than a true nonlinear behaviour.

In spite of these discrepancies, it can be concluded that the optimized EF

method can reasonably characterize the behaviour of a large engineering struc-

ture.
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4.8 Concluding remarks

4.8 Concluding remarks

This chapter was devoted to the introduction of the EF method in a direct-path

approach, that is, analyzing a fully described theoretical model. The main feature

of this method is its ability to express a discrete nonlinear FRF in closed-form.

This allows a systematic and consistent approach to calculate selected theoretical

responses of a general NL system. The term “explicit” suggests that the formula-

tion is based on the physical parameters stored in the system’s matrices, making

it compatible with a standard FEM code.

Among the most important developments of this chapter, we can highlight:

• The performance of the EF method was successfully tested in two small

sample cases (Sample Cases #1 and #2), containing cubic stiffness and

friction damping nonlinearities. The calculated responses showed excellent

agreement with the benchmark multi-harmonic balance method.

• The optimized EF was experimentally validated against real measurements

taken from a test rig. These results show that the method can reasonably

characterize the real behaviour of a large structure.

• Finally, it should be pointed out that expanding the method to account

for a multi-harmonic behaviour will be straightforward, as the required

describing functions are already available for most nonlinearities.

The main drawback of the EF method is the high computational effort in-

volved in the calculations. This is due to the large amount of information stored

in the system’s matrices, and the heavy algebraic manipulation incurred. This

drawback is shared by the vast majority of methods based in physical coordinates,

but the EF improves this condition by calculating a reduced set of coordinates

only.
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Chapter 5

The reverse explicit formulation
(REF): an identification method

5.1 Introduction

In this chapter, a reverse-path of the EF method1 will be explored to determine its

suitability as a NL identification tool. This problem is more representative of an

experimental case, in which the nonlinear coefficients of the system are attempted

to be identified, based in the input-output information. The underlying linear

system is also assumed to be known.

Unlike a theoretical analysis, based on differential equations with well defined

boundary conditions, the solution of an identification problem is generally non-

unique. This is due to the under-determined nature of the problem, because of

the impossibility of measuring all of the DOFs of the system. Consequently, more

than one set of parameters can emulate the observed responses. The mathemat-

ical proof of the solution non-uniqueness will be given in subsequent chapters,

where a modal approach will easily expose this condition.

The main advantage of a physical coordinates-based identification method is

that the results are physically meaningful, since the parameters to be identified

are stiffness, damping and mass coefficients. As a drawback, it can be mentioned

the high computational effort due to the algebraic manipulation of a large amount

of data, namely all of the parameters in the system’s matrices.

1Introduced in Chapter 4.
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5.2 Stage I: pre-processing

The “reverse explicit formulation” (REF) method can be divided in five major

stages, according to Fig. 5.1.

Figure 5.1: The five major stages of the REF method

This process can be implemented iteratively, until the regenerated responses

closely match the measured responses. Even then, there is no guarantee that

the genuine nonlinearities have been faithfully identified because, as already ex-

plained, the solution of an identification problem is generally non-unique. This

just means that the obtained solution generates the same observed behaviour at

the measured coordinates.

The following sections are organized sequentially according to Fig. 5.1, de-

scribing the successive stages for the application of the REF method. Then, a

sample case of a large structure1 will be solved, applying the same procedure.

A more detailed flow chart of the REF method is shown in Fig. 5.2.

5.2 Stage I: pre-processing

The following regions must be defined in advance, according to the guidelines

given in Section 3.4:

• The system’s DOFs N : a vector gathering all the DOFs in the system,

according to a previous discretization. Its number must suffice to accurately

describe the behaviour of the system within the analyzed frequency range.

1Sample Case #3, described in Appendix B.
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5.2 Stage I: pre-processing

Figure 5.2: Flow diagram of the REF method (a reverse-path approach)
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5.3 Stage II: detection of the NL-DOFs

• The nonlinear region Γ: a vector gathering all the DOFs which are possibly

associated with NL elements (the NL-DOFs).

• The measured region <: a vector gathering all the DOFs which have been

measured, both inside and outside Γ.

• The forced DOFs f : a vector gathering all the DOFs which provide excita-

tion to the system1.

The following relation must hold:

Γ ∈ < ∈ N, typically Γ ≤ < � N (5.1)

5.3 Stage II: detection of the NL-DOFs

This step focuses in the detection of the n NL-DOFs2, contained in the nonlinear

region Γ. The nonlinear vector (NLV) was defined in (3.28), as:

{G̃ (ẏ, y)} =






g̃v1(ẏ, y)
g̃v2(ẏ, y)
g̃v3(ẏ, y)
...

g̃vN(ẏ, y)





N

=






g̃11 + g̃12 + g̃13 + ∙ ∙ ∙+ g̃1N
g̃21 + g̃22 + g̃23 + ∙ ∙ ∙+ g̃2N
g̃31 + g̃32 + g̃33 + ∙ ∙ ∙+ g̃3N

...
g̃N1 + g̃N2 + g̃N3 + ∙ ∙ ∙+ g̃NN





N

(5.2)

where g̃ij represents the nonlinear restoring force between DOFs i and j, and g̃ii

represents a grounded NL element at DOF i. It follows that g̃vi gives the total

restoring force of all the nonlinear elements associated with DOF i, and we can

use this feature to detect nonlinearities at this DOF (at least, in principle).

From (4.5) and (4.6), we can obtain another useful representation of the NLV,

in terms of the nonlinear responses and the linear system’s matrices:

{G̃} = {F} − [Λ]
{
Ỹ
}

(5.3)

1The developments in this research account for a multi-excitation test, unless the opposite
is highlighted.

2Those DOFs associated with nonlinear elements.
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5.3 Stage II: detection of the NL-DOFs

Theoretically, the non-zero entries in the {G̃} would indicate the presence

of nonlinear activity at the correspondent DOFs, thus allowing the detection of

the NL-DOFs. However, this requires that the full vector of nonlinear responses

{Ỹ } is known (measured), which is clearly unrealistic even for small sizes, as the

rotational DOFs are commonly unmeasured. Nonetheless, further manipulation

can relax this restriction.

Recalling the concept of a nonlinear region1 Γ, we can partition (5.3) into

those DOFs inside (Γ) and outside (N − Γ) this region:

{
0

G̃Γ

}

=

{
FN−Γ
FΓ

}

−

[
Λ(N−Γ),(N−Γ) Λ(N−Γ),Γ
ΛΓ,(N−Γ) ΛΓ,Γ

]{
ỸN−Γ
ỸΓ

}

(5.4)

where it has been assumed that {G̃N−Γ} is zero, as all the nonlinear elements are

contained within Γ. Thus, the bottom equation of (5.4) can be written as:

{G̃Γ} = {FΓ} − [ΛΓ,(N−Γ)] {ỸN−Γ}︸ ︷︷ ︸
Unknown

−[ΛΓ,Γ]{ỸΓ} (5.5)

which is, sadly, undetermined, since {ỸN−Γ} are mostly unmeasured responses.

However, the theoretical counterpart of {ỸN−Γ} can be recovered from the top

equation of (5.4), as follows:

{ỸN−Γ} = [Λ(N−Γ),(N−Γ)]
−1
(
{FN−Γ} − [Λ(N−Γ),Γ]{ỸΓ}

)
(5.6)

It has to be recognized that (5.6) represents a huge computational effort for

a large system, as the inversion [Λ(N−Γ),(N−Γ)]
−1 must be performed for every

analyzed frequency. This is a severe drawback of the REF method, only avoided

if the nonlinearities are localized in advance.

Continuing with the main developments, the NLV for the nonlinear region Γ

can be finally written as:

{G̃Γ} = {FΓ} − [ΛΓ,(N−Γ)][Λ(N−Γ),(N−Γ)]−1
(
FN−Γ −Λ(N−Γ),ΓỸΓ

)
− [ΛΓ,Γ]{ỸΓ}

(5.7)

where the non-zero2 entries of {G̃Γ} will define the n NL-DOFs.

1See Chapter 3.
2Or above certain threshold.
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5.4 Stage II: detection of the nonlinear mechanism

5.4 Stage II: detection of the nonlinear mecha-

nism

This stage deals with the detection of the nonlinear mechanism (cubic stiffness,

friction damping, etc.), allowing a full parametrization of the nonlinearities and

greatly simplifying the analysis afterwards.

We define {G̃n} as a sub-NLV containing the n non-zero entries of {G̃Γ},

therefore reducing the nonlinear component of the system to a minimum size.

Our aim is to characterize the type of nonlinearity based on this information.

Because {G̃n} contains the nonlinear activity at each NL-DOF, it follows that

the geometric shape, or “footprint”, of this nonlinear function can suggest the

type of nonlinearity involved. This research has focused on the cubic stiffness

and friction damping types, so only these will be analyzed.

Perhaps the best way to describe this procedure is by considering a numerical

case, and draw conclusions from there. Fig. 5.3 shows two different types of

NLVs, extracted from the Sample Cases #1 and #21. Which figure corresponds

to which NL type, we will not tell just yet, as doing so could deprive us from an

interesting discussion.

Let us first consider the NLV shown in Fig. 5.3(a). We observe that:

• The function is significant in the vicinity of the resonances only, just where

the FRF-distortions are evident. This observation suggests that the distor-

tions are well explained by the presence of nonlinearities.

• The NLV’s magnitude remains constant within these regions. This obser-

vation agrees with a friction damping model (Eq. 3.21), which predicts a

constant restoring force.

• The slightly curved shape seen in the 9-10 Hz. range (Fig. 5.4) could be well

explained by the existence of non-grounded NL elements, whose restoring

force is simultaneously dependent on two different responses (Eq. 3.25).

1See Appendix A.
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5.4 Stage II: detection of the nonlinear mechanism

Figure 5.3: Magnitude of two different types of NLVs

Figure 5.4: Zoom-In of the NLV shown in 5.3(a)
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5.4 Stage II: detection of the nonlinear mechanism

• A quick glance at the imaginary component of the NLV’s magnitude (Fig.

5.5a) will provide more solid evidence of a friction damping mechanism.

It can be confirmed that the NL restoring force changes sign just after

resonance, in agreement with (3.17).

Figure 5.5: Imaginary part of the NLV of Fig. 5.3

Now, we turn our attention to Fig. 5.3(b). The immediate good news is that

this NLV exhibits a strikingly different “footprint”, also noticing that:

• The NLV’s magnitude reaches a maximum at frequencies higher than the

linear natural frequencies1. This suggests an increase in the stiffness of the

system.

• The NLV’s magnitude appears to increase monotonically with the overall

level of the response, with a higher-than-linear proportionality.

1See Sample Case #1 in Appendix A.
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5.5 Stage III: reduction

• These observations agree well with a cubic stiffness mechanism, expressed

in (3.9).

Indeed, the NL mechanisms of Figs. 5.3(a) and (b) are friction damping and

cubic stiffness, respectively.

These guidelines provide a reliable tool to distinguish the NL mechanism

prior to a quantification stage. This research has also found evidence that other

nonlinearities (such as velocity-squared, softening stiffness, bilinear stiffness, etc.)

exhibit a unique footprint, easily incorporating them into this technique.

5.5 Stage III: reduction

Once the nonlinearities have been fully parametrized, a reduced set of NL equa-

tions can be posed. We can also take advantage of the measured responses, {Ỹ<},

to reduce the size of the analyzed system by treating them as prescribed boundary

conditions.

By an analogous procedure in which the optimized EF (4.12) was developed

(Section 4.2), the following expression can be derived:

↓ ith column

Ỹi =

det


















Λ1,1
...
...
...
ΛS,1

∙ ∙ ∙
. . .

∙ ∙ ∙
. . .

∙ ∙ ∙






...

...

R̃S
...
...






∙ ∙ ∙
. . .

∙ ∙ ∙
. . .

∙ ∙ ∙

Λ1,S
...
...
...
ΛS,S


















det(ΛS)
, i ∈ n

(5.8)

where:

S = N −<+ n,

{
R̃
}

S
= {F}S − [Λ]S,(<−n)

{
Ỹ
}

(<−n)
− [ν̃]S,S

{
Ỹ
}

S
, and

[ν̃]S,S =

[
0(N−<),(N−<) 0(N−<),n
0n,(N−<) ν̃n,n

]

S,S

(5.9)
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5.6 Stage IV: quantification

where the size of the analyzed system has been reduced to S. Equations (5.8)

and (5.9) represent the optimized REF, a reduced set of n NL equations which

can be solved via a nonlinear minimization.

5.6 Stage IV: quantification

The quantification of the unknown coefficients in (5.8) and (5.9) can be sought

by a nonlinear minimization, similar to the one already described in Section 4.4.

The input data must be organized into a set of NL equations and a vector of

unknowns, taking care that the resulting problem is neither undetermined, nor

ill-posed.

The procedure can be organized as follows:

1. Define the vector of unknowns. This is directly taken from the sub-

matrix [ν̃n,n] in (5.9), containing the unknown nonlinear coefficients β, γ.

This assumes that the nonlinear mechanism has already been identified,

otherwise [ν̃n,n] will contain nonlinear functions of an unknown nature, and

the solution is far more complex. The number of unknown coefficients

within [ν̃n,n] is:
n2 + n

2
(5.10)

2. Constrain the vector of unknowns. In order to avoid local conver-

gence, sensible upper and lower boundaries must be set for the vector of

unknowns, and this step can be carried out by replacing the variable x with

a constrained one, say x bounded, governed by the equation:

x bounded = Lower + (Upper − Lower) ∗ sin2 x (5.11)

where Lower and Upper are the lower and upper limit values, respectively,

of the variable x, which is only allowed to vary between zero and one.

Although this step greatly improves the global convergence characteristics of

the algorithm by supplying a starting point assumedly close to the solution,

it can also cause no convergence at all if the boundaries are inaccurate.

78



5.6 Stage IV: quantification

In the case of a real and positive valued variable x (such as β or γ), the

boundaries are easily set between zero (lower limit) and an upper limit high

enough to allow the NL element to behave nonlinearly at the observed level

of response. To this end, the force-displacement curve of a typical linear

element in the location of interest can be used as a basis.

3. Define the set of nonlinear equations. This is done by applying (5.8)

for the set of n NL-DOFs, where the LHS can be equated to the measured

responses at the same n DOFs.

By splitting (5.8) into real and imaginary parts, the number of available

equations-per-frequency point is equal to 2n, which is much smaller than

the number of unknowns (n
2+n
2
). Provided that a nonlinear mechanism

has already been detected or assumed, the number of NL equations can be

expanded as follows:

Because the unknown coefficients β, γ are real and positive-valued, we can

consider multiple frequency points at once, say q sample points, which are all

valid for the same coefficients. Thus, the number of NL equations grows to

2nq, while the number of unknowns remains at n
2+n
2
. The q frequency points

must be selected from those regions where the effect of the nonlinearities is

stronger, typically in the vicinity of the resonances.

In order to avoid an underdetermined problem, the following relation must

hold:

q ≥ round

(
n+ 1

4

)

(5.12)

4. Iterative procedure. The analysis will conclude when the objective func-

tion {f(y)},

{f(y)} =






Re(Ỹ analyticaln − Ỹ measuredn )
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Im(Ỹ analyticaln − Ỹ measuredn )





2nq

≈ 0 (5.13)

is less than a pre-defined tolerance (say, between 1-2%) away from the

previous iteration.
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5.7 Stage V: regeneration

The optimized EF in a direct path, (4.12), can be used to regenerate the measured

responses. Any mismatch will indicate that either the set of n NL DOFs is not

genuine, or that the nonlinear mechanism in action does not correspond to the

mathematical model being fitted. In this case, the analysis must be performed

again, this time choosing a different set of n NL-DOFs or considering a different

type of nonlinearity.

Be aware that, due to the solution non-uniqueness of the analysis, a close

match does not guarantee that the genuine nonlinearities have been faithfully

identified. It just means that the obtained solution generates the same observed

behaviour at the measured coordinates.

5.8 Sample Case #3: the REF method exem-

plified

The performance of the REF method will be exemplified in the identification of a

large system, given by the Sample Case #3. The system is thoroughly described

in Appendix B, so only the main results will be presented here. For convenience,

the Sample Case #3 is re-displayed in Fig. 5.6.

Figure 5.6: The Sample Case #3
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5.9 Sample Case #3: pre-processing (stage I)

The pre-defined regions for the Sample Case #3, given both in DOF and nodal

notation, are:

N =





(1, 2, 3, 4, 5, 6)
︸ ︷︷ ︸
11(x,y,z,θx,θy ,θz)

, (7, 8, 9, 10, 11, 12)
︸ ︷︷ ︸
12(x,y,z,θx,θy ,θz)

, . . . , (775, . . . , 780)
︸ ︷︷ ︸
140(x,y,z,θx,θy ,θz)





(DOF notation)
(node notation)

< =

{

182︸︷︷︸
41Y

, 188︸︷︷︸
42Y

, 194︸︷︷︸
43Y

, . . . , 596︸︷︷︸
110Y

}

(DOF notation)
(node notation)

Γ =

{

236︸︷︷︸
51Y

, 242︸︷︷︸
52Y

, 248︸︷︷︸
53Y

, . . . , 536︸︷︷︸
100Y

}

(DOF notation)
(node notation)

f =

{

338︸︷︷︸
67Y

}

(DOF notation)
(node notation)

where N,<,Γ and f are a-priori defined by the analyst. These regions are shown

in Fig. 5.6.

5.10 Sample Case #3: detection of theNL-DOFs

(stage II)

A nonlinear detection was performed by employing (5.7),

{G̃Γ} = {FΓ} − [ΛΓ,(N−Γ)][Λ(N−Γ),(N−Γ)]−1
(
FN−Γ −Λ(N−Γ),ΓỸΓ

)
− [ΛΓ,Γ]{ỸΓ}

(5.14)

The results are shown in Fig. 5.7, showing the accumulated magnitude of

the NLV for a frequency range 8-35 Hz. Three localized nonlinearities can be

easily spotted at DOFs 51Y, 62Y and 92Y, sharing a common order of magni-

tude. A fourth possible NL-DOF at DOF 67Y was discarded, due to its com-

paratively low magnitude1. Thus, it was decided to represent the NL-DOFs by

n = {51Y, 62Y, 92Y} (which is the right answer).

As already mentioned, this detection approach conveys a huge computational

effort, equivalent to solving a linear problem for each analyzed frequency, and

1DOF 67Y is, curiously enough, the forced DOF.
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5.11 Sample Case #3: detection of the nonlinear mechanism (stage
II)
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Figure 5.7: Extracted NLV (accumulated magnitude) for the Sample Case #3,
detecting 3 localized NL elements at DOFs 51Y,62Y and 92Y. The DOF 67Y,
which corresponds to the forced DOF, was discarded due to its comparatively
low magnitude

it should be considered as a main drawback of the REF method. On the other

hand, Fig. 5.7 proves that it provides reliable answers.

5.11 Sample Case #3: detection of the nonlin-

ear mechanism (stage II)

In Section 5.4, it was introduced a visual technique for assessing the type of

nonlinear mechanism acting on a system. The technique is based on the geometric

shape of the extracted NLV, whose “footprint” can be associated with the type

of nonlinearity.

The NLV for the three detected NL-DOFs is shown in Fig. 5.8(a),(b) and (c),

for a frequency range encompassing the first resonance, as the strongest nonlinear
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5.12 Sample Case #3: reduction (stage III)

Figure 5.8: NLV for the detected NL-DOFs of the Sample Case #3

effects are observed there. Recalling the given guidelines, we observe that the

NLV is significant only in the vicinity of this resonance, that a maximum is found

at the resonant frequency and that the NLV’s magnitude appear to increase

monotonically with the overall level of the responses.

These observations suggest a cubic stiffness type, which is correct.

5.12 Sample Case #3: reduction (stage III)

Because the Sample Case #3 includes only grounded nonlinearities only1, the

connectivity pattern of the nonlinear elements in the sub-matrix [ν̃n,n] is reduced

1For simplicity. This is not a restriction of the REF method.
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5.13 Sample Case #3: quantification (stage IV)

to:

[ν̃n,n] =









β51Y

∣
∣
∣Ỹ51Y

∣
∣
∣
2

0 0

0 β62Y

∣
∣
∣Ỹ62Y

∣
∣
∣
2

0

0 0 β92Y

∣
∣
∣Ỹ92Y

∣
∣
∣
2









(5.15)

[ν̃n,n] is enlarged into [ν̃]S,S as follows:

[ν̃]S,S =

[
0(N−<),(N−<) 0(N−<),n
0n,(N−<) ν̃n,n

]

S,S

(5.16)

and further included in
{
R̃
}

S
:

{
R̃
}

S
= {F}S − [Λ]S,(<−n)

{
Ỹ
}

(<−n)
− [ν̃]S,S

{
Ỹ
}

S
(5.17)

so we finally arrive to the optimized REF representation:

↓ ith column

Ỹi =

det


















Λ1,1
...
...
...
ΛS,1

∙ ∙ ∙
. . .

