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ABSTRACT

Structural dynamics model updating has been defined as the adjustment of an existing
analytical model using experimental data such that the model more accurately reflects the
dynamic behaviour of the structure.

The aim of the present work was to develop a practical approach for updating structural
dynamics models. This was achieved by critical investigation of existing methods and by
exploring new techniques. Many of the recently-developed updating techniques were
classified and presented in a consistent notation. Location and subsequent updating of
modelling errors were investigated using (i) modal data and (ii) frequency response
function (FRF) data.

Limitations of model updating using modal data were verified and illustrated by
employing the error matrix method. A new procedure was proposed and various mode
expansion techniques to overcome experimental coordinate incompleteness were
compared. Despite numerical improvements to the error matrix procedure, updating
using modal data remained far from being satisfactory.

Particular attention was given to an updating technique using measured frequency
response functions (FRFs) directly: the Response Function Method (RFM). Analytically-
generated test cases and experimental data for a free-free beam showed that the RFM can
locate modelling errors in the realistic case of noisy and incomplete experimental data.
Application of statistical analysis tools proved to be successful in obtaining more reliable
error estimates.

The RFM was further developed to include updating of damping matrices although some
reasoned assumptions about the fotm of the damping should be made. Recommendations
were made for appropriate measurement sites and frequency points selection. Coordinate
expansion of experimental FRF data by new receptance column expansion techniques and
model reduction were also addressed. Locating structural joint modelling errors was
investigated and the benefits of a new approach introducing additional elements in the FE
model at joints were demonstrated. Finally, a recommended strategy for updating
structural dynamics models was presented.
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NOMENCLATURE

Basic Terms, Dimensions and Subscripts

translational degrees of freedom/coordinates
rotational degrees of freedom/coordinates
total number of degrees of freedom/coordinates
number of primary/master/measured DOFs

(also denoted by subscript 1)
number of secondary/slave/unmeasured DOFs

(also denoted by subscript 2)
number of included/effective modes
current mode number
number of correlated mode pairs
number of frequency points
integers
frequency of vibration (in rad.s-l; Hz)
4-l

Matrices, Vectors and Scalars

matrix
column vector
diagonal matrix
transpose of a matrix; vector (i.e. row vector)
identity matrix
null matrix
inverse of a matrix
generalised/pseudo inverse of a matrix
complex conjugate of a matrix
matrices of left and right singular vectors
rectangular matrix of singular values
sensitivity matrix
transformation matrix
deleted matrix
expanded matrix
reduced matrix
norm of a matrix/vector
value of a norm/error/perturbation



Spatial and Modelling Properties

INI mass matrix
Kl stiffness matrix
PI damping matrix
[MA];  . . analyticaJ/theoretical/predicted/FE  mass; . . . matrix
Wxl; . . experimentally derived/test mass; . . . matrix
VMl=[Mxl - WA I; . . mass; . . . error/modification matrix
[Mu]=[MA]+ [AM]; . . updated/refined/improved mass; . . matrix
Nm

Nk
Nd

total number of mass elements
total number of stiffness elements
total number of damping elements

Modal and Frequency Response Properties

natural frequency of rb mode (rad.s-1)
structural damping loss factor of r* mode
modal/effective mass of rth mode
modal/effective stiffness of rth mode
eigenvalue matrix
unit-normalised mode shape/eigenvector  matrix
mass-normalised mode shape/eigenvector  matrix
rth mode shape/eigenvector
j* element of rth mode shape/eigenvector
receptance matrix
dynamic stiffness matrix

DOF(s)

FE
FRF
MAC
COMAC
RFM
SVD

ajk(O)  = (xjk&);  l=l,n; l#k individual receptance element between coordinates j and k
(response at coordinate j due to excitation at coordinate k)

rAjk = @jr @IX modal constant
[RI residual matrix

Standard Abbreviations

degree(s) of freedom
error matrix method
finite element
frequency response function
modal assurance criterion
coordinate modal assurance criterion
response function method
singular value decomposition
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Vibration phenomena have always been a cause of concern to engineers, even more so
today as structures are becoming lighter and more flexible due to increased demands for
efficiency, speed, safety and comfort. The effects of vibration present major hazards and
operating limitations ranging from discomfort (including noise), malfunction, reduced
performance, early breakdown and structural failure which, in the worst case, can be
catastrophic. It is clear that a thorough understanding of the vibration levels encountered
in service is essential. Hence, accurate mathematical models are required to describe the
vibration characteristics of structures, which subsequently can be used for design
purposes to limit the negative effect of vibrations.

The earliest main contributions to the theoretical understanding of the vibration
phenomenon were made in the late 1600s by Newton and Leibnitz. Newton’s laws define
first principles of interaction of forces between and/or on bodies for both statics and
dynamics. Later, significant contributions were made by, among others, Bernoulli
(1732), who used Bessel functions to describe modes of continuous systems, Kirchhoff
(1850), on the theory of plate vibration, Rayleigh (1877), on the theory of sound, and
Love (1926),  who worked on the mathematical theory of elasticity which is used as the
basis of today’s vibration analysis. Earlier this century major contributions to the
theoretical understanding of vibration phenomena were made by Den Hartog 111, Bishop
and Johnson 121 and Timoshenko 131.

Today, the study of the dynamic behaviour of a structure can be divided into two separate
activities, namely analytical predictions and vibration tests. For simple structures, such
as beams and plates, good analytical predictions using closed form solutions can be easily
found in various reference books and tables (such as Blevins 141) or lumped parameter
systems can be used to describe the dynamic behaviour. For more complex structures the
most widely used analytical tool is the Finite Element (FE) method, modal testing and
analysis being the experimental counterpart. Due to different limitations and
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Chapter 1 - Introduction

assumptions, each approach has its own advantages and shortcomings. Both techniques
are described in sections 1.2 and 1.3.

1 . 2 THE ANALYTICAL APPROACH

The Finite Element method assumes that a continuous structure can be discretised by
describing it as an assembly of finite (discrete) elements, each with a number of boundary
points which are commonly referred to as nodes.

Any structure can theoretically be divided into very small elements such that a good
approximation of the displacement shape (or stress field) can be obtained for each element
using second- or third-order shape functions. To obtain continuity across element
boundaries; displacement or stress approaches employ the following three arguments (i)
equilibrium, (ii) compatibility and (iii) the constitutive laws, while energy approaches rely
on the principal of virtual work equating internal work to external work. Subsequently,
the individual elements can be assembled and the acquired set of simultaneous equations
solved. In its early days (1960s) the Finite Element techniques found their main
application in the area of stress analysis, but the benefit of FE methods for dynamic
analysis was soon recognised.

For structural dynamic analysis, element mass, stiffness and damping matrices are
generated first and then assembled into the global system matrices; [MA], [Kd and [DA].
The mass and stiffness matrices are easily defined in terms of spatial and material
properties of the system. The damping, however, is not so easily modelled and the
damping matrix is usually omitted from the system, although it is possible to assume
proportional damping in a simplified representation. In most cases, dynamic analysis is
carried out assuming an undamped system giving the modal properties; the natural
frequencies OAr and corresponding eigenvectors {$A}r. The modal solution can
subsequently be used to calculate frequency response levels for the structure under study.

Element system matrices have been developed for many simple structures, such as
beams, plates, shells and bricks. Most general-purpose FE packages have a wide range
of choice of element types, and the user must select the appropriate elements for the
structure under investigation and its particular application. Further theoretical background
and practical implementation of the FE method are given in various text books, such as by
Cook 151, Bathe 161 and Zienkiewicz 171.
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Chapter I - Introduction

The FE method is extensively used in industry as it can produce a good representation of
a true structure. However, one must bear in mind that, due to limitations in the FE
method, an FE model is always an approximation of the structure under study.
Especially for complicated structures, approximations can lead to errors being introduced
into the FE model. Inaccuracies and errors in an FE model can arise due to:

(1)
(2)

(3)
(4)
(5)

(6)

inaccurate estimation of the physical properties of the structure;
discretisation errors of distributed parameters due to faulty assumptions
in individual element shape functions and/or a poor quality mesh;
poor approximation of boundary conditions;
inadequate modelling of joints;
introduction of additional inaccuracies during the solution phase such as
the reduction of large models to a smaller size; and
computational errors which are mainly due to rounding off.

These approximations can - depending on the operator and, to a lesser extent, on the
package used - lead to a wide range of results if the same structure is analysed by
different analysts, as indicated by the DYNAS survey 181.  Therefore, there is a need to
verify and validate FE models if accurate predictions are sought.

1 . 3 THE EXPERIMENTAL APPROACH

The experimental approach relies on extracting the vibration characteristics of a structure
from measurements. It consists of two steps, (i) taking the measurements and (ii)
analysing the measured data. In the last two decades substantial progress has been made
in the experimental approach thanks to continued development of modal analysis
techniques, the benefits of better data-acquisition and measurement equipment as well as
advances in computing hardware and software.

Excitation of the structure under study can be by either single- or multi-point input. The
structure can be excited in various ways: (i) by a short impulse, (ii) by applying a stepped
sine excitation over the frequency range of interest, (iii) using white noise or pseudo
random noise. The driving force is in most cases applied by a shaker or, in the case of
impact testing, by an instrumented hammer. The response is measured at one or more
points by accelerometers which are connected to a data acquisition device, usually an FFI
analyser.
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Subsequent modal analysis of the stored measured data, or modal identification, is carried
out to obtain the modal properties of the system. Various techniques have been
extensively developed and ranging from single-degree-of-freedom curve fits (as proposed
in 1947 by Kennedy and Pancu 19]) to global multi-degrees-of-freedom curve fits. The
theoretical background of these methods and practical aspects of vibration measurement
techniques are discussed by Ewins [lo].

Vibration measurements are taken directly from a physical structure, without any
assumptions about the structure, and as such they are considered to be more reliable than
their FE counterparts. However, limitations and errors in the experimental approach can

occur due to:

(1)
(2)

(3)

(4)

(5)
(6)

experimental errors due to noise, the application of windows and filters;
the assumption of linear response while there can also be non-linear
structural response and/or non-linearities in the measurement system ;

poor modal analysis of experimental data, resulting in either under-
analysis, not all modes are identified or, on the other hand, over-
analysis, leading to false modes;
limited number of measured degrees of freedom due to physical
inaccessibility and/or equipment limitations;
not all modes of interest being excited e.g. due to excitation at a node,
difficulty in measuring rotational degrees of freedom.

A variation in experimental results can also be obtained, depending on the experimental
set-up and operator, as highlighted by the SAMM survey [ll].

1 . 4 CORRELATION AND UPDATING

Both the analytical and experimental approaches to vibration analysis effectively assume
that the vibration characteristics of continuous systems can be described by a
mathematical model possessing a limited number of coordinates and modes, which is a
valid assumption within a given frequency range. Fig 1.1 gives an overview of the
analytical and experimental routes to various vibration data sets. Note that modal analysis
of measured data to obtain a theoretical description of the structure under study is also
referred to as model- or system identification. An FE model can be compared to its

experimentally-derived counterparts at any one level a-e in Fig. 1.1. Analytical versus
experimental model comparisons are also referred to as model correlation, validation or
verification.
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ANALYTICAL Physical nrooerties of the real structure

____ @--- Continuous models,
described by partial differential equations

Model

Spatial models, discrete, described by
ordinary matrix differential equations

[Ml [Kl PI

Modal models (continuous or discrete)
(J+ {Or,

‘1: -
’ I/

a--- Response models_-- described by impulse responses (IRFs)  or - zys22 ’
frequency responses (FRFS) Qii  (0) identification /

I/ /
a subset of

-- _ - a - - Input-Output models
described by transfer functions

EXPERIMENTAL Dynamic properties of the real structure
PATH (dynamic measurements)

Fig. 1.1: Overview of analytical and experimental models

Model updating can be defined as the adjustment of an existing analytical model which
represents the structure under study, using experimental data, so that it more accurately
reflects the dynamic behaviour of that structure. This is represented graphically in Fig.
1.1 where a combination of analytical and experimental data are used to generate an
updated model. Model updating is also on occasions referred to as model adjustment,
alignment, correction or refinement. It is not to be confused with model optimisation or
modification which aims to change the structure under study to achieve a pre-set required
response behaviour under operating conditions.

It is generally believed that more confidence can be placed on experimental data as
measurements are taken on the true structure. Therefore, the analytical model of a
structure is usually updated on the strength of the experimental model. One can identify

at least six criteria of increasing complexity which a good model ought to satisfy. For
each of these levels of correctness, the updated model has to reproduce:

(9 the modal properties at measured points;
(ii) the measured frequency response functions;
(iii) the modal properties at unmeasured points for measured modes;
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(iv> the unmeasured frequency response functions;
(v) (i-iv) and the correct connectivities;
(vi) the correct model.

The difference between criteria (v) and (vi) is that for criterion (v) a limited (measured)
frequency range is considered while for (vi) the model satisfies all criteria for frequencies
beyond the measured frequency range. A perfect model, i.e. one that correctly represents
the structure for all frequencies and applications, is a contradiction in terms. A very
detailed model can approach reality. However, if the model is too detailed it defeats its
own purpose, namely: to have a simple and easy-to-handle tool for theoretical
predictions. Hence, the purpose(s) of the model and the objectives of the model updating
exercise are to be determined prior to updating. The criteria (i)-(vi) can also be set out in
tabular form providing a schematic overview of the various stages in model updating.

measured (limited) measured+
unmeasured

modal properties
modal properties frequency + frequency

response data response data

measured (incomplete) i . . .ln

measured +
unmeasured
(complete)

ii iv (uniqu4Znodel)

connectivities V

Table 1.1: Stages in analytical model updating

Structural dynamics model updating can be divided into two steps: (i) locating the errors
and (ii) correcting them. Most diffkulties are encountered in the first step, or localisation.
The difficulties in locating the errors arise due to:

(0
(ii)
(iii)
(iv)

insufficient experimental modes;
insufficient experimental coordinates;
size and mesh incompatibility of the experimental and FE models;
experimental and other random and systematic errors (as discussed in
sections 1.2 and 1.3).
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1.5 SCOPE OF THESIS

Although the requirements for model updating are well understood, and many methods of
updating have been suggested in recent years, a logical updating strategy applicable to real
structures is still largely unavailable. As there is an obvious need for reliable analytical
models and therefore for a reliable updating approach, the main objective of this project is
to develop a robust and practical updating strategy applicable to real engineering
strut tures.

In order to reach this goal three distinct steps have been identified, namely:

(9 to carry out a literature survey of previous work, with the aims of (a)
obtaining an overview of existing methods (b) envisaging advantages
and disadvantages of the various methods, and (c) identifying problems
encountered during updating;

(ii)

(iii)

to select promising techniques and to investigate them in -more detail
with a view to develop an updating method capable of addressing the
problems encountered during practical implementation; and
to propose an updating strategy based on the experience gained in (i)
and (ii).

Chapter 2 of this thesis contains an extensive literature review of previous work in a
consistent format and notation. Chapter 3 presents an investigation of one of the model
updating techniques using modal data - the error matrix method (EMM) - and the
advantages and disadvantages of using modal data are discussed. An improved procedure
is proposed. A comparison of various mode shape expansion techniques is presented in
chapter 4. Chapter 5 focuses on an updating method which uses frequency response data
directly, the response function method (RFM). As the RFM has numerous advantages
over the EMM and indeed other methods using modal data, further work concentrates on
this technique. Suggestions for improvements to increase the success of the RFM are
made. Chapter 6 presents a case study illustrating the practical use of the RFM in the case
of damping and true experimental data. Chapter 7 considers some computational aspects
of the RFM and coordinate incompatibility is addressed in chapter 8. Two receptance
column coordinate expansion techniques are proposed and their application within the
RFM is investigated. The implications of analytical model coordinate reduction on the
RFM is also addressed. Chapter 9 considers practical implementation of the RFM in
more detail by addressing problems introduced by the updating of structural joints and
suggests possible remedies. Chapter 10 is devoted to an experimental case study of a 3-
bay truss structure and, finally, a recommended updating strategy is proposed and the
main conclusions of this research are presented in chapter 11.
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CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

There is a growing interest in updating analytical mass and stiffness matrices using
measured data as confidence in experimental data has increased due to advances in
measurement and analysis techniques. In recent years many updating methods have been
proposed and this chapter offers a review of the current literature. The purpose of this
chapter is threefold:

(0

(ii)
(iii)

to present a number of state-of-the-art model updating techniques in a
consistent and unified notation,
to identify potential difficulties the methods must address,
to suggest new avenues for research.

2.2 TECHNIQUES FOR COMPARISON AND CORRELATION

Before updating an analytical model, it is good practice to compare the experimental and
analytical data sets to obtain some insight as to whether both sets are in reasonable
agreement so that updating is at all possible. In almost all cases the experimental data set
is incomplete as measurements are taken at selected locations in selected coordinate
directions and only a limited number of modes can be identified.

2.2.1 Direct comparisons

The most common method of comparing natural frequencies from two different models is
to plot experimental values against analytical ones for all available modes. The points of
the resulting curve should lie on a straight line of slope 1 for perfectly correlated data. A
systematic derivation suggests a consistent error (e.g. in material properties) while a large
random scatter suggests poor correlation.
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Mode shapes can also be compared in the same fashion by plotting analytical mode
shapes against experimental ones. For perfectly correlated modes, the points should lie
on a straight line of slope 1. The slope of the best straight line through the data points of
two correlated modes is also defined as the modal scale factor (MSF) [lo]:

(1)

Frequency response functions are normally compared directly by overlaying several on
the same frame.

2 . 2 . 2 The modal assurance criterion (MAC)

The modal assurance criterion (MAC), which is also known as mode shape correlation
coefficient (MCC), between analytical mode i and experimental mode j is defined as [12]:

(2)

A MAC value close to 1 suggests that the two modes are well correlated and a value close
to 0 indicates uncorrelated modes.

2 . 2 . 3 The coordinate modal assurance criterion (COMAC)

The COMAC is based on the same idea as the MAC but in this case an indication of the
correlation between the two models for a given common coordinate is obtained [13]. The
COMAC for coordinate i is defined as:

I=1
COMAC(i) = L L (3)

c (WA): c (w& 2
r=l I=1
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where L is the total number of correlated mode pairs as indicated by the MAC values.
Again, a value close to 1 suggests good correlation.

2.2.4 Orthogonality methods

The most common methods of comparison based on the property of modal orthogonality
are the cross orthogonality method:

[COMA.xl  = [$AITIMA] [@Xl

and the mixed orthogonality check:

[MoC,,] = [@xI~[MAI[QXI

(4)

(5)

techniques 114-161. For perfect correlation, the leading diagonal elements of the
orthogonality matrix must all be equal to 1 while the off-diagonal ones should remain 0.

2.2.5 Energy comparisons and force balance

The kinetic and potential energies stored in each mode for both experimental and finite
element models can be computed using the following expressions 11’1:

KINETIC ENERGY = 112 {&}T [M] {e},

PGTENTIAL ENERGY = l/2 {@}T [K] {$}r

A force balance llWJl can be obtained by comparing modal forces:

(6)

(7)

where r is the mode number.
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Another possibility is to determine a force error vector by using mixed experimental and
FE data 119JOl:

The energy comparison and force balance techniques are not as widely used as MAC and
COMAC.