∙ ∙ ∙
. . .

∙ ∙ ∙






...

...

R̃S
...
...






∙ ∙ ∙
. . .

∙ ∙ ∙
. . .

∙ ∙ ∙

Λ1,S
...
...
...
ΛS,S


















det(ΛS)
, i ∈ {n}

(5.18)

(5.18) represents a set of 2n (6) sets of NL equations, by splitting it into

real and imaginary components. The vector of unknowns is conformed by the

unknown coefficients {β51Y, β62Y, β92Y}. For this particular problem, the reduced

size of the analyzed system is S = 713, representing a reduction of 8.58%. How-

ever, the main reduction has been achieved by the optimized REF, which reduces

the system of NL equations from N down to n.

5.13 Sample Case #3: quantification (stage IV)

Before applying the nonlinear minimization, two tasks must be completed:
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5.13 Sample Case #3: quantification (stage IV)

• Expanding the set of NL equations. The set of 2n NL equations can

be expanded by considering a total of q = 15 sample frequencies, evenly dis-

tributed within the vicinity of all the observable resonances. This increases

the number of equations to 2nq = 90, while the number of unknowns re-

mains 3.

• Constraining the vector of unknowns. Suitable upper and lower limits

for the unknown coefficients can be defined as follows:

According to the ideas exposed in Section 5.6, it is observed that a typical

stiffness value among the n diagonal entries of the stiffness matrix of the

system is around k = 1.11e5N/m. As shown in Fig 5.9, an upper limit

of β of 1.5e8N/m3 combined with an observed response of 0.026m, would

account for even unrealistic levels of nonlinearity.

On the other hand, a plausible lower limit appears to be 1e5N/m3, as this

coefficient generates no discernible nonlinear effects. However, we must take

into account the possibility that one or more DOFs within n are not genuine

NL-DOFs, but rather the result of a wrong detection. We would expect, in

this case, a null identified coefficient.

Considering the aforementioned arguments we will constrain the identified

coefficients to lie within the range:

0 ≤ β ≤ 1.5e8N/m3 (5.19)

After applying an iterative nonlinear minimization, the coefficients β for the

NL-DOFs n are found. This results are shown in Table 5.1, exhibiting good

accuracy.

DOF True β(x106) Identified β(x106) error (%)
51Y 1.6 1.5204 4.96%
62Y 1.5 1.5178 1.19%
92Y 7.82 7.4360 4.91%

Table 5.1: Identified coefficients for the Sample Case #3
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5.14 Sample Case #3: regeneration (stage V)

Figure 5.9: Force-displacement curves for different values of β

5.14 Sample Case #3: regeneration (stage V)

Figures 5.10 and 5.11 show the original linear and nonlinear responses (dashed and

solid line, respectively) for the NL-DOFs. Superimposed in “�”, the regenerated

responses by the optimized EF (4.12) are shown. It can be seen that the quality

of the regeneration is very good.
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5.14 Sample Case #3: regeneration (stage V)
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Figure 5.10: Regenerated response for the Sample Case #3. A Zoom-In of the
individual resonances is shown in Fig. 5.11
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88



5.15 Concluding remarks

5.15 Concluding remarks

Initially developed as a theoretical method, the explicit formulation (EF) has been

investigated in a reverse path, thus called the REF method, to asses its suitability

as an identification technique. Being a physical coordinates-based method, the

results from an identification analysis are always physically meaningful, in the

form of stiffness, damping or mass coefficients. This is a major advantage over a

modal technique.

The REF method was framed in a sequence of five major stages, thus providing

a systematic methodology for tackling general systems. It was shown that the

analysis of large systems can be reduced in size by using the measured responses

as prescribed boundary conditions. Moreover, the set of NL equations to be solved

can be reduced from N down to n (typically n � N), by a similar approach in

which the optimized EF was developed, leading to the optimized REF.

A nonlinear minimization, required to calculate the coefficients of the non-

linear elements, can be properly constrained by the judicious use of a typical

force-displacement diagram in the vicinity of the NL-DOFs. This feature greatly

improves the convergence capabilities of the algorithm.

A virtual model of a large plate1 was solved by the REF method. In spite of

successful results, it was found that the computational effort is too high to gain

acceptance in a practical modal analysis. Specifically, the precise localization

of the n NL-DOFs conveys very expensive calculations, which can lead to noisy

results. This problem is likely to be exacerbated when dealing with experimental

data.

Some other highlights of this chapter are:

• A qualitative method was presented, allowing the detection of the nonlinear

mechanism. The technique is based in the geometric “footprint” of the

extracted NLV, able to discriminate between cubic stiffness and friction

damping types.

• Some important issues can be suggested for future work, such as the de-

tection of the nonlinear mechanism based on a statistical analysis of the

1Sample Case #3, described in Appendix B.
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5.15 Concluding remarks

extracted NLV, rather than in a simple visual inspection. Also, it was men-

tioned that other nonlinear mechanisms could be tested to find their unique

“footprint”, building a library for on-line detection from measured signals.

• Finally, it should be pointed out that expanding the method to account

for a multi-harmonic behaviour will be straightforward, as the required

describing functions are already available for most nonlinearities. However,

the practical advantages in doing so are not clear, as the current measuring

techniques of higher harmonics are extremely difficult to implement.
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Chapter 6

A hybrid modal technique
(HMT) for the formulation of
nonlinear FRFs of MDOF
systems (a direct-path approach)

6.1 Introduction

It has been shown that physical coordinates-based methods can successfully pre-

dict the nonlinear behaviour of real structures. This approach provides a deep

insight into the physics of the problem, due to the direct manipulation of mass,

damping and stiffness coefficients.

However, such advantage is not so attractive if one considers the heavy compu-

tational burden incurred. This is largely due to the large amount of data included

in the formulation, namely all of the parameters stored in the system’s physical

matrices. A modal approach would, theoretically, improve this condition by ex-

pressing the response as a function of eigenvalues and eigenvectors, thus greatly

reducing the amount of input data.

Sadly, the development of a nonlinear modal coordinates-based method is a

cumbersome task because of the amplitude-dependence of the modal parameters.

This introduces significant ambiguity when applying main concepts such as the

modal superposition theorem. Strictly speaking, linear theorems can not be em-

ployed in the analysis of nonlinear systems, but that should not stop us from
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6.1 Introduction

exploring analogous relations which can elucidate the behaviour of such systems.

In the last few decades, a growing amount of research has focused on nonlinear

systems, and it is only natural that the idea of “normal modes” has been put

to test in a nonlinear environment. The concept of nonlinear normal modes (or

NNMs) was introduced in 1966 by Rosenberg et al (66) in relation to conservative

lumped parameter systems, and formed the basis of works that followed.

An accepted definition of the NNMs of an undamped (discrete or continu-

ous) system is (5) “a synchronous periodic oscillation where all material points

of the system reach their extreme values or pass through zero simultaneously”.

Clearly, when a discrete system vibrates in a NNM, the corresponding oscillation

is represented by a line in its configuration space, which is termed modal line. A

modal line represents the synchronous oscillation of the system in the configura-

tion space during a NNM motion. Linear systems possess straight modal lines

since their coordinates are related linearly during a normal mode oscillation. In

nonlinear systems, the modal lines can be either straight or curved. The latter

cases are generic in nonlinear discrete systems, since straight nonlinear modal

lines reflect symmetries of the system

The theory of NNMs has evolved considerably in the last two decades (67),

(66), (24), (5), to the stage in which they are usually represented by invariant

manifolds in the phase space (Fig. 6.1). One of the striking conclusions of the

analysis of invariant manifolds is the fact that nonlinear systems can exhibit a

higher number of modes than DOFs, a feature with no parallel in linear systems.

Also, the NNM can exhibit bifurcations, instabilities or even chaotic behaviour

for well-defined conditions.

Although the aforementioned arguments raise serious questions about the va-

lidity of stretching linear concepts to analyze nonlinear systems, the development

of nonlinear techniques equivalent to the linear superposition is still of great in-

terest. In cases where a stable and periodic response dominates the nonlinear

behaviour, a nonlinear modal superposition would allow an order reduction by

possibly achieving decoupled equations of motion. These lines of research have

acquired much interest recently.

This chapter introduces a novel nonlinear modal technique which attempts to

simulate a nonlinear superposition of NNMs, as suggested by Chong & Imregun
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6.1 Introduction

Figure 6.1: Examples of nonlinear invariant modal surfaces, as developed by S.
W. Shaw & C. Pierre. x1, y1 are the physical displacement and velocity (respec-
tively)of a given DOF.X2, Y2 are generalized (modal) displacements and velocities

(31), still recognizing the coupled nature of the nonlinear modal space. One of the

limiting assumptions of the NNM theory is that the nonlinearities are confined to

the resonant region, anywhere else being replaced by a linear fashion. The validity

of this assumption will be explored in the light of newly developed expressions

relating the NNM with the physical responses.

The traditional nonlinear modal expansion (based on nonlinear eigenvectors

and eigenvalues) will be put to test against a newly introduced “hybrid” expan-

sion. The term “hybrid” arises from the fact that the underlying linear system

is reduced and expressed by its modal parameters (linear eigenvectors and eigen-

values), while the nonlinearities are still formulated in the physical domain.

It is believed that the new technique performs better in an experimental envi-

ronment, because the extracted nonlinearities are concentrated in a single, thus
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6.2 Traditional linear and nonlinear modal analysis

stronger, nonlinear modal term. The extracted nonlinear term has a very explicit

physical meaning, being analytically related to the nonlinear coefficients of the

system.

The approach developed here considers the nonlinearities as part of the ex-

ternal excitation while the system itself remains linear. Although the method

recognizes the existence of nonlinear eigenvectors and eigenvalues, the physical

responses are determined without explicitly calculating these modal quantities.

This chapter presents a theoretical discussion of the “hybrid modal technique”

(HMT) method, introducing its main concepts from a direct-path point of view.

Although the method has no restriction, other than the computational cost, re-

garding the size of the system, small systems are better suited to illustrate con-

cepts, and they will be used for this end.

The HMT can also be implemented in a reverse path, serving this time as an

identification tool. However, the additional complexities arising from this analysis

are heavily subjected to the degree of data incompleteness, thus the surrounding

issues are more related to the realm of large systems. The identification of large

systems through the HMT will be tackled in later chapters.

The introduced methodology is summarized in the flow chart of Fig. 6.2.

6.2 Traditional linear and nonlinear modal anal-

ysis

In this section, we will briefly summarize the procedure which is known as “linear

modal analysis” (LMA), also explaining how, for good or bad, these concepts are

stretched to handle nonlinear systems. Although the technique is more often

associated with an experimental environment in which a mathematical model

must be fitted to raw measured data (a reverse path), the method is also useful

as a theoretical tool (direct path).

The latter approach allows the calculation of the physical response of a system

by means of a root-finding procedure, as well as determining some important

modal parameters (natural frequencies and damping ratios). The theoretical

linear background presented here is no more than the essential information needed
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6.2 Traditional linear and nonlinear modal analysis

Figure 6.2: Flow diagram of the HMT method (direct-path approach)
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6.2 Traditional linear and nonlinear modal analysis

to start a nonlinear analysis; the reader is referred to a wealth of excellent material

in the field -such as (4) and (59)- for a deeper insight.

The general representation of a linear system with hysteretic proportional

damping and subjected to a harmonic excitation is given by the ordinary differ-

ential equation:

[M] {ÿ}+ [K] {y}+ i [D] {y} = {F}eiωt (6.1)

where [M] , [K] and [D] are the mass, stiffness and hysteretic damping matrices,

respectively, {y}, {ẏ}, {ÿ} are the vectors of displacements, velocities and accel-

erations, and {F} is the harmonic excitation vector operating at frequency ω.

Assuming a harmonic response {y} = {Y }eiωt, where {Y } = {|Y |eiθ} is a com-

plex magnitude allowing it to accommodate phase, the problem is transformed

to the frequency domain:

(
−ω2M+K+ iD

)
{Y } = {F} (6.2)

The eigensolution of the homogeneous part of (6.2) brings out the diagonal

matrix of eigenvalues dλ2c (where the brackets “d c” denotes a diagonal matrix)

and the mass-normalized matrix of eigenvectors [Φ]. Both matrices are related

by the so-called orthogonal properties, which are stated as:

[Φ]T [M] [Φ] = [I]

[Φ]T [K+ iD] [Φ] = dλ2c
(6.3)

where [I] is the Identity matrix. Relations 6.3 are the key to transform a linear

MDOF system into several SDOF components, each one of them exclusively ac-

counting for the behaviour of a single mode. This property is closely related to

another important property of linear systems, the modal superposition, by which

the physical responses {Y } are expressed as a linear combination of its modal

responses {P}:

{Y } = [Φ]{P} (6.4)

where {P} is an orthogonal vector. Fig. 6.3 shows an FRF comprised of 3 modes

(solid line, labelled “FRF”) and the corresponding modal responses (labelled

“P1”, “P2” and “P3”) for each individual mode. At resonance, the physical
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Figure 6.3: Modal responses of a linear FRF

response is dominated by a single modal response, while the contribution of the

other two is very small1. According to the principle of modal superposition, the

algebraic summation of the three modal responses results in the physical FRF.

Substituting (6.4) into (6.2), and pre-multiplying by [Φ]T, we have:

[Φ]T
(
−ω2M+K+ iD

)
[Φ]{P} = [Φ]T{F} (6.5)

and further introducing the orthogonal relationships (6.3), we arrive at:

dλ2−ω2c{P} = {ΦTF} (6.6)

where dλ2−ω2c is a diagonal matrix containing the natural frequencies and the

damping ratios for each mode, {P} is the vector of modal responses and {ΦTF}

1This statement is true only for well separated modes like these. This simple example is
used to illustrate some basic concepts.
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6.2 Traditional linear and nonlinear modal analysis

can be seen as a vector of modal forces for the equivalent SDOF systems. As

dλ2−ω2c is a diagonal matrix, the uncoupled nature of the linear modal space is

guaranteed as a direct consequence of the orthogonal relations (6.3).

The response of the linear system {Y } can be easily drawn from (6.6), pre-

multiplying both sides by [Φ]dλ2−ω2c−1,

{Y } = [Φ]dλ2−ω2c−1{ΦTF} (6.7)

The ith component of (6.7) can also be expressed as a summation of individual

terms, as shown:

Yi =
M∑

r=1

φir=r
λ2r − ω2

(6.8)

where M is the total number of modes of the system and =r =
(
ΦTF

)
r
is the

modal excitation force corresponding to the rth mode. For the classical definition

of the frequency response function (FRF) in which only a single node j is being

excited at a time, we have:

Yi

Fj
= Hij =

M∑

r=1

φirφjr

λ2r − ω2
(6.9)

where Hij is the FRF of node i when the system is being excited at node j.

The principle of reciprocity of linear systems guarantees that Hij = Hji, thus

generating a symmetric FRF matrix. Observing (6.9), it can be recognized that

the MDOF system of (6.1) has been transformed to M SDOF systems, where the

response of the rth component is given by

φirφjr

λ2r − ω2
(6.10)

(6.10) is the very same expression representing each one of the SDOF curves

already shown in Fig. 6.3.

6.2.1 Linear modal analysis (LMA) extended for nonlin-
ear systems

The existing tools for performing a LMA are so powerful and of widespread use,

that one is always tempted to use them for analyzing nonlinear systems. At the
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6.2 Traditional linear and nonlinear modal analysis

very least, an unsuccessful attempt may indicate the presence (and maybe the

type) of a nonlinear mechanism, which is not a bad start in itself.

The main problem of using a LMA approach for modeling nonlinear systems

is the fact that the modal parameters contained in the linear formulation of the

FRF (6.9) are constant coefficients, as opposed to the nonlinear case, where these

are amplitude-dependent. Nevertheless, the departure point for expanding the

concepts of LMA to account for nonlinear systems is a nonlinear version of (6.9):

H̃ij(ω, Ỹ ) =
M∑

r=1

φ̃ir(ω, Ỹ )φ̃jr(ω, Ỹ )

λ̃2r(ω, Ỹ )− ω2
(6.11)

where the amplitude-dependency of the modal parameters has been acknowledged

by expressing them as functions of the frequency and/or amplitude. For simplic-

ity, the “ ˜ ” symbol will be used to denote a nonlinear variable, obviating such

dependency.

As a consequence of the nonlinearities, the FRF matrix is no longer invariant

to changes in the excitation vector; the characteristic known as “reciprocity” is

lost (H̃ij 6= H̃ji), modal superposition does not hold anymore and, in general, ev-

ery parameter that used to be a constant property of the system is now a variable.

The easiest way to spot nonlinearities in an FRF plot is to look for distortions at

the resonances, where the amplitude-dependency of the modal parameters gen-

erates noticeable deviations from the linear shape.

By an analogous procedure in which (6.11) was defined, the nonlinear version

of (6.4) can also be written for any particular state [ω, Ỹ ] resulting in:

{Ỹ (ω, Ỹ )} = [Φ̃(ω, Ỹ )]{P̃ (ω, Ỹ )} (6.12)

as well as the nonlinear version of (6.6), drawn by replacing the constant modal

coefficients with amplitude-dependent parameters:

dλ̃2(ω, Ỹ )−ω2c{P̃ (ω, Ỹ )} = {Φ̃T(ω, Ỹ )F} (6.13)

Equations 6.12 and 6.13 represent the modal space of a nonlinear system,

characterized by being coupled. Although this is not immediately obvious in

(6.13) due to the still diagonal matrix dλ̃2(ω, Ỹ )−ω2c, the amplitude-dependency
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6.2 Traditional linear and nonlinear modal analysis

of the nonlinear modal coefficients dissolves the appealing modal superposition

property found in the linear modal space.

Fig. 6.4 shows a nonlinear FRF comprised of 3 modes and exhibiting strong

nonlinearities at modes 1 and 2 (solid line). Also shown (in dashed lines) are the

correspondent nonlinear modal responses. Unlike the linear ones -which exhibit

a single peak at the correspondent resonance- these contain peaks at every reso-

nance, these being more pronounced where the nonlinearities are stronger. Thus,

it cannot longer be safely assumed that the response at resonance is dominated

by a single modal response, nor that away from resonance the nonlinear mode

behaves linearly.
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Figure 6.4: Modal responses of a nonlinear FRF
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6.3 The nonlinear modal space

A general nonlinear dynamic system with proportional hysteretic damping can

be mathematically defined by the nonlinear ordinary differential equation,

[M] {ÿ}+ [K] {y}+ i [D] {y}+ {G̃(ẏ, y)} = {F}eiωt (6.14)

where {G̃(ẏ, y)} is the nonlinear vector (NLV) already introduced in Chapter 3,

containing all the nonlinearities in the system.

Assuming an oscillatory, periodic and essentially harmonic response, the prob-

lem is transformed to the frequency domain:

(
−ω2M+K+ iD

){
Ỹ
}
+ {G̃(ω, Ỹ )} = {F} (6.15)

Pre-multiplying this equation by the transpose of the linear matrix of eigen-

vectors [Φ]T, we have:

[Φ]T
(
−ω2M+K+ iD

){
Ỹ
}
+ {ΦTG̃(ω, Ỹ )} = {ΦTF} (6.16)

As argued before, at any particular state [ω, Ỹ ] the system’s physical response

can be expanded in, or transformed to, its nonlinear modal responses {P̃},

{Ỹ (ω, Ỹ )} = [Φ̃(ω, Ỹ )]{P̃ (ω, Ỹ )} (6.17)

where [Φ̃] is the nonlinear matrix of eigenvectors, which is dependent on both am-

plitude and frequency. This matrix can be decomposed1 into a linear component

[Φ] -the linear “mass normalized” eigenvector matrix- and a varying nonlinear

component [ΔΦ̃(ω, Ỹ )]:

{Ỹ } =
[
Φ+ΔΦ̃

]
{P̃} (6.18)

where the [ω, Ỹ ] dependence has been obviated by the use of the “ ˜ ” symbol.

Inserting (6.18) into (6.16):

[Φ]T
(
−ω2M+K+ iD

)
∙ [Φ+ΔΦ̃]{P̃}+ {ΦTG̃} = {ΦTF}

1This decomposition is a central development of the HMT method, also essential in forth-
coming chapters.
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6.3 The nonlinear modal space

and further developing the algebra:

[Φ]T
(
−ω2M+K+ iD

)
∙ [Φ]{P̃}+

[Φ]T
(
−ω2M+K+ iD

)
∙ [ΔΦ̃]{P̃}+

{ΦTG̃} = {ΦTF} (6.19)

[Φ]T
(
−ω2M+K+ iD

)
∙ [Φ]{P̃}+

[Φ]T
(
−ω2M+K+ iD

)
∙
(
ΦΦ−1

)

︸ ︷︷ ︸
Introduced
term= [I]

∙[ΔΦ̃]{P̃}+

{ΦTG̃} = {ΦTF} (6.20)

[Φ]T
(
−ω2M+K+ iD

)
[Φ] ∙

(
I+Φ−1ΔΦ̃

)
{P̃}+ {ΦTG̃} = {ΦTF} (6.21)

The linear term [Φ]T (−ω2M+K+ iD) [Φ] can be reduced by the orthogonal

properties (6.3). Introducing (6.3) into (6.21), we finally obtain:

dλ2−ω2c
(
I+Φ−1ΔΦ̃

)
{P̃}+ {ΦTG̃} = {ΦTF} (6.22)

which is the mathematical representation of an MDOF nonlinear system in the

modal space. Observe that there are no approximations in obtaining this expres-

sion1.

(6.22) represents the modal equivalent of the so-called normal nonlinear modes

(NNMs), which has been the subject of much research and re-definitions over the

last decades. The NNMs are usually considered as orthogonal -that is, indepen-

dent from each other- where the mode is affected by the nonlinearities at reso-

nance only, otherwise behaving linearly. In other words, a modal superposition is

invoked to partition an MDOF nonlinear system into several SDOF components,

each one of them exclusively accounting for a single nonlinear mode.

By comparing (6.22) to its linear counterpart, given by (6.6), we find that

the nonlinear formulation contains all of the linear terms plus two new nonlinear

1The variation in the eigenvectors, often neglected, have been considered. The first-order
assumption does not invalidate this equation, provided that {G̃} is a multi-harmonic descriptor.
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6.3 The nonlinear modal space

terms, (Φ−1ΔΦ̃) and {ΦTG̃}. These must be the ones responsible for the non-

linear modal behaviour, directly related to the assumption of orthogonality made

by the NNMs theory. The question is, in the light of (6.22), just how valid this

assumption is?

To better answer this question, let us analyze each of the nonlinear terms

separately:

1. It is clear from (6.22) that the rth modal coordinate (P̃r) contains compo-

nents belonging to all other modes, caused by the nonlinear term (Φ−1ΔΦ̃).

This term seems to be directly responsible for modal coupling effects by

introducing non-diagonal entries in the eigenvalue matrix. This further

invalidates the assumption of modal superposition stating that modes are

independent from each other (or orthogonal). However, before rushing to

conclusions, we should first find out how significant this term is, and how

it behaves at resonant condition.

It has been observed -both in this research and in published articles- that the

nonlinear variation of the eigenvectors [ΔΦ̃] usually falls within the range

of 1-20%, thus being fairly small. In the vicinity of the resonant mode

rth, (Φ
−1ΔΦ̃) becomes negligible compared to the magnitude of the modal

coordinate P̃r, severely attenuating its influence. Away from resonance,

however, P̃r decays to small values (sometimes being neglected!) and the

influence of (Φ−1ΔΦ̃) becomes dominant.

The last statement directly relates this nonlinear term to the coupled na-

ture of the nonlinear modal space, in which a modal coordinate exhibits

distortions at every other resonance. For this reason, (Φ−1ΔΦ̃) will be

referred to as the “nonlinear coupling term”. The strength of the coupling

effect will depend on specific characteristics of the system under analysis.

2. {ΦTG̃} is the other nonlinear term appearing in (6.22). It is, as it will be

soon demonstrated, the main source of nonlinearities in the resonant modal

amplitude. Indeed, it is such the importance of this nonlinear function that

an entire section will be devoted to it.
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6.4 The nonlinear modal vector (NLMV)

Because of its main role as generator of nonlinearities in the resonant mode,

and because it contains the already introduced nonlinear vector (NLV) {G̃},

this term will be referred to as the “nonlinear modal vector” (NLMV).

6.4 The nonlinear modal vector (NLMV)

Recalling (3.28), the NLMV {ΦTG̃} can be expanded as:

{ΦTG̃} =






φ11g̃v1 + φ21g̃v2 + ∙ ∙ ∙+ φN1g̃vN
...

φ1rg̃v1 + φ2rg̃v2 + ∙ ∙ ∙+ φNrg̃vN
...

φ1Mg̃v1 + φ2Mg̃v2 + ∙ ∙ ∙+ φNMg̃vN





M

(6.23)

where g̃vi represents the combined effect of all the nonlinear elements associated

with the ith DOF. The rth row of (6.23) represents the nonlinearity acting at the

rth modal coordinate P̃r, given by:

(
ΦT G̃

)

r
= (φ1rg̃v1 + φ2rg̃v2 + ∙ ∙ ∙+ φNrg̃vN) (6.24)

(6.24) shows that the rth component of the NLMV,
(
ΦT G̃

)

r
, contains every

single restoring force in the system (embedded in the functions g̃v1, g̃v2, ∙ ∙ ∙ , g̃vN).

This clearly explains why any NL element, in any position within the system, is

certain to have a global influence, affecting all the resonances. However, the

extent at which a given NL element g̃ii (contained in the function g̃vi) influences

mode rth, also depends on the “weight” factor φir. This is also true for “non-

grounded” elements g̃ij , but things get less clear here because its behaviour is

influenced by more than one eigenvector at a time -more on this later.

(6.24) also explains another well-known odd fact: higher modes are expected

to behave linearly, due to the occurrence of small amplitudes. However, occasion-

ally a higher mode will also exhibit strong nonlinear effects. This behaviour can

be explained by the presence of a “non-grounded” NL element acting between

two DOFs i, j with eigenvectors of equal magnitude but opposite sign1. This

1This feature is often found in symmetric structures.
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6.5 The hybrid modal technique (HMT)

could create an additive effect and induce a noticeable nonlinear behaviour, as

exemplified in (6.25):

φirg̃ij + φjrg̃ji = φirg̃ij + (−φir) (−g̃ij) = 2φirg̃ij (6.25)

where it can be seen that such a feature doubles the nonlinear restoring force of

a similar grounded nonlinearity.

Finally, (6.24) proves that the NLMV will exhibit significant peaks whenever

the functions g̃v1, g̃v2, ∙ ∙ ∙ , g̃vN (which are amplitude-dependent) are significant.

This will invariably occur at every resonance, being more noticeable if the mode

under analysis has eigenvectors of considerable magnitude.

Fig. 6.5a shows a nonlinear FRF comprising 3 modes and exhibiting strong

nonlinearities in the first and second modes, while Fig. 6.5b displays the 3 func-

tions of the NLMV for the same system. It is clear that the NLMV contains

significant activity at every resonance, rather than only at their own modal coor-

dinate. Moreover, the third component of the NLMV exhibits even stronger peaks

at other resonances. Such a finding represents evidence regarding the coupling

effects of the nonlinearities.

Although the NLMV has been defined in this section as {ΦTG̃}, in later

sections it will emerge with a slightly different form, also containing the external

linear forces acting in the system; the extended definition of the NLMV containing

external forces is:

{χ̃} = {ΦTF} − {ΦT G̃} (6.26)

where the first term in the RHS of (6.26) represents the external linear modal

forces. We will call {χ̃} the extended NLMV.

6.5 The hybrid modal technique (HMT)

One of the drawbacks of expressing a NL system in the modal space is the fact

that the formulation of the nonlinear elements in the NLV {G̃} is based in the

physical -instead of modal - coordinates of the system, the very unknowns we are

looking for. A fully modal approach would have to express the nonlinear restoring

forces in {G̃} as functions of the modal responses {P̃}, as in1 (32), (33), (3) and

1The cited works considered systems with 1 or 2 DOFs.
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6.5 The hybrid modal technique (HMT)

Figure 6.5: NLMV of a 3-DOF system

(43). Considering that the modal space is coupled, the mathematics involved

(already complicated) start looking prohibitive for general MDOF systems.

A further drawback of a nonlinear modal analysis formulation when used as

an identification tool is the fact that the physical location of the nonlinearities

cannot be identified, since this information is not explicitly contained in a typical

modal formulation.

As significant as these disadvantages may appear, modal analysis is still an

invaluable tool for reducing a linear system to a manageable size. This section

introduces a “hybrid” modal technique (HMT) that uses a standard modal anal-
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6.5 The hybrid modal technique (HMT)

ysis to express the behaviour of the underlying linear system, while keeping the

formulation of the nonlinearities in the physical domain, thus the name “hybrid”.

The starting point of the analysis is Equation (6.22), which describes the

nonlinear modal space:

dλ2−ω2c
(
I+Φ−1ΔΦ̃

)
{P̃}+ {ΦTG̃} = {ΦTF}

Pre-multiplying by [Φ]dλ2−ω2c−1 and extending the algebra further:

[Φ]
(
I+Φ−1ΔΦ̃

)
{P̃} = [Φ]dλ2−ω2c−1

(
{ΦTF} − {ΦTG̃}

)

(
Φ+ΔΦ̃

)

︸ ︷︷ ︸
[Φ̃]

{P̃} = [Φ]dλ2−ω2c−1
(
{ΦTF} − {ΦTG̃}

)

[Φ̃]{P̃} = [Φ]dλ2−ω2c−1
(
{ΦTF} − {ΦTG̃}

)

{Ỹ } = [Φ]dλ2−ω2c−1
(
{ΦTF} − {ΦTG̃}

)

Recalling (6.26), we finally arrive to an equation expressing the nonlinear

physical responses:

{Ỹ } = [Φ]dλ2−ω2c−1{χ̃} (6.27)

Note that, in (6.27), the only nonlinear variable is the extended NLMV {χ̃},

while the rest are purely linear parameters. This remarkable feature achieves a

long-sought issue of most nonlinear modal methods: the neat separation of the

system into linear and nonlinear components.

The ith component of (6.27) can be also expressed as a modal expansion in

the linear modal space:

Ỹi =
M∑

r=1

φirχ̃r

λ2r − ω2
(6.28)

The similarities between (6.28) and its linear version, (6.8), are enlightening

as well as appealing. Indeed, the original problem of a NL system being excited

by a constant force has been transformed to one in which the underlying linear

system is being excited by a nonlinear force. Although this may misrepresent

the physics of the problem, the series expressed in (6.28) is much more effective1

1In the author’s opinion.
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6.5 The hybrid modal technique (HMT)

for analyzing NL systems in an experimental environment than the traditional

nonlinear series, already introduced in (6.11) and rewritten here:

H̃ij(ω, Ỹ ) =
M∑

r=1

φ̃ir(ω, Ỹ )φ̃jr(ω, Ỹ )

λ̃2r(ω, Ỹ )− ω2

This is due to the very small individual variations happening both in the

eigenvectors and eigenvalues which nevertheless causes significant effects when

combined. These small variations are much more difficult to extract individually

than identifying a single, combined and strong nonlinear component {χ̃}.

Considering the N physical responses of an MDOF system, (6.27) can be

expressed in matrix form, as following:






Ỹ1
Ỹ2
...

ỸN





N

=











φ11
λ21−ω

2
φ12
λ22−ω

2 ∙ ∙ ∙
φ1M
λ2M−ω

2

φ21
λ21−ω

2
φ22
λ22−ω

2 ∙ ∙ ∙
φ2M
λ2M−ω

2

...
...

. . .
...

φN1
λ21−ω

2
φN2
λ22−ω

2 ∙ ∙ ∙
φNM
λ2M−ω

2











N,M






χ̃1
χ̃2
...
χ̃M





M

(6.29)

(6.29) represents a nonlinear system of equations which can be solved by a

Newton-Raphson scheme to find the nonlinear responses {Ỹ }. Observe that the

coefficients contained in the matrix to be inverted (or manipulated) are all linear,

therefore not prone to ill-conditioning.

The system (6.29) can be dramatically reduced to a minimum size if only the

n NL-DOFs are included in the analysis (n� N). This is possible because {χ̃}

depends exclusively on variables associated with the n NL-DOFs :

{χ̃} = {χ̃(ν̃n,n, Ỹn)} (6.30)

The modal nature of (6.29) also means that a modal truncation is possible.

This is achieved by focusing the analysis in the vicinity of a few selected m

resonances (m � M), equivalent to selecting a few columns in (6.29). Care

should be taken about including all modes with significant nonlinearities, as well

as those behaving linearly but likely to introduce strong residual effects within

the measured frequency range.
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Although a modal truncation allows the analyst to neglect non-essential data

(weak modes), it is, strictly speaking, an unsafe procedure. As already shown in

Fig. 6.5, even weakly nonlinear modes can introduce significant nonlinear effects

in nearby modes. This issue can be overcome by extending the frequency range

well above the last observed nonlinear mode.

After both a spatial and modal reduction, (6.29) is transformed to:






Ỹ1
Ỹ2
...

Ỹn





n

= [Φ]n,m ∙ dλ2−ω2c−1m,m ∙






χ̃1

(
ν̃n,n, Ỹn

)

χ̃2

(
ν̃n,n, Ỹn

)

...

χ̃m

(
ν̃n,n, Ỹn

)





m

(6.31)

which represents a set of n NL equations with n unknowns, {Ỹn}, contained in

{χ̃m}. This can be solved through a Newton-Raphson algorithm, similar to the

already introduced in Section 4.4.

After the n nonlinear responses have been obtained, (6.29) is transformed

into a linear set of equations, this time including only those terms associated

with Linear-DOFs (DOFs free of NL elements):






Ỹ1
Ỹ2
...

ỸN−n





N−n

= [Φ](N−n),m ∙ dλ2−ω2c−1m,m ∙






χ̃1

(
ν̃n,n, Ỹn

)

χ̃2

(
ν̃n,n, Ỹn

)

...

χ̃m

(
ν̃n,n, Ỹn

)





m

(6.32)

where {χ̃m} is now a known vector.

6.6 Nonlinear minimization scheme

The nonlinear minimization presented here is based in the Newton-Raphson

scheme already introduced in Section 4.4, with some minor adaptations:

1. Establish the size of the system to be solved. Only the n NL-DOFs

and the m selected modes should be considered, constructing a reduced

system [n,m].
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6.6 Nonlinear minimization scheme

2. Establish the vector of unknowns. This corresponds to the unknown

responses associated with the n NL-DOFs, {Ỹn}.

3. Establish the set of NL equations. This is expressed by (6.31), where

the LHS vector is considered to be the “analytical” solution, {Ỹn}analytical.

4. Provide an initial guess {Ỹn}trial for the first iteration. For the

present work, the linear solution {Ỹn}trial = {Yn}linear was chosen.

5. Construct the extended NLMV. First construct the NLV {G̃n} for the

n NL-DOFs. Then calculate the NLMV {ΦTm,nG̃n}. Finally, obtain the

extended NLMV {χ̃m}:

{χ̃m} = {Φ
T
m,nFn} − {Φ

T
m,nG̃n}

6. Real-imaginary split. The standard minimization routine available in

MATLAB (60) cannot handle complex variables, so the NL equations must

be split into their real and imaginary parts before proceeding. This can be

mathematically stated as:

{f(y)} =






Re(Ỹ trial − Ỹ analytical)
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Im(Ỹ trial − Ỹ analytical)





2n

≈






0
∙ ∙ ∙
0





2n

(6.33)

7. Calculate {Ỹn}. The iterative procedure will terminate when the updated

solution vector {f(y)} is less than a pre-defined tolerance (say, between 1-

2%) away from the previous iteration. It will contain the required responses

for the actual excitation frequency only, so the whole procedure must be re-

applied for the next step-frequency, with the added contribution that now

the calculated responses serve very well as an initial guess for the algorithm.

8. Calculate {ỸN−n}. Once the {Ỹn} responses have been calculated, the

problem has been transformed to a linear one. The remaining responses

{ỸN−n} (typically n� N) can be obtained by using (6.28) on an individual

basis, or using (6.32) for the whole set of (N − n) unknowns.
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6.7 Sample Case #1: a cubic stiffness modal

example

The HMT method will be exemplified with its application to a small sample case.

Although in principle there is no restriction at all -other than the computational

cost- on the size of the system it can handle, having a small enough system is

visually instructive. Based on this same argument, the case will be restricted

to include cubic stiffness nonlinearities while observing that mixed nonlinearities

should not represent a significant obstacle.

The Sample Case #1 is thoroughly described in Appendix A, and shown here

in Fig. 6.6 for convenience.

Figure 6.6: Sample Case #1

Our aim is to obtain the nonlinear FRFs, and we start by recalling the NLV

for this problem, already obtained in Section 4.5:

{G̃} =






g̃v1
g̃v2
g̃v3





=
3

4








0 0 0

0 β23

∣
∣
∣Z̃23

∣
∣
∣
2

−β23
∣
∣
∣Z̃23

∣
∣
∣
2

0 −β23
∣
∣
∣Z̃23

∣
∣
∣
2
(

β33

∣
∣
∣Ỹ3
∣
∣
∣
2

+ β23

∣
∣
∣Z̃23

∣
∣
∣
2
)













Ỹ1
Ỹ2
Ỹ3






where
∣
∣
∣Z̃ij

∣
∣
∣ =

∣
∣
∣Ỹi − Ỹj

∣
∣
∣. The NLV vector can also be expressed in a more compact
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form:

{G̃} =






g̃v1
g̃v2
g̃v3





=
3

4






0

β23

∣
∣
∣Z̃23

∣
∣
∣
3

eiθ23

β23

∣
∣
∣Z̃23

∣
∣
∣
3

eiθ23 + β33

∣
∣
∣Ỹ3
∣
∣
∣
3

eiθ3






where θij = ](Ỹi, Ỹj) and g̃v1 = 0 simply because there are not NL elements

attached to DOF 1. Next we calculate the NLMV by using (6.23):

{ΦTG̃} =
3

4






(φ21 + φ31)

(

β23

∣
∣
∣Z̃23

∣
∣
∣
3

eiθ23
)

+ φ31

(

β33

∣
∣
∣Ỹ3
∣
∣
∣
3

eiθ3
)

(φ22 + φ32)

(

β23

∣
∣
∣Z̃23

∣
∣
∣
3

eiθ23
)
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(6.34)

where each row represents the nonlinearity affecting the correspondent modal

coordinate.

In the interest of clarity, Fig. 6.7a previews the (soon to be calculated!)

nonlinear response at coordinate 1 and Fig. 6.7b shows its three associated NLMV

defined in (6.34); it can be observed that each function of the NLMV exhibits

strong components at every resonance and, in the case of NLMV 3, its components

at the first and second resonances are even stronger than the observed in its own

modal coordinate.

(6.34) also allows the following interesting observation: the extent to which

a given NL element, say β33, will exert influence in mode s is determined by

its numerical value as well as by its “weight” factor φ3s. For “non-grounded”

elements such as β23 the situation is less well-defined because of the simultaneous

dependency on two eigenvectors, φ2s and φ3s. For the extreme case in which these

two eigenvectors are identical but of opposite sign (quite common for symmetrical

structures), the nonlinearity disappears completely. This is the mathematical

proof for the solution non-uniqueness of an identification problem.
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6.7 Sample Case #1: a cubic stiffness modal example

Figure 6.7: Sample Case #1, NLMV

The extended NLMV is derived straightforwardly:
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Finally we invoke the nonlinear modal expansion stated in (6.29) to generate
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a system of nonlinear equations,
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The nonlinear expressions are valid for a single frequency ω; in order to de-

crease the computational burden, the responses can be solved just around reso-

nance, where the nonlinearities are expected to become active, everywhere else

being replaced by the linear responses. This procedure is valid because sub/super

harmonics are not considered in this work.

The performance of the HMT method will be compared with the “harmonic

balance method” which is a recognized benchmark for nonlinear problems. The

particular HBM code used in this work was written by Dr. Evgeny Petrov (65)

under a long term research program at Imperial College London for the vibration

analysis of nonlinear structures with different types of nonlinearities, such as

friction damping and cubic stiffness.

The nonlinear response shown in Figs. 6.8 and 6.9 was obtained by applying

the minimization scheme presented in Section 6.6.

The dashed line represents the linear response, while the solid line represents

the results obtained from the benchmark method (labelled as “HBM”). Finally,

the “�” marks around the resonances are the results from the HMT, which are

in excellent agreement with the benchmark. The HMT calculations took about

4 seconds per resonance, in a 1.5GHz Pentium computer equipped with 500MB

of RAM.