2 .3 SIZE AND MESH INCOMPATIBILITY

In most practical cases, the number of coordinates defining the finite element model
exceeds by far the number of measured coordinates. Also, measurement coordinates are
often not the same as finite element master coordinates, some coordinates being too
difficult to measure (e.g. rotations) or physically inaccessible (e.g. internal coordinates).
As most updating techniques require a one-to-one correspondence between the two data
sets, there are two possible avenues to explore:

(i>

(ii)

reducing the finite element model by choosing the measured degrees of
freedom as masters, or
expanding the measured data so that they are the same size as their finite
element counterparts.

2.3.1 Model reduction

Reducing the size of the analytical model can be achieved using a matrix condensation
technique, various formulations of which can be found in 121-2al. These techniques rely
on choosing a number of coordinates as masters and expressing the initial mass and
stiffness matrices in terms of these coordinates only. Hence, the order of these matrices
is reduced to the number of masters selected. The two main approaches are dynamic
condensation where the correct stiffness properties are retained while the inertia properties
are approximated and static condensation where the situation is reversed. A comparison
of the various reduction techniques is given in 127~281.  In most cases the choice is
limited to the reduction technique(s) implemented in the finite element package used.

The most popular reduction technique is the dynamic condensation due to Guyan 1211:
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[MR]= [M111- [Ml21 K22]-1 D&l- K121 I$# [M211+
Kd K221-1 D4221 K221-1 F211

KRl = [K111- K121 DW1 K211 (9)

where subscript 1 denotes master or measured DOF(s) and subscript 2 denotes slave or
unmeasured DOF(s). It should be borne in mind that reduction techniques such as
Guyan’s  were formulated in order to be able to obtain the eigensolution of large matrix
eigen-equations and not for model updating purposes. Hence it is not surprising to
discover that the problem of model updating is further compounded by several additional
problems due to model reduction. The choice of master coordinates is of paramount
importance to the success of the reduction and one should refrain from choosing
coordinates as masters because they happen to coincide with the measurement
coordinates.

Some significant disadvantages of reduction are that:
6)

(iii)

2.3.2

the measurement points often are not the best points to choose as
masters as they are always on the surface of the structure while for
dynamic condensation it is vital to select masters corresponding to large
inertia properties;
there may not be enough measurement coordinates to be used as
masters;
all reduction techniques yield system matrices where the connectivity of
the original model is lost and thus the physical representation of the
original model disappears; and
the reduction introduces extra inaccuracies since it is only an
approximation of the full model.

Coordinate expansion

An easy way to fulfil the requirement of coordinate compatibility is to substitute the
unmeasured coordinates by their analytical counterparts. This approach is closely related
to updating using matrix mixing methods which is discussed in section 2.4.4, but can be
used in most updating methods. It can be regarded as a form of coordinate expansion and
has the advantage that it does not require additional computations. However, this
substitution can lead to unstable solutions and erroneous results, especially in direct (non-
iterative) updating techniques, and hence some mode shape coordinate expansion
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techniques have been proposed for use during updating. To date there exist at least four
possible approaches to expand the measured mode shapes to the size of the analytical
ones.

(i) The inverse reduction method, also known as ‘Ridder’s method, [25], makes use of
the analytical mass and stiffness matrices and is defined as follows:

where {@lx} is the measured part of the eigenvector while { 4~~)  is the unknown part.
Rearranging the lower matrix equation gives:

NE,,) = -(&21A - a; W221Al 1-l W211-  $ [M211) {+,,I (10)

Alternative derivations of an expression for { 4~~3  can be obtained by rearranging the
upper matrix equation or by using both equations to find an expression for the expanded
set of coordinates. This technique has the disadvantage of relying on knowledge of the
analytical mass and stiffness matrices and therefore errors in the analytical system
matrices will influence the quality of the expanded measured coordinates directly.

(ii) O’Callahan  et al [2g] suggest that the rotational degrees of freedom for the
experimental data set can be derived from those given by the analytical eigensolution.
Assuming that each measured mode shape can be expressed as a linear combination of the
analytical mode shape, and by rearrangement of the equation obtained the expanded mode
is defined as (see chapter 4):

(11)

A similar formulation has been proposed by Lipkins and Vandeurzen r3*] to obtain
smoothed expanded measured data. Smoothing is achieved by selecting fewer analytical
modes for expansion (m) than there are measured coordinates (n), thus [~ll]nxm is
overdetermined and a generalised inverse returns a least squares solution which smoothes

Page 13



Chapter 2 - Literature review

combinations of analytical and experimental modal data ~61 A comparison of these
variations is presented by Gysin in [311*

(iii) The experimental modes can also be expanded by interpolation of the measured
coordinates using spline fits [32J31. One advantage of using interpolation is that there is
no need for an analytical model. At the same time this is also a disadvantage as there are
no further data to rely on to verify the quality of the expansion. Another shortcoming of
the interpolation method is that the expanded modes become less accurate as the ratio of
unknown to known information increases. This restriction equalIy applies to the previous
two expansion methods but to a lesser extent.

(iv) Recently, another expansion method using the analytical mode shapes and the MAC
matrix has been suggested by Lieven and Ewins [34]. For a number of correlated mode
pairs the analytical modes are scaled to match the corresponding experimental modes and
the expanded coordinates are calculated as follows:

[+2xl = [$21$221*  MQAIT (12)

For model updating employing response data coordinate incompatibility has largely been
ignored and either reduced models, with all its disadvantages, are used or the missing
coordinates are substituted by their analytical counterparts. Response data coordinate
incompatibility is addressed in this thesis in chapter 8, where, for the first time, two
receptance column expansion techniques are proposed and the application to model
updating is investigated.

2.4 MODEL UPDATING METHODS USING MODAL DATA

In recent years, many methods to improve the quality of analytical models using
experimental data have been proposed and this process is often referred to as model
updating. The 1985 report by Dormer I”] contains an extensive literature study and
offers a comparative study of some of the main methods. Similar comparisons can also
be found in refs. 135~36]. Recent literature reviews have been published by Ibrahim and
Saafen i3’l , Ceasar I38] and Heylen and Sas 139]. The purpose of this section is to
present some of the most commonly used model updating techniques in a unified and
consistent notation.
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2.4.1 Methods using Lagrange multipliers

The method proposed by Baruch Wl assumes that the mass matrix is correct and updates
the stiffness matrix by minimising the distance:

& = ll[K,]-“-5 ([KU] - [KA]) [KA]-0.511 Wa)

between the updated and the analytical stiffness matrices using Lagrange multipliers.
Applying the following constraint equations:

[Ku1 - P$,lT = 0

[$XITIKUl Nx I- L’ci$l= 0

the updated stiffness matrix can be obtained as:

where
[AK1 = - [KAICQX  110~ lTIMJ - [MAI[@x I[@x lTIK~l +

[MAIE$x  l[$x lTK~I[9~I[~~lT[M~l+ ~~AI~~xI~~~~~~x~~~~A~ Wb)

Berman I411 uses the same approach to update the mass matrix by minimising:

E = ll[~,@*~ ([MU] - [MA]) [MA]-‘*~ II Wa)

using Lagrange multipliers and the orthogonality condition as the constraint equation. The
updated mass matrix is obtained as:

[MuI = [MAI + [ml

where [AMI = WAI [Ox 1 ([$x lTIM~I[$x I)-’
([ II -[$xI~[MAI[+xI) ([&IT [M~l[&l)-’ I& lTIM~l WW
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For the updated stiffness matrix there are two additional constraint equations, namely the
eigenvalue equation and the symmetry condition, and the updated stiffness matrix is
defined as:

Wul = [$I + [AK1 + [AKIT

where
[AK] = 0.5[M~l[~~l([~~lT[~~l~~~l  + ~~~,l)[~lTIMul  - [KAI[+xI[@x  lTIM~l  (14~)

Ceasar 14’1 uses the same approach as Berman by applying the same three constraints but
also includes the preservation of the system’s total mass and that of the interface forces.
A more detailed formulation of the problem is considered at the expense of increased
computational effort and applicability to small and banded matrices only.

Similar updating techniques with different Lagrange multipliers have been proposed by
Wei 1431 and O’callahan and Chou 141. It has since been suggested that these methods
are applicable to special cases only 1451. A detailed review of methods based on
Lagrange multipliers is given in 13*l.

Likewise, Beattie and Smith 146,471, minimise the following equation, assuming the
mass matrix is correct:

8 = II[MA]-0.5  ([KU] - [KA]) [MJ0*511 (15a)

subject to [Ku][$x] = [MU][&]ro$] and [K] = [KIT giving:

[AK] = [MA][~X][‘~,I[~XI~[MAI - [KAI[@xI([+x  lTIK~I[@~lY1[$~ lTIK~l (15b)

which is comparable to equation 14c. This is solved using algorithms based on multiple
variable secant methods for non-linear system optimisation. The use of these additional
techniques is demonstrated in [@Il.
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2.4.2 Direct method based on matrix perturbation

Chen, Kuo and Garba [49] define the updated mass and stiffness matrices as:

[MuI = [MAI + [AM

[Ku1 = [KAI + [AK1

using matrix perturbation theory to obtain:

A modified version of this method H8] includes a procedure to update the damping
matrix.

2.4.3 Error matrix methods

The error matrix between two experimental and analytical matrices is defined as follows:

[ASI = [sxl - [SAl

where [S] can be the stiffness or the mass matrix.

The error matrix method (EMM) proposed by Sidhu and Ewins B”] is defined as:

[AK] E [KAI 1 [KAI-’ - [Kxlvl 1 [KAI (W

where [AK] is assumed to be a small matrix such that nl$ [AK]” = [O]. Although in a
mathematical sense this requirement has no meaning, it ev%ved from the assumption that
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second order terms are negligible. Thus, the error matrix method is a first order
approximation and is only valid for small modelling errors.

Estimating the two pseudo-flexibility matrices using modal data yields:

[AK] E [KA] { [~~l[‘~~,l-~[~,tJ~ - [~l~~.l-‘[~~l~~  WA] (1W

[AM] z [MA] {[$AI[$AI~ - [Oxl[OxlT)  r”d (17c)

Further work on the error matrix method was carried out by He and Ewins WI and
Ewins et al [52]. Some of the publications focusing around the error matrix method
include a number of case studies where the success of
applied to a practical example [53-55]. Recent advances
presented in [56].

the method is discussed when
on the error matrix method are

A modified version of the error matrix method 15’] defines the stiffness error matrix as:

[AK]=  (([~X][‘~.]-l[~~lT  )+ - ([Q~lr&l‘~[@~l)+ (18)

and uses the singular value decomposition technique (SVD) [58] to calculate the inverse
of the pseudo flexibility matrices resulting from correlated experimental and analytical
modes. The obvious advantage of this approach is that the analytical system matrices are
not required. Especially for large systems, most FE packages do not assemble the full
system matrices and accessing the system matrices can be difficult.

Gaukroger [59] obtains a slightly different formulation by including the orthogonality
condition:

r=l

m

IT)]-~ [&I -FA] (W

[AMI = [[II - [M~l~({&.l{@~l~  - {$A~~{$~}~)I-‘wAI  - [MAI
r=l

(19b)
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Brown [32] makes use of vector space theory to obtain further error matrix formulations
which depend on the chosen projection of the matrices used. The final expressions are
quite similar to the basic formulation of the error matrix method.

Brown 1601 also proposes an error location method based on non-zero values of matrix
[A] defined as

[ A I= 0.5 ( 2 [MAI 1$x lL’~.l-l [@x IT [MAI -

[&I [@xl 1$x IT [MAI - [MAI  [@xl 19~ IT [KA]) (20)

where a large element Aij indicates the location of the error. This matrix-cursor type
formulation identifies both mass and stiffness errors concurrently but it cannot distinguish
between the two.

2 . 4 . 4 Matrix mixing methods

The matrix mixing technique used by Link L61] and Caesar [62], combines the
experimental mode shapes with the analytical ones to obtain a complete eigenvector set:

P$JI-~ = [KAI-~  + Wx-incompletJ1  - KA-incomplet  J-l>

= [KA]-1  + ([$X]~CI$,]-~[@~~~  - [$AIL’$J-~[QA~~ (21)

where the pseudo inverses are also obtained using correlated experimental and analytical
modes. A similar approach is used for the mass matrix. The rank deficient matrices can
be inverted using the SVD technique. Also, the similarity of this technique and those
proposed by Gaukroger and by Lieven should be noted.

2.4.5 Methods based on force balance

The dynamic force balance approach taken by Berger, Chaquin and Ohayon N3] assumes
that the analytical mass matrix is correct and uses the force balance of the analytical
system matrices and the measured modes for error location. For mode r:
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WA] + [AK1 - azr [MAI) (22)

nxn
where: [AK] = c pj Kj and {F) is the resultant force vector.

j=l

The unknown error coefficients pj can be found either by minimising 2 {FJ, or by
iterating for pj. I=1

This method is further developed on a substructure basis [64]. Likewise, Link W5$ 66]
updates by minimisation of the output error (force residual) using a weighted least
squares solution or Bayesian approach.

A similar approach was used by Fisette et al W7] and further developed by Ibrahim et al
WI to obtain a direct method, the so called two-response method, with emphasis on the
uniqueness of the solution. The technique is based on the use of any two normal modes
and defines the updated matrices as:

[Ku1 = 1 ai [&I
[MUI = z bi [Mil

where ai and bi are the unknowns. For experimental mode r the updated matrices which
include all [Ki] and [Mi] must satisfy:

(PQJI - C$ [MUI) I Qx jr =O Wa)

substitution gives: (2W

where {a} and {b}  are vectors containing the unknown ai’s and hi’s respectively, and

(23~)

Similarly, for experimental mode q: [Al9 { a]q = [Blq {b]q
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For a unique solution {a]r= Ia]q
{b]r =Iblq CW

In practical cases a unique solution may not exist and a correlation coefficient determining
a uniqueness factor between the two vector sets {a} and { b} is defined in order to be able
to select the most unique solution (although a mathematician might justifiably argue that is
either unique or it is not!) from which the updated system matrices are calculated. Each
eigenvalue and corresponding eigenvector obtained by rearranging (23~) into an
eigenvalue problem represents a possible solution. For realistic applications this method
is found to be of limited success Las].

2.4.6 Methods based on orthogonality

The possible use of the orthogonality equations to improve stiffness and mass
characteristics of an FE model was first noted by Berman and Flannely in one of the
earliest publications concerning systematic use of incomplete measured data [‘O].

Later, Niedbal et al [‘l] proposed to rearrange the modal orthogonality equations to
obtain:

Wltbl= {Bl CW

where the unknown vector {b} contains the elements of the updated mass and stiffness
matrices while vector {B} contains O’s and l’s (or O’s and h’s for mass-normalised
eigenvectors). The matrix [A] is defined in terms of the experimental eigenvector
elements

@11492 491+21+~224+1 @12@31+@32@11 - * %dh2

The above set of linear equations (24a) is then solved for vector {b} using a least squares
approximation. This method requires the connectivities of the analytical model only and it
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then identifies values for the updated system matrices. A similar approach, referred to as
the eigendynamic constraint method, was suggested by To et al [45J. The use of
complete eigenvectors is of paramount importance for success of these methods. More
recently Nobari et al [72] have derived a new modal-based updating technique analogous
to component mode synthesis analysis, a formulation which could also be derived from
an eigendynamic constraint approach. An additional feature of this modified approach
lies in its applicability to incomplete experimental data.

Creamer and Junkins [73J use a combination of analytical modal data and experimental
frequency response data to find model normalisation factors and subsequently to update
the system matrices using the orthogonality conditions.

2 . 4 . 7 Statistics and sensitivity methods

Collins et al [74J, *m one of the earliest updating publications, used statistics as the basis
for updating. The variance associated with the structural parameters is minimised in order
to determine those which reproduce the measured modal properties, measurement errors
also being included as known uncertainties. This technique was further developed into a
sensitivity-type of analysis where an iterative process to determine the structural
parameters capable of reproducing measured modal data is employed. Chen and Wada
[75] introduced a similar approach for both correlation and updating purposes.

In recent years, sensitivity based methods have increased in popularity due to their ability
to reproduce the correct measured natural frequencies and mode shapes. Almost all
sensitivity based methods compute a sensitivity matrix [S] by considering the partial
derivatives of modal parameters with respect to structural parameters via a truncated
Taylor’s expansion. The resulting matrix equation is of the form:

UW= [ S NAPI (25)

where the elements of { Ap} are the unknown changes in structural elements and
{ Aw }represents the changes in modal data required , e.g.:

{Aw} = { {A$l}T,{A$2}T,{A$3JT, . . . ,IA&,JT,{A+  --- 7 AC”$T}T (26)
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The matrix equation (25) is solved for the unknown vector { Ap }, and subsequently { Ap}
is used to update the analytical mass and stiffness matrices. A new eigensolution is
calculated and the process is repeated until the target modal properties are obtained. It
should be noted that the formulation of the sensitivity matrix is based on a Taylor
expansion and hence the method is an approximate one. It is customary to retain the first
term only in the series 1761 (first order sensitivity method) but some researchers also
consider the effect of including the second order term (second order sensitivity method).

The sensitivity methods differ in the selection of parameters and the definition of the
optimisation constraints (natural frequencies and mode shapes, orthogonality conditions).
For the parameter selection the options can be: (i) elements of the [M] and [K] matrices
[“I, (ii) sub domain matrices [“I or macro elements 1781 or (iii) geometric and material
properties used as input data to the FE model [79-811. Lallement and Zhang 1821 discuss
some of the difficulties related to sensitivity analysis. Janter et al 1831 offer a comparison
of the interpretability, controllability and compatibility of the sensitivity techniques but all
these techniques are CPU intensive as a new eigensolution has to be computed for each
iteration.

The sensitivity based methods seem to provide us with an updated analytical model
capable of recreating (some of) the measured modes but if applied directly they have the
disadvantage of modifying the most sensitive element rather than that in error. It is
therefore recommended to localise the error first and allow for changes in the associated
elements only. Heylen and Janter [84l use MAC and Spatial-MAC calculations to locate
modelling errors. It has also been suggested to include a MAC sensitivity equation in the
analysis 18% 861. User controllability can be incorporated by applying weighting factors
and upper and lower bounds on adjustments 187$81.

Dascotte and Vanhonacker 1891 also considers the sensitivity approach in combination
with confidence estimations on the experimental data and illustrates the relative merits of
this method when applied to a practical example 1901. Slater et al 1911 use statistical
analysis on mode shape difference vectors to localise the errors which can then be
corrected using a sensitivity approach. Chen Wl also combines statistical considerations
with other updating methods to achieve an optimally corrected model.
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2.4.8 Energy methods

Roy et al [92p93] derive a set of linear equations comparing the sum of predicted potential
and kinetic energies (see equation (6)) for each part of the structure with its experimental
counterpart calculated using measured modal masses and stiffnesses. The objective
function is minimised employing a least-squares approach or a weighted least squares-
approach with error bounds on parameters associated with parts which are updated.

Ladeveze and Reynier f94] also adopt an energy approach, using kinematic constraints,
stress-strain equations and the constitutive equations to derive an updating technique.
Unfortunately, the method is presented mathematically without adequate explanation for
symbols used. As usual, the published examples give good results and the technique
appears to be very promising.