This compares very favourably with the computation time of the EF method,

which took 8 seconds per resonance for the same problem. The regenerated

responses of Fig. 6.8 (HMT) and Fig. 4.3, page 61 (EF), are virtually identical.
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Figure 6.8: Sample Case #1, calculated nonlinear response. A Zoom-In of the
individual resonances is shown in Fig. 6.9

115



6.7 Sample Case #1: a cubic stiffness modal example

9.9 9.95 10 10.05 10.1 10.15

10
-3

10
-2

Y
(m

)

12.7 12.8 12.9 13 13.1 13.2 13.3
10

-4

10
-3

Y
(m

)

14.6 14.61 14.62 14.63 14.64 14.65 14.66
10

-3

Frequency (Hz)

Y
(m

)

HBM   
HMT   
Linear
      DOF 1  

MODE 1 

DOF 2  
MODE 2 

DOF 3 
MODE 3

4x10- 3 

Figure 6.9: Sample Case #1, Zoom-In at the individual resonances of Fig. 6.8
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6.8 Sample Case #2: a friction damping modal

example

The HMT method will now be exemplified in a system containing friction damp-

ing nonlinearities. Sample Case #2 is identical to #1, except that the two NL

elements are of the friction damping type, as described in Appendix A.

The NLV for this problem was already obtained in Section 4.6, expressed as:
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∣
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∣
∣
∣. The NLV vector can also be expressed in a more compact

form:
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where θij = ](Ỹi, Ỹj) and g̃v1 = 0 simply because there are not NL elements

attached to coordinate 1. Next we calculate the NLMV as follows:
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Ỹ3

|Ỹ3|
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(6.35)

where each row now represents the nonlinearity affecting the correspondent modal

coordinate.

In the interest of clearness, Fig. 6.10a shows the (soon to be calculated!) non-

linear response at coordinate 1 and Fig. 6.10b shows the three NLMV’s defined

in (6.35); as expected for this nonlinear mechanism, the nonlinear modal forces

117



6.8 Sample Case #2: a friction damping modal example

jump between constant values according to the direction of the relative motion.

It can be seen that each function of the NLMV exhibits non-zero components at

every resonance and, in the case of NLMV 3, its components at the 1st and 2nd

resonances are even stronger than the observed at its own 3rd mode.

Figure 6.10: Sample Case #2, NLMV

All the remarks given in Section 6.7, regarding the coupling behaviour of the

NLMV, are still valid. The extended NLMV is:
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Finally we use (6.29) to generate a system of nonlinear equations,
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Ỹ3





=










φ11
λ21−ω

2
φ12
λ22−ω

2
φ13
λ23−ω

2

φ21
λ21−ω

2
φ22
λ22−ω

2
φ23
λ23−ω

2

φ31
λ21−ω

2
φ32
λ22−ω

2
φ33
λ23−ω

2















χ̃1
χ̃2
χ̃3






The nonlinear responses shown in Fig. 6.11 and 6.12 were obtained by ap-

plying the minimization scheme presented in Section 6.6. It can be seen that

the HMT (“�” marks) is in complete agreement with the benchmark (solid line),

both exhibiting lower amplitudes at resonance when compared to the linear case

(dashed line).

The effect of the nonlinearity is an overall reduction of the amplitudes, this

being more noticeable in the first and second modes. This reduction explains why

this nonlinear mechanism is so welcome (and even induced) in turbine bladed

disks, where higher amplitudes are a risk for the structural integrity.

The third mode is less affected because, at higher frequencies, the NL damping

force is overwhelmed by the linear restoring forces; the more pronounced effect

in the second mode can be explained by the fact that two masses are in opposite

motion, generating an additive effect of the friction forces.
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Figure 6.11: Sample Case #2, calculated nonlinear response. The nonlinear
effects at resonance are better exposed in Fig. 6.12, showing a Zoom-In of each
mode
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Figure 6.12: Sample Case #2, calculated nonlinear response (Zoom-In)
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6.9 Concluding remarks

The most important development of this chapter has been the HMT method in

a direct-path approach, this is, by analyzing a fully described theoretical system.

The main features of the method can be summarized as follows:

• The HMT represents, basically, a nonlinear modal superposition. How-

ever, it is mathematically exact1. In other words, no approximations have

been involved in its derivation, fully accounting for the intermodal coupling

effects.

• The term “hybrid” arises from the fact that the underlying linear system has

been reduced by expressing it in the modal space, while the nonlinearities

are kept in the physical domain (in the form of describing functions). Due

to this feature, the location of the NL elements is fully achieved by the

HMT, when used as an identification tool.

• This method is quite effective in an experimental environment, concentrat-

ing all the nonlinearities in one single term per mode, the NLMV. This has

an explicit physical meaning, being analytically linked to the coefficients of

the physical NL elements.

• The set of NL equations to be solved can be dramatically reduced, both

in spatial and modal coordinates, by including only the n NL-DOFs and a

few m selected modes.

• Although the method recognizes the existence of amplitude-dependant (non-

linear) eigenvalues and eigenvectors, the responses are obtained without

explicitly calculating them.

• The method was successfully tested against simulated data for two small

systems containing cubic stiffness and friction damping nonlinearities. In

computational terms, it proved highly efficient when compared to the EF

method, introduced in Chapter 4.

1Under the assumptions of a first-order formulation. However, even this restriction can be
relaxed if the NLV {G̃} is a multi-harmonic descriptor.
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6.9 Concluding remarks

Other achievements of this chapter are:

• A new mathematical expression (6.22), describing the nonlinear modal

space, have been obtained. This is the theoretical basis not only for the

HMT method, but also for main developments in subsequent chapters.

• The main assumption of the nonlinear normal modes method, that the

nonlinearities are confined to the resonant region, has shown to be unduly

restrictive, but probably valid in practical situations. Indeed, it was proved

that the nonlinear space is coupled, but in the context of a traditional ex-

pansion, the nonlinear normal modes assumption offers acceptable results.
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Chapter 7

Analytical derivation of NL
modal parameters via a fast
approximation technique (FAT)

7.1 Introduction

The standard modal expansion for linear systems was given by (6.9),

Yi

Fj
= Hij =

M∑

r=1

φirφjr

λ2r − ω2

which is the basis for the traditional nonlinear modal expansion, given by (6.11),

H̃ij(ω, Ỹ ) =
M∑

r=1

φ̃ir(ω, Ỹ )φ̃jr(ω, Ỹ )

λ̃2r(ω, Ỹ )− ω2

On the other hand, the newly developed HMT expansion for nonlinear systems

was given by (6.28),

Ỹi =
M∑

r=1

φirχ̃r

λ2r − ω2

Comparing these expressions, it is clear that one of the main advantages of

the HMT expansion (6.28) is that it avoids the explicit calculation of nonlinear

eigenvectors and eigenvalues. Consequently, one of its main disadvantages may

be a lack of methodology for determining these parameters.
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7.1 Introduction

Indeed, such is the importance of these nonlinear modal parameters that one

is left wishing to know them, even if they’re not explicitly needed to calculate the

response. Here are a few reasons why:

• The concept of varying eigenvalues and eigenvectors in (6.11) has physical

grounds. Indeed, it can be proven (3) that the nonlinearities arising, for

example, from a cubic stiffness mechanism are dependent on some material

properties with a cubic power. This leads to an increase in the overall stiff-

ness and, in the end, to an increase in the natural frequencies of vibration.

• On the other hand, the HMT represents, basically, the underlying linear

structure being subjected to a nonlinear force, which does not describe the

true physics of the problem.

• Translating the HMT results to standard NL modal parameters will provide

links with other nonlinear methods, such as (30).

In this chapter, the nonlinear information contained in the NLMV {ΦTG̃}

will be transformed to more standardized parameters, namely, nonlinear eigen-

values (λ̃2) and eigenvectors (Φ̃). This transformation will be carried out by

newly-developed analytical expressions, providing a fast -albeit approximated-

derivation. The introduced technique is thus called the “fast approximation tech-

nique” (FAT).

There is another compelling reason for realizing this transformation, much

more important than for purely comparative purposes:

The nonlinear information contained in the NLMV of any given mode is usu-

ally highly coupled, exhibiting strong nonlinear components at every other reso-

nance1. If we wish to use this information within a modal superposition context,

it is necessary to decompose the NLMV into individual modal components, ef-

fectively decoupling the problem. The derivation of nonlinear eigenvalues and

eigenvectors achieves this task by extracting information related to a single mode

only, as illustrated in Fig. 7.1.

It must be remarked that the FAT does not represent, per se, a final identifi-

cation, because the obtained results are still amplitude- or frequency-dependent,

1See Fig. 6.5, page 106.
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i.e. λ̃r(ω), Φ̃r(ω). A further transformation, represented in Fig. 7.1 as a “poly-

nomial fitting”, must be applied in order to provide an invariant model, valid for

any level of excitation1.

Nevertheless, the FAT provides a straightforward, analytical approach for cal-

culating the nonlinear eigenvalues and eigenvectors, thus obviating more complex

procedures. The current approach for this task is based on a nonlinear optimiza-

tion from measured data, a calculation which suffers from well-known problems

such as ill-conditioning and divergence.

The FAT method is graphically represented in the flow chart of Fig. 7.2.

Figure 7.1: Transforming/decoupling the NLMV

1Within a restricted range. This second transformation will be introduced in Chapter 8,
but it can be said in advance that it requires only a simple data manipulation.
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Figure 7.2: Flow diagram for the FAT calculation of nonlinear eigenvalues and
eigenvectors
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7.2 FAT calculation of the nonlinear eigenvalues

7.2 FAT calculation of the nonlinear eigenvalues

The modal space of a linear system was expressed by (6.6):

dλ2−ω2c{P} = {ΦTF}

A similar expression for a nonlinear system, (6.13), was written for a particular

state [ω, Ỹ ]:

dλ̃2(ω, Ỹ )−ω2c{P̃ (ω, Ỹ )} = {Φ̃T(ω, Ỹ )F}

The nonlinear eigenvalues and eigenvectors can be decomposed into linear (dλc, [Φ])

and nonlinear components (dΔλ̃(ω, Ỹ )c, [ΔΦ̃(ω, Ỹ )]), accounting for the varia-

tions due to nonlinearities:

d(λ2 +Δλ̃
2
)−ω2c{P̃} = {(Φ+ΔΦ̃)TF} (7.1)

Comparing (7.1) with the recently developed (6.22), which describes the nonlinear

modal space:

dλ2−ω2c
(
I+Φ−1ΔΦ̃

)
{P̃}+ {ΦTG̃} = {ΦTF}

we conclude that the nonlinear variation of the rth eigenvalue, Δλ̃
2
r, is given by:

Δλ̃2r =

(
ΦTG̃

)

r
+
(
(λ2r − ω

2) (Φ−1ΔΦ̃){P̃}
)

r
+
(
ΔΦ̃

T
F
)

r

P̃r
(7.2)

where the sub-index “r” refers to the rth modal coordinate.

Equation (7.2) establishes, for the first time, an analytic relationship explain-

ing the increment in natural frequencies and damping values caused by the addi-

tion of a nonlinear physical component {G̃}, the nonlinear vector (NLV), in the

system.

Another interesting characteristic of this equation is that it links together

the variation of the two modal parameters of a nonlinear system, namely the

eigenvalues dΔλ̃2rc and eigenvectors [ΔΦ̃]. Although mutually dependent from a

theoretical point of view, a traditional experimental NLMA procedure extracts

these parameters independently, thus increasing the complexity of the nonlinear

fitting algorithms used to construct the mathematical model of the system.
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7.2 FAT calculation of the nonlinear eigenvalues

Unfortunately, (7.2) cannot be solved as it is, mainly because the term [Φ]−1

is virtually impossible to calculate from experimental data. Still, it offers a deep

insight into the physics of a NL modal system and, by introducing some sensible

simplifications, it will prove a highly valuable tool for a practical NLMA.

Having said this, let us analyze in more detail each one of the three main

terms in the numerator of (7.2), as a better understanding will allow a better

judgment regarding the simplifications needed:

1. The first of them,
(
ΦTG̃

)

r
, is already a familiar term, the “nonlinear modal

vector” (NLMV). It was exhaustively discussed in Section 6.4, being recog-

nized as the main source of nonlinearity in the resonant mode. Not much

can, and should not, be done to simplify this already linearised term.

2. The second term,
(
(λ2r − ω

2) (Φ−1ΔΦ̃){P̃}
)

r
, the “nonlinear coupling term”,

has also been discussed. It has a relatively low contribution to the resonant

mode but plays a significant role as a coupling agent. Although its strength

can be significant away from resonance, we are mainly interested in how

the eigenvalue varies in the vicinity of a resonant mode, so this term can

be neglected within this region without major concerns1.

3. The third term,
(
ΔΦ̃

T
F
)

r
, can be seen as the increase in the modal force

due to the correspondent increment in the local eigenvectors. Although it

has been said that [ΔΦ̃] is fairly small for a wide variety of NL systems,

it will introduce a small error whenever it is neglected. This can be easily

remedied by implementing an iterative procedure that estimates [ΔΦ̃], soon

to be described.

Note that: (
ΔΦ̃

T
F
)

r
=
{
ΔΦ̃r

}T

f
{F}f (7.3)

where f represents the forced DOFs. In other words, only the f entries of{
ΔΦ̃r

}
need to be estimated to accurately calculate Δλ̃r.

1This simplification is the main cause of the approximation incurred in a traditional modal
expansion, Eq. (6.11).
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Having made the best possible case for neglecting the two “troublemaker”

terms from (7.2), the following simplified expression is derived:

Δλ̃2r ≈

(
ΦTG̃

)

r

P̃r
(7.4)

This is a rather elegant result, as it explicitly links the NLV {G̃} (defined in

the physical domain) with the nonlinear natural frequencies and damping ratios

(modal parameters). A most interesting observation is that the nonlinear normal

mode P̃r also appears in the equation.

In the past, researchers like Chong & Imregun (31), (30), Setio (68), Shaw (24)

and others have suggested the existence of an invariant relationship between the

nonlinear mode P̃r and its associated nonlinear natural frequency, by extracting

experimental curves; these curves were successfully used to predict a nonlinear

modal behaviour (Fig. 7.3), but the nature of the relation remained unknown.

Equation (7.4) explicitly confirms such relation and establishes it analytically.

Figure 7.3: Experimental results of Chong & Imregun suggesting a relation be-
tween the modal amplitude and the nonlinear natural frequencies
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7.3 FAT calculation of the nonlinear eigenvec-

tors

With the aid of the calculated NL eigenvalues, it is now possible to calculate

associated nonlinear eigenvectors. The eigenvectors’ accuracy will depend on the

eigenvalues’ accuracy, and an iterative procedure can be established to simulta-

neously improve both.

We are still faced with the problem of translating the HMT results of (6.28),

Ỹi =
M∑

r=1

φirχ̃r

λ2r − ω2

into equivalent variables of the traditional nonlinear modal expansion (6.11),

H̃ij(ω, Ỹ ) =
M∑

r=1

φ̃ir(ω, Ỹ )φ̃jr(ω, Ỹ )

λ̃2r(ω, Ỹ )− ω2

In the vicinity of the sth resonant mode, (6.11) can be rewritten as follows:

H̃ij =
φ̃isφ̃js

λ̃2s − ω2
+

M∑

r=1,r 6=s

φ̃irφ̃jr

λ̃2r − ω2
(7.5)

where the resonant mode s has been taken out of the series, and the nonlinear

variables have been represented by a “ ˜ ” symbol on top. According to the non-

linear normal modes assumption, the residual term
∑
in (7.5) can be considered

to behave linearly, therefore being replaced by the linear counterpart:

H̃ij =
φ̃isφ̃js

λ̃2s − ω2
+

M∑

r=1,r 6=s

φirφjr

λ2r − ω2
(7.6)

where the resonant mode s remains the only nonlinear mode. Focusing on the

point-FRF H̃jj , we obtain:

H̃jj =
φ̃2js

λ̃2s − ω2
+

M∑

r=1,r 6=s

φ2jr
λ2r − ω2

(7.7)
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7.3 FAT calculation of the nonlinear eigenvectors

At this point, we recall (7.4), expressing the variation of the resonant eigen-

value s:

Δλ̃2s ≈

(
ΦTG̃

)

s

P̃s

so the point-FRF can be rewritten as:

H̃jj =
φ̃2js(

λ2s +Δλ̃
2
s

)
− ω2

+
M∑

r=1,r 6=s

φ2jr
λ2r − ω2

(7.8)

H̃jj is the measured nonlinear FRF at node j, simply given by:

H̃jj =
Ỹj

Fj
(7.9)

Finally, the nonlinear eigenvector of the resonant mode s at the excitation

point j -φ̃js- is directly calculated as:

φ̃js =

√√
√
√
(
λ2s +Δλ̃

2
s − ω2

)
(

H̃jj −
M∑

r=1,r 6=s

φ2jr
λ2r − ω2

)

(7.10)

and the nonlinear eigenvectors for the rest of the coordinates (i = 1 . . . N, i 6= j)

are easily found by:

φ̃is =

(
λ2s +Δλ̃

2
s − ω

2
)
(

H̃ij −
M∑

r=1,r 6=s

φirφjr

λ2r − ω2

)

φ̃js
, i = 1 . . . N, i 6= j (7.11)

Once the sth eigenvalue and its associated eigenvectors {Φ̃}s (a single-row column)

are known, the nonlinear description for this mode is completed by filling-up the

rest of the eigenvector’s matrix with linear information, as follows:

Φ̃N,M =












φ1,1
...
...
...
φN,1

∙ ∙ ∙
. . .

∙ ∙ ∙
. . .

∙ ∙ ∙






...

...

Φ̃s
...
...






∙ ∙ ∙
. . .

∙ ∙ ∙
. . .

∙ ∙ ∙

φ1,M
...
...
...
φN,M












(7.12)
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This last step is strictly invalid, since a theoretical eigenvalue problem predicts

a full matrix of nonlinear eigenvectors at any frequency. However, the incurred

error is small in the vicinity of the sth resonance, for fairly separated modes
1.

Once the nonlinear eigenvectors {Φ̃}s for all the coordinates in the vicinity of

resonance s have been found, the global nonlinear eigenvalue can be updated by

revisiting (6.18) and (7.4), as follows:

{
ΔΦ̃

}

s
=
{
Φ̃
}

s
− {Φ}s

{P̃} =
[
Φ+ΔΦ̃

]−1
{Ỹ }

Δλ̃2s ≈

(
ΦTG̃

)

s
+
(
ΔΦTs F

)
s

P̃s

where the -initially neglected- term [ΔΦ̃] is now included, as a first estimation

has already been achieved.

The aforementioned procedure can be iteratively implemented, improving the

accuracy of the calculated nonlinear eigenvalues and eigenvectors. The flow chart

was already shown in Fig. 7.2, page 127.

7.4 The FAT exemplified

The FAT will be exemplified by obtaining the nonlinear modal parameters of the

Sample Cases #1 and #2, described in Appendix A. We will compare our results

with the theoretical values obtained from solving the eigenvalue problem for every

frequency, considered the exact solution. The NLMV, input data of the FAT, can

be calculated straightforwardly from the nonlinear responses already obtained in

Chapters 4 and 6.

1This issue is a drawback of the traditional nonlinear modal expansion 6.11, successfully
avoided by the HMT expansion.
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7.4.1 NL modal parameters for the Sample Case #1

The following results were obtained by performing a FAT calculation for the

Sample Case #1:

• Fig. 7.4 shows the FAT results (“�”) for the NL natural frequencies at the

end of the 1st iteration, exhibiting remarkable agreement with the theoret-

ical values (solid line).

As expected for a cubic stiffness mechanism, the natural frequencies increase

continuously as the excitation approaches resonance, suddenly dropping

when the modal amplitude drops too.

These results show that the FAT is an excellent choice for obtaining the

variation of the natural frequencies when the NL mechanism is stiffness-

related, without the need of an iterative procedure.

• Fig. 7.5 shows the FAT results (“�”) for the NL modal damping, at the end

of the 5th iteration, exhibiting remarkable agreement with the theoretical

values (solid line). As expected for this class of systems, the variation is

very small.

• Fig. 7.6 shows the nonlinear variation of the natural frequencies for the

entire frequency range. This result was already shown in Fig. 7.4, but only

for the region encompassing resonance. This time, the analyzed range is

enlarged to show the effects of the neglected “nonlinear coupling term” in

(7.2).

• Fig. 7.7 shows the real part of the matrix of nonlinear eigenvectors in

the vicinity of resonance; the results are satisfactory, considering the small

variations exhibited.

• Regarding the imaginary part of the nonlinear eigenvectors, the calculation

is rather noisy, as shown in Fig. 7.8. Given that the theoretical predictions

deviate very little from zero, this does not come as a surprise; actually, by

considering them zero, a smoother regeneration is achieved.
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7.4 The FAT exemplified

• Fig. 7.9 shows the regenerated nonlinear response by the traditional non-

linear expansion, using the eigen-parameters calculated by the FAT. A close

agreement with the theoretical prediction can be appreciated.
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Figure 7.8: Sample Case #1, imaginary part of the nonlinear eigenvectors (in
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Figure 7.9: Sample Case #1, regeneration of the nonlinear response by the tra-
ditional nonlinear expansion, using the eigen-parameters calculated by the FAT
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7.4.2 NL modal parameters for the Sample Case #2

The following results were obtained by performing a FAT calculation for the

Sample Case #2:

• Fig. 7.10 shows the FAT results (“�”) for the NL modal damping at the end

of the 1st iteration, exhibiting remarkable agreement with the theoretical

values (solid line).

As expected for a friction damping mechanism, the overall modal damping

changes continuously as the excitation approaches resonance, exhibiting a

minimum/maximum exactly at resonance.

These results show that the FAT is an excellent choice for obtaining the

variation of modal damping when the NL mechanism is velocity-dependant

(such as in friction damping), without the need of an iterative procedure.

• Fig. 7.11 shows the FAT results (“�”) for the nonlinear natural frequencies,

at the end of the 5th iteration, exhibiting remarkable agreement with the

theoretical values (solid line). As expected for this class of systems, the

variation is very small.

• Fig. 7.12 shows the nonlinear variation of the modal damping for the entire

frequency range. This result was already shown in Fig. 7.10, but only

for the region encompassing resonance. This time, the analyzed range is

enlarged to show the effects of the neglected “nonlinear coupling term” in

(7.2).

• Fig. 7.13 shows the imaginary part of the matrix of nonlinear eigenvectors

in the vicinity of resonance; the results are satisfactory, considering the

small variations exhibited.

• Regarding the real part of the nonlinear eigenvectors, the calculation is

rather noisy, as shown in Fig. 7.14. Given that the theoretical predictions

deviate very little from the linear values, this doesn’t come as a surprise;

actually, by considering them to remain linear, a smoother regeneration is

achieved.
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• Fig. 7.15 shows the regenerated nonlinear response by the traditional non-

linear expansion, using the eigen-parameters calculated by the FAT. A close

agreement with the theoretical prediction can be appreciated.
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Figure 7.13: Sample Case #2, imaginary part of the nonlinear eigenvectors (in
rad/kg1/2) at the end of the fifth iteration
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Figure 7.14: Sample Case #2, real part of the nonlinear eigenvectors (in
rad/kg1/2) at the end of the fifth iteration
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7.5 Concluding remarks

The aim of this chapter has been the introduction of the “fast approximation

technique” (FAT) as a tool for decoupling the nonlinear information contained in

the NLMV, into single-modal parameters. The latter are the well-known nonlin-

ear eigenvalues (λ̃2) and eigenvectors (Φ̃), which are of standardized use in other

NLMA methods. On a minor point, the FAT offers a comparative tool between

the traditional (6.11) and the HMT (6.28) nonlinear modal expansions.

Although the NLMV -basic input data of the FAT- can be calculated based

on the NL response {Ỹ } and a full description of the nonlinear component {G̃}1,

forthcoming developments will show that it can also be extracted straightfor-

wardly from experimental measurements. This will reveal the FAT as a highly

valuable tool, allowing the analytical derivation of nonlinear eigenvalues and

eigenvectors, based exclusively on these same measurements. No previous knowl-

edge about the position or type of the nonlinearities will be required to accomplish

this.

Currently, the standard approach for the extraction of NL modal parameters

is based on nonlinear solvers. They are prone to ill-conditioning, due to the small

variations happening both in the eigenvectors and eigenvalues, which are, never-

theless, significant when combined. The FAT greatly simplifies this extraction.

On a more general remark, the FAT provides analytical grounds for previ-

ous works (31), (30), (68). Based on numerical/experimental observations, they

suggested an invariant relationship between the nonlinear modal eigenvalues and

their correspondent modal amplitudes. This relationship is analytically confirmed

by the FAT.

In the author’s opinion, the FAT is the single most important theoretical

contribution of this research, as well as an essential ingredient of the main NLMA

method produced in this thesis (R-HMT, Chapter 8).

1An improbable situation in an experimental testing.
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Chapter 8

The reverse-HMT (R-HMT)
method for the identification of
large structures

8.1 Introduction

In spite of earlier efforts and the review of several approaches, a fundamental

problem for analysing nonlinear systems still persists: there is a lack of a unified

method which can seamlessly handle general nonlinear systems, including large

engineering structures. There is a need for a method that can provide, without

gross simplifications, a full and unambiguous identification every time, using data

acquired within the common restrictions of an experimental environment.

If we were asked to produce a list of attributes we would expect from such a

method, we would probably end up with something like this:

• Simple to use, so engineers will embrace it.

• Compatible with LMA and standard FE techniques, but does not require

a FEM model.

• Relies as little as possible on expert input.

• Size of the model does not matter, within the usual computational restric-

tions.
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8.1 Introduction

• Works with measured data acquired anywhere in the system. The availabil-

ity of more measurements would simply yield higher-quality results.

• Allows a neat separation of the system into linear and nonlinear compo-

nents, previous to any quantification stage.

• Automatic detection of the nonlinear modes and the type of nonlinearity.

• Automatic and unambiguous localization of the nonlinear elements, pro-

vided there are associated measurements.

• If there are no such measurements, the method should still provide a valid

mathematical model within a useful range. It should allow, at least, the

regeneration/prediction of the response at selected DOFs for different levels

of excitation. This is one of the main aims of any method of this kind.

• The method should be numerically stable, relying on proven linear solvers

or linear least-squares algorithms. If nonlinear solvers are required, the

number of variables should be as small as possible. A good initial guess

should be available in such cases.

• The method should not be case sensitive.

We intend to introduce a method that represents a step forward towards this

ideal. This will be achieved by gathering the previously developed techniques

into a general methodology.

The method that will be presented here is, basically, a reverse-path version of

the HMT method, thus called the R-HMT. This technique allows the extraction

of the NLMV from just a few measurements, made anywhere in the system.

The NLMV contains all the information needed to characterize both the type

and position of the nonlinear elements, provided that they are included in the

measurements.

The FAT, introduced earlier as a comparative tool, now stands as an essential

ingredient of this method, decoupling the extracted NLMV into single-modal NL

parameters. These are further converted to polynomials, providing an invariant
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8.2 Stage I: pre-processing data

NL model valid for any excitation level1. This path provides a “black box”

model, capable of regenerating/predicting responses within a useful range, even

with scarce data.

An interesting tool, the ”nonlinear modal grade”, is developed to quantify, in

an objective way, the strength of the nonlinearity in a given mode. This allows

the automatic selection of those modes to be included in a nonlinear analysis,

the rest taken as linear. In a modal superposition context, this approach greatly

improves the computational efficiency.

Finally, the precise localization of the NL elements in a large system is achieved

by a simple linear least-squares operation over a nonlinear region of arbitrary

size. The results of this technique are unambiguous provided that the analyzed

frequency range is a fair representation of the system.

The reader is strongly advised to read Chapters 3 to 7 before attempting to

read this, as they contain essential information for the derivations presented here.

A brief look to reference (30) is also recommended.

The following sections are organized sequentially, simulating successive stages

for the application of the R-HMT method. Then, a sample case of a large struc-

ture2 will be solved, applying the same procedure.

A flow chart of the R-HMT method is shown in Fig. 8.1.

8.2 Stage I: pre-processing data

The input data must be organized in a few regions, which are defined next:

• N : total number of DOFs of the nonlinear system, according to a discretiza-

tion previously made by the analyst.

• <: the measured region, a vector containing all the measured DOFs. The

measurements can be made anywhere in the system.

• f : the forced DOFs at which the system is being excited3. These must be

also measured (f ∈ <), in order to provide the mass-normalization. It is

1Within a range.
2Sample Case #3, described in Appendix B.
3The developments in this research account for a multi-excitation test, except when the

opposite is highlighted.
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8.2 Stage I: pre-processing data

Figure 8.1: Flow diagram of the reverse-HMT (R-HMT) method
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8.3 Stage II: NLMV extraction

assumed that all excitation is applied at a single frequency, although the

phases between individual forces can be different.

• m: the number of identified modes within the analyzed frequency range,

typically the first few ones.

• mNL: the number of nonlinear modes, as a subset of m. This definition

is required to select the modes to be included in a nonlinear analysis, the

rest being assumed as linear. This task is usually performed by the analyst,

although an automated procedure will be developed here to tackle the issue.

The following definitions, although not part of the input data, will be useful

for the derivation of the method:

• M : the total number of modes of the system under analysis (infinity, for a

continuous system).

• n: the NL-DOFs, those DOFs associated with discrete NL elements.

The following relations must hold:

f ∈ < ∈ N, typically f � <� N
mNL ∈ m ∈M, typically mNL < m�M

(8.1)

The following relation is optional, but essential for the localization of the

NL-DOFs :

n ∈ <, typically n� < (8.2)

Completing the input data, a linear modal analysis (LMA) of the measured re-

gion < for the m modes must be performed. This will provide the linear eigenval-

ues and eigenvectors dλc, [Φ], as well as the linear residuals due to higher-modes,

{Res}.

8.3 Stage II: NLMV extraction

The aim of this section is to separate the system into its linear and nonlinear

components, prior to any quantification stage. This can be achieved by extracting
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8.3 Stage II: NLMV extraction

the NLMV {ΦTG̃}, expressed in (6.23), which contains all the nonlinearities in

the system.

The HMT expansion, defined in (6.27), is rewritten here:

{
Ỹ
}

N
= [Φ]N,M dλ

2 − ω2c−1M,M {χ̃}M (8.3)

where {Ỹ } is the vector of nonlinear responses, [Φ] is the linear matrix of mass

normalized eigenvectors, dλ2 − ω2c is the diagonal (symbolized by the brackets

“d c”) matrix of linear eigenvalues, ω is the excitation frequency and {χ̃} is the

extended NLMV of (6.26).

Equation 8.3 can be subdivided, row-wise, in the measured (<) and unmea-

sured (N −<) responses. Column-wise, it can also be subdivided in those modes

inside (m) and outside (M −m) the analyzed frequency range, as follows:

{
ỸN−<
Ỹ<

}

N

=

[
Φ(N−<),m Φ(N−<),(M−m)
Φ<,m Φ<,(M−m)

]

N,M

[
(λ2 − ω2)m 0

0 (λ2 − ω2)M−m

]−1

M,M

{
χ̃m
χ̃M−m

}

M

(8.4)

Separating (8.4) into m and (M −m) components, we have:

{
ỸN−<
Ỹ<

}

N

=

[
Φ(N−<),m
Φ<,m

]

N,m

dλ2 − ω2c−1m,m {χ̃m} +

[
Φ(N−<),(M−m)
Φ<,(M−m)

]

N,(M−m)

dλ2 − ω2c−1M−m,
M−m

{χ̃M−m}

(8.5)

where the second term of the RHS can be seen as the nonlinear residual (R̃es)

component of the higher modes in the measured frequency range:

{
ỸN−<
Ỹ<

}

N

=

[
Φ(N−<),m
Φ<,m

]

N,m

dλ2 − ω2c−1m,m {χ̃m}+

{
R̃esN−<
R̃es<

}

N

(8.6)
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8.3 Stage II: NLMV extraction

{ỸN−<} represents the unmeasured responses, so we discard the corresponding

rows and further develop the measured component {Ỹ<}:
{
Ỹ<

}
= [Φ<,m] dλ

2 − ω2c−1m,m {χ̃m}+
{
R̃es<

}
(8.7)

where {R̃es<} is the nonlinear residual of the (higher) modes outside the analyzed

frequency range, for the measured (<) coordinates only:
{
R̃es<

}
=
[
Φ<,(M−m)

]
dλ2 − ω2c−1M−m,

M−m

{χ̃}M−m (8.8)

Its linear counterpart, on the other hand, is given by:

{Res<} =
[
Φ<,(M−m)

]
dλ2 − ω2c−1M−m,

M−m

{
ΦTF

}
M−m

(8.9)

which can be found by performing a LMA in the measured region < (4).

If the analyzed frequency range is extended well beyond those modes exhibit-

ing strong nonlinearities (typically the few first ones), then the nonlinear effects

of {χ̃M−m} are severely attenuated for these modes, and it can be assumed that:

{
R̃es<

}
≈ {Res<} (8.10)

Introducing (8.10) in (8.7), we have:

{
Ỹ<

}
= [Φ<,m] dλ

2 − ω2c−1m,m {χ̃m}+ {Res<} (8.11)

Our aim is to extract the extended NLMV {χ̃m}. Solving for this variable, it

follows that:

{χ̃m} =
(
[Φ<,m] dλ

2 − ω2c−1m,m
)−1 {

Ỹ< − Res<
}

(8.12)

and we finally arrive at:

{χ̃m} = dλ2 − ω2cm,m [Φ<,m]
+
{
Ỹ< − Res<

}
(8.13)

where:

[Φ<,m]
+ =

(
[Φ<,m]

T [Φ<,m]
)−1
[Φ<,m]

T (8.14)
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8.3 Stage II: NLMV extraction

is the Moore-Penrose pseudo-inverse (69), as the direct inversion [Φ<,m]
−1 does

not strictly exist. The pseudo-inverse minimizes the sum of the squares of all en-

tries, providing a best-fit solution, in a least-squares sense. The SVD (4) decom-

position can also be used for this end, probably being a more robust alternative.

Once {χ̃m} has been extracted, the standard NLMV can be recovered by

simply applying (6.26):

{
ΦTG̃

}

m
=
{
ΦTF

}
m
− {χ̃}m (8.15)

where
{
ΦTF

}
m
= [Φf,m]

T {F}f (8.16)

is the linear modal force, depending exclusively on the f excited DOFs and the

m measured modes.

Equation (8.13) deserves some important remarks:

• It represents a straightforward calculation, since all the terms in the RHS

are known, a feature which makes the extraction process a very robust

procedure. Although {χ̃m} does not, per se, represents a final identification,

it does allow a neat separation of the linear and nonlinear components of the

system prior to a quantification stage. This is an important achievement in

itself.

• The posed problem is well over-determined, because typically < � m. This

feature allows small inconsistencies in the data to be averaged out, in a least-

squares sense (4). Observe that the minimum number of measurements

required to extract {χ̃m} is < = m. This condition should be attainable in

any experiment.

• [Φ<,m]
+ needs to be evaluated just once, since it contains pure linear param-

eters only. Thus, the extraction does not involve costly matrix inversions.

Note that the eigenvalues λ2 are also linear, and that the only nonlinear

variable in the RHS is {Ỹ<}, which is known for all the frequency range.

• {Res<} typically emerges from a previous LMA of the measured linear

modes. D. J. Ewins (4) describes several ways in which the residuals can
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8.4 Optional stage: reconciliation

be handled. They range from rough approximations as mass and spring el-

ements, to more sophisticated approaches treating the residual as a “pseu-

domode”, lying outside the measured frequency range. Any of these is

compatible with the present formulation.

For this work, the residual is simply treated as a vector containing the

necessary corrections that allow a successful regeneration of the linear FRFs.

• The NLMV {ΦTG̃}m is the main result of the extraction process. It repre-

sents the nonlinear component of the system, although not explicitly local-

ized or quantified yet.

Note that the only approximation incurred in extracting {ΦTG̃}m is the

linearized residual {Res<}. For an extended frequency range well beyond

the nonlinear modes, the error should be very small.

A rule of thumb for the practicing engineer is as follows: during a NLMA,

the measured frequency range should be extended as far as possible from the

highest nonlinear mode.

8.4 Optional stage: reconciliation

The extraction process introduced in Section 8.3 allows the implementation of an

optional modal procedure known as “reconciliation”, in which the responses are

regenerated by distinct sets of redundant data. The degree of matching among

the regenerated responses is related to the overall quality of the measurements,

where the non-matching sets may indicate poor data.

We are in the favourable position of performing a reconciliation with the in-

formation hitherto obtained, before committing to a lengthy quantification stage.

This is achieved by taking several subsets of < of size equal to m, thus gener-

ating various square sub-matrices [Φm,m] and associated sub-vectors {Ỹm}. Each

square subsystem (8.13) is solved, and the extracted {χ̃m} is further used to re-

generate all the measured responses < at once, by using the direct path of the

HMT (8.11). The regenerated responses should be nearly identical for all subsets,

also matching the experimental measurements {Ỹ<}.
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8.5 Stage III: detection of the nonlinear mechanism

The non-matching subsets can be spotted and either re-measured or simply

removed. Then, a consistent group of subsets can be used all at once in (8.13),

thus providing an improved least-square extraction of the NLMV.

8.5 Stage III: detection of the nonlinear mech-

anism

A qualitative technique to determine the nonlinear mechanism acting in a sys-

tem was introduced in Section 5.4. This was based on the visual assessment of

the geometric “footprint” of the NLV {G̃}, and it was proved to be effective to

discriminate between cubic stiffness and friction damping nonlinearities. General

guidelines were provided to allow a consistent detection and it was mentioned

that the identification of other nonlinear types could be easily incorporated to

this technique.

In this section, we will explore the extension of this idea to the modal equiv-

alent of the NLV, namely the NLMV {ΦTG̃}. Perhaps the best way to provide

useful guidelines is to perform a nonlinearity detection by means of a numerical

example.

Fig. 8.2 shows the extracted NLMV, for the first three modes only, of a system

with different nonlinearities. Following is a brief discussion of these results.

• Fig. 8.2(a) displays the magnitude of the NLMV for purely cubic stiffness-

type nonlinearities. It can be seen that these functions resemble the ge-

ometry of the nonlinear FRFs, exhibiting peaks at all resonances, with the

characteristic “jump” found in the nonlinear modes. It can also be veri-

fied that the NLMV increases monotonically with the overall level of the

responses, as expected from the relationship (3.9).

• Fig. 8.2(b) displays the magnitude of the NLMV for purely friction damp-

ing nonlinearities. A distinctive feature is that these functions exhibit well-

defined regions at a constant value, with sudden jumps at some frequencies.

The nonlinear force also remains constant in the vicinity of resonance, in

agreement with the friction damping model (3.21). A glance at the imagi-

nary part of this NLMV (not shown) would confirm that this force changes
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8.5 Stage III: detection of the nonlinear mechanism

Figure 8.2: (a)-NLMV of a cubic stiffness system. (b)-NLMV of a friction damp-
ing system

sign exactly at resonance, providing further evidence of a friction damping

mechanism.

Fortunately, both “footprints” exhibit a completely different behaviour from

each other, providing a practical detection tool for any system regarding of its

size. In later sections, we will use this technique to analyze the NLMV of a large

system, applying the aforementioned guidelines.
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8.6 Stage IV: degree of nonlinearity in a nonlinear mode

8.6 Stage IV: degree of nonlinearity in a nonlin-

ear mode

When performing a nonlinear detection, an interesting issue is the quantification

of the degree of modal nonlinearity. A legitimate question can be posed:

“How do we know, objectively, if the extracted NLMV is significant to the

problem, or even related to the nonlinearities?”. An obvious answer might be “It

has to be, since the response exhibits significant nonlinear effects”. However, this

answer pre-assumes that the distortions in the response are due to nonlinearities,

thus discarding systematic errors and many other factors, which are all included

in the NLMV.

Indeed, the author has not been able to find a practical tool which allows

an objective quantification of the degree of nonlinearity in a mode. Instead,

loose terms such as “weakly nonlinear”, “moderately nonlinear” and “strongly

nonlinear” are shamelessly1 used in the literature. Here, we will present a simple

but, hopefully, effective technique to answer this question. Although it is based

on experimental observations, it is possible to provide some analytical support,

which is given first:

The nonlinear modal space was described by (6.22):

dλ2−ω2c
(
I+Φ−1ΔΦ̃

)
{P̃}+ {ΦTG̃} = {ΦTF} (8.17)

and its linear counterpart was described in (6.6)

dλ2−ω2c{P} = {ΦTF} (8.18)

In the vicinity of resonance of a given mode, the “nonlinear coupling term”

Φ−1ΔΦ̃ can be neglected, as already argued in Sections 6.3 and 7.2. Thus, by

comparing the last two expressions, it can be realized that the introduction of the

NLMV {ΦTG̃} solely alters the balance between a linear and a nonlinear normal

mode.

In other words, while the linear modal force {ΦTF} remains constant in

(8.17), the changes introduced by the NLMV {ΦTG̃} are mainly reflected in the

1The author still uses these terms on a regular basis
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8.6 Stage IV: degree of nonlinearity in a nonlinear mode

transition {P} → {P̃}. It follows that, if {ΦTG̃} is significant when compared to

the constant value {ΦTF}, then the transition {P} → {P̃} should be noticeable,

in the form of the well-known FRF distortions.