2 . 4 . 9 Updating based on control methods

Minas and Inman, defining the analytical model in a state-space system, adapt commonly-
used control techniques such as eigenstructure assignment and pole placement methods to
the updating problem [95y96].  The updated stiffness and damping matrices are defined

as:

[QJI=[DAI  - [Bl[Gl[T;J and KuHKAI - PI [Gl[TJ (27a)

where B = constant coefficient feedback matrix
T, = position measurement transformation matrix (linking measured

coordinates to analytical ones)
Tk= velocity measurement transformation matrix (linking measured
coordinates to analytical ones)
G = a closed loop gain matrix to be calculated.

[B] [G] is defined as:
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and the gain matrix is calculated iteratively, assigning initial values to [B] [K] and [xl.
The objective function is set to achieve a symmetric updated model:

J = II [B][G][t] + [;lTIGITIBIT II + II [B][G][x] + [x]~[G]~[B]~ II (27~)

Note that throughout their derivation Minas and Inman include transformation matrices
linking measured coordinates to analytical ones. In theory, these transformation matrices
should be incorporated in all methods discussed in this chapter. However, most methods
assume direct one-to-one correspondence
analytical counterparts.

of the measured coordinates with their

A similar approach to construct symmetric matrix coefficients is also suggested in 19’1
with emphasis on updating analytical systems exhibiting rigid body modes. The
technique can be labelled as an inverse method, since it requires the solution of an inverse
eigensolution problem.

Likewise, Zimmerman and Widengren demonstrate the use of additional constraints and a
symmetric eigenstructure assignment method [981.

2.5 MODEL UPDATING METHODS USING RESPONSE DATA

The updating methods reviewed so far make use of modal data only and hence frequency
response functions (FRF) measurements are not used directly since they have to be
analysed first to obtain the required modal data. Historically, this was the most natural
way of comparing analytical and experimental models since the former was readily
available in modal form. Recently, some methods have been proposed to use response
data directly.

2.5.1 A direct updating technique using FRF data

Unlike Creamer and Junkins [731, who use experimental frequency response data
indirectly to update the system, Lin and Ewins [991 proposed a technique which makes
direct use of the measured FRF data. After some algebra, their formulation is reduced to:
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which can be rewritten as:

where matrix [A(o)] and vector {Act(o)} are known in terms of measured and/or
predicted response properties and the elements of vector {p } indicate the position of the
error in the original system matrices. It should be noted that [A(o)] and {da(o)} can be
formed using any combination of discrete FRF data and the system is overdetermined.

2.5.2 Techniques based on minimising response equation errors

The frequency response equation error techniques are based on the basic equation of
motion:

(Ku1 - 09 [MuI) &@>lr = {Fx(co) 1 (29)

Response equation error updating methods are equivalent to force balance methods
employing modal data (see section 2.4.5). Various approaches using response equation
error have been proposed:

(i) Natke llOol derives two methods distinguishing between an input and an output
residual vector to be minimised using a weighted least squares approach.

(ii) Using the frequency response functions directly without having to have a priori
knowledge of the analytical system matrices bring us into the area of structure
identification rather than that of updating. A technique for identification using a
frequency filter based on least squares solution has been suggested by Mottershead llO1l.
This technique has also been applied to improve reduced finite element models [lo21 and
is closely related to equation error approaches.

(iii) F&well and Penny 11031,  based on the approach proposed by Mottershead, develop
an equation error algorithm via Taylor expansion of the updated system matrices with
reference to the analytical system . The coordinate incompleteness is overcome by a
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@a)

which can be rewritten as:

(28b)

where matrix [A(o)] and vector {Act(o)} are known in terms of measured and/or
predicted response properties and the elements of vector {p } indicate the position of the
error in the original system matrices. It should be noted that [A(o)] and {da(o)}  can be
formed using any combination of discrete FRF data and the system is overdetermined.

2.5.2 Techniques based on minimising response equation errors

The frequency response equation error techniques are based on the basic equation of
motion:

(Ku1 - 09 [Mull &&N~ = {Fx(co) 1 (29)

Response equation error updating methods are equivalent to force balance methods
employing modal data (see section 2.4.5). Various approaches using response equation
error have been proposed:

(i) Natke llOol derives two methods distinguishing between an input and an output
residual vector to be minimised using a weighted least squares approach.

(ii) Using the frequency response functions directly without having to have a priori
knowledge of the analytical system matrices bring us into the area of structure
identification rather than that of updating. A technique for identification using a
frequency filter based on least squares solution has been suggested by Mottershead llO1l.
This technique has also been applied to improve reduced finite element models [lo21 and
is closely related to equation error approaches.

(iii) Friswell and Penny 11031,  based on the approach proposed by Mottershead, develop
an equation error algorithm via Taylor expansion of the updated system matrices with
reference to the analytical system . The coordinate incompleteness is overcome by a
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dynamic reduction, the so called zeroth order modal hansformation technique 11041,  of
the analytical system to the measured coordinates. The updating parameters are confined
to a few physical properties only.

(iv) Larsson and Sas [lo51 also use Taylor expansion of the dynamic stiffness matrix
coupled with a modified equation error approach. Their formulation is similar to equation
(28a) of section 2.5.1. One immediate advantage seems to be the use of a reduced system
which is obtained by deleting the unmeasured coordinates from the analytical receptance
matrix which is inverted again to obtain an dynamic-equivalent reduced dynamic stiffness
matrix.

(v) Conti and Donley [lo61 update the full FE model using response data by minimising
the residual error between the analytical and experimental response. To overcome
coordinate incompatibility the analytical system is reduced to the size of the experimental
data set using one of 4 proposed reduction techniques. The same transformation is
applied to the sub-domain matrices to be updated.

(vi) Ibrahim et al 11071 use an approach similar to their normal mode formulation (section
2.4.5). The equation error set of linear equations is rearranged into an eigenvalue
problem which yields the unique solution. The advantage over the modal approach is
that, the final updating values can be scaled appropriately due to the surplus of data.

2 . 5 . 3 Updating methods using time domain data

The area of updating using time domain data remains largely unaddressed. The equation
error formulations used in frequency and modal domain methods (equations (22) and
(29)) are in principle applicable to time domain data. Time domain methods will have
similar advantages to their frequency domain counterparts in that no modal analysis of the
measured data is required. However, they will lack the direct link between model and
dynamic response as is obvious in updating techniques using modal data or frequency
response data. More importantly, simultaneous measurement of displacement, velocity
and acceleration is required, which, in practice, is very difficult, if not impossible.
Another drawback is that damping predictions cannot be made in the time domain.
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2.6 CONCLUDING REMARKS

Although a vast amount of research has been dedicated to the area of model updating,
results so far suggest that the problem remains largely unsolved and a very substantial
amount of work is still needed. The sheer volume of techniques proposed and the
number of variations tried also suggest that this research field is far from reaching
maturity. In any case, the only successful updating exercises seem to be those for which
the errors are known in advance by the researchers.

(i) Although some publications 139J08J091 comment upon the uniqueness aspect of the
updating problem, in most cases the solution seems to depend on the chosen parameters
and constraints and the particular updating technique employed.

(ii) On a more philosophical note, the expectations from the model updating process are
not formulated very clearly in the sense that a well-updated model is not or cannot be
defined concisely: the maximum allowable discrepancies between the two models and
their relationship to measurement accuracy need to be investigated further.

(iii) Some of the current literature seems to be dealing with treasure-hunt style updating
problems where a number of elements in the so-called experimental model are modified
and the assumption of one-to-one correspondence between the two models is made. In
practical cases, sources of error are often in boundary conditions and/or structural joints
and hence the idea of finding the modified elements is far from being realistic.

(iv) It seems that error predictions using modal based updating methods of section 2.4
depend largely on the reduction or expansion technique used and there is little agreement
between the various methods suggested.

(v) Sensitivity-based methods seem quite promising in the sense that they reproduce the
desired modal properties. Some of the serious limitations lie in the fact that: (a) the most
sensitive element (rather than that in error) is changed and (b) knowledge of the element
mass and stiffness matrices as well as those of the sub domains which constitute the
model is required. The latter would in turn necessitate a different (and much more
tedious) modelling route for finite element analyses, a hardly realistic proposition when
the size of the finite element model is large.
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(vi) The recently-proposed FRF-based methods are perhaps even more promising since
each individual FRF measurement contains information on out-of-range modes as well as
on those within the frequency range of interest and it is possible to specify measurement
and excitation points to ensure maximum efficiency. Another advantage may well lie in
the direct use of raw measured data, thus eliminating lengthy modal analysis procedures.

(vii) The use of true experimental data is rather an exception, almost all reported cases
dealing with theoretically-generated data only. Some of the anticipated additional
difficulties -which will render the formulation of a successful model updating process
even more elusive than it is now- are listed below.

- Mapping problem. The test coordinate grid is very often different from the
finite element mesh. Indeed, it would be very expensive, if at all possible, to
measure at all finite element nodes and in all co-ordinate directions. Also,
there may be some physical constraints on the actual structure rendering some
points totally inaccessible.

- Effect of damping and complex modes. Experimental and analytical data
sets are incompatible due to the fact that the analytical model usually yields
real undamped modes while the modal tests lead to complex modes with
damping. Often the normal mode approach is used in which case the complex
modes are converted to real ones 179~110-1121.

- Experimental and modal analysis errors. It is often conveniently ignored
that the measured data also contain systematic and random errors. Also the
reliability of analysed data may further be put into question by inaccuracies
introduced during modal analyses, computational or superfluous modes being
one of the side effects of some curve-fitting techniques employed.

- Algebraic manipulation of noise-polluted matrices can give rise to large
errors, especially during inversion 11131.
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CHAPTER 3

UPDATING USING MODAL DATA;
THE ERROR MATRIX METHOD

3.1 INTRODUCTION

The purpose of this chapter is to explore some of the advantages and disadvantages of
model updating using modal data with the error matrix method.

The most obvious disadvantage of using modal properties is that the measured response
data are not used directly but have to be transformed into modal data via modal analysis.
Modal analysis, despite advancements on the various analysis techniques, introduces
additional inaccuracies into the experimental data set. A few typical examples of such
error are: (i) inherent assumptions in the modal analysis techniques (e.g. linearity);

(ii) operator misjudgement;  and
(iii) introducing superfluous modes and/or omitting modes.

Modal analysis also takes time, a valuable commodity, and the experimental modes
obtained are complex while their analytical counterparts from the FE model are real
undamped modes. The experimental modes are usually converted into real modes
although this is not a prerequisite for the error matrix method which can deal with
complex modal data.

However, one of the advantages of using the experimental modal data is that it gives a
relatively easy platform for comparison purposes. As vibration properties are usually
defined in terms of natural frequencies and mode shapes, it follows that early updating
methods were based on modal data. We will now focus on one modal-based updating
technique, the error matrix method (EMM),  to illustrate difficulties encountered during
model updating on a few numerical case studies.
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3.2 THE ERROR MATRIX METHOD

3.2.1 Theory

The standard error matrix method, first proposed by Sidhu and Ewins 1501, is
summarised as follows:

The stiffness error matrix is defined as: [AK] = [Kx] - [KA] (la)

and hence: [Kx] = [KA] + [AK] (lb)

Inverting both sides of equation (lb) and using the binomial matrix expansion under the
assumption that [AK] is a small matrix such that nl_[AK]n = [0]:

PW1 = [KA]-I - [K&l[AK] [KA]-~ + [KA]-*[AK]*  [KA]-~ - . . . . . (2)

retaining the first-order term only and rearranging gives:

[AK1  E [&I { WAI“ - [Kxlml  I WA] (3)

As [Kx] is unknown, both the experimental and analytical flexibility matrices are
expressed using correlated modes to generate pseudo-flexibility matrices, and hence:

[AK] E [KA] {[@A I[‘co~,~-‘[@A  IT - [Qx l[‘&l-’ [@X IT) rKA 1 W

Similarly for [AM]:.

[AM] E [MAI 1 [$A 1 [@A IT - 14% I[+x IT) [MAI W)

3.2.2 Case studies on a 10 DOF system

The 10 DOF lumped parameter system of Fig. 3.1, was employed to investigate the
effectiveness of the EMM. The experimental data were simulated using an analytical
model, changing m7 and k3 as indicated in Fig. 3.1. Note that from here on italics are
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used to distinguish between simulated experimental data and measured experimental data.
Three noise-free experimental data sets were considered :

60

(b)
(c)

10 modes at 10 coordinates (complete qerimefztal  model),
5 modes at 10 coordinates (mode-incomplete experimental model),
5 modes at 5 coordinates (coordinate- and mode-incomplete
experimental model).

Experimental model
M,= %= Y= . . . . . . = 1.0 kg
K, = K,= r = . . . . . . = 1.0 x l@N/m

M,= &= h$= . . . . . . = 1.0 kg
Kl = K,= K4= . . . . . . = 1.0 x lo’N/m

= 1.2 kg
= 1.2 x 10%/m

I Fig. 3.1: Experimental and analytical 10 DOF systems

In test case (a), the unrealistic situation of a fully-measured system, the EMM located the
errors correctly. The error matrices, normalised with respect to the maximum error, are
shown in Fig. 3.2a.  Despite a full experimental model and no added noise, the located
errors had discrepancies of 15% for mass and 17% for stiffness error values when
compared with the reference values. However, the updated natural frequencies and mode
shapes compared very well to their experimental counterparts. The discrepancy arose due
to the first order approximation in the derivation of the error matrix equation.

The error matrices for case (b) also indicated the modelling errors at the correct positions.
However, mass-related modelling errors appeared in the stiffness error matrix and vice
versa, and spurious modelling errors also emerged. Results for case (b) were better than
those of case (c), where experimental data were both coordinate- and mode- incomplete.
For test cases (c) a Guyan reduced analytical model was used to ensure coordinate
compatibility and the two initial modelling errors were spread through the error matrices.
The main disadvantages of model reduction are that (i) the connectivities of the original
model are lost and (ii) extra inaccuracies are introduced, especially as the experimental
coordinates are often not suitable to be chosen as masters. The combined effect of (i) and
(ii) is clearly shown in Fig. 3.2~.
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M  error matrix
10

[K] error matrix _^^-lUU%
10 80%

60%
40%
20%

0%

(a) Test case a, experimental system fully known

FI]errormatrix K] error mahix
10%I 80%
60%
40%
20%

0%

(b) Test case b, 5 modes measured at 10 coordinates

Fr] error matrix IKl error matrix

(c) test case c, 5 modes measured at 5 coordinates

lUU%
80%
60%
40%
20%
0%

Fig. 3.2: Error matrices for a 10 DOF systems

The updated modal solution for case (b) gave improved natural frequencies, MAC and
COMAC values for the first 5 modes. The natural frequencies of the higher,
unmeasured, modes were similar to those of the original analytical model but the MAC
and COMAC values, especially for modes 9 and 10 decreased. For case (c) the error
location was not very successful, although the MAC and COMAC values between the 5
updated analytical and experimental modes improved. However, differences in natural
frequencies between experimental and updated models were similar to, or even worse
than, the differences prior to updating.
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3 . 3 AN IMPROVED PROCEDURE FOR THE EMM

As indicated in case (a), the EMM can be successful in error location but even for a fully-
measured noise-free system the magnitude of the predicted errors are not necessarily
correct. The numerical accuracy of the EMM formulation can be improved by including
second-order terms of the binomial matrix expansion given in equation (2), but this
would increase the computational effort substantially. An alternative approach to improve
the EMM is suggested below.

3 . 3 . 1 Theory

Rearranging the following identity,

- x-1 _[[Al +  CG - LV1 - [[Al+[WI-lFUN-l (5)

one obtains:

Letting:

and

PI = [[Al+PlI [WI-’ - [[Al+PII-ll  [Al (6)

I31 = K/J
[CAl+PlI = Kxl (7)

yields: [AK] = [&I [ [J&LJ-~ - EKxl -‘I WA] (8)

which is identical in form to equation (3). However, equation (3) is an approximation
derived from perturbation theory while equation (8) is exact. From equation (8):

[AK1 = [Kxl lK~l-~l&,l-  [Kxl Kxl-’ E&J = CKxl - WA]

Substituting [Kx] in equation (8) by [KA] +[AK] one obtains:

[AK] = [KA] [[KA]-l - [Kx]-~] @AI + [AK1 [[K,# - [Kxl-‘I WA] (9)

Now, a new error matrix, [AK’], can be obtained by substituting the first estimate of
[AK] from the standard error matrix method (equation (3)), i.e.:
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WI = L&J [[KJ1 - [K&l WA]

into equation (9), to obtain:

[AK’1 = [AK]+ [AK1 { WA]-’ - Wxlml I KAI (lOa>

Calculation of [AK’] will require very little extra computational effort as it only involves
one extra matrix multiplication.

Similarly: [AM’1 = [ml+ i2W { [MA]- ,1 - [Mx]-1 1 WAI

3.3.2 Case studies on a 10 DOF system

(lob)

The previous 3 cases of the 10 DOF lumped parameter system of section 3.2.2 were used
to compare the improved error matrix procedure (EMM’) with the standard error matrix
method (EMM). The indicated errors for test case (a) are given in Table 3.1.

I true error
I I

EMM’
I

AwnaxAKmax 0.2000 0.1667 (17%) 0.1944 (2.8%)200.0 169.2
(15%)

195.3
(2.4%)

Table 3.1: Maximum errors in a 10 DOF system located using EMM and the improved
EMM procedure (EMM’)

Table 3.1 clearly shows that the new error matrix procedure gave improved numerical
values (less than 3% discrepancy) compared to the standard error matrix method (17%
and 15% discrepancy). Comparing the updated model natural frequencies with their
experimental counterparts it was found that the maximum discrepancy was less than 1%
at mode 10 compared with 4% at mode 10 for the standard EMM. All MAC and COMAC
values of the updated mode shapes of case (a) were between 0.996 and 1.000 for the
EMM and equal to 1.000 for the improved procedure. Hence for this test case the
advancement with respect to updated mode shapes was not very significant.
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For case (b) both methods again showed similar trends in error localisation: the new
procedure located the maximum stiffness error at the correct position (coordinate 3) but
substantial additional errors also appeared at the mass error locations. The standard
method, on the other hand, also indicated correctly an error at coordinate 3 but the
maximum error was shown erroneously at coordinate 7.

Considering the first 5 natural frequencies of the updated model, the maximum
discrepancies compared with the measured modes were 1% and 3% for mode 5 for the
improved and standard error matrix method respectively. Although the natural frequency
improvement was noticeable, only a minor improvement in mode shapes was observed
as shown in Fig. 3.3.

rThe new procedure did not improve the location aspect of the error matrix method for
case (c) where, due to the Guyan reduction, the modelling errors were spread over many
coordinates. And, as for case (b), the updated natural frequencies obtained using the

1 2 3 4 5 6 7 8 9 10
Mode number

(a) MAC values

s 1.00
a> 0.95
u

is
0.90

8 0.85

1 2 3 4 5 6 7 8 9 10
Node number

(b) COMAC values

Fig. 3.3: MAC and COMAC values for updated 10 DOF models using the EMM and
the improved error matrix procedure (EMM’), test case b.
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improved error matrix procedure were closer to the experimental frequencies than those
obtained using the standard EMM. For both error matrix procedures the MAC and
COMAC values improved substantially after updating to values similar to those obtained
for the first 5 modes of case (b), slightly better numerical results were again obtained for
EMM’ compared to the standard EMM .