Of course, the transition from linear to nonlinear occurs smoothly for contin-

uous nonlinearities, and it would be equally unfounded to try to establish fixed

thresholds to define the degree of nonlinearity. Nonetheless, during the various

simulations carried out during this research it was found that thresholds that

relate well with the “standard” terminology can be defined as:

0 <

(
max|(ΦTG̃)|
|ΦTF |

)

r

< 1, weakly nonlinear

1 ≤

(
max|(ΦTG̃)|
|ΦTF |

)

r

< 10, moderately nonlinear

10 ≤

(
max|(ΦTG̃)|
|ΦTF |

)

r

, strongly nonlinear

(8.19)

where
(
max

∣
∣
∣(ΦTG̃)

∣
∣
∣
)

r
is the peak value found in the NLMV’s magnitude, in

the vicinity of its own mode r. Most importantly, (8.19) can be used to verify

whether the observed distortions in the responses are due to the nonlinearities or

not.

Although one could say that the thresholds seem completely arbitrary, they

relate well to the frequently-used engineering rule of ”10 times greater than” to

determine how large/small a dimension is1. Extrapolating this rule to the present

case yields the following observations: if the linear and NL modal restoring forces

are of similar magnitudes, the mode behaves close to linear. If the NL modal force

is at least 10 times greater than the linear one, then the mode behaves “strongly

nonlinear”. Anywhere in between the term ”moderately nonlinear” applies well,

and this range should be calibrated according to the analyst’s experience, or safely

assumed as ”strongly nonlinear”.

Abusing the terminology once more, we can define a single “linear threshold”

based in (8.19), above which the nonlinear mode can no longer be approximated

1For example, the thickness of a thin plate must be at least 10 times smaller than the other
two dimensions in order to be considered a ”thin plate”, according to most engineering manuals.
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8.6 Stage IV: degree of nonlinearity in a nonlinear mode

by its linear counterpart:

max
∣
∣
∣(ΦTG̃)

∣
∣
∣
r
≥
∣
∣ΦTF

∣
∣
r

(8.20)

The usability of (8.20) can be illustrated in an enlightening example, provided

by Fig. 8.3. This shows the extracted NLMV of a large system. According to

the guidelines presented in Section 8.5, it can first be verified that the nonlinear

mechanism relates well with a cubic stiffness model (which is the case).

Figure 8.3: NLMV of a large system (solid line), and the “linear threshold”
(dashed line) for the first three modes

Fig. 8.3 also shows, in dashed line, the constant linear modal force for each

mode. It is immediately obvious that the NLMV of modes 1 and 2 easily exceed

their corresponding “linear threshold”, confirming that the observed distortions
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8.7 Stage V: transformation to NL modal parameters via the FAT

in the responses are undoubtedly due to nonlinearities. We can also verify that

modes 3, 4 and 5 fall way behind their respective threshold, explaining their

almost linear behaviour.

By using (8.19), “nonlinear modal grades” can be calculated for all the modes

of the previous example. These are listed in Table 8.1.

Mode Nonlinear modal grade
1 75.56
2 16.52
3 0.07
4 0.1
5 0.025

Table 8.1: “Nonlinear modal grades” for the system of Fig. 8.3

The main purpose of the “nonlinear modal grades” is to provide some de-

gree of automatization for selecting mNL, the nonlinear modes included in the

analysis. If the regeneration is calculated by means of a modal superposition, the

computational cost can be reduced by assuming weakly1 nonlinear modes as lin-

ear. The “linear threshold” can be a-priori calibrated to the analyst’s experience,

according to (8.19).

This section does not intend to present an exhaustive study of this technique,

which is rather a side issue in the context of this work. The concept of a “linear

threshold” needs to be supported with experimental data for a large number of

experiments and for different systems. Until then, it is just an idea to keep in

mind, which performed well in the various simulations run by the author.

8.7 Stage V: transformation to NL modal pa-

rameters via the FAT

The following developments represent the LHS path of the flow chart of Fig 8.1,

page 152, which assumes that either the nonlinear type was not identified, or the

1“Nonlinear modal grades” below 1.
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8.7 Stage V: transformation to NL modal parameters via the FAT

NL-DOFs were not included in the measurements. This is representative of the

most general case.

An effective method for decoupling the nonlinear information contained in

the NLMV into standard nonlinear modal parameters was introduced in Chapter

7, called the fast approximation technique (FAT). The transformation provides a

bridge between the methodology followed in this research and most works in the

field, notably by Chong & Imregun (30). The link allows an otherwise trouble-

some quantification stage when the input data is significantly incomplete.

The FAT will be extended here to deal with large systems. The introduced

modifications are mostly due to the higher-modes residuals and the measured

region <. Otherwise, the derivation is similar to that introduced in Chapter 7

for a full model, and will not be repeated. For the sake of completeness, a flow

chart with the modified procedure is shown in Fig. 8.4. Also, following are some

important remarks relevant to this chart:

• Originally, the input data for the FAT was the theoretical NLMV, calculated

from the nonlinear response {Ỹ } and a complete description of the nonlin-

earities, {G̃}. This time, the input data is the extracted NLMV {ΦTG̃}m,

which is available as a composite function, although its nonlinear compo-

nent {G̃} is unknown1.

• The “≈” symbol in:

Δλ̃2s ≈

(
ΦTG̃

)

s
+
(
ΔΦ̃

T
F
)

s

P̃s
(8.21)

acknowledges the fact that the “nonlinear coupling term” has been ne-

glected. In Chapter 7, it was proved that this term introduced negligible

effects in the resonant mode, and that (8.21) was a close approximation to

the nonlinear natural frequency and modal damping, if implemented within

a short iterative scheme.

1This argument finally exposes the value of the FAT method, which is able to calculate
the nonlinear modal parameters analytically, without previous knowledge about the position or
type of the nonlinearities
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8.8 Stage VI: system’s quantification via polynomials

• The procedure assumes a single excitation force only. Although a multi-

excitation system can be considered by applying some simple modifications,

these would generate a set of f multi-variable nonlinear equations to solve

the eigenvectors only.

• In agreement with the traditional nonlinear modal expansion, it has also

been assumed that, in the vicinity of the sth resonance, the effect of the

neighbouring nonlinear modes r = 1 . . .mNL, r 6= s remains linear. This

approximation is valid for fairly well separated modes, although an iterative

scheme can account for close modes as well.

8.8 Stage VI: system’s quantification via poly-

nomials

Chong & Imregun (30) presented a NLMA method, in which nonlinear modal

parameters are extracted from experimental data and expressed as functions of

the nonlinear modal amplitude, via a polynomial curve fitting:

ω̃2r = ω̃
2
r(|P̃r|), NL natural frequency

η̃r = η̃r(|P̃r|), NL modal damping

Φ̃r =
m∑

r=1

b̃irΦr, NL eigenvectors, where b̃ir = b̃ir(|P̃r|)

(8.22)

These functions were found to be invariant to the excitation level, able to pre-

dict the nonlinear modal parameters at a different excitation and constructing

the physical responses via modal superposition. The authors obtained successful

experimental results for the identification and coupling of engineering structures.

In earlier stages of this research, the aforementioned method was reviewed.

It was found to perform very well for a wide range of problems and able to

provide a mathematical model even with scarce information. However, it was

also observed that the extraction procedure suffers from numerical instabilities

for strongly nonlinear systems1 due to a multi-variable nonlinear minimization.

This issue restricts the robustness and prediction range of the method.

1Or should we say, for “nonlinear modal grades” above 10?.
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8.8 Stage VI: system’s quantification via polynomials

Figure 8.4: FAT flow diagram for the calculation of nonlinear eigenvalues and
eigenvectors, applied to large systems
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8.8 Stage VI: system’s quantification via polynomials

In our current research, the nonlinearities are first extracted by a direct cal-

culation, in the form of the NLMV. Next, the nonlinear modal parameters are

analytically obtained via the FAT, thus increasing their accuracy and numerical

stability. The NL parameters can then be expressed as functions of the nonlinear

modal amplitudes, by constructing similar polynomials:

reΔλ̃
2
r = reΔλ̃

2
r(|P̃r|), imΔλ̃

2
r = imΔλ̃

2
r(|P̃r|),

reΔΦ̃r = reΔΦ̃r(|P̃r|), imΔΦ̃r = imΔΦ̃r(|P̃r|), r = 1 . . .mNL

(8.23)

Equation (8.23) contains another subtle, but most important, difference be-

tween Chong & Imregun’s approach (8.22) and the one implemented here. The

original methodology expresses the resonant nonlinear eigenvector as a linear

combination of a few neighbouring linear eigenvectors, by means of nonlinear

coefficients b̃ij . These nonlinear coefficients are further calculated as nonlinear

functions of the modal amplitude. This approach, while effective, has no direct

physical meaning, and this introduces certain degree of case sensitivity.

In this work, the nonlinear eigenvectors have been explicitly calculated by

the FAT, and can be directly expressed as functions of their corresponding modal

amplitude, just like the nonlinear eigenvalues. While this path certainly increases

the number of polynomials required for the regeneration, it is a small price to

pay compared with the increased robustness and physical meaning.

The procedure for the system quantification via the aforementioned approach

is explained next:

The traditional nonlinear modal expansion (6.13) expresses the nonlinear nor-

mal modes as:

dλ̃2 − ω2c{P̃} = {Φ̃TF} (8.24)

According to the methodology introduced in this work, the nonlinear modal

parameters can be separated in linear and nonlinear components:

dλ2 +Δλ̃2 − ω2c{P̃} = {(Φ+ΔΦ̃)TF} (8.25)

Thus, the rth nonlinear normal mode can be expressed as:

(
λ2r +Δλ̃

2
r − ω

2
)
P̃r =

({
Φr +ΔΦ̃r

}T

f
{F}f

)

r

(8.26)
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8.9 Stage VII: regeneration and prediction

where Δλ̃2r,ΔΦ̃r, already obtained via FAT, can be expressed as (8.23). The

computer implementation of (8.23) is achieved by constructing polynomials of

order ρ, linking the nonlinear variables with the magnitude of P̃r:

Δλ̃2r = a1

∣
∣
∣P̃r
∣
∣
∣+ a2

∣
∣
∣P̃r
∣
∣
∣
2

+ . . .+ aρ

∣
∣
∣P̃r
∣
∣
∣
ρ

, r = 1 . . .mNL

ΔΦ̃r = b1

∣
∣
∣P̃r
∣
∣
∣ + b2

∣
∣
∣P̃r
∣
∣
∣
2

+ . . .+ bρ

∣
∣
∣P̃r
∣
∣
∣
ρ

, r = 1 . . .mNL
(8.27)

where ai and bi are the numerical coefficients of the polynomials, which can be

calculated by a standard curve-fitting algorithm. The eigen-parameters must be

split into real and imaginary parts before the process.

Equations (8.26) and (8.27) form a set of single-variable nonlinear equations,

in which the only unknown is P̃r, thus allowing the regeneration of the responses

via modal superposition. Most importantly, they also allow the prediction of

responses at different excitation levels.

In order to regenerate/predict a response at a given DOF i, the following

polynomials must be constructed:

1. Polynomials for all the mNL nonlinear natural frequencies and modal damp-

ing variables - essential requirement to regenerate any DOF.

2. Polynomials for the f forced nonlinear eigenvectors, for all mNL modes -

essential requirement to regenerate any DOF.

3. Polynomials for the i eigenvector, for all mNL modes - only required to

regenerate DOF i.

Because separate polynomials must be constructed for the real and imaginary

components, the total number required to regenerate a set of n responses is

2mNL(1 + f + n).

8.9 Stage VII: regeneration and prediction

Given a set of excitation forces {F}f , the nonlinear equations (8.26) and (8.27)

are solved for P̃r on a mode by mode basis. The nonlinear minimization yields the
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8.10 Stage VIII: detection of the NL-DOFs

new nonlinear normal modes for the system, then modal superposition is invoked

to obtain the physical responses.

In order to regenerate/predict a given coordinate Ỹi, the traditional nonlinear

modal expansion can be used:

Ỹi =

(
∑

r=mNL

(
φir +Δφ̃ir

)
P̃r

)

︸ ︷︷ ︸
Nonlinear modes

+

(
∑

r=m−mNL

φirPr +Resi

)

︸ ︷︷ ︸
Extended linear residual

(
2F
1F

)

︸ ︷︷ ︸
Updated
force

(8.28)

where the mNL nonlinear modes are updated by recalling the newly-found NNMs

P̃r and the polynomials for
{
ΔΦ̃

}

i,r=1...mNL
. The linear residual Res is extended

to account for the linear modes in m, and 1F and 2F are, respectively, the initial

and the updated excitation forces. Note that only the extended linear residual

must be updated in order to reflect the excitation change, since the NL modes

P̃r have been already calculated for
2F .

Two important remarks:

• (8.28) is valid for a single-excitation force. If a multi-excitation system

is considered, then a more sophisticated approach (possibly very complex)

needs to be implemented in order to update the residual {Res}. Alterna-

tively, the analyzed frequency range can be extended in such a way that

the residual has a minimum impact on the nonlinear modes of interest, thus

avoiding the issue ({Res} ≈ 0).

• The force range in which a successful prediction can be achieved will depend

on the quality of the fitted polynomials and their behaviour outside the

fitted range. To this end, it is better to stick with polynomials of the

minimum possible order, to maintain a smooth path beyond the fitted range.

8.10 Stage VIII: detection of the NL-DOFs

The procedure described hitherto can be applied in almost any situation, in-

cluding cases with incomplete data. The model allows the regeneration of the

measured responses and the prediction at different levels of excitation, which is

the main aim of an identification method.
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8.10 Stage VIII: detection of the NL-DOFs

However, it suffers from some disadvantages. The range of excitation levels

for which the response can be regenerated accurately is restricted, depending

on the quality and extrapolation characteristics of the fitted polynomials. The

number of polynomials needed to regenerate a substantial part of a large system

represents a significant burden. Most importantly, the nonlinear component of

the system, initially unknown, remains unknown, failing to reveal core issues such

as the location of the nonlinear elements.

This section represents the RHS path in the flow chart of Fig. 8.1, page 152,

only available when the nonlinear mechanism has been accurately detected. It

is also assumed that the NL-DOFs n have been included in the measured region

< (n ∈ <). The procedure introduced here allows a full characterization of the

system, by detecting and quantifying the individual nonlinear elements. This,

in turn, allows the exact regeneration at any excitation level, plus many other

features previously unattainable.

For this section, the concept of a nonlinear region Γ needs to be recalled1. Γ

must be a subspace of the measured region <, enclosing all possible n NL-DOFs.

These can be mathematically stated as:

n ∈ Γ ∈ <, typically n� Γ ≤ < (8.29)

In Section 3.4, it was argued that the approximate delimitation of a nonlinear

region Γ is feasible for most engineering structures. The cautious analyst would

rather assume Γ = <, which would only increase the computational burden but

not the complexity of the calculations, a feature that will be proven soon. Notice

that the size of Γ is arbitrary.

The analysis can be carried out once the nonlinear mechanism has been as-

sessed (Section 8.5). First, we decompose the NLMV {ΦTG̃} intom and (M−m)

modal components (column-wise), as well as into Γ and (N−Γ) coordinates (row-

1See Section 3.4.
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8.10 Stage VIII: detection of the NL-DOFs

wise):





(
ΦTG̃

)

m(
ΦTG̃

)

M−m





=

[
ΦN−Γ,m ΦN−Γ,M−m
ΦΓ,m ΦΓ,M−m

]T {
G̃N−Γ
G̃Γ

}

=

[
Φm,N−Γ Φm,Γ
ΦM−m,N−Γ ΦM−m,Γ

] {
0

G̃Γ

}
(8.30)

where the sub-NLV {G̃N−Γ} has been assumed to be zero, as all the nonlinearities

are contained in the nonlinear region Γ. This leads to:

{ΦTG̃}m = [ΦΓ,m]
T {G̃Γ} (8.31)

which proves that the extracted NLMV {ΦTG̃}m is a function of the Γ DOFs

and the m modes only.

Recalling (3.41), the sub-NLV {G̃Γ} can be expressed as a function of the

nonlinear matrix (NLM) [ν̃Γ,Γ] and the responses at the Γ coordinates.

{G̃Γ} = [ν̃Γ,Γ]{ỸΓ} (8.32)

Introducing (8.32) into (8.31), we have:

{ΦTG̃}m = [ΦΓ,m]
T [ν̃Γ,Γ]

{
ỸΓ

}
(8.33)

Recalling (3.9) for a cubic stiffness system1, and taking the coefficients β out

of [ν̃Γ,Γ], (8.33) can be transformed to:

{ΦTG̃}m = [τ̃ω]m,Γ {β}Γ (8.34)

where:

τ̃ω =
3
4











φ1,1

∣
∣
∣Ỹ1 (ω)

∣
∣
∣
2

Ỹ1 (ω) φ2,1

∣
∣
∣Ỹ2 (ω)

∣
∣
∣
2

Ỹ2 (ω) ∙ ∙ ∙ φΓ,1
∣
∣
∣ỸΓ (ω)

∣
∣
∣
2

ỸΓ (ω)

φ1,2

∣
∣
∣Ỹ1 (ω)

∣
∣
∣
2

Ỹ1 (ω) φ2,2

∣
∣
∣Ỹ2 (ω)

∣
∣
∣
2

Ỹ2 (ω) ∙ ∙ ∙ φΓ,2
∣
∣
∣ỸΓ (ω)

∣
∣
∣
2

ỸΓ (ω)
...

...
. . .

...

φ1,m

∣
∣
∣Ỹ1 (ω)

∣
∣
∣
2

Ỹ1 (ω) φ2,m

∣
∣
∣Ỹ2 (ω)

∣
∣
∣
2

Ỹ2 (ω) ∙ ∙ ∙ φΓ,m
∣
∣
∣ỸΓ (ω)

∣
∣
∣
2

ỸΓ (ω)











m,Γ

(8.35)

1The following derivation applies for grounded cubic stiffness nonlinearities only. The ex-
tension for a general case with mixed nonlinearities is straightforward, requiring only minor
modifications.
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and

{βΓ} =
{
β11 β22 ∙ ∙ ∙ βΓΓ

}T
(8.36)

Equation 8.34 is valid for a single frequency point ω and also severely under-

determined, because typically m� Γ. This is fixed by stacking several versions of

(8.34), constructed at q different frequencies, which are valid for the same vector

{βΓ}: 




{
ΦTG̃

}ω=ω1

m

{
ΦTG̃

}ω=ω2

m
...{

ΦTG̃
}ω=ωq

m





q∙m

=








τ̃ω=ω1
τ̃ω=ω2
...
τ̃ω=ωq








q∙m,Γ

{βΓ} (8.37)

Eq. 8.37 represents an over-determined set of linear equations for q ∙ m ≥

Γ, from which the coefficients β can be directly extracted. The solution will

implicitly detect the position of the NL elements, given by the non-zero indexes.

(8.37) could suffer from rank deficiency if the selected q frequencies are too

close to each other. This will cause two or more rows of (8.35) to be linearly

dependent. An effective strategy to solve (8.37) is to split it in its real and

imaginary components, halving the number of frequencies needed, then solving a

single enlarged problem [2qm,Γ]. This is best done through a linear least squares

minimization, applying the constraint {β}Γ ≥ 0.

This technique delivers unambiguous results provided that q and m are rep-

resentative of the nonlinear system under analysis, so that (8.37) is properly

constrained.

Once the n NL-DOFs have been localized, (8.37) can be solved once more for

the reduced set of n DOFs, improving the accuracy of the calculation:






{
ΦTG̃

}ω=ω1

m

{
ΦTG̃

}ω=ω2

m
...{

ΦTG̃
}ω=ωq

m





q∙m

=








τ̃ω=ω1
τ̃ω=ω2
...
τ̃ω=ωq








q∙m,n

{βn} (8.38)
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Some important remarks are as follows:

• The procedure shown here can be applied to any type of nonlinearity, as

long as the unknown coefficients β, γ are constant.

• This derivation was done by considering cubic stiffness, grounded nonlin-

earities only. For the general case of mixed elements, the same principles

hold, although slight modifications must be made to matrix [τ̃ω] and vector

{βΓ}.

• The q sample frequencies must be chosen in those regions where the NLMV

is significant, evenly distributed over all the modes m. Care must be

taken to ensure that Δq, the separation of the selected q frequencies, is

large enough to avoid singularity, and that 2qm ≥ Γ to achieve an over-

determined set.

• If q frequencies over m modes poorly represent the system, (8.37) can be

solved several times, each choosing a different combination of sample fre-

quencies and modes. Then, the detected n DOFs for each solution are

gathered, solving a consistent and reduced problem (8.38) for the last time.

8.11 Sample Case #3: pre-processing data (stage

I)

The R-HMT method will be applied to the identification of the Sample Case #3,

which is thoroughly described in Appendix B. The system represents a large

model of a thin plate (Fig. 8.5) in which the following regions are pre-defined:

N = {1, 2, . . . , 150} (Number of active DOFs in the “Y” direction only)
< = {41, 42, . . . , 110} (The measured region)
Γ = {51, 52, . . . , 100} (The nonlinear region)
f = {67} , single excitation, F67 = 1.5N
m = {1, 2, 3, 4, 5} , for the frequency range 8 − 35Hz.

(8.39)
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8.11 Sample Case #3: pre-processing data (stage I)

where the symbol “Y” has been dropped from the DOF notation (e.g., “DOF

51Y”), because only vertical motions are considered to be measured. The re-

sults for a previous linear modal analysis (LMA) of the measured DOFs are also

included in Appendix B.

Figure 8.5: The Sample Case #3

8.11.1 Sample Case #3: NLMV extraction (stage II)

The extended NLMV {χ̃m} can be extracted from the measured responses <, by

applying (8.13) for every frequency point within the measured range:

{χ̃m} = dλ
2 − ω2cm,m [Φ<,m]

+
{
Ỹ< − Res<

}
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8.11 Sample Case #3: pre-processing data (stage I)

The standard NLMV
{
ΦTG̃

}

m
can be further recovered by (8.15):

{
ΦTG̃

}

m
=
{
ΦTF

}
m
− {χ̃}m , where

{
ΦTF

}
m
= [Φf,m]

T {F}f
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Figure 8.6: The extracted NLMV (solid line) and the correspondent “linear
thresholds” (dashed line), for the first five modes of the Sample Case #3

Fig. 8.6 shows the extracted NLMV of the Sample Case #3 for the first five

modes (solid line).

175



8.11 Sample Case #3: pre-processing data (stage I)

8.11.2 Sample Case #3: detection of the nonlinear mech-
anism (stage III)

The geometric “footprint” of the extracted NLMV (Fig. 8.6) at the first two

resonances suggest a cubic stiffness nonlinear type, according to the guidelines

presented in Section 8.5. This is correct.

8.11.3 Sample Case #3: degree of nonlinearity in a non-
linear mode (stage IV)

In Fig. 8.6, it can be seen that the extracted NLMV of modes 1 and 2 exhibit high

peaks at their own resonances, easily surpassing their respective “linear thresh-

olds”. They also exert high coupling effects in the remaining modes. According

to (8.19), modes 1 and 2 reach “nonlinear modal grades” of 75.56 and 16.52,

respectively. These marks classify them as “strongly nonlinear”, in agreement

with the observed nonlinear behaviour in the response. Most importantly, the

high grades of these modes confirm that the distortions in the response are fully

explained by the presence of nonlinearities, rather than more esoteric causes1.

In comparison, the NLMV of modes 3, 4 and 5 are very small, with “nonlinear

modal grades” of 0.078, 0.103 and 0.025, respectively. These marks agree with

their almost linear behaviour in the response. In a nonlinear modal superposition

context, these modes can be regarded as linear.

The selection mNL = {1, 2} can be automated on the aforementioned basis.

8.11.4 Sample Case #3: transformation to NL modal pa-
rameters via the FAT (stage V)

The extracted NLMV can be transformed to nonlinear natural frequencies and

modal damping functions, via the FAT. In agreement with the obtained “nonlin-

ear modal grades”, only modes 1 and 2 will be included in the nonlinear analysis.

By applying the iterative procedure shown in Fig. 8.4, page 166, the following

results are obtained after 10 iterations:

• Fig. 8.7 shows the variation of the nonlinear natural frequencies.

1Although nonlinearity is still considered an esoteric issue!.
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8.11 Sample Case #3: pre-processing data (stage I)

• Fig. 8.8 shows the variation of the nonlinear modal damping. Because of a

cubic stiffness nonlinearity, the variation is negligible, almost remaining at

the linear value (η = 0.1%).

• Fig. 8.9 shows the variation of the nonlinear eigenvector corresponding to

the forced DOF (67). Because of a cubic stiffness nonlinearity, the imaginary

component is also negligible.

• Fig. 8.10 shows the variation of three randomly chosen nonlinear eigenvec-

tors (real part only), corresponding to DOFs {51, 62, 92}. The imaginary

counterpart is not shown, as it exhibits negligible variation.

8.11.5 Sample Case #3: system’s quantification via poly-
nomials (stage VI)

Once the nonlinear modal parameters are known, they can be expressed as func-

tions of the nonlinear modal amplitudes, according to Section 8.8.

The numeric values of |P̃r| (for a given nonlinear mode) are first sorted from

minimum to maximum and placed in a horizontal axis. Its associated frequencies

generate a master index, for which the corresponding nonlinear modal parameters

are sorted and plotted in a vertical axis. Finally, the plotted values can be fitted

to polynomials of the type (8.27).

The characterization will be confined to modes 1 and 2 only, accounting only

for the real part of the nonlinear parameters. Due to negligible variation, the

imaginary counterpart was discarded and replaced by the linear value. The results

for the Sample Case #3 are shown in Figs. 8.11, 8.12 and 8.13, where the “+”

marks represent the extracted nonlinear parameters, and the solid line represents

a fitted polynomial of 4th. order. The horizontal axis has been extended 1.5

times beyond the last fitted point, to show the extrapolation characteristics of

the polynomials. This feature is essential to achieve an accurate prediction at

levels further apart from that used for the extraction.
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Figure 8.7: Nonlinear natural frequencies (λ̃r) for modes 1 and 2 of the Sample
Case #3
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Figure 8.9: Nonlinear eigenvectors for the forced DOF 67, for modes 1 and 2 of
the Sample Case #3
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modes 1 and 2 of the Sample Case #3
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Figure 8.13: Variation of the nonlinear eigenvectors (real part only) of three
randomly chosen DOFs ({51, 62, 92}) against modal amplitude, for the Sample
Case #3
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8.11.6 Sample Case #3: regeneration and prediction (stage
VII)

The regeneration process will be exemplified for the first mode, applying (8.26)

and (8.27). The same process must be repeated for all the nonlinear modes, here

modes 1 and 2.

Fig. 8.14 shows the first modal amplitude of the Sample Case #3, calculated

via our benchmark HBM code. The linear case appears in dashed line, while

the results for three different excitation levels, F = 1N,F = 1.5N and F = 2N

are shown in solid line. The polynomial-based predictions are displayed in “+”

marks, exhibiting remarkable accuracy.

Once the mNL nonlinear modal amplitudes have been separately regenerated,

a modal superposition is invoked to obtain the physical responses, via (8.28). The

regeneration/prediction for a randomly chosen DOF 52 is shown in Figs. 8.15 and

8.16, focusing on the modes 1 and 2, respectively. It can be appreciated that the

regenerated/predicted responses (“+”) match very well with the HBM solution.

8.11.7 Sample Case #3: detection of the NL-DOFs (stage
VIII)

Applying the procedure introduced in Section 8.10, q = 650 frequencies were

selected, distributed over the first 5 modes in the vicinity of the resonances. Note

that, in order to obtain a properly constrained set of equations, the “linear”

modes must be also considered, ensuring that they remain so. The following

results were obtained:

Fig. 8.17 shows the results of the analysis, clearly establishing that there are

three NL-DOFs n = {51, 62, 92} (which is correct). Fig. 8.18 shows the im-

proved results of the reduced problem (8.38), for the n DOFs only. The improved

coefficients are shown in Table 8.2.

Once the nonlinear elements have been localized and quantified, the response

for any excitation (not only sinusoidal) can be found, by employing the direct

path of the HMT method presented in Chapter 6. The regenerated/predicted

responses exhibit no discernible difference from the HBM responses in Figs. 8.15

and 8.16, so there is no need to display them.
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Figure 8.14: HBM results for the first modal amplitude, for three different exci-
tation levels, F = 1N,F = 1.5N and F = 2N (solid line). Also shown in “+”
marks, are the polynomial-based predictions

DOF Identified β(106N/m3) True β(106N/m3) Error %
51 1.5896 1.6 0.65%
62 1.4141 1.5 6.07%
92 7.9885 7.82 2.10%

Table 8.2: Numeric values for the identified coefficients β, as shown in Fig. 8.18
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Figure 8.15: Regenerated/predicted physical response (“+”) for the first mode of
DOF 52, and its HBM counterpart (solid line), for the Sample Case #3
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Figure 8.16: Regenerated/predicted physical response (“+”) for the second mode
of DOF 52, and its HBM counterpart (solid line), for the Sample Case #3
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8.12 Concluding remarks

Right at the beginning of this chapter, we listed some attributes that we would

expect from an “ideal” experimental NLMA method. We also said that the

introduced method, the R-HMT, might represent a good step forward towards

this objective.

So, perhaps the best way to asses the achievements of this chapter is to re-

examine this list, in the light of new knowledge:

• Simple to use, so engineers will embrace it.
√

• Compatible with LMA and standard FE techniques, but does not require

a FEM model.
√

• Relies as little as possible on expert input.
√

• Size of the model does not matter, within the usual computational restric-

tions.
√

• Works with measured data acquired anywhere in the system. The availabil-

ity of more measurements would simply yield higher-quality results.
√

• Allows a neat separation of the system into linear and nonlinear compo-

nents, previous to any quantification stage.
√

• Automatic detection of the nonlinear modes and the type of nonlinearity.
√

• Automatic and unambiguous localization of the nonlinear elements, pro-

vided there are associated measurements.
√

• If there are no such measurements, the method should still provide a valid

mathematical model within a useful range. It should allow, at least, the

regeneration/prediction of the response at selected DOFs for different levels

of excitation. This is one of the main aims of any method of this kind.
√

• The method should be numerically stable, relying on proven linear solvers

or linear least-squares algorithms. If nonlinear solvers are required, the

number of variables should be as small as possible. A good initial guess

should be available in such cases.
√
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8.12 Concluding remarks

• The method should not be case sensitive.
√

Hopefully, the reader will not disagree that the method does indeed go some

way to satisfy the above requirements.
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Chapter 9

Conclusions and further work

9.1 Conclusions

1. About the “describing function method” (DFM):

• The nonlinear formulation of this research was based on an already

well-proved theory, the DFM. This provided the main “engine” of the

nonlinear methods developed here. Given the close matching results

with the standard “harmonic balance method” (HBM) and experimen-

tal measurements, it can be concluded that the DFM is a good choice

for modelling nonlinearities.

• The first-order assumption adopted in this work sufficed to predict the

nonlinear behaviour of experimental measurements, with reasonable

accuracy. However, this does not represent conclusive evidence for

discarding higher-order effects in more complex structures, given the

simplicity of the conducted tests.

2. About the “explicit formulation” (EF):

• The EF methodology is conducted entirely in the physical domain.

This technique manipulates the physical coefficients stored in the sys-

tem matrices, thus the term “explicit”, delivering the nonlinear FRF at

a selected DOF as a closed-form expression, regardless of the system’s

size. Although its derivation is somewhat equivalent to the HBM, the
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9.1 Conclusions

responses were obtained by a simpler but novel approach involving the

ratio of two determinants.

• An optimized EF was specially developed for handling large structures.

Although the appealing aspect of physical connectivity conservation

is lost, the optimization maximises computing economy. This method

was validated against real measurements taken from a test rig1, and the

results confirmed that the optimized EF can reasonably characterize

the behaviour of large structures.

3. About the “reverse explicit formulation” (REF):

• A reverse path of the “explicit formulation”, REF, was implemented

as a nonlinear identification tool. In spite of successful results, it was

concluded that the computational cost of this approach was too high

to gain acceptance in a practical analysis. Still, the method provides

a much needed bridge between a full-size theoretical model and the

relatively small number of experimental measurements that may be

available.

4. About the “hybrid modal technique” (HMT):

• The HMT methodology is based on a novel nonlinear modal expan-

sion in the frequency domain, which is analogous to existing nonlinear

modal superposition techniques. The underlying linear system is ex-

pressed in generalized modal coordinates, while the nonlinearities are

kept in the physical domain. The use of hybrid coordinates is a cen-

tral feature, by which the localization of the nonlinearities is fully

addressed.

• The HMT delivers an “exact”2 representation of a nonlinear FRF. It

avoids some common approximations found in other NLMA methods,

1Described in Appendix C.
2Under the first-order assumption of this work. However, higher-harmonics can be included

in this formulation, provided that the nonlinear vector {G̃} is a multi-harmonic descriptor.
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where the variation of the eigenvectors at the non-resonant modes is

often neglected or approximated.

• When compared to traditional NLMA methods, it is believed that

the HMT method performs better in an experimental environment.

This happens because the nonlinearities are enclosed in a single, thus

stronger nonlinear term (the NLMV), whose extraction from measured

data is straightforward.

5. About the “fast approximation technique” (FAT):

• Although the nonlinear natural frequencies and modal damping are

not explicitly needed for identifying the system or regenerating the

responses at some other forcing level (by using the HMT), the FAT al-

lowed the analytical derivation of these parameters via newly-developed

expressions.

• The FAT decouples the nonlinear information contained in the NLMV

into single-modal nonlinear parameters, namely, nonlinear eigenval-

ues and eigenvectors. A further transformation provides a NL model

invariant to the excitation level, even with scarce measurements.

• The FAT obviates the need of nonlinear optimization techniques for

obtaining the nonlinear modal parameters, currently the standard ap-

proach. The FAT also provided links with other nonlinear methods,

as well as with standard linear modal analysis techniques.

• Based in numerical/experimental observations, Chong & Imregun (30)

and others have suggested an invariant relationship between the nat-

ural frequencies and the correspondent nonlinear normal modes. The

FAT provides mathematical grounds for these works, explicitly deter-

mining the analytical relationship.

6. About the “reverse - hybrid modal technique” (R-HMT):

• The R-HMT method is aimed at the nonlinear identification of large

structures. It operates as a successive application of several “stan-

dalone” techniques, also developed here, which can be used indepen-
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dently to tackle different aspects of nonlinear modal analysis. When

gathered together, the individual techniques provide a robust method-

ology, able to perform a nonlinear identification within the usual ex-

perimental restrictions, while exhibiting high computational efficiency.

• The R-HMT is basically a reverse path of the HMT, expanded to ac-

count for the out-of-range modes, also incorporating the FAT method-

ology. Thanks to a modal approach, the method obviates the need of

a FEM model, greatly simplifying an experimental NLMA.

• The localization of the nonlinearities was achieved by a linear least-

squares calculation over a predefined nonlinear region of arbitrary size.

This technique provides an unambiguous localization, provided that

the measured frequency range is a fair representation of the system.

• A NLMA technique developed by Chong & Imregun (30) was incor-

porated into the R-HMT, through the FAT link. This technique adds

flexibility to the method, by providing a “black-box” modal identifica-

tion when the input data is incomplete (e.g., the NL-DOFs have not

been measured). Although a physical identification is not possible in

this case, the addition still allows the regeneration/prediction of the

response within a limited range.

7. About the “nonlinear modal grades”:

• The “nonlinear modal grades” were introduced in Chapter 8, as a

mean to quantify the “strength” of the nonlinearities. Thresholds

associated with the terms “weakly-”, “moderately-” and “strongly-

nonlinear” were established, based on observations throughout this re-

search. Also, an absolute “linear threshold” was defined, below which

a nonlinear mode can still be considered to behave linearly.

The practical use of the “nonlinear modal grades” is the automatic

selection of the nonlinear modes to be included in the analysis. Cur-

rently, this decision relies on the analyst.

8. About the nonlinear detection techniques:
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9.2 Summary of contributions of this thesis

• Two nonlinear detection techniques were introduced in this work. These

are based in a visual assessment of the geometric shape, or ‘footprint”,

of the NLV and the NLMV. Specifically, it was shown that these tech-

niques are able to discriminate between cubic stiffness and friction

damping types.

9.2 Summary of contributions of this thesis

• The EF method, expressing the nonlinear FRF as the ratio of two determi-

nants.

• The REF method, an identification technique aimed to bridge the gap be-

tween a full-size theoretical model and the relatively few measurements at

specified DOFs.

• The analytical expressions for calculating nonlinear modal parameters, the

core of the FAT. They represent, in the author’s opinion, the single most

important theoretical contribution of this work to the field of NLMA.

• The HMT method, representing an “exact” modal expansion for a first-

order nonlinear FRF.

• The R-HMT method, a NLMA technique aimed at the experimental iden-

tification of large nonlinear systems. This method represents the most im-

portant contribution of this work to the practicing engineer.

• The ”nonlinear modal grades”, establishing thresholds to quantify the “strength”

of the modal nonlinearity.

• The detection of the type of nonlinearity, based in the geometric shape, or

“footprint”, of both the NLV and the NLMV.

• The localization of the NL-DOFs via a linear least-squares calculation, a

technique included in the R-HMT method.

197



9.3 Suggestions for future work

9.3 Suggestions for future work

• The nonlinear formulation of this research is based in first-order describ-

ing functions. Given that multi-harmonic functions are already available for

most nonlinearities, extending the developed methods to account for higher-

order terms should be straightforward. Although this approach would en-

hance the accuracy of the developed methods in a direct-path, the im-

provement in the identification capabilities is not so clear, given the current

difficulties in measuring higher-order FRFs.

• The “explicit formulation” (EF) was expressed as the ratio of two determi-

nants, and it was mentioned that its main drawback is computational cost.

Most of this effort is due to the recurrent calculation of a determinant.

Special techniques are required to re-calculate a determinant when only a

few elements of the matrix (the nonlinear elements) have changed. Solving

this issue would dramatically improve the computational efficiency of the

EF method, and its identification capabilities.

Professor J. R. Wright has suggested that the determinant of a large matrix

should be calculated from the trace of its eigenvalues. This idea, likely to

yield good results, is worth exploring as a first option.

• An exhaustive experimental validation of the ”nonlinear modal grades”

would be highly valuable, allowing the automatic selection of those modes

to be included in a nonlinear analysis, the rest considered as linear.

• Regarding the NL detection technique based on the NLV and NLMV’s

footprints, further work is needed to incorporate other nonlinearities to this

scheme, building a “footprint-library” for the on-line detection of nonlinear

types. Also, it is believed that a statistical analysis of the footprint -rather

than purely visual- would increase the reliability and automation of the

detection.
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9.4 Closure

9.4 Closure

In the grand scheme of things, NLMA is a relatively narrow method in a spe-

cialized engineering field. In practice, however, it is a broad and untidy topic.

Considering the huge amount of on-going research, things may get worse before

improvements are noticed.

This thesis represents just another effort towards the establishment of a gen-

eral, standard methodology which will settle, for once, the wild variety of existing

views and opinions regarding nonlinearities.

While it is fair to recognize that a number of other, more specialized techniques

are currently in use to tackle nonlinear issues, it is also true that simple and

general approaches often achieve more. The methods developed here are simple

and, in principle, general enough to handle most practical problems.

At the end of the day, it is the practicing engineering community who will

judge the merits of this work, and the usability of the introduced methods. The

author is all aware of the fact that even best theoretical methods do not mean

much without a comprehensive experimental validation, which, it should be ad-

mitted, this thesis lacks.

Shall we finish by saying that the author will feel rewarded if someone, some-

day, finds the methods developed in this thesis useful towards the solution of a

real engineering problem.
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Appendix A

Sample Cases #1 and #2

Sample Cases #1 and #2 are identical in terms of the underlying linear system,

but contain different types of nonlinear elements. Sample Case #1 contains purely

cubic stiffness NL elements, while Sample Case #2 has friction damping elements.

A.1 Underlying linear data

Fig. A.1 shows a 3-DOF system comprised of 3 masses, whose motion is defined

at all times by the response coordinates y1, y2 and y3. Each mass is linked to

each other and to the ground by stiffness and damping linear elements, creating

fully populated linear matrices. The system is driven by a single harmonic force

at mass m2.

The numerical values for all the coefficients are shown below in matrix format,

where a proportional hysteretic damping mechanism has been assumed.

M =




m1 0 0
0 m2 0
0 0 m3



 =




31.590 0 0
0 55.401 0
0 0 24.212



 kg

K =




k11 k12 k13
k21 k22 k23
k31 k31 k33



 =




200491.263 −64920.980 −36279.371
−64920.980 398118.365 −17503.205
−36279.371 −17503.205 132578.825



N/m
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A.1 Underlying linear data

Figure A.1: Diagram for the Sample Cases #1 and #2

F =






F1
F2
F3





=






0
12
0





N

η = 0.12%

Formulating the eigenvalue problem, we have:

(
−ω2M+K+ iD

)
{Y } = 0

from which the linear matrices of eigenvalues and (mass-normalized) eigenvectors

are obtained:

λ2 = 103∙




3.9581(1 + 0.0012i) 0 0

0 6.6045(1 + 0.0012i) 0
0 0 8.4458(1 + 0.0012i)



 rad
2

sec2

Φ =




0.1115 −0.0758 −0.1160
0.0537 −0.0727 0.0992
0.13577 0.1472 0.0343



 rad√
kg

The corresponding linear response is shown in Fig. A.2, where it can be seen

that the three expected resonances occur at approximately 10.01, 12.93 and 14.62

Hz.
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A.2 Nonlinear data
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Figure A.2: Sample Cases #1 and #2, linear response

A.2 Nonlinear data

In addition to the linear system, two nonlinear elements have been incorporated,

represented by the two thick links in Figure A.1. The numeric values of these

coefficients are given in Table A.1, and their correspondent force-displacement

curves are shown in Figures A.3 to A.6.