Both methods should be used with caution in the case of coordinate incompleteness
because of the spreading of errors as a result of the Guyan reduction. The limitations of
the Error Matrix Method using Guyan reduced matrices, are common to all updating

techniques using modal data, with the possible exception of the sensitivity methods
(section 2.4.7), indicating the necessity for mode expansion (Chapter 4).

3.4 THE GARTEUR III EXERCISE

The GARTEUR exercises play an important role to examine and compare the
effectiveness of updating techniques developed by the various organisations represented
in the GARTEUR (Group for Aeronautical Research and Technology in Europe). The
second test case considered here is the third GARTEUR exercise which consists of a
grounded 2D frame structure (Fig 3.4).

Fig. 3.4: The GARTEUR structure

The complete 2D model consisted of 72 nodes resulting in 144 translational (x, y) and 72
rotational (9,) degrees of freedom. The same basic model was used to derive the

experimental data but some unknown changes had been made to the cross sectional area
and second moment of area of some of the elements The experimental data, with 10% of
random noise applied to the mode shapes and 3% to the natural frequencies, consisted of
the first 10 modes with shapes measured in the x and y directions of the 36 nodes
indicated by I in Fig. 3.4.
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The correlated mode shape MAC and COMAC values of the raw data are given in
Fig. 3.5. The COMAC plot shows that the erroneous areas can be mainly expected in
the first bay. Both the standard error matrix method and the improved error matrix
procedure were applied using a Guyan reduced analytical model.

“1 1.0
B 0.9

vis 0.8

0.7

0.6

1 ‘2 3 4 5 6 7 8 Mode9numEr

(a) MAC values

m ABOVE 0.9
0.8 - 0.9
0.7 - 0.6
0.6 - 0.7

n BELOW 0.6

(b) COMAC values

Fig. 3.5: GARTEUR III MAC and COMAC values

A global indication of errors was obtained by taking the mean error matrix values in the x
and y directions of each node (on the leading diagonal of the error matrices) and these
were superimposed on a grid plot of the GARTEUR structure (Figs. 3.6 and 3.7). A
very similar error location pattern can be observed for results obtained by EMM
(Fig.3.6) and EMM’ (Fig. 3.7) . The errors indicated by the EMM had spread out
more and were smaller compared with the errors obtained using the new error matrix
procedure (EMM’) which were more localised and considerably larger in size at certain
coordinates.
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(a) Mass error matrix (b) Stiffness error matrix

Fig. 3.6: GARTEUR III, standard EMM error location (leading diagonal values)

(a) Mass error matrix

Fig. 3.7: GARTEUR III, improved error matrix procedure (EMM’) error location

Comparing the updated modal solutions to their experimental counterparts, the natural
frequency correlation and MAC values were, unfortunately, worse than before the
updating process (Fig. 3.8) and the COMAC values were only marginally better than
before. This is an indication that the error matrix algorithms are probably not suited to
large noise-polluted incomplete models.

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Frequency (Hz) Frequency (Hz)

(a) EMM (b) EMM

A analytical vs exp

. updated  “S exp.

Fig. 3.8: GARTEUR III, updated natural frequencies against experimental ones
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The true errors, shown in Fig. 3.9, reaffirm that neither the error matrix method nor the
improved error matrix procedure was very successful in error location. This was most
likely due to the adverse effects of the Guyan reduction of the analytical matrices
necessary to obtain the correct analytical system size. The high percentage noise applied
to the experimental data also had adverse effects.

Fig. 3.9: Modelling errors of the GARTEUR III exercise

3 . 5 CONCLUDING REMARKS

In this chapter an updating technique using modal data, namely the Error Matrix Method
(EMM), has been used to illustrate some of the difficulties encountered during updating.

An improved EMM procedure, derived from a mathematical identity rather than
perturbation theory, is proposed. It requires only one extra matrix multiplication in
addition to the standard EMM. The new error matrix procedure (EMM’) gives
numerically better results for the unrealistic case of complete experimental models but for
cases of incomplete experimental data, the improvements are negligible since there are
inherent difficulties within the basic algorithm. The numerical study of a larger system
confirmed the above findings.

The main conclusion in this chapter is the inadequacy of the error matrix method.
Although more successful case studies are reported in published literature results seem to
be both analyst- and case-dependent. If the limitations derive from the reduction process,
coordinate expansion is probably a possible way of overcoming some of the difficulties
due to Guyan reduction.
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EXPANDING MEASURED MODE SHAPES

4.1 INTRODUCTION

One of the most common problems in updating FE models is the coordinate
incompleteness of the experimental model, which can be due to (i) difficulties in the
measurement of rotations and/or (ii) physically inaccessible coordinates (e.g. internal
coordinates) and/or (iii) the size of the FE model bearing in mind that measuring many
coordinates is expensive and time-consuming. Most updating techniques require both
data sets to be expressed in the same coordinate system. There are two possibilities to
overcome coordinate incompatibility: either by model reduction, choosing the measured
coordinates as masters in the FE model, or by mode shape expansion, expanding the
experimental modes to all FE coordinates. As was shown in chapter 3, the main
disadvantages of model reduction are that (i) the connectivities of the original model are
lost, and (ii) extra inaccuracies are introduced, especially as the experimental coordinates
are often not the best points to choose as masters. Therefore, experimental mode shape
coordinate expansion is considered the next logical step.

Two methods of mode expansion are investigated in this chapter. The method which
appears to be most commonly used is the inverse reduction technique [25], which uses
the analytical mass and stiffness matrices to expand the incomplete mode shapes obtained
in a typical modal test. Another method recently proposed [29y30] expands the
experimental mode shapes on the basis of the analytical ones. These two methods are
considered to be the most promising of the four mentioned in chapter 2, and therefore
they will be investigated in some more detail.

4.2 THEORETICAL BACKGROUND

4.2.1 The Inverse Reduction Method

The inverse reduction technique starts from the basic equation:
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CHAPTER 4

EXPANDING MEASURED MODE SHAPES

4.1 INTRODUCTION

One of the most common problems in updating FE models is the coordinate
incompleteness of the experimental model, which can be due to (i) difficulties in the
measurement of rotations and/or (ii) physically inaccessible coordinates (e.g. internal
coordinates) and/or (iii) the size of the FE model bearing in mind that measuring many
coordinates is expensive and time-consuming. Most updating techniques require both
data sets to be expressed in the same coordinate system. There are two possibilities to
overcome coordinate incompatibility: either by model reduction, choosing the measured
coordinates as masters in the FE model, or by mode shape expansion, expanding the
experimental modes to all FE coordinates. As was shown in chapter 3, the main
disadvantages of model reduction are that (i) the connectivities of the original model are
lost, and (ii) extra inaccuracies are introduced, especially as the experimental coordinates
are often not the best points to choose as masters. Therefore, experimental mode shape
coordinate expansion is considered the next logical step.

Two methods of mode expansion are investigated in this chapter. The method which
appears to be most commonly used is the inverse reduction technique [25], which uses
the analytical mass and stiffness matrices to expand the incomplete mode shapes obtained
in a typical modal test. Another method recently proposed [29v30] expands the
experimental mode shapes on the basis of the analytical ones. These two methods are
considered to be the most promising of the four mentioned in chapter 2, and therefore
they will be investigated in some more detail.

4.2 THEORETICAL BACKGROUND

4.2.1 The Inverse Reduction Method

The inverse reduction technique starts from the basic equation:
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[K/,1 - @; CMxll{$,~=O (1)

As the experimental mass and stiffness matrices are unknown, they are replaced by the
analytical system matrices. The coordinates are rearranged such that the measured
coordinates are in the top part of the matrix equation (subscript 1):

(2)

If one assumes that errors are predominantly in the measured coordinates, the lower
matrix equation will be more correct. Rearranging the lower matrix equation gives the
following expression for the unmeasured coordinates:

IO2J =
(N-n)xl

- UK22*1  - (J$ [M22*11;;_n)r(N_n)  [[K21*1 - qM21*11(N_n)xn  &Jnxl (31

The inverse reduction method is also known as ‘Kidder’s method’, ‘physical expansion
method’ or ‘dynamic expansion’.

4 . 2 . 2 The Modal Transformation Expansion Method

The second expansion technique uses the analytical mode shapes rather than the analytical
system matrices. It is assumed that each experimental mode can be expressed as a linear
combination of the analytical mode shapes:

(4)

This can be considered a valid assumption as the modes of the analytical model are
describing the same subspace as the true structure if there are enough degrees of freedom
in the analytical model. I
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The matrices can be rearranged such that the known measured coordinates are contained
in the top part of the matrix equation:

{:::),,, =[ i:: i:z l,,xNtl
Nxl

(5)

Alternatively
setting { y2 } =

$l,} can be expressed by [$l 1] { yl }, so it is possible to proceed by
0). This has the effect of assuming that the higher analytical modes

contribute little to the lower experimental modes and equation (5) becomes:

{ yI } can then be found from the known coordinates:

= [$llAl+
nxm

@lx}
nxl

Provided the inverse of [$l l] exists:

(6)

(7)

where: N = number of analytical coordinates;
n = number of measured coordinates; and
m = number of modes used for expansion.

If n is greater than m, the system is overdetermined and either the generalised inverse or
the SVD inversion technique can be used to invert [$I t]. For an overdetermined system,
the expanded experimental mode shapes will be smoothed if the regenerated measured
coordinates are retained after expansion. This method is referred to as the modal

transformation method where the transformation matrix is based on the experimental and
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analytical mode shapes as described in equation (8). Expanding several modes
simultaneously:

- -

Nxm,

fhl,L i 1 {YlI {Y2} --a
@21*

tYm,~] =
nxmx

$11,

[ I PI (9)
021*

Alternative derivations of the modal transformation method are known as ‘SEREP’ [26].
SEREP is defined as:

MIXNxmx  = [~lNxmN1~xm[~l  11x,,, = ITI Ml 11x,,,
X X

(10)

where [T’] can be calculated using (i) analytical modal data only, (ii) experimental modal
data only or (iii) a combination of the two modal data sets. Of these three number (i), FE
based SEREP, is shown to be most reliable W For the FE based SEREP equation
(10) is the same as equation (9).

4.3 CASE STUDIES

4.3.1 Test cases

Four test cases of increasing complexity were used to investigate the various aspects of
the two expansion techniques:

(a) a lo-DOF lumped parameter model (Fig. 4.1), to investigate the importance
of mode selection and the various inversion techniques;

(b) a lOO-DOF lumped parameter model (Fig. 4.2), to investigate the effect of a
small measured-to-unmeasured coordinates ratio;

(c) a 2D clamped beam (Fig. 4.3),  to investigate the behaviour of expanded
rotational coordinates; and

(d) a 3D frame (Fig. 4.4), representing a typical engineering structure.

For each structure various incomplete experimental data sets, i.e. with different
correspondence factors, were expanded using the two methods under investigation. The
correspondence factor is defined as the ratio of unmeasured coordinates to the total
number of (analytical) coordinates. For each test case the expanded mode shapes
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were compared with their true counterparts by visual comparison and by calculation
of MAC values. Typical examples for each test case and various are also shown in
Figs. 4.1-4.4.

Analytical model Experimnlal  model I
M,‘= h$= I$=. .....= l.Okg
%=K2=K,,=. 1.0x l@N/m

M, = $= y=. ..... = 1.0 kg
..... = K,=K2=K4=. ..... = 1.0x l@N/m?3~~~~104Nm

(a) Analytical and experimental models

mode 3

1.0
. ..rdtn...,

mode 4

(b) Expanded mode shapes for a correspondence factor of 50%

10 DoF expanded data

+ 1.0
>2 0.6 0.8

E 0.4
0.2
0.0

n E mod.T
q  E inv.R

1 2 3 4
Mode nkber

(c) Typical MAC values of expanded mode with true experimental counterpart

Fig. 4.1: Mode shape coordinate expansion of a 10 DOF system
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(c) Typical MAC values of expanded mode with true eqwimentaf  counterpart

Fig. 4.2: Mode shape coordinate expansion of a 100 DOF system
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(c) Typical MAC values of expanded mode with true experimental counterpart

Fig. 4.3: Mode shape coordinate expansion of a clamped beam
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&p&mental  model: diagonal bar width reh~ed  by 50%

(a) Analytical and experimental models
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(b) Expanded mode shapes for a correspondence factor of 27.5%

frame expanded modes
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(c) Typical MAC values of expanded mode with true eqwimenfal  counterpart

Fig. 4.4: Mode shape coordinate expansion of a frame structure

As can be seen from Figs. 4.1-4.4, both expansion techniques can produce well-
expanded modes. As numerous test cases were carried out it is appropriate to give a
summary of the results rather than showing all expanded modes and comparisons which
can be found in 11141.
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4.3.2 Summary of results

For both methods the quality of the expansion depends on the selection of experimental
coordinates and, to some extent, on the imposed modelling errors. The modal
transformation technique also involves choosing the appropriate mode shapes to be
included in the transformation matrix. For both techniques the selection of experimental
coordinates influences the success of expansion, but other effects, such as a reduction in
the number of measured coordinates, are more pronounced for the modal transformation
method. The following observations on selecting experimental coordinates for successful
expansion can be made:

(i) one must measure as many coordinates as possible, and at positions
coinciding with nodes on the analytical model: an obvious point;

(ii) for numerical stability of the expansion technique, the measurement
coordinates should include those with the largest deflections (which, in any
case, is good experimental practice); and,

(iii) it is important for more complex structures to select experimental coordinates
at each part of the structure with a dynamic response that is unique to that

Part.

It should also be noted that, in general, expanded rotational degrees of freedom show
more discrepancies from their true counterparts than expanded translational degrees of
freedom. This is mainly due to the lack of measured rotational degrees of freedom and
the problem can be greatly reduced if one or more rotational degrees of freedom are
included in the experimental coordinate set. However, it is difficult to measure rotational
degrees of freedom in practice.

Successful expansion by the modal transformation method also depends on mode
selection and recommendations for this process are as follows:

(i) the number of analytical modes selected must be smaller than the number of
experimental coordinates in order to obtain an overdetermined matrix
equation. The selected set of analytical modes can result in a numerically
unstable inversion, but this can be overcome by reducing the number of
modes used and/or by reselecting;

(ii) for each experimental mode to be expanded a corresponding analytical mode
must be included in the mode selection;

Page 49



Chapter 4 - Expanding measured mode shapes

(iii) if two analytical modes have a high correlation with one another, e.g. due to
coordinate aliasing, they should not both be included in the same mode
selection; and,

(iv) for the higher modes, best results are obtained if some lower and some higher
modes (than the one to be expanded) are included in the mode selection.

Visual comparison of the (animated) mode shapes before and after expansion will show
obvious expansion errors in the form of discontinuities and differences in the nodal line
patterns. There are some additional criteria which can be used for the modal
transformation expansion method. These are:

(i) the matrix inversion must be good (easily verified by checking the total sum
of the elements [$I 1][@11]-1);

(ii) inspection of {y} values: general guidelines being (a) the y value
corresponding to the correlated analytical mode should be greater than 0.5 for
a MSF of approximately 1 between the experimental and analytical correlated
modes, and (b) y values should not be greater than 1.5. High values of y,
greater than 1.5, are most likely due to numerical instabilities in the inversion
process. The case of all the values of y less than 0.5 can be (a) because there
is no correlated analytical mode for the experimental mode included in the
analytical mode selection (see mode selection) or (b) due to the mode
selection causing an unstable inversion which can be a result of coordinate
aliasing, especially when higher modes are included; and,

(iii) the MAC value between the measured coordinates of a mode shape and the
reproduced coordinates of the expanded set of that mode should be,
depending on the amount of experimental noise, greater than, say, 0.9. This
MAC value also indicates the amount of smoothing.

For the modal transformation expansion approach, the generalised inverse gave
comparable or negligibly improved by comparison with the SVD inversion when
calculating the inverse of a numerically stable overdetermined matrix and requires less
CPU time. However, the SVD inversion gave far better results for numerically ill-
conditioned overdetermined matrices and it also provided a check on the number of small
singular values representing the rank of the matrix which, for this application, can be
used as an indication of the quality of the mode selection.

Comparing the inverse reduction method with the modal transformation technique, it was
found that more computational effort was required as a matrix inversion is necessary for
each experimental mode shape while a careful analytical mode shape selection in the latter
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method can expand several experimental modes at once. The expanded modes obtained
showed discontinuities at locations of analytical modelling error and these expansion
errors were also larger than for the modal transformation technique. For the latter method
a larger region of the structure was affected i.e. the discrepancies were spread

(Fig. 4.5(a)).

cCCa;HR1LS :moiYYrcJ

mode 7 mode 8

(a) 100 DOF example mode 8,

_'.j

a ’ 2 ? I 5 j , 3 5 10 Ii
CXWif!(l~~3

modal transformation method

3 I 21155:  3 3 12 II
::OPOIWRICZ

inverse reduction method

(b) Clamped beam example mode 7 8z

modal transformation method inverse reduction method

(c) Clamped beam example mode 2 8z

Fig. 4.5: Mode shape coordinate expansion discrepancies
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The expanded mode shape error for both techniques usually occurs at the place(s) of the
analytical modelling error(s), unless the number of experimental coordinates is
insufficient. In that case errors are likely to occur at the region(s) where the number of
measured coordinate(s) is/are most sparse. However, in most cases, the error between
expanded and true experimental modes is not as large as the difference between the
analytical and true experimental modes. Both methods produce comparable and generally
well-expanded mode shapes, but both can at times produce poorly-expanded modes
(Fig. 4.5). The difference between the two expansion methods is case-dependent and
within each case can also vary for different modes as indicated by the MAC values in
Fig. 4.1~4.4~. Which expansion method to use should be based on whether the
application for the expanded modes is more sensitive to large local errors or to smaller
spread out errors.

Although both expansion techniques can produce well-expanded modes for most cases, if
one of the mode shapes is expanded badly it should ideally not be included in a
subsequent updating process. The main disadvantages of the inverse reduction technique
are that (i) there are no checks to verify correctness of the expansion, apart from visual
inspection and (ii) there is no smoothing of the measured coordinates in case of noisy
experimental data. The main advantage, compared with the modal transformation
method, is that there are no decisions to be made. As a result, the inverse reduction
technique is the most favoured in practice.

4.4 MODEL UPDATING USING EXPANDED MODES

4.4.1 The GARTEUR III exercise

The two expansion methods were applied to the experimental data of the GARTEUR III
structure introduced in chapter 3. Error location results using both the standard and
improved error matrix procedures are given in Figs. 4.6-4.9.
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(a> Mass errors (b) Stiffness errors

Fig. 4.6: GARTEUR III, error location results by EMM using inverse reduction
expanded experimental mode shapes

(a) Mass errors (b) Stiffness errors

Fig. 4.7: GARTEUR III, error location results by EMM’ using inverse reduction
expanded experimental mode shapes

(a) Mass errors (b) Stiffness errors

Fig. 4.8: GARTEUR III, error location results by EMM using modal transformation
expanded experimental mode shapes
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(a) Mass errors (b) Stiffness errors

Fig. 4.9: GARTEUR III, error location results by EMM’ using modal transformation
expanded experimental mode shapes

Referring to the true errors introduced, as shown in Fig. 3.9, the error location results
shown in Fig. 4.6-4.9 were again not successful: in particular the indicated stiffness
errors bore little resemblance to the expected error locations. The mass error matrices
predicted the correct location among some spurious ones. Comparing the four different
error location procedures for this example; the modal transformation coordinate expanded
experimental data and the improved error matrix procedure gave the best results for error
location purposes.

The analytical model was updated using the four sets of error matrices illustrated in
Fig. 4.6-4.9. The updated natural frequencies are compared to the experimental ones
in Fig. 4.10. For each of the four procedures employing expanded data the updated
natural frequencies were substantially better than those obtained for the Guyan reduced
model cases (Fig. 3.8). However the updated system MAC and COMAC values did
not exhibit improvements compared with those obtained between the original FE model
and their experimental counterparts. From an updating point of view, the inverse
reduction method expanded experimental data and the standard EMM gave the best results
in this case.
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Fig. 4.10: GARTEUR III, updated natural frequencies against experimental ones for
four different updating procedures

The reason that the updating results were far from satisfactory was likely due to the
relatively high percentage of noise applied to the experimental data. In particular 3%
noise on the natural frequencies is high. The adverse effects of this noise are most
significant for the stiffness error matrix which is calculated using the pseudo flexibility
matrix:

[Krl = [9x1 [‘qy [$lT.

Lieven ~61 suggests that the accuracy of experimental data should be to 4 significant
figures for mode shapes and 6 significant figures for natural frequencies for successful
updating using the EMM. However, the GARTEUR III data were supplied “as is” and
could not be changed to suit the updating method. In most practical applications the
updating problem can not be altered, although in some cases it might be possible to
acquire a better experimental data set by additional measurements (improved accuracy,
more measured coordinates).
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It must be pointed out that, although the GARTEUR III exercise results were far from
adequate, both the EMM and the expansion techniques are case-dependent and have been
used successfully on some practical examples I561.

4.4.2 Discussion on expanded data and the orthogonality condition

Most methods for checking the validity of the expanded mode shapes to date have not
considered the orthogonality of the expanded modal data with respect to the experimental
model. Measured mode shapes are mass-normalised modes. Do the expanded modes
satisfy the orthogonality condition? Are the expanded modes also mass-normalised with
respect to the experimental system? These are important requirements if the expanded
modes are to be used for updating techniques based on this property.

For mass-normalised modes the orthogonality equations are:

and (11)

The error matrix method indirectly incorporates orthogonality conditions as it makes use
of the pseudo inverses, since these are derived from the orthogonality condition
(equation (10):

[M# = P$,l[$JT and [Kxl- l = [$jJ&l-l[~,lT (12)

Thus, if the expanded mode shapes are not orthogonal to the experimental mass and
stiffness matrices, errors are introduced in the updating process.

To verify whether the deviation from the orthogonality condition of expanded modes is
significant, [$E lTIM~I[&l and [&lTK~l $1 were calculated for various test cases of
section 4.3.1. A typical example, the orthogonality of expanded experimental modal data
with respect to the experimental mass matrix of the frame model, is shown in Fig.
4.11. This shows that, in this particular case, there are considerable discrepancies for
(badly) expanded mode 11; there is a large peak on the leading diagonal and also
significant values at off diagonal elements which should be zero.
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(a) experimental modal data and the experimental mass matrix
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(b) expanded modal data and the experimental mass matrix
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Fig. 4.11: Mass orthogonality for the frame example

As expected, errors in the expanded mode shapes orthogonality matrix depended on the
quality of the expanded mode(s). And, since the expansion methods are case-dependent,
the achieved orthogonality is also case-dependent. Considering several test cases and
comparing the orthogonality of expanded data obtained by the two expansion methods
investigated in this chapter, neither shows overall better orthogonality. Discrepancies are
case-dependent, and are mainly influenced by the closeness of the analytical model to the
experimental model and the quality of the expansion. The quality of expansion, as
discussed before, also depends on the ratio of measured to unmeasured coordinates, the
mode selection (for the modal transformation expansion method) and the quality of
measurements. In the test cases noise-free experimental data were used. Noise on the
experimental data, such as for the GARTEUR III exercise, will compound the problem.

Thus, for both expansion techniques, the expanded set is not orthogonal with respect to
the system matrices. In real-life updating problems the experimental system matrices are
unknown and there can be no check on the orthogonality of the expanded modes.
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Therefore it is advised to use more than one set of expanded data in case of employing an
updating technique based on orthogonality. And, if possible, a combination of updating
techniques should be employed to verify results.

4.5 CONCLUDING REMARKS

In this chapter it is shown that well-expanded modes can be obtained by both the inverse
reduction technique and the modal transformation method. A number of suggestions on
coordinate and mode shape selection are made for successful and reliable expansion.

The modal transformation method, as compared with the inverse reduction technique,
shows no discontinuities in the mode shapes, noise is smoothed, the error is generally
smaller although more spread out and it is less CPU intensive. The main advantage of
the inverse reduction technique is that there are no decisions to be made, in contrast to the
modal transformation method where the analytical mode selection is of vital importance to
the success of the method. Therefore, despite the success of the modal transformation
method, in practice, the inverse reduction technique is the most favoured.

The expansion techniques were applied to the GARTEUR III exercise, using both the
standard EMM and the improved procedure suggested in chapter 3. Best error location
results were obtained using modal transformation coordinate-expanded experimental data
and the improved error matrix procedure. From an updating point of view, best results
were obtained using the inverse reduction method expanded experimental data and the
standard error matrix method.

The importance of orthogonality of the expanded experimental modes in case of
employing an updating technique based on this property is pointed out. It is shown that
for both expansion techniques the expanded set is not orthogonal with respect to the
experimental system matrices. Discrepancies are case-dependent, and are mainly
influenced by the closeness of the analytical model to the experimental model.
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CHAPTER 5

UPDATING USING FRF DATA;
THE RESPONSE FUNCTION METHOD

5.1 INTRODUCTION

Most updating methods proposed in recent years rely on analysing the frequency
response data to obtain modal data, a process which inevitably introduces inaccuracies
and errors over and above those already present in the measured (FRF) data. They also
use a finite (and small) number of modes, which results in the formulation of an
underdetermined problem in most cases. Some additional shortcomings -zero illustrated
using the error matrix method in chapters 3 and 4.

In this chapter the response function method (RFM), an updating technique using
frequency response function data, is investigated. The basic theory of this updating

technique was recently presented by Lin lggl. Updating using frequency response data

overcomes both the problem caused by insufficient data, as measured data can be
acquired at any number of frequency points, and the problem of introducing additional
inaccuracies from modal analysis, as the measured FRF data are used directly. Another
advantage of using FRF data directly is that n.o pairing or matching of mode shapes is
required, and problems normally associated with close modes do not occur.

5.2 THEORY

Consider the mathematical identity:

Let

and

where:

[ [Al + WI I,:, = [N;xN-  [ [Al+@1  1 I;IxNIBl NxN  [Al ixN

[Al = Lqwl
[Al + PI = V,wl,
[Z,ml = [Z,wl + [Uo)l

(1)
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and assuming that both [A] and [A+B] are non singular, we can write:

(2)

Equation (2) is valid irrespective of the size of the modelling errors or other differences
between the analytical and experimental models. Only at resonance frequencies, where
[Z,(o)] and/or [Zx(o)] are singular, equation (2) is invalid. Equation (2) can be rewritten
in a more convenient form:

Transposing (3a) gives:

(3b)

Taking the ith column of both sides of equation (3b):

or:

[yp)INxN [[AK1  - W2[‘MlI,, {ax(~)li,,,  = { {CLA(W)}i-{~(W)}i}Nxl (4)

Using the symmetry of the system matrices, as shown in appendix A, equation (4) can be
rewritten as:

KWNxN(N+l)  ‘p’N(N+l)=  ‘Aa(w)lN (3

where the elements of matrix [C(o)] and those of vector {Aa( are known in terms of
analytical and measured F’RFs,  elements of the analytical mass and stiffness matrices and
the excitation frequency. The elements of the unknown vector {p }, the so-called “p-
values”, indicate both the amount and the location of the error(s) in the analytical mass
and stiffness matrices. By stacking the matrix equation (5) for a number (Nt) of different
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excitation frequencies the system becomes overdetermined and can be solved for vector
{ p } , as { p } is independent of OX

[C(q)1

I-1 !Mw1)1-
[Q~,)l
[C@3)1

Wm2)l
{PI = { Aa 1

.. .. .
_

(6)

Taking a structure with N degrees of freedom yields a maximum of N (N+l) unknowns
when both the mass and stiffness matrices are symmetrical. Assuming that a full column
of the FRF matrix can be measured, equation (5) will lead to N equations at each
frequency point; hence the minimum requirement for the solution is the knowledge of any
column (or row) of the FRF matrix at (N+l) frequency points since there are N(N+l)
unknowns. It should also be noted that the problem can become overdetermined since, in
general, there are more than (N+l) frequency points within the range of interest, in which
case a least-squares solution can be used to determine the p-values.

5.3 COORDINATE INCOMPLETENESS

Many of the coordinates specified in the analytical model cannot be measured because of
various restrictions on the test structure and, in common with other updating techniques,
the resulting incompleteness of measured data gives rise to a number of difficulties.
Usual ways to deal with this problem are to reduce the size of the analytical model or to
expand the experimental one. A different approach will be adopted here. The s
unmeasured (missing) response functions, which are elements of the receptance FRF
vector, {a,(o)}, in equation (4), can be replaced by their analytical counterparts and the
corresponding rows are deleted from equation (5). The minimum required number of
frequency points is now given by the number of unknowns, N(N+l), divided by the
number of measured coordinates, n = N-s. In other words, even when some of the
required response functions cannot be measured, equations (4) and (5) can still be solved
in an iterative fashion by substituting the required but unmeasured FRF values in
{ax(co)} with their (updated) analytical counterparts until a degree of convergence is
reached.
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5.4 UNIQUENESS OF THE SOLUTION

In the case of coordinate incompleteness, a non-unique solution will almost certainly be
obtained if all elements of the system matrices are updated simultaneously. Additional
constraints, taking into account physical connectivities, can be introduced by forcing the
null elements to remain zero in order to limit the number of possible solutions. These
will be called Cl constraints. This approach relies on the connectivities in the analytical
matrices being correct, an assumption which must be investigated further.

To further reduce the possibility of a non-unique solution even more constraints may be
required. These constraints, which will be called C2 constraints, can be introduced by
considering the mass and stiffness matrices of individual finite elements. Since the p-
values indicate both the location and the amount of the error(s), the error matrices can be
written as a linear combination of the element mass and stiffness matrices,

[AMI = $Pi [Mel

[AK1 = 2 Pi [Kel (7)

where the C sign denotes matrix building. It should be noted that C2 constraints include
Cl constraints. This approach has, in most cases, the added advantage of reducing the
number of unknowns to be determined, and the minimum required number of frequency
points is now (Nk + Nm) / n.

Yet further constraints can be introduced by using macro-elements - that is, several finite
elements which describe a distinct part of the structure grouped together into one element
- or by updating the physical parameters used in the definition of the FE model.
However, it is considered that the latter constraints limit the ability of the updating
method to identify local modelling errors in the analytical model. The choice of
parameters is of vital importance to the success of any updating technique, as it reflects
inherent assumptions about the correctness of the model. The RFM can have several
solutions due to the choice of updating parameters involved. However, it is considered
more important that for a certain choice in parameters, bearing in mind the inherent
limitations of these updating parameters, a single (unique) set of p-values are obtained
which reflect the modelling errors correctly.
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5 . 5 CASE STUDIES ON AN 8 DOF SYSTEM

5.5.1 The 8 DOF system

An 8-DOF lumped parameter system, shown in Fig. 5.1, was employed to investigate
the use of the FRF-based updating technique for a number of test cases. It should be
noted that the mass matrix for this system is not diagonal, an uncharacteristic feature of
such simple systems. The experimental model was provided by a version of the basic
system in which there was a 30% increase in the value of k3 and a 25% increase in that of
13. A typical receptance FRF, a6_, computed for both models over the lo-1OOHz
frequency range is plotted in Fig. 5.2.

+x- l
m2 I2

11 = 5.0 kgmz ml =l .Okg kl =l.O MN/m kg = 1.8MN/m
12  = 1.0 kgm2
13  = 4.0 kgm?

m2 = 2.0 kg k2 =I.5 MN/m k7 = 1.0 MN/m
m3 =3.0kg k3 =1.5  MN/m kg = 3.0  MN/m

4 = 1.24 kgm2 mq = 6.0 kg b =3.0 MN/m kg = 1.5 MN/m
kg =I.9 MN/m k10  = 2.5 MN/m

Fig. 5.1: The 8 DOF system
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-1QQ.U  -

Fig. 5.2: Receptance FRF w obtained from the e_xperimerztal  and analytical models

of the 8 DOF system

5 . 5 . 2 Updating using complete data from the experimental model

At first it was assumed that all required FRFs, that is to say an entire column of [a~],
were measured. The following three cases were investigated:

(0

(ii)

(iii)

no constraints, i.e. 8x(8+1)=72 unknowns and a minimum of 72/8 = 9
frequency points;
Cl constraints, i.e. 26 unknowns and 26/8 = 4 frequency points required;
and
C2 constraints, i.e. 18 unknowns and 18/8 = 3 frequency points required.

In all three cases, the natural frequencies, system matrices and frequency response
functions of the analytical model were updated correctly in the sense that they matched
those of the e_xperimental  model. A receptance FRF (a,) obtained from the updated
analytical model is shown in Fig. 5.3. Also plotted in the same figure is the measured
receptance FRF ab6, which was seen to be identical to the updated one within the
frequency range considered (0- 100Hz) and beyond.
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Fig. 5.3: Receptance FRF w obtained from the experimentuf  and updated analytical
models of the 8 DOF system (complete experimental model, unique updated model)

5 . 5 . 3 Incomplete experimental data

The incomplete data from the experimental model consisted of 4 FRFs only which were
measured at coordinates 1,3, 6, and 8. Twenty points were selected from the measured
frequency range and the convergence criterion, defined by the relative percentage
difference between measured and
points, was taken as 1%.

updated analytical FRFs at the selected frequency

Convergence was obtained after 8 iterations using Cl constraints. However, a closer

inspection showed that the mass and stiffness matrices of the updated system did not
correspond to those used to create the experimental data, although good agreement was
reached at the FRF level (Fig.  5.4) . Further runs, where different

numbers/combinations of frequency points were used, produced different updated system
matrices which, in turn, all gave the correct frequency response functions. Clearly, in
each case, the updated model was not unique.

The number of measured FRFs was then increased to 5, 6 and finally to 7. As before,

each case yielded different system matrices but gave satisfactory agreement between
FRFs. Elements of the updated mass and stiffness matrices corresponding to the
unmeasured points were observed to exhibit large errors. As the number of measured
coordinates was increased, these errors were found to decrease: over 100% error for 4
measured points, 50% for 5, 18% for 6 and 5% for 7 points, thus converging to the
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unique solution which was eventually obtained using a complete vector of experimental
FRFs.

-210.0  &------ --I__---_------__-_ _-_-----i

10. 22. IG. ‘3'). 214. 460.

1 II:;:,c;r;;;$, ,<;,,
Fig. 5.4: Receptance FRF a~ obtained from the experimental and updated analytical

models of the 8 DOF system using Cl constraints
(incomplete experimental model, non-unique updated model)

If the modifications are confined to the mass or the stiffness matrix errors only, as
opposed to errors occurring simultaneously in both mass and stiffness matrices, 6
iterations were required to reach convergence when 4 measured FRFs were used. In
these special cases the updated mass (or stiffness matrix) was found to be unique.

Next, C2 constraints were applied to limit the number of possible solutions when both
the mass and stiffness matrices were modified. Eighteen parameters (It, ml, 12, m2, . . . ,

kl, k2, . . . , kg and kru) were selected to form equation (6), thus reducing the number of
unknowns from 26 to 18. However, as before, a non-unique solution, with small
differences (between O-2% on the p-values) as compared with the expected model, was
obtained in the sense that several sets of updated matrices produce the correct FRFs.
This was thought to be due to the fact that both k5 and b, which were used as
independent updating parameters, did not have a measurement points directly at one of
their nodes. Although this is not a fundamental requirement, k5 and k6 were less
sensitive for updating purposes when employing the selected 4 measured FRFs. To
overcome this problem macro elements were formed by grouping kl with k6 and k5 with
klo, thus reducing the number of unknowns from 18 to 16. Convergence was achieved
within 5 iterations using 7 frequency points (Fig. 5.5). Also, the solution seemed to be
unique since further runs using different set of frequency points yielded the same mass
and stiffness matrices for the updated system.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Element numbers

(a) p-values after 1 iteration

1 2 3 4 5 6 7 8 910111213141516
Element numbers

(b) p-values after 3 iterations

$ 0.5

9 0.3-

d O.l-

-0.1 -

-0.3 -

-0.5 ’ ’ ’ ’ ’ . ’ ’ ’ ’ ’ ’ ’ . s . ’
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Element numbers

(c) p-values after 5 iterations

Fig. 5.5: Convergence towards the unique solution using C2 constraints

At this stage, it must be noted that, although elements which did not have a measurement
point associated with them were less sensitive, by adding an extra convergence criterion
which ensures convergence of the p-values (see section 5.5.4) the correct updated model
was obtained even in the case of 18 unknowns. Using the additional criterion more
iterations were needed to reach convergence than when a single convergence criterion,
based on the difference between experimental and updated receptance values, was used.
To ensure rapid convergence and improved solution stability, the recommended minimum
number of measurement coordinates is at least one per finite element.
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5.5.4 Frequency points selection

During the investigation it was discovered that, unless the experimental model was
complete, the choice of frequency points for the updating procedure had a marked
influence on the speed of convergence and on the accuracy of the final solution. Hence, a
preliminary investigation into the best selection of frequency points should be conducted
using the incomplete noise-free experimental model of the previous section. In all cases
the frequency points were selected randomly in a specified frequency range and were kept
constant throughout the iterations. In this particular case, the maximum number of
iterations was set to 30 and two convergence criteria were used:

(9

(3

the absolute value of the consecutive difference in the p-values between
iterations should be less than 1% to ensure the stability of the solution; and
the consecutive percentage difference between measured and regenerated
FRFs should be constant This is implemented by monitoring the sum of the
percentages difference squared :

nfpts ncor,
SpDS = C C

k=l j=l
(7)

The use of more frequency points and from a wider frequency range improved the rate of
convergence, although it was also observed that too many frequency points in the
selection can in some cases increase the number of iterations to reach convergence.
When the minimum required number of frequency points was used, no convergence was
obtained except for the full lo- 100 Hz frequency range. This shortcoming was remedied
by using more frequency points. By observation of the various test cases it was deduced
that the recommended number of frequency points to be used is at least twice the
minimum requirement in case of noise-free incomplete experimental data. It is anticipated
that in case of noisy experimental data more frequency points will be required to
overcome the expected adverse effects of noise.

It was also noticed that large fluctuations in the p-values usually occurred (-55) during
the first few iterations, although convergence could still be achieved. A maximum
change of 50% (Ap = 0.5) was allowed between iterations to ensure solution stability.
However, in some cases, p-values of -1.0 were obtained during the first few iterations
which meant the corresponding element was deleted from the updated matrices, resulting
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in numerical instability and jeopardising convergence. In most cases this problem was
cured by using a new selection of frequency points.

If a frequency point was selected in the immediate vicinity of a resonance, the inversion
of matrix [C] becomes prone to ill-conditioning. The discrepancies between various sets
of results obtained using different frequency points could, perhaps, be explained in the
light of this observation (computational aspects and frequency point selection are
addressed in more detail in chapter 7).

It was also observed that selecting points at higher frequencies gave best results and
quicker convergence. Selecting points close to the first natural frequency gave a
maximum percentage error compared to the true value of the non-zero p-values of 40% ,

while around mode 2 this was reduced to 0.4%. Selecting points around modes 3 and 4
the percentage error is even smaller. This is thought to be due to the fact that individual
stiffness (k) and mass (&m) elements of the system matrices were about the same order
of magnitude at these frequencies, which ensured better numerical stability.

5.5.5 Noisy experimen ta1 data

The case where measured FRFs contain a certain amount of noise, a feature inherently
present in all measured data, was also investigated. The experimental FRFs of the 8 DOF
system were polluted by adding between 1% and 12% random noise in the following
way:

cllXij(ok)  =  C1 + r x n%>  aXij(Ly,)) 6.3)

where r is equal to a random value between -1 and 1. The RFM was repeated for 4
different sets, A-D, of randomly selected frequency points in the lo-100 Hz range in
order to check the repeatability of the solution in the case of polluted experimental FRF
data. The number of frequency points selected was increased to 30 to compensate for the
expected adverse effects of the random noise.

The number of iterations required to achieve convergence was seen to increase with
increasing levels of noise; averages of 9 iterations for 0% noise, 12 iterations for 4%
noise and 16 for 12% noise were recorded. For the extreme case of 20% noise no
convergence was obtained in 30 iterations for 2 of the 4 frequency point sets. In the last
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case, although the error was located, its magnitude was not predicted correctly due to
noise.

1.0
s
-z> 0.6
b,

0.2

-0.2

-0.6

-1.0

0 2 4 6 8 1 0  nois.%

(a) Element 5, correct p-value = 0.25

(b) Element 11, correct p-value = 0.30
1.0

$ 0.6
>
fi 0.2

-0.2

-0.6

-1.0
0 2 4 6 8 10 12

% noise

(c) Element 2, correct p-value = 0.0

Fig. 5.6: Variation of p-values with level of noise (4 cases, A-D)

p-values versus noise levels for elements 5 and 11, which were modified by 25% and
30% respectively, are plotted in Fig. 5.6 for all four test cases (A-D). As expected, p-
values diverged from the correct values (0.25 for element 5 and 0.30 for element 11) as
noise levels increased. This was verified by the plot of the standard deviations with
respect to the true p-value (Fig. 5.7). However, in all cases a good indication of the
size and location of the error was obtained. The remaining p-values for the unmodified
elements also showed trends similar to elements 5 and 11, but the corresponding p-values
were either small in comparison (for most elements) or inconsistent in size and magnitude
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when collective results from tests A-D were considered. The latter observation is
illustrated in Fig. 5.6~  where p values for element 2, for which the largest errors were
incorrectly predicted, are plotted.

X stand dev e12
1 l stand. dev. el. 11

0 stand. dev. el. 5

0 2 4 6 8 10
96 noise

Fig. 5.7: 8 DOF models, standard deviation of p-values against noise level

p-values found for sets A-D were averaged in order to determine whether discrepancies
from one set to the next were randomly distributed about the expected p-values such that
the mean values could predict the correct p-values. The mean p-values obtained from sets
A-D are plotted in Fig. 5.8. The same procedure was repeated for a number of further
runs with other frequency point selections and it was found that the averaging technique
can be used successfully for error location when dealing with noisy experimental data.

1.0sz> 0.8
h,

0.6

0.4

0.2

0.0

0 2 4 6 8 10% n0i.E

8
l

I Fig. 5.8: 8 DOF models, mean p-values against noise level

5 .6 . CASE STUDIES ON A FREE-FREE BEAM

5.6.1 The free-free beam

The second example was based on a free-free steel beam of dimensions 25.4 mm x 31.75
mm x 1400 mm which was considered to be a simple but representative engineering
structure. The experimental data were simulated using a uniform beam model and the
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FRF data for this beam were obtained via a Finite Element model (consisting of 14 3D
beam elements) for both Y and 2 directions at an excitation point 400 mm away from one
end. Six known errors were introduced to the analytical Finite Element model, also
consisting of 14 3D beam elements, as shown in Fig. 59. A typical FRF obtained
from the analytical model with known errors is plotted in Fig. 5.10 together with the
experimental curve representing the correct uniform beam.

t1,___T 1 ’ 1 3 1
_________\

4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 13 I 13 I ,d

%
7%

Fd>x
(not to scale)

Fig. la FE model of the uniform bean1 with following errors: element 2 t’ = 1.1 t
element 3 w’= 0.8 w
element 6 t’ = 1.5 t
element 10 E’ =1.2E
element  11 t’ = 1.3 t
element 14 p’ = 0.7p

Fig. 5.9: FE model of the uniform beam

I ---~0 200 400  600 8 0 0 loo0 I200 14cQ lhcd

Frequency (Hz)

Fig. 5.10: Receptance FRF ~~5~5~ obtained from the experimental and analytical
beam models

5.6.2 Noise-free experimental FRF data

Two initial test cases were carried out using noise-free FRF data: in the first case, all
elements of the FRF vector (rotations as well as translations) were assumed to be known
while in the second case it was assumed that measurements were made in the Y direction
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only (i.e. a correspondence factor of 16.7%). The first case converged in 2 iterations
only while the second one required 12 iterations but both cases yielded very similar p-
ralues which are shown in Fig. 5.11.

mass elcmcnts stiffness elements

Fig. 5.11: p-values for an incomplete experimental beam model

All elements in error were correctly identified. The computed p-values were used to
update the model in spite of the fact that a change in thickness affects both the inertia and
the mass in the mass matrices and that the stiffness matrices are sensitive to both elastic
modulus and thickness changes. In other words, the errors were not linear combinations
of individual finite elements. Nevertheless, a plot of one of the FRFs of the updated
model plotted together with the experimental one (Fig. 5.12.) showed a favourable
comparison.

5 -7

Fig. 5.12: Receptance FRF asysy obtained from the experimental and updated
analytical beam models
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Note that in this case the model was corrected using a receptance column for excitation in
the y direction only. The objective of the RFM is minimisation of the difference in
frequency response between the experimental and updated models for a certain excitation
point. In the beam example, no improvements were achieved for excitation in the other
directions because only receptance curves for response in the y-direction were measured
and the response directions in a simple beam model are decoupled. This was clearly
shown by comparing a typical experimental analytical and updated FRFs for excitation in
the z direction (Fig. 5.13) which indicated that care must be taken how the p-values are
used to update a model.

-50

1200 1400

Frequency (Hz)

Fig. 5.13: Receptance FRF ~~5~5~ obtained from the experimental and updated

analytical beam models.

A simple 2 DOF example, as shown in Fig. 5.14, demonstrated this problem further.
Due to decoupling of x and y, element k2 cannot be updated if only aI of the
experimental model is measured . In general, if a set of experimental receptance data
used in the RFM is insensitive to an analytical modelling error, this error cannot be
detected using the given experimental data set. However, most modelling errors will
affect the frequency response for several directions, and therefore the RFM can, in most
cases, locate the modelling errors using a single receptance column.

I Fig. 5.14: 2 DOF system, x and y directions decoupled
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5.6.3 Noisy experimental FRF data

In the case of incomplete FRF data with added noise, many sets of p-values can be
obtained by choosing a different selections of frequency points and hence the solution is
not unique. The number of frequency points used in any one set, Nt, is important for the
convergence of the solution. As shown in section 5.3, the minimum number of
frequency points which must be used is the ratio of the number of p-values to be
calculated to the number of measurement points available. The adverse effects of
coordinate incompleteness and noise can be partly offset by choosing more frequency
points than the required minimum, but there is a cut-off point beyond which additional
frequency points give no added benefit while increasing the CPU time for each run as the
analytical receptance matrix needs to be calculated for each frequency point selected and
each iteration. Furthermore, too many frequency points in the selection can substantially
increase the number of iterations to reach convergence. It was observed that a 4 to 8
times overdetermined system produced the best convergence characteristics while locating
the errors reasonably accurately. However, due to the surplus of experimental data it is
possible to repeat the RFM using various sets of frequency points, each yielding a set of
p-values. The scatter and repeatability of these p-values can then be investigated using
some statistical analysis tools to help to identify the most reliable results.

3% noise was added to simulated FRF data of the uniform beam and six different sets of
p-values were obtained. The computed p-values together with their mean, standard
deviation and mean-to-standard deviation ratio are shown in Fig. 5.15. As can be seen
from Fig. 5.15c,  the mean-to-standard deviation ratio clearly identified the elements in
error.
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(b) Mean p-values (c) Mean p-value to standard deviation ratio

Fig. 5.15: p-values for an incomplete experimental model with 3% noise

A further case, this time with 6% added noise, is illustrated in Fig. 5.16. The average
standard deviation of the p-values increased from less than 0.002 for no noise and 0.05
for 3% noise to 0.10 for 6%. Although the scatter of the p-values increased, the mean-
to-standard deviation ratio still identified the elements in error. A mean-to-standard
deviation ratio greater than 2 indicated the presence of an error if the scatter in p-values is
small. In the case of 10% added noise (Fig. 5.17), the average standard deviation was
0.19. Using an error threshold of 1, all elements in error were identified, apart from m2,
the smallest mass element change (p(m2)=0.09).
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mass elements sum~css  elements mass elements
Ll--. _--

Stiffness elements
- error threshold: 2

(a) Mean p-values (b) Mean p-value to standard deviation ratio

Fig. 5.16: p-values for an incomplete experimental model with 6% noise

I
mass elements suffncss clemenrs

(a) Mean p-values

mass elements stiffness elements
--error threshold: 2
- - relaxed dwcshold:  I

(b) Mean p-value to standard deviation ratio

I Fig. 5.17: p-values for an incomplete experimental model with 10% noise

5 . 6 . 4 The effect of excitation direction

To illustrate the effect of the excitation direction, some of the earlier cases were repeated
for an excitation in the z direction, assuming that the FRFs were measured in the z
direction instead of the y direction. The p-values obtained for the y and z excitations for
the noise-free case are shown in Fig. 5.18. All mass errors had identical values but
there were discrepancies in the magnitudes of the stiffness errors. This was not a
surprising result since the p-values are linear modification factors for each element and as
such they indicate the location of the errors and reflect an approximation of the modelling
error but do not represent their actual magnitude. Results for the 3% noise case are
plotted in Fig. 5.19 and it is immediately seen that one of the errors was not located.
The missing error corresponded to the smallest thickness change in the y direction and
had a relatively small effect on the frequency response functions in the z direction.
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Fig. 5.18: p-values obtained for excitation in v direction and excitation in z direction

1:t is interesting to note that if data from two or more excitation directions are available, the
error location process can be repeated for each direction and a comparison of the p-values
should provide very useful information about the reliability of the error location process.
In the case of zooming into erroneous elements by allocating additional p-values to
individual element matrix elements, it is likely that concurrent use of FRF data from
various excitation directions will be desirable and probably even essential.

.,p________.--.-..___._+__-__.~______2___._.
.g ,;--..-..-  .-...__._. _-._-__..L_____.._._____

0’
mass  clcmcnts stiffness elements

n y cxcttation
q i excitation

stiffness elcmenu
_  error thrcsholdy z I y cxcttadon

El z excLtauon

(a) Mean p-values (b) Mean p-value to standard deviation ratio

Fig. 5.19: p-values obtained for excitation in y direction and excitation in z direction
for an incomplete experimental model with 3% noise

5 . 6 . 5 The effect of reduced number of coordinates

Next the number of measurement sites was reduced from 15 to 7, i.e. a correspondence
factor of 7.8% In this case, convergence was not so easily achieved: the average
standard deviation increased to 0.20 for 3% noise and only the largest errors - namely,
those in mg, m14, k6, klo and kll - were detected (see Fig. 5.20). As only 7 out of 90
DOFs were known, and 5 (with p-values greater or equal to 0.22) out of a total of 10
elements in error were identified, this can be considered a satisfactory result.
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Fig. 5.20: p-values for an incomplete experimental model with 3% noise
(correspondence factor 7.8%)

On reducing the number of measurement sites even further, to 5 only, the success rate
(that is, the ratio of runs that converged to a solution to the total number of runs) dropped
even further and the average standard deviation became 0.44. This was expected as the
solution became increasingly unstable due to the reduced number of measurement sites.
This can be observed in Fig. 5.21: changes in p values between iterations became more
and more erratic until convergence was not achieved at all (Fig. 5.21~).
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Fig. 5.21: Ap for each iteration for incompleteexperimental beam models with 3% nois<
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5.6.6 The effect of coordinate mismatch

In the previous case studies it was assumed that the experimental FRFs were measured
coordinates corresponding exactly to their analytical counterparts. In reality, coordinate
mismatch often occurs: even for a simple beam, the measurement points will be on
surface and not on the neutral axis, as was assumed so far. Therefore, a third FE model
was set up to investigate the effect of this type of coordinate mismatch.

The third FE model consists of 168 24 DOF brick elements and 15 Y coordinates were
assumed to be measured at one of the surfaces. Due to Guyan reduction of the FE model
and differing finite element assumptions between beam and brick elements, extra
discrepancies were inherently introduced in addition to the 3% noise which, as before,
was randomly distributed over the experimental FRFs. An average of 14 iterations were
required to reach convergence and the average standard deviation was 0.07. Six sets of p
values were computed and, using the mean-to-standard deviation ratio and an error
threshold of 2, all elements in error were identified (Fig. 5.22). However, for no
apparent reason, an extra element, namely b, was also identified as being erroneous.
The mean p-value of k8 was relatively small at 0.074, and the resulting updated
frequency response functions compared very well with corresponding experimental
FRFs.

8 .
0 =,
E m.- -_._. -.,

mass  elements stiffnesi  eli&nts

(a) Mean p-values
mass  elements stiffness &m&m

(b) Mean p-value to standard deviation ratio

Fig. 5.22: p-values for an incomplete experimental model with 3% noise
(15 experimental points on beam edge - model mismatch)

Due to the mixture of elements used, namely 3D brick elements for the experimental and
3D beam elements for the analytical model, each with different assumed shape functions
additional modelling discrepancies were introduced. This phenomenon was of increasing
significance for higher frequencies. The objective of model updating is to obtain an
updated model with improved physical significance and Mottershead 11151 emphasises
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that one should not correct modelling errors due to model discretisation and element
shape functions. However, the author of this thesis would like to point out that if this
phenomenon has a significant influence over the frequency range of interest then the
original analytical FE model can already be considered to be erroneous. The FE analyst
should ensure that the FE mesh selected has “converged”, i.e. such that mesh refinement
gives no substantial changes in response in the frequency range considered.

5.7 THE GARTEUR III EXERCISE

The GARTEUR III exercise, first introduced in chapter 3, was also used as a RFM case
study. Some initial difficulties in obtaining independent experimental data from other
sources emphasise the importance of good communications between experimental&s and
analysts. To overcome these difficulties the experimental and analytical data were
generated by a common route.

The experimental FRFs were generated with 3% random added noise at 72 known
coordinates, according to the modelling mismatches indicated in Fig. 3.9. A
comparison of an experimental and analytical receptance curve is given in Fig. 5.23.

Frequency0 I_-

Fig. 5.23: Receptance FRF a31 31. obtained from the experimental and analytical
GARTJWR models

Several runs were started but no convergence was obtained within 50 iterations. It is
observed that certain elements (indicated in Fig. 5.24) were very unstable and their
associated p-values tended to diverge. This phenomenon can occur either because some
elements are insensitive (changes in the element mass and stiffness have no significant
effect on the response of the system) or because the rearranging and the deleting of
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appropriate rows makes the element unstable. One possible solution to eliminate
elements which appear to be unstable from the updating process, is to assume that these
elements are without error, an assumption which is not necessarily true. Another
approach, as suggested in section 5.53, is to group unstable elements with their
neighbouring elements thus forming macro elements and obtaining an averaged p-value.
The latter option still enables some localisation of modelling errors in unstable elements
and hence this approach is generally more applicable. Therefore the unstable elements for
the GARTEUR model were grouped together with the adjoining elements

Fig. 5.24: Indication of unstable elements on the GARTEUR structure

Although convergence of all the p-values was still not obtained, the solution appeared to
be more stable than before. The sum of the percentage difference squared at the selected
frequency points (equation (7)) was used to monitor the behaviour of the RFM. Out of a

total of 10 runs using different frequency point selections 6 runs were selected on the
basis of the largest decrease in the sum of percentage differences squared. The mean-to-
standard deviation ratio of the p-values at the iteration number for which this sum was a
minimum are given in Fig. 5.25.
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(b) I changes

m ABOVE 2

iy BELOW 0

Fig. 5.25: Mean p-value to standard deviation ratio for GARTEUR III

Despite the difficulties reported above the results obtained were fairly encouraging, one
element in error was not identified and two were incorrectly identified as erroneous but
both additional p-values were small (see Table 5.1). Calculating the updated FRF and
comparing this with the experimental one led to good agreement (Fig. 5.25).

S changes

mean p-value true p-value

I changes

mean p-value true p-value
RFM

1.31 1.00 0.33 0.25
1.31 1.00 0.33 0.25
1.18 1.00 -0.85 -0.83
0.22 0.00 -0.82 -0.83

-0.82 -0.83
-0.82 -0.83
-0.82 -0.80
0.00 -0.80
-0.29 0.00

Table 5.1: GARTEUR III, p-values.
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lg. 5.26: Receptance FRF ccsl 31, obtained from the experimental and updated

Although these results were not a perfect unique solution, which cannot be achieved in
case of incomplete noisy experimental data, they were very good compared to the results
obtained using the error matrix methods (chapters 3 and 4).

5.8 CONVERGENCE CRITERIA

The convergence criterion is based either on the absolute or the relative difference
between two successive p-values during the iteration process. The computation time was
found to be very sensitive to this difference and a relative difference between two
successive p-values of 0.1% was used for the beam case studies and the GARTEUR  III
exercise. Using a much smaller value results in numerous extra iterations without an

added benefit, especially when the accuracy of the measured FRFs and the requirements
of the updated model are considered. To reduce computation time further, an individual
p-value which has satisfied this convergence criterion can be assumed to remain constant
for all subsequent iterations.

The sum of the squared percentage differences between experimental and updated FRFs
for the selected frequency points was also used as a convergence check in order to stop
the iteration process when there were no further improvements from one iteration to the
next. However, convergence should not be sought under this criterion unless all p-
values show a satisfactory degree of convergence or only those p-values which have
converged are included in the statistical analysis. Fig. 5.27 shows typical variations in
the sum of the percentage difference squared for case studies on the beam example (3%
random added noise 15.7.5 measurement points).
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2

1 I- 15 meuswemenr  sites
’ ’ 7 measwemenr  sites 1

0 l l 5 measurement sites

0 10 20 30 4o iteration no

I Fig. 5.27: Typical variations in the sum of the percentages difference squared

It was observed that usually, for the test cases carried out, convergence was not achieved
if the sum of the differences squared exceeded the initial value for that run, unless this
occurred during the first few (2 or 3) iterations when p-values can change erratically,
giving rise to considerable changes in the FRFs. Comparing the drop in the sum of the
percentage difference squared before and after the first iteration can be used as an
indication for convergence, where a small drop suggests that it is unlikely to reach
convergence and a large drop implies a good solution. Unfortunately however, the latter
does not guarantee convergence.

Computation time can be reduced by analysing sets of p-values after a fixed number of
iterations, e.g. for the 3% noise beam test case of section 56.3, all elements in error
were identified after 8 or more iterations. However, best results are obtained if p-values
of converging solutions only are included in the selection of sets. Generally, it is
impossible to predict convergence until it has indeed been reached, especially for unstable
solutions which can be due, for example, to noisy data or to a reduced number of
measurement sites. Secondly, the speed of convergence is case-dependent. Therefore, a
convergence criterion based on a fHed number of iterations is not recommended .

If, however, convergence is not reached after several frequency point selections, the
statistical analysis applied to the p-values at the minimum of the sum of the percentage
differences squared can give satisfactory results. This procedure can also be used in
addition to the final p-values for converging test cases, where the most reliable results are
those with the smallest average standard deviation.
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Considering the relative importance of each of the p-values, one ought to bear in mind
that the reliability of resulting p-values depends on the sensitivity of the experimental
FRF data employed to changes in that element. Some element changes will have little
influence on the resulting receptances corresponding to the measured data set in
comparison with changes in other elements. The p-values of those elements are therefore
ineffective for model updating purposes

5 . 9 CONCLUDING REMARKS

In this chapter the Response Function Method, an FRF-based updating technique, is
introduced. The use of the RFM was investigated in some detail on a number of case
studies: an 8 DOF lumped parameter model, a free-free beam model with known
modelling errors and the GARTEUR III exercise. Satisfactory results were obtained,
even in the case of noisy incomplete experimental data.

Although the number of possible solutions can be reduced dramatically using various
constraints, it should be remembered that in the general case, where the experimental
model is incomplete and contains noise, the updated model is not unique .

In the general case, modelling errors cannot be expressed as a linear combination of the
individual element mass and stiffness matrices; hence the attempt to model the error in
each element by a single p-value is only an approximation. This technique is useful for
error location but not necessarily for updating.

In common with many other updating techniques, the incompleteness of the experimental
model remains a major problem while correcting the analytical model using the RFM.
The problem is overcome by substitution of the missing coordinates by their (updated)
analytical counterparts and is also addressed on a statistical basis (thanks to the plentiful
data) by considering several sets of possible solutions for various frequency point sets.
It has been demonstrated that the updating procedure can be applied successfully in the
presence of noise by judicious use of the ratio of mean to standard deviation of the p-
values for error location.

As expected, noise on the measured FRF data has an adverse effect on error location
since it tends to make the solution process unstable and it increases the scatter of the p-
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values. A reduced number of measurement sites and model mismatch also have adverse
effects.

It is recommended that the number of frequency points used for updating should be 4-8
times the minimum requirement to make the system of equations numerically stable and to
reduce the adverse effects of noisy and incomplete experimental data. P-values can be
unstable either because the system is insensitive to changes in particular elements, or
because the solution process makes it unstable. The latter occurs especially when the
number of measurement coordinates is too small in the vicinity of the corresponding
element. It is therefore recommended that at least one coordinate per element should have
an FRF associated with it. This can always be achieved by grouping elements together.
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CHAPTER 6

UPDATING USING COMPLEX FRF DATA

6.1 INTRODUCTION

Vibration test data are always complex due to the inherent damping mechanism(s)
dissipating energy in any vibrating system. Damping can be modelled as viscous,
structural or Coulomb damping. Most FE models yield mass and stiffness system
matrices only and damping is either ignored completely or some form of proportional
damping is added at a later stage. As the objective of model updating is to obtain a correct
analytical model, the identification of damping matrices also needs to be addressed. In
updating analytical models using modal data, complex mode shapes can lead to many
incompatibility problems. Some updating techniques are extended to include some form
of damping identification, but real experimental mode shapes are usually required and this
necessitates the conversion of the measured complex modes into real ones, thereby
introducing additional inaccuracies. Updating techniques using FRF data should also
include the complex nature of measured data to identify system damping matrices. In this
chapter the RFM is extended to deal with complex experimental data and the derivation of
a damping matrix is discussed.

6.2 THEORETICAL BACKGROUND

As previously, let us assume that modelling errors can be expressed as linear
combinations of the individual element mass and stiffness matrices

[AM=zPi [ M e l

[AK1 = 2 Pi 1 Ke 1 (1)
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All practical structures exhibit a certain amount of damping and hence all measured
frequency response data are complex. If we assume structural damping, the RFM (see
chapter 5 equation (4)) can be written as:

with [aDI=: Pi [ De 1

Rearranging equation (2) now gives:

[C(o)1 Nx(N,+Nk+Nh ) {P] (%,+Nk+Nh ) = WW,

(2)

(3)

(4)

As the p-values are always real numbers, equation (4) can be separated into its real and

imaginary parts and the resulting equation rearranged as:

[c(w)1(2 X P X N) X (N,+Nk+Nh)  ‘P’(N,+Nk+Nh)=  “(@]2 X P X N (5)

where P is the number of frequency points used.

In most cases, the finite element model is undamped and hence individual element
damping matrices are not available. Nevertheless, a form of proportional damping i.e.:

[D,]=constantx[&] (6)

can be assumed as a starting point. This form of proportional damping also allows for
variations in damping values over the structure. For a more refined description of the

damping; this can be assumed to be a linear combination of mass and stiffness element
matrices and as such there will be 2 additional p-values associated with each finite
element. This will increase the number of unknowns substantially and as the damping is
most difficult to measure accurately in experiments, the added benefit of the finer
description of the damping is likely to be lost.
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6.3 CASE STUDIES ON A FREE-FREE BEAM

The initial individual element damping matrices were formed using proportional damping
and the constant in equation (6) was taken as 1%. The experimental FRFs were
generated via modal summation including a damping term.

Initially, it was decided to introduce 3% error simultaneously on both real and imaginary
parts of the experimental FRFs and six sets of p-values were computed for six different

sets of frequency points. The results are summarised in Fig. 6.1.

mass elements stiffness elements damping elements

(a) Mean p-values

mass elements stiffness elements damping elements

(b) Mean p-value to standard deviation ratio

Fig. 6.1: p-values for incomplete complex experimerztal data with 3% noise
(simultaneous error on real and imaginary parts)

Also, it was decided to change the pattern of the imposed noise and 3% error was
introduced independently on the real and imaginary parts of the FRFs and the same set of
calculations were repeated. The results are summarised in Fig 6.2. Both sets of results
were in agreement and furthermore the errors were located with good accuracy.
(However, further calculations, not reported here, showed that the success of the method
is dependent on the selection of the frequency points, a matter which will be explored in
detail in chapter 7.) The resulting p-values suggested that the initial value of damping
was too high since the average p-value for damping elements was about -0.5, indicating
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that the initial estimate ought to be corrected by (l+p) = 0.5 which gave a damping
constant of 0.5x.01=0.005. Also note that local variations in damping due to the
modelling errors were reflected correctly in the damping p-values.

.”

mass elements stiffness elements damping elements

(a) Mean p-values

mass elements stiffness elements damping elements

(b) Mean p-value to standard deviation ratio

Fig. 6.2: p-values for incomplete complex experimental data with 3% noise

(independent error on real and imaginary part)

In practice, the imaginary part of the FRF data is measured with less accuracy than the
real part of the FRF data. Increasing the noise on the imaginary part caused the RFM to
become less stable and convergence was not so easily reached. The main reason for this
trend is that the p-values associated with the mass and stiffness elements converge faster
and these are subsequently omitted from the iterative process while the RFM continues to
identify modelling errors using the p-values associated with damping elements only.
Hence at this stage the identified p-values for the damping elements may well include
some updating values which are due to other modelling errors. That damping elements
converge last is due to damping being of second order importance for off-resonance FRF
data.

In cases of reasonable initial damping assumptions and moderate noise on the imaginary
parts of the experimental FRF data, the damping matrix can be identified using the RFM,
a feature illustrated above on the beam example. For more complex structures, the main
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source of damping will be in the joints. In such cases, it will be reasonable to reduce the
number of unknowns by specifying one damping p-value for each distinct continuous
part of the structure (a macro damping element) and one p-value for each of the joints. As
joints are often a major source of modelling errors and introduce some additional
problems in model updating, the updating of joints will be investigated in detail in
chapter 9.

It should also be noted that the introduction of noise to analytically-generated data by a
random percentage error over the FRF is far from being realistic and merits research in its
own right. Recently some initial numerical case studies of noise introduced by vibration
measurement were presented by Jung ITal.

6.4 USING MEASURED FRF DATA

rBM COMPATIBLE
COlvlF’UIER

r

F-Fl-  ANALYZER

I Fig. 6.3.: Experimental set-up

As shown in Fig. 6.3, the FRFs of the uniform beam were obtained via impact testing
using a PCB hammer and a B&K accelerometer. The beam was freely suspended and an
accelerometer was attached to a point at 400 mm from one end. Baseband inertances
were obtained for a frequency range up to 1.6 kHz at 15 points in the y direction.

The p-values were frost computed for real FRF data by setting the imaginary part of the
measured FRF to zero. This was considered to be a justifiable approximation because of
the light damping in the system and the selection of FRF data away from resonance
peaks. Results from six independent runs are given in Fig. 6.4 from which it can be
seen that mass errors in elements 2,6, 11 and 14; and stiffness errors in elements 2,6 ,
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10 and 11 were successfully located. However, fictitious errors in elements 8 and 10
were also suggested and the relatively small error in element 3 was not detected. This is
in agreement with results presented in section 5.6.6 where model mismatch, as is present
here, was simulated.

stiffness elements mass elements stiffness elements
--error fhrcshold: 2

(a) Mean p-values (b) Mean p-value to standard deviation ratio

Fig. 6.4: p-values using the real part of measured FRF data

The updated FRF is plotted in Fig. 6.5 together with the experimental and initial FRFs.
In spite of the moderate success of the error location process, the mean p-values reflected
the modelling errors with reasonable accuracy and it was immediately seen that the
updated FRF is much closer to the measured FRF than the initial one.

-150

-200

muencv0

Ej

Fig. 6.5: Comparison of the measured, analytical and updated analytical receptance
FRF aSv5v

It was then decided to use both the real and imaginary parts of the FRF and results after
six runs are given in Fig. 6.6. The error location was not very successful in the sense
that, in addition to the true errors, several fictitious ones were also indicated. The
problem was traced to non-convergence of the damping p-values. This is perhaps not a
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surprising result in view of the simplicity of the damping model used and the amount of
electronic damping introduced during the signal processing stage of the measurements.
The electronic damping was mainly caused by the exponential window applied to the
measured displacement. The exponential window was applied to overcome leakage, a
common signal processing problem associated with impact testing on lightly damped
structures as, to satisfy periodic behaviour for correct Fourier transformations, the
response must die away by the end of the sample time (Fig. 6.7).

mass elements stiffness elements damping elements

(a) Mean p-values

. 16.
-0
c 14’
B
* ‘2:

mass elements stirtness elements aampmg  elements

(b) Mean p-value to standard deviation ratio

Fig. 6.6: p-values using measured FRF data

Fig. 6.7: The effect of an exponential window on lightly damped response data

As damping of the FRF data is of second order importance, experimental noise tends to
drown the damping contributions of the FRFs. Other experimental errors can arise due to
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(i) other signal processing errors, such as averaging which overcomes random error but
not bias error(s), (ii) measurement equipment; such as the mounting effect of the
accelerometer, (iii) the repeatability of the measurement, manually hitting at the same spot
several times and (iv) measurement noise. Also, as mentioned previously, the fact that
measurement coordinates are on the beam surface while the FE model coordinates are
along its neutral axis, has an adverse effect on the RFM too.

Results obtained by setting the imaginary part of the FRF to zero (Fig. 6.4) were
reasonable, while those obtained by retaining both real and imaginary parts of the FRF
data were not so satisfactory. Good initial assumptions about the damping present in the
structure and accurate (less noisy) measurement response data are required for successful
identification of the damping matrix.

6.5. CONCLUDING REMARKS

The use of the Response Function Method in the case of complex experimental data has
been investigated for the case of the free-free beam example of chapter 5 using both
simulated and measured FRF data to update an initial analytical model.

Complex FRF data with noise, simulated or measured, make the convergence process
slow and often numerically unstable. However, in the case of lightly damped structures,
an acceptable solution can be found by setting the imaginary part of the FRF to zero.

Good initial assumptions about the damping present in the structure and accurate
measured response data are required to identify a damping matrix successfully.

The results obtained indicate the necessity of further investigation on the convergence of
the RFM in the case of dificult  FRF data and on methods of stabilising the solution
process. These issues will be addressed in the next chapter.
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CHAPTER 7

COMPUTATIONAL ASPECTS OF THE RFM

7.1 INTRODUCTION

The basic methodology of the RFM and the use of statistical analysis tools in the case of
incomplete noisy experimental data has been demonstrated in chapters 5 and 6. It has
been found that for certain test cases the solution process can become unstable, reducing
the success rate of the various runs of the RFM. This proves to be a significant problem
when complex experimental FRFs are used, i.e. when damping is included, but can also
be due to noise, an insufficient number of measurement sites and/or model mismatch.
Therefore, methods to stabilise the solution process need to be addressed. Possible
solutions are: (i) improvement of the solution procedure, e.g. balancing the final set of
equations just prior to inversion, and (ii) improving the frequency point selection. This
chapter evaluates these options together with some other computational considerations of
theRFM

7.2 RFM SOLUTION IMPROVEMENTS

To improve the RFM solution procedure for each iteration there are various avenues to be
explored. The free-free steel beam of dimensions 25.4 x 31.75 x 1400 mm, with a finite
element model consisting of 14 3D beam elements, as introduced in chapter 5 Fig. 5.8,
was considered again. The experimental data consisted of a numerical simulation of an
incomplete receptance column with 3% random added noise. Four test cases (2 cases
without damping and 2 cases with proportional damping) were used to evaluate the
effectiveness of the proposed procedures.

7.2.1 Iterative refinement

To solve the overdetermined system of linear equations of the RFM, [C](p)={ Aa}, a
pseudo-inverse (i.e. SVD or generalised inverse) of [C] is used, which yields an
approximate solution for the p-values. To check whether any non-convergence is
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encountered due to numerical errors while inverting [Cl, a residual is calculated. The
residual (r} is defined as:

where {p} is calculated from [C]{p}={Aa}.

This residual can subsequently be used in an iterative refinement technique to improve the
solution. The following algorithm [1161 is applied for each iteration within the 4 test

cases:

(i) calculate {P}~ from [C](p}={Aa }
(ii) calculate the residual as {r} 1 = { ACX } - [Cl
(iii) calculate { p}2 = [Cl-l {r} 1

(iv> W = Ipl~+W2

{PII

(VI repeat from (ii) till Il{p}n_l-{p}nll < tolerance

At all stages during the 4 examples the residual appeared to be small, and the results
demonstrated that the iterative refinement algorithm gave no further improvement to the
solution: both the number of iterations to reach convergence and the final p-values were
the same with and without this iterative refinement. As the system is several times
overdetermined,  and an optimum least squares solution for each iteration is already
obtained, including the iterative refinement just adds to the CPU time required without
any apparent additional benefit to the quality of the solution.

7 . 2 . 2 Balancing the solution matrices

A second possibility of improving the solution process can be by balancing the system
matrices. Various balancing options were considered as follows (see Fig. 7.1):

(i) No balancing, as in chapters 5 and 6.
(ii) Balancing all mass-related elements in [C] with respect to the maximum

mass-related value; all stiffness-related elements with respect the maximum
stiffness related value and similarly for damping elements, if any. This
ensures that each element type carries equal weight in the updating process.
The balancing is achieved by multiplying the appropriate rows with a
constant, defined as BcMel, BcK~~,  BcD~~ respectively (Fig. 7.1).

(iii) Balancing each row in [C] to a maximum element value of 1.0 by multiplying
each row with constant BCRi. Now, for each selected frequency point, the
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corresponding experimental value has the same confidence. Without this type
of balancing, the order of importance can vary substantially between rows,
depending on the frequency point selected and its associated response levels.

(iv) Using a combination of (ii) and (iii).

[Cl ipI = I Aa 1 j’

-BcR~ 0 . . .
0  BCR~...

_ . . . ..I

r
/_ I
._
>

/
Cll~B~+pl  c12XBC~~l . . .

._]I ““f”] =r’fRi;;j{&/C21XBcMel  C22XBCMel  ..a

Fig. 7.1: Balancing of XFM system matrices 1

Comparisons of the sum of the percentage differences squared:

2
x l00

for the frequency points selected for each of the four examples using the four possible
balancing approaches are given in Fig. 7.2. The starting and end values of the sum of
the percentage differences squared for the four test cases, and the average standard
deviation for mass and stiffness p-values, using the various balancing options, are given
in Table. 7.1.
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G- iterat,m, no‘- -----.- 15 20

(d) Test case D

Fig. 7.2: The sum of the percentage differences squared for 4 beam examples
0 no balancing - option (i). x balancing option (ii), A option (iii), 0 option (iv)

case SPDS

A 0.6 xl011

B 0.1 x10*

C 0.4 xl08

D 0.4 x108

mean of the standard
deviation of final p-

values

SPDS end SPDS end (ii) SPDS end (iii) SPDS end(iv)
no bal. (i)

0.3 x106 0.3 x106 0.6 x106 0.4 x106

0.7 xl010 0.7 xl010 0.4 x104 0.2 x104

0.2 xl05 0.2 xl05 0.2 x104 0.5 x104

0.1 xl05 0.1 xl05 0.3 x104 0.1 x104

0.054 0.054 0.027 0.02 1

Table 7.1: Comparison of results using various balancing options
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As can be seen from Table 7.1, option (iv) gave better results, in most cases, when
compared with the other options and also provided the most stable process (Fig. 7.2).

Using the beam example without damping another 10 sets of results were computed using
different random frequency point selections. Without balancing, 4 convergent and 6 non-
convergent solutions were obtained while including balancing option (iv) resulted in 9
converging solutions, with equal or better results. This was also verified on a complex
experimental data-set with 3% random noise on the real part and 10% random noise on
the imaginary part of the FRFs. This test case did not generate an adequate solution using
the standard RFM, while, as shown in Fig. 7.3, good results were obtained when
balancing was included.

ma* danlo .ancss r-l

(a) Mean p-values

E ‘l
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i
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2

0
ms &lRma mfhesl r- dnpir.rlemml

-- sr.zur”hddI

(b) Mean p-value to standard deviation ratio

‘0 200 400 600 800 Irn I200 1400 Frequency (Hz)

mi

(c) Experimental, analytical and updated point receptance curves

Fig. 7.3: the RFM applied to an incomplete complex experimental beam example
with independent noise on real and imaginary parts, 3% and 10% respectively

Balancing the system matrices can be compared to weighting as used in Bayesian
optimisation model updating approaches. The difference here lies in the fact that
weighting matrices aims to reflect the estimated distribution of conftdence in the measured
data based either on the variance or on engineering judgement while for balancing option
(iv) no such presumptions are made. The aim of balancing is to simply maximise
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numerical stability by reflecting equal importance with respect to element type and
measured data for each FRF data point selected.

7 . 2 . 3 . Recommendations

The inclusion of an iterative refinement algorithm to the solution process increases the
CPU time required without additional benefit to the resulting p-values. Therefore, the use
of such a refinement is not recommended.

In contrast it has been shown that balancing the matrices can be beneficial to the
convergence of the solution. Hence, it is recommended that such a procedure should be
included as a standard feature of the solution process.

7.3 FREQUENCY POINT SELECTION FOR THE RFM

This section investigates the rationale of the frequency point selection, and endeavours to
answer the following questions:

- “Why do results for some frequency point selections converge and others diverge
or become rank-deficient?;
- “Which frequency points are most likely to give good results?;
- “Is it possible to converge to a wrong solution?“.

Some of these questions have been partly answered by the experience gained from the
numerous test cases already reported. However, as there are many variables to consider,
it is perhaps appropriate to consider some simple 1 and 2 DOF systems.

7.3.1 Basic Equations

SDOF system

Consider an undamped SDOF lumped mass-spring system (Fig. 7.4a).  For this:

[~(~)I = PYNl-l = [Fl - &Ml]-1 = k :2, (1)
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The basic RFM applied to this case is:

which becomes:
yp) - &p)

AZ(o) =

a,(W a,(w)

(2)

(3)

In the derivation of the RFM it was already stated that there exists no solution if the
receptance matrix [a] is singular: that is, at anti-resonance or resonance frequencies.
However for a SDOF case, other problems might arise if:

(0

(ii)

(iii)

Aa = a,(w) - a,(o) =0, hence AZ=O, indicating

-a,@@
CC~(W)>>CI~(W), then AZ(o) = z

ck#@ a,(w)

Ak-&Am=0

-1

a,(o)

(4a)

(4b)

1
(4c)

These three categories can, clearly, lead to erroneous results. Categories (i) and (iii)
should be treated with caution as, in the limit, the resulting p-values depend on the
experimental receptance value only, which contains experimental noise. Of course, the
detriment of random errors in the experimental data can be overcome by selecting enough
frequency points to make an overdetermined system and thus to obtain an averaged p-
value. This will also be beneficial to overcome problems due to poor frequency point
selection, as the chance that all randomly-selected frequency points have receptance
values falling in the same categories (i), (ii) or (iii) must be small.
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(b) a 2 DOF system

2 DOF system

As a SDOF system has no anti-resonances, an alternative 2 DOF system (Fig. lb) is
considered. Assuming that only al 1 is measured and using a single frequency point, the
RFM is determinate if there is just one element in error. The RFM gives the following
expressions for a single modelling error only (see appendix A, equation (AlO)):

if pm2= pkt= pk*= ’ P =
ml

if pmt= pkr= pk-= ’

if p =p =p = 0
ml m2 k2

if p =p =p =0
ml m2 kl

al lp) - al lx(~)

P =
m2

al l,w - al lxw

pkl =

Gal

(5b)

GC)

allAw - qlp

pk2 = (5d)
(all,w-a12Xw)kl (q1p-q2p)

Equations (5) illustrate, that there again exists no solution at anti-resonance or at natural
frequencies. With reference to the three categories which possibly yield erroneous results
as identified previously (equation (4)) , only in case of ml- or kl-modelling errors will
the same problems be encountered. For modelling errors in m2 or k2, the categories (ii)
and (iii) become more compounded as the unmeasured coordinate is also included in the
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equation. This illustrates that the RFM is case-dependent on the particular analytical
model to be updated and the modelling error(s) to be identified.

7 . 3 . 2 Noise-free 2 DOF test cases

In the 2 DOF test cases only one element was in error at a time and hence a determinate
system was achieved using a single value of al 1 during any one RFM run. The first test
case had a +20% error in the value of k2 of the analytical model, and a comparison of the
receptance curves is shown in Fig. 7Sa. A frequency range from 30 to 80 Hz in steps
of 0.5 Hz was considered and, assuming all only was measured, each frequency point
was used consecutively to find p

k2’
Fig. 7.5b shows the variation in p-values obtained

and Fig. 7.5~ displays the number of iterations to reach convergence. A correct p-
value of -0.2 was identified over the entire frequency range except around the
experimental resonances. In this case, data points selected around the regions of the
experimental anti-resonances, the analytical resonances and analytical anti-resonances had
no significant adverse effects on the RFM. Employing data points around the
experimental resonances or below the first resonance showed that it is possible to obtain
erroneous p-values if the experimental data are incomplete, even if there is no
experimental noise and the error location is known. For a complete experimental data set,
the correct p-vale was obtained in 1 iteration, independent of frequency point selection.
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Fig. 7.5: 2 DOF test case, +20% k2 error
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(c) Number of iterations against frequency point selected

These results were compared with results obtained for a +20% change in ml and
subsequently in m2 of the analytical model, as shown in Figs. 7.6 and 7.7. For a
change in ml, the correct p-values were obtained irrespective of frequency point selected.
The effects of frequency point selection observed for a change in m2 were similar to those
for a change in k2. This suggested that the location of the measurement point on the
structure under study is important, and that improved success in error location can be
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achieved if the measurement points are directly at the element in error. However, as error
locations are generally unknown, this will be difficult to achieve in practice. Careful
thought before measurement is suggested, as many errors wilI occur at or near joints, and
so an adequate number of measurement sites will be required in those regions. For a kl
modelling error the RFM shows the same behaviour with respect to the frequency point
selection as for a ml modelling error, as expected by inspection of equations
(5a) and (5~).

(a) Receptance curves al 1
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:b) p-value against frequency point selected
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G. 7.6: 2 DOF test case. +20% ml error
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?ig. 7.7: 2 DOF test case, +20% m2 error

It appears that from the categories (i) - (iii) identified in section 2.1, only (ii) represented a
real problem for noise-free data. As there was no noise on the simulated experimental
data, category (i) was acceptable and category (iii) did not pose any difficulties as, after
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the first iteration, the analytical receptance curve was updated using the identified p-value
and the analytical resonance shifted away from that particular frequency point.

7.3.3 2 DOF test cases with noise

The effect of noise was investigated for each test case, again assuming that only al 1 was
measured. A constant percentage, l%, of bias error was added to each experimental
receptance value, aX,(w) = 1.01 aX(w). The effect of bias on p-values is also shown in
Figs. 7.5-7.7. The effect of bias was worst below the first resonance, and hence this
frequency range should be avoided. If the solution converges, the effect of the
experimental error was smallest for frequency points closer to resonances when the
resulting error in the p-values was a minimum. The error in the p-values due to the bias
on the experimental receptance value increased as the percentage difference between
experimental and analytical receptances decreased, as in that case Aa became dominated
by the experimefztaf  error. This was especially noticeable for a +20% change in ml,
where the analytical and experimental anti-resonance for al 1 coincided: here, the solution
stopped after 1 iteration and an incorrect p-value was obtained. In this test case, even for
a complete experimentul  receptance column with 1% added bias, an incorrect p-value was
obtained from the RFM for a frequency point near the anti-resonance.

Fig. 7.8 shows the effect of various percentages of bias on p-values against frequency
point selected. As expected, a higher experimental error resulted in a less accurate p-
value. It was also noticed that the frequency range around e_xperimentaL  resonances for
which no convergence was obtained became wider.
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(a) p-value against frequency point selected

(b) Number of iterations against frequency point selected

Fig. 7.8: 2 DOF test case, +20% k2 error, noisy experimental data

A constant error value added to the experimental receptance curve was also investigated
(Fig. 7.9). This showed that the two largest p-value errors occurred below the first
resonance and above the second resonance, and these frequency ranges should be
excluded from the frequency point selection. However, in practice, the measurement
frequency range will never include all modes, therefore the frequency range above the
highest mode is automatically avoided. As expected, substantial errors in the p-values
were also experienced when frequencies close to the anti-resonance, where the effect of
the added noise was more significant, were used.

Page 108



Chapter 7 - Computational Aspects of the RFM
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(a) p-value against frequency point selected

(b) Number of iterations against frequency point selected

Fig. 7.9: 2 DOF test case, +20% k2 error, constant bias error on the experimental data

7 . 3 . 4 Substitution of unmeasured data with analytical counterparts

For the 2 DOF test cases, the coordinate incompleteness of the experimental model will
only affect changes in p-values for modelling errors in m2 and k2 as can be seen from
equations (5). Equations (5) also show that a complete column of noise-free experimental
data gives perfect results, independent of frequency point selection and modelling errors.
Assuming that it is possible to “coordinate-expand” an incomplete experimental data set to
the size of the analytical model, the added benefit of employing expanded data to the
solution process of the RFM is explored. Supposing that expanded experimental data can
be achieved, there are two possibilities of implementing the expanded set in the RFM: (i)
to assume that the experimental receptance column is correct and to solve the problem
without deleting rows during the solution process, or (ii) to use the expanded receptance
values as a better alternative to substitution with the analytical counterparts, i.e. to delete
the rows for which the corresponding experimental receptance is unmeasured as in the
case of analytical receptance substitution. The two approaches were applied to a problem
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with a 20% modelling error in k2 assuming no noise on the measured data and a 100%
error on the actual receptance value for the unmeasured receptance values to simulate
expanded data. The results are shown in Fig. 7.10.

2
l 2
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-0.3- e.+. :+
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-0 .30- t
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. . . , . , :. , ,

30 40 xl
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(a) p-value against frequency
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Freq.  g

(b) Number of iterations against frequency point selected

Fig. 7.10: 2 DOF test case, +20% k2 error, 100% error on expanded experimental data

From Fig. 7.10 it is observed that while an expanded 0112  was used, better results were
achieved if the row of Aa corresponding to the unmeasured degree of freedom was
deleted. Better results, in terms of number of iterations and p-value accuracy, were
obtained for case (i), keeping all rows, only when frequency points close to the
experimental resonances were selected for updating. Deleting the rows corresponding to
unmeasured coordinates for case (ii), good p-values were obtained independent of the
frequency point selection. Thus, the use of expanded coordinates should be to substitute
missing coordinates in the rows retained in the RFM only and not to increase the number
of linear equations for each frequency point selected. Using expanded data there is no
region of non-convergence around the experimental resonances. Also, it should be noted
that the results were not so satisfactory around the anti resonance, the frequencies of
which changes from one FRF to the next. This feature will cause less difficulties for
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systems with more DOFs. These results emphasise the significance of coordinate
incompleteness and point towards the possible benefits of coordinate-expansion of
experimental receptance data. Coordinate incompleteness is considered in more detail in
chapter 8.

7.3.5 Recommendations

Frequency point selection has an influence on the success of the RFM. There are 3
categories which may lead to erroneous results; (i) Aa = 0, (ii) a,(o)>>a,(o) and
(iii) aA(o)~~czx(w). The effect of frequency point selection depends on the modelling
error, measurements taken directly at the point(s) of errors will identify a modelling error
more easily.

It is shown that points at frequencies in the vicinity of the experimental resonances should
be avoided, while experimental anti-resonances present less of a problem unless the
analytical and experimental anti-resonances coincide, which is very unlikely in practice.
Frequency points around analytical resonances and anti-resonances have a less distinct
effect on the final results.

It is recommended that frequency points below the first mode be avoided in the frequency
point selection. In general, for given data sets, better results are obtained for frequency
points with larger differences between experimental and analytical receptance values, as
the effect of the noise on the experimental data becomes less dominant for larger
differences.

If all coordinates are measured, very good results are obtained, almost independent of the
frequency points selected. This result indicates the adverse effect of the substitution of
the unmeasured coordinates by their analytical counterparts. The use of expanded data is
investigated and it is observed that, assuming an expanded set for all unmeasured
coordinates can be obtained, the rows of Act corresponding to unmeasured degrees of
freedom should still be deleted. Thus, expanded FRF values are used to substitute
missing coordinates in the rows retained in the RFM and not to increase the number of
linear equations for each frequency point selected.

Notwithstanding the results of this investigation, one must bear in mind that the success
of the RFM is very case-dependent and, secondly, that many of the adverse effects
resulting from experimental coordinate incompleteness and noise are greatly reduced by,
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unlike the 2 DOF examples used here, selecting more frequency points than the minimum
required to obtain overdetermined systems of equations,.

7.4 COMPUTATIONAL CONSIDERATIONS

7.4.1 Least-squares solution

The RFM consists of a set of overdetermined algebraic equations of the form
[C] { p} = { Aa}, which is to be solved for {p}. A least-squares solution can be obtained
using (i) the generalised inverse, also known as the Moore-Penrose generalised inverse,
or (ii) the Singular Value Decomposition (SVD), a special technique of obtaining a
generalised inverse with some additional features.

The basic equation for the generalised inverse of an Nxn matrix [C] where N > n is
defmed as:

wxn = WIT rclgn [C$&

The SVD approach is defined as follows:

decompose [C] as: [ClNxn = [“NxN ElNxn [‘k

(6)

(7)

where [U] and [V] are orthogonal matrices and the diagonal matrix [x] contains the
singular values of matrix [Cl. Hence:

where [ x I-’ consist of the inverse of the non-zero singular values.

(8)

There are many publications which explain the theoretical background and discuss the
suitability of these techniques to modal analysis and related topics ]%117~181  and so
only the main points of interest are mentioned here. Although the singular value
decomposition method is CPU-intensive (it involves two eigensolutions) and requires
more storage space, it is a very reliable method and [C] gives a direct indication of the
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rank of the system matrix [Cl. If memory space and CPU time are limited then the
generalised inverse provides a good alternative. In that case, it is recommended to
include a check on the inversion. A combination of the two techniques, where ([CIT
[Cl)-’ of the generalised inverse approach is computed using the SVD method, reduces
both memory space required and CPU time compared with using the SVD method only
and also provides a direct check for rank deficiency of [Cl.

7 . 4 . 2 Receptance matrix calculations

The rectangular matrix [C] includes the full receptance matrix [CXA] at each frequency
point selected, and for each subsequent iteration the full updated receptance matrix, [au],
is required. The receptance matrix can be calculated either (i) by inversion of the analytical
dynamic stiffness matrix or (ii) by obtaining the modal solution and then using this in a
subsequent modal summation. Now, if only a few frequency points are required, the
first option will take less CPU time, but as the number of frequency points increases; the
CPU time increases approximately proportionally with respect to the number of frequency
points, in contrast with the modal summation approach here the incremental CPU time is
very small (Fig. 7.11). The actual CPU time depends on the computing facilities used,
the size of the analytical system and the number of frequency points selected. As the FE
model is large in most cases, usually resulting in a small ratio of measured to unmeasured
coordinates, and measured data also contain noise, more frequency points are required
and the modal summation approach will generally be most CPU-cost-effective.

 .  mo&tsummdion
0 dynamic stiffness inversion

No of freq. points

Fig. 7.11: Comparison of RFM CPU time per iteration for calculating analytical
receptance matrix by dynamic stiffness inversion or modal summation

To use the modal summation approach, a complete eigensolution of the updated system is
required during each iteration. There are various eigensolution techniques which can be
used 18y1191. For large systems the computation of the complete eigensolution is
computationally expensive and if only a limited frequency range is of interest a partial
eigensolution, such as the subspace  iteration method, can be used to represent the
analytical system adequately. The contributions of the higher modes towards receptance
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values in the lower frequency range decreases quadratically as the difference in excitation
frequency and natural frequency increases. Care should be taken that enough modes are
included in the modal summation, the actual number of modes required to satisfactorily
represent the FRF over the frequency range of interest is case-dependent. A constant
residual term can be calculated using:

and

where:

Thus:

7 . 4 . 3

[a~(o>I = [a&(o)] + [RI

[a~(o>l=  C &I + WI I-’

(94

WO

The uniqueness of the updated model

(10)

In chapter 5 it was already established that the RFM does not produce a unique solution
for a selected set of updating parameters due to noise on the experimental data. It has
been shown in various test cases employing overdetermined systems, and subsequent use
of statistical analysis tools, that the elements in error can be located. A combination of
this error location procedure and the mean p-values obtained is then used to update the
system. However, for some applications the only requirement might be to regenerate the
measured FRFs using a mathematical model. Then the question arises: “Is one RFM run,
i.e. the p-values obtained from one set of frequency points, sufficient to regenerate the
measured FRFs?“. The beam example with 15 measured coordinates in the y direction
with 10% added random noise was used for 4 alternative RFM runs employing 10 and 15
frequency points. In Fig. 7.12, regenerated FRFs using the p-values obtained are
plotted with their experimental counterparts. Note that although 10% added noise
polluted experimental data were used, noise-free experimental data are plotted here.
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Fig. 7.12: Comparison of experimental and updated receptance curves obtained from

one RFM run only
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Despite fairly large variations in resulting p-values, the updated FRFs compared very well
with the experimental ones, within the frequency range of interest. However, unless
there is a specific application where regenerated FRFs only are of interest, in the opinion
of the author it is of more value to identify where the modelling errors are and to obtain
insight into the physical meaning of the modelling errors rather than using a black-box
approach just to regenerate FRFs.

As was illustrated with the beam example in chapter 5, a number of fairly substantial
errors of various origins can be located adequately, and the updated receptance curves
compared well to their measured counterpart Returning to the question of uniqueness of
the updated model, the effect of choosing more frequency points is considered next. The
updated FRFs beyond the frequency range of interest were also inspected (Fig. 7.13).

The benefit in selecting more frequency points in the RFM to regenerate the FRFs within
the frequency range of interest appeared not very significant as it could not be detected by
visual inspection. The sum of the percentages difference squared between the
experimental and the updated receptance curves (SPDS) for the O-1600 Hz frequency
range were compared. It was observed that for a limited number of frequency points, in
this case 15, the SPDS, which reflects the quality of the updated curve, can vary
substantially. Selecting an increased number of frequency points the quality of the
updated receptance curves was more consistent and the SPDS compared to the better
SPDS values obtained using 15 frequency points. It is clear from Fig. 7.13, that
beyond the frequency range used for updating (0- 1600 Hz in this case) there is no added
benefit in choosing more frequency points.
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(a) 15 frequency points
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(b) 30 frequency points

(c) 90 frequency points I”“1

Fig. 7.13: Comparison of experimental and updated receptance curves obtained using
one RFM run only for an increasing number of frequency points selected

The standard deviation (obtained from 2 runs only), as compared with the ideal p-values
for an increasing number of frequency points, is shown in Fig. 7.14. A simple curve
fit suggest a decrease in standard deviation as the number of frequency points increases,
as is to be expected from a statistical point of view. This