The nonlinear elements were placed as previously described to provide a suf-

ficiently general arrangement considering the size of the system. It has a mixture

of grounded and non-grounded NL elements, a “nonlinear region” comprised of

DOFs 2 and 3, as well as a “region away from nonlinearities”, represented by

DOF 1.
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A.2 Nonlinear data

DOF DOF Sample Case #1 Sample Case #2 Type

β(N/m3) γ(N)

1 1 — —

1 2 — —

1 3 — —

2 2 — —

2 3 7.82E6 1.25 non-grounded

3 3 1.44E7 2.10 grounded

Table A.1: Nonlinear coefficients for the Sample Cases #1 and #2
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Figure A.3: Sample Case #1, non-grounded cubic stiffness spring
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Figure A.4: Sample Case #1, grounded cubic stiffness spring

Figure A.5: Sample Case #2, non-grounded friction damping element

212



A.2 Nonlinear data

Figure A.6: Sample Case #2, grounded friction damping element
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Appendix B

Sample Case #3

A FE model of the Sample Case #3 is shown in Figure B.1, displaying a flat

rectangular plate which lies in the “XZ” plane, with its normal aligned in the

positive direction of the “Y” axis.

B.1 FEM model

The properties of the FEM model are listed below:

• Dimensions: 1m x 0.0032m x 1.4m

• Material properties:

– Material Young’s modulus = 207.0E9 N/m2

– Poisson’s ratio = 0.3

– Material density = 7800 kg/m3

– Material loss factor = 0.1%

• Computer model:

– Number of nodes = 150

214



B.1 FEM model

Figure B.1: FEM model of the Sample Case #3

– Number of elements = 126 shell elements with 6 DOFs per node

(x, y, z, θx, θy, θz). This type of element has a genuine drilling degree

of freedom about its main axis.

– Boundary conditions (BC): clamped at nodes {1, 2, .., 10} and {141, 142, .., 150}.

– Total number of DOFs after applying BC (N)= 780

• Excitation: f = {67Y}, a single harmonic force at DOF 67Y (node 67 in

the “Y” direction), with a magnitude of 1.5N. See Fig. B.4.
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B.2 Linear data

• Analyzed frequency range: 8-35 Hz., covering the first five modes of the

model. This yields m = {1, 2, 3, 4, 5}.

• Measured region <: DOFs {41Y, 42Y, . . . , 110Y}, see Fig. B.4. Outside

this region, measurements are not available.

• Nonlinear region Γ: DOFs {51Y, 52Y, . . . , 100Y}, see Fig. B.4. Nonlin-

earities are assumed to exist only within this region.

• Nonlinearities: an unknown number of discrete NL elements, attached

between any node within Γ and ground, acting along the “Y” axis.

According to the assumptions surrounding the definition of the various re-

gions1, we have:

n ∈ Γ ∈ < ∈ N, typically n� Γ ≤ < � N (B.1)

and

f ∈ <, typically f � < (B.2)

B.2 Linear data

The geometry was built using MODENT (70), a modal analysis software devel-

oped at Imperial College London, and then exported to FINES (71), a simple but

efficient finite element solver. The linear eigenvalue problem was then solved, cal-

culating the first 20 natural frequencies, damping loss factors and translational

eigenvectors. The results were sent back to the MODENT suite, allowing the

animation of the mode shapes on the computer model.

Figure B.2 shows the first 4 mode shapes of the structure, where it can be

verified that the results are in agreement with the theoretical linear predictions

(72).

The information obtained so far constitutes the so-called ”underlying linear

system” and suffices to describe its linear response. As an example, Fig. B.3

1See Section 3.4.
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B.2 Linear data

Figure B.2: Visualization of the linear mode shapes on the computer model

shows the linear FRF corresponding to DOF 82Y (node 82 in the “Y” direction).

Only the first five modes are shown, as grounded nonlinearities are unlikely to

affect higher modes in this type of structure.

Because each node in the FEM model contains 6 DOFs, and because the

actual formulation manipulates DOFs instead of nodes, the following convention

is handy for translating the node number to its correspondent DOF:

#DOF = (#node− 1) ∗ 6 +






1, if x direction
2, if y direction
3, if z direction
4, if θx direction
5, if θy direction
6, if θz direction






− (10 ∗ 6)
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B.2 Linear data

Figure B.3: Linear FRF of the Sample Case #3 corresponding to DOF 82Y

where the included term “(10 ∗ 6)” accounts for the first 10 clamped nodes at

Z = 0, which are simply dropped from the analysis as their displacement is zero

at all times. The clamped nodes at Z = 1.4 are also excluded for the same reason,

but they play no further role in renumbering the DOFs because they represent

the last rows/columns in the system’s matrices.

As an example, the DOF in which the excitation has been placed is calculated

as follows: the force is acting at node 67, along the “Y” axis, so its corresponding

DOF is:

FDOF = (67− 1) ∗ 6 + 2− (10 ∗ 6)
FDOF = 338

The pre-defined regions for the Sample Case #3, given both in DOF and

nodal notation, are:
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B.3 Nonlinear data

N =





(1, 2, 3, 4, 5, 6)
︸ ︷︷ ︸
11(x,y,z,θx,θy ,θz)

, (7, 8, 9, 10, 11, 12)
︸ ︷︷ ︸
12(x,y,z,θx,θy ,θz)

, . . . , (775, . . . , 780)
︸ ︷︷ ︸
140(x,y,z,θx,θy ,θz)





(DOF notation)
(node notation)

< =

{

182︸︷︷︸
41Y

, 188︸︷︷︸
42Y

, 194︸︷︷︸
43Y

, . . . , 596︸︷︷︸
110Y

}

(DOF notation)
(node notation)

Γ =

{

236︸︷︷︸
51Y

, 242︸︷︷︸
52Y

, 248︸︷︷︸
53Y

, . . . , 536︸︷︷︸
100Y

}

(DOF notation)
(node notation)

f =

{

338︸︷︷︸
67Y

}

(DOF notation)
(node notation)

where N,<,Γ and f are a-priori defined by the analyst. These regions are shown

in Fig. B.4.

B.3 Nonlinear data

The NL-DOFs1 for the Sample Case #3 are defined as n = {51, 62, 92}, as shown

in Fig. B.4. This vector represents three discrete nonlinear elements attached

between each NL-DOF and ground, characterized by cubic stiffness behaviour.

According to the restriction posed by the nonlinear region Γ, it can be observed

that n ∈ Γ. The numerical values for the β coefficients2 are given in Table B.1.

The nonlinear responses were obtained by numerical simulation, with a code

based on the “harmonic balance method”, which is a recognized benchmark for

nonlinear problems. The particular HBM code used in this work was written by

Dr. Evgeny Petrov (65) under a long term research program at Imperial College

London for the vibration analysis of nonlinear structures with different types of

nonlinearities, such as friction damping and cubic stiffness.

Figures B.5 and B.6 show the simulated nonlinear response of three randomly

chosen DOFs, within <. It can be seen that the first two modes exhibit strong

nonlinear effects, while the third mode behaves almost linearly. Higher modes are

1Those DOFs associated with nonlinear elements.
2See Chapter 3.
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B.3 Nonlinear data

undistinguishable from their linear counterparts. Fig. B.7(a) shows the linear and

nonlinear responses of a randomly chosen DOF 92Y, while Fig. B.7(b) shows the

corresponding linear residual Res92Y. A suitable choice of nonlinear modes as a

subset of m would be mNL = {1, 2}, as the remaining behave in an almost linear

fashion.
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B.3 Nonlinear data

DOF β(106N/m3)

51 1.6

62 1.5

92 7.82

Table B.1: Coefficients β for the Sample Case #3

Figure B.4: The measured region <, the nonlinear region Γ and the forced DOF

f for the Sample Case #3. The NL-DOFs n = {51, 62, 92} are marked with black

dots.
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B.3 Nonlinear data
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Figure B.5: Nonlinear response of the Sample Case #3, for three randomly chosen

DOFs. A Zoom-In of modes 1 and 2 is shown in Fig. B.6
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B.3 Nonlinear data
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Figure B.6: Zoom-In of the first two modes of Figure B.5
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Figure B.7: (a): linear (dashed line) and nonlinear (solid line) responses for DOF

92Y of the Sample Case #3. (b): linear residual for the same DOF
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Appendix C

Experimental validation of the

explicit formulation (EF)

C.1 Design and construction of the test rig

A test rig was designed and built for the purpose of acquiring nonlinear FRFs.

The design is similar to a rig previously made by J. Vaqueiro (22), which was

proved to behave nonlinearly. However, the main aim of the current experiment is

the validation of the EF method, as it contains the core nonlinear formulation of

all the methods developed in this research (EF, REF, HMT, FAT and R-HMT).

The design of the test rig was made in Pro-Engineer (73), a specialized CAD

software which allows the representation of mechanical assemblies as well as fin-

ished drawings. Figs. C.1 and C.2 show 3D representations of the computer

model, while Fig. C.3 specifies its relevant physical dimensions.

As seen in these figures, the test rig consists of a cantilever beam with a

rectangular cross-section, representing the linear part of the system. Its free end

is supported by a nonlinear spring, in the form of two identical thin beams running

transversally to the cantilever, and clamped at both ends. The transversal beams

behave nonlinearly even at small displacements, due to their thin rectangular
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C.1 Design and construction of the test rig

Figure C.1: Computer model of the test rig

Figure C.2: Exploded view of the computer model
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C.1 Design and construction of the test rig

Figure C.3: Physical dimensions (in mm.) of the test rig
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C.2 FEM analysis

cross-section. The assembly is completed by a single bolted-joint, joining the

three components in a symmetrical “T” arrangement.

The clamped boundary conditions were provided by 3 massive blocks, which

hold the beams’ ends in all directions, by means of a bolted fixture. The blocks

are further clamped by the same bolts to a common ground (a plate), not shown

in the computer model.

The rectangular sections were adjusted in such a way that a displacement of

5mm. at the “T” junction, generates stresses beyond the elastic limit on the

nonlinear spring (the transversal beams), according to an earlier FEM analysis.

This displacement was chosen because it is considerable less than the maximum

displacement allowed by the excitation system in use (1.5cm.).

All the components are made of A40 steel, whose main properties are

• Young’s modulus: E = 207E9N/m2.

• Poisson modulus: υ = 0.3.

• Density: ρ = 7800 kg/m3.

• Hysteretic damping: η = 0.1%.

The test rig was built according to the aforementioned specifications, as shown

in Fig. C.4.

C.2 FEM analysis

A FEM analysis was carried out to predict the linear response of the test rig,

previous and after its construction. Several models were built, from extremely

simple 3D-beam elements, to more sophisticated ones, conformed of a mixture of

3D-brick, 3D-shell, MPC (multi-point constraint) and discrete spring elements.

Fig C.5 show two of these models.

Given that the nonlinearities were expected to arise in the first mode only,

it was decided to stick with the simplest possible model which could accurately

represent this frequency range. The chosen FEM model is shown in Fig C.6,
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C.2 FEM analysis

Figure C.4: Finished assembly of the test rig
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C.3 The static test

Figure C.5: Two different FEM models for the test rig

which is composed of 66 nodes and 64 beam elements (2-node each), based in

Bernoulli’s beam theory. The central joint, shown in more detail in Fig C.7 as

node #22, was modelled with similar beam elements with a much higher stiffness,

to prevent relative motion.

C.3 The static test

A static test was performed prior to the dynamic test, to find out the real force-

displacement characteristics of the nonlinear spring. The test was carried out

using a load cell and a LVDT (linear variable displacement transducer), previously

calibrated against a standard dial gauge and mass.

The results of the static test are shown in Fig. C.8, showing the force-

displacement curve of the nonlinear component. A fitted polynomial revealed
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C.3 The static test

Figure C.6: Chosen FEM model

Figure C.7: Close-up at the central joint (node 22) of the chosen FEM model
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C.4 The linear test

Figure C.8: Static test

a function of the type:

F = 6500x+ 1.18x109x3 (C.1)

which fully characterizes the nonlinear spring.

C.4 The linear test

A hammer test was performed on the structure to approximately localize the

linear natural frequencies. A PCB-309A accelerometer was fixed at the central

joint, while a PCB-086D20 hammer with a soft tip provided impulses at the 22

nodal points of the linear beam, according to the FEM model of Fig. C.6. The

FRF for each impulse was calculated by a Brüel&Kjær (B&K) 2032 Dual Channel

Signal Analyzer, as shown in Fig. C.9.

These FRFs were further used to validate the linear theoretical results. Fig

C.10 verifies that the experimental mode shape of the fundamental response in

the range 40-50Hz. corresponds to the first bending mode of the structure.
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C.4 The linear test

Figure C.9: Results from the hammer test, showing the linear FRFs of some of

the tested points
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C.4 The linear test

Figure C.10: Experimental mode shape for the first mode of the test rig

The choice of a simple FEM model proved to be sensible because, as found out

here, neither model could predict the observed behaviour of the real structure, due

to uncertainty in boundary conditions and underestimated damping. Extensive

tuning of the FEM model was needed to match the theoretical and observed

responses.

The modifications included freeing the θx, θy DOFs in the otherwise clamped

ends of the transversal beams, as well as replacing the fixed θx DOF in the

clamped end of the linear beam, by a grounded rotational spring and a lumped

mass. Finally, a hysteretic damping of η = 0.479% was found to represent more

accurately the observed modal damping1. Once these modifications were imple-

mented, an almost perfect match was achieved for the first mode. Beyond this

frequency range, a close match was not expected due to the simplicity of the cho-

sen model. Fig. C.11 shows an overlay of the predicted and measured point-FRF

(node 22). It can be seen that the measured response exhibits a high content of

smaller modes between the two first predicted modes. These were verified to be

complex motions of the transversal beams, where the linear beam remains almost

static. Given that the smaller modes do not introduce strong interaction, they

were simply ignored.

1During the sinusoidal test, described later
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C.4 The linear test

Figure C.11: Experimental and theoretical point-FRFs
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C.5 The nonlinear test

C.5 The nonlinear test

A nonlinear test is a far more complex issue, requiring a number of specialized

techniques. Among them, we can cite:

• Type of excitation. It plays a fundamental role in the suitability of the

measurements. Some can generate responses “immune” to nonlinearities,

while others are unsuitable for nonlinear identification purposes. For this

end, high-quality measurements are needed, and the noise must be kept as

low as possible.

• Force control. Unlike a linear testing, it must be ensured that the force

remains constant during an FRF measurement. This conditions guarantees

that the observed deviations are purely due to nonlinear effects.

• Assembly defects. At large displacements, construction and assembly

defects can have a significant impact. These include gaps, pre-loads, mis-

alignments, etc. As demonstrated in (74), a cubic stiffness structure with a

pre-load can behave as an asymmetric softening spring1.

These issues will be discussed in more detail in the following subsections.

C.5.1 The sinusoidal excitation

The dynamic test was carried out using a sinusoidal excitation, selected for a

variety of reasons. Among them, we can highlight the excellent signal-to-noise

ratio of the obtained FRFs, due to its ability to concentrate all of the input energy

in a single frequency only. This, in turn, activates otherwise passive nonlinearities,

an essential feature for a successful nonlinear identification.

Another characteristic of a sinusoidal excitation is the greater control regard-

ing the strength (amplitude and power) of the signal. This allows a relatively

1This behaviour was clearly observed in our first tests.
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C.5 The nonlinear test

easy implementation of a feedback control on the input force of the structure, al-

leviating the well-known force dropout phenomenon at resonance1. As mentioned

before, this feature is also essential for performing a nonlinear identification.

The main drawback of the sinusoidal excitation is the longer measurement

time, when compared to other techniques. In order to acquire reliable measure-

ments, the system must be allowed to reach steady state before the next frequency

is read. For structures with light damping, this can be very time consuming. In

comparison, hammer testing is a popular choice given its low-profile requirements

and fast acquisition time. However, its relatively poor signal-to-noise ratio and

“immunity” to nonlinearities makes it unsuitable for a nonlinear identification.

C.5.2 The force control

In order to obtain reliable nonlinear data, each FRF must be measured at a

constant force level, applied by an electromechanical shaker. However, at resonant

conditions occurs a phenomenon called force dropout. This is caused, in part, by

a back emf interacting with the input voltage in the shaker’s armature, which

in turn reduces the effective voltage applied to the coil. The overall effect is a

sudden drop in the force applied by the shaker.

This condition is exacerbated by the fact that, at large armature displace-

ments, the internal magnetic field becomes nonlinear. The higher harmonics

introduced by this condition are unrelated to the structural nonlinearities, thus

increasing the noise content of the measurements.

A third source of error is the distortion in the waveform of the applied force,

which is meant to be sinusoidal. Due to a high mechanical coupling with the

structure, this waveform may scarcely resemble a sine wave, therefore invalidating

the FFT2 assumptions.

A closed-loop control for the input force can alleviate most of these problems.

The control tries to keep the applied force (as sensed by a load cell) at a constant

level, by boasting or reducing the shaker’s input voltage as needed. However, at

extreme displacements, the back emf varies rapidly, and the control may not be

1More on this later.
2Fast Fourier Transform.

237



C.5 The nonlinear test

fast enough to find suitable parameters. If this condition persists for a certain

time, the armature can get damaged due to excessive heating.

C.5.3 Procedure for the nonlinear testing

The nonlinear test was carried out according to the diagram shown in Fig. C.12,

discussed next:

A sinusoidal signal was generated by a Beran 402-FRA (frequency response

analyzer) and fed into a GW power amplifier. The amplified signal was then

applied to a Derriton-VP4 shaker, which provided the excitation force. A B&K-

8200 load cell, fixed to the central joint of the structure, received the applied

force by means of a long and thin stinger.

The stinger is a critical component of the measurement system, since it must

transmit all of the axial force, while diluting bending and torsional effects. This

is achieved by ensuring a high axial stiffness but relatively low moment of inertia,

plus genuine pin-joints at both ends (shaker and force gage).

Three Endevco-2222c accelerometers were wax-fixed on the linear beam, co-

inciding with the nodal positions 8, 15 and 22 (according to Figs. C.6 and C.7).

The three signals plus the load cell’s signal were fed to four B&K-2626 chargers,

and routed back into the 402-FRA. A standard oscilloscope was used to monitor

the signals going from the chargers to the analyzer.

The analyzer calculates the output-input ratio of each signal respect to the

load cell’s signal. This delivers the FRF of each measured point, for the actual

frequency. Note that the input force, sensed by the load cell, must remain con-

stant during the measuring time. This is achieved by an internal feedback control

(also built-in the 402-FRA), which boosts or reduces the applied voltage to the

shaker as required.

The force control of the 402 FRA was found to be rather slow, requiring a

few seconds before an adequate voltage was applied to the shaker. Very close to

resonance, this condition is troublesome, because the back emf varies rapidly and

the control struggles to find adequate parameters. If this condition persists for

longer than a user-defined time (30 seconds), the analyzer switches to the next
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C.6 Nonlinear FRF measurements

frequency, creating a spurious measurement. Fig. C.13 shows the nonlinear test

being carried out.

C.6 Nonlinear FRF measurements

Nonlinear FRFs were measured for several points along the linear beam, for

different force levels within the range 0.5−1.5N . The same FRFs were numerically

obtained by the EF method presented in Chapter 4.

Fig. C.14 shows the results for the point-FRF, for four increasing levels of ex-

citation. The linear FRFs are shown for each case, both numerical (dashed line)

and measured (“+” marks). Overlying are the nonlinear counterparts, showing

the numerical (solid line) and measured (“x” marks) results. A reasonable agree-

ment is appreciated for the first bending mode of the structure (the fundamental

response).

Observe that the numerical excitation level Fth needed to match a measure-

ment taken at a level Fexp is, in general, lower. This is probably due to a pre-load

effect because of a defective assembly, as deduced from the increasing trend. Also,

the effect of the slow force control is more evident at higher levels of excitation,

as we move closer to resonance. The scattered points in this region are believed

to be caused by a force dropout, rather than a true nonlinear behaviour.

In spite of all this, it can be concluded that the EF method can reasonably

characterize the nonlinear behaviour of a real nonlinear structure.
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C.6 Nonlinear FRF measurements

Figure C.12: Flow chart of the nonlinear test
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C.6 Nonlinear FRF measurements

Figure C.13: The nonlinear test
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C.6 Nonlinear FRF measurements

Figure C.14: Experimental and EF-predicted nonlinear point-FRFs (dB) for four

increasing levels of excitation, covering the first mode of the test rig
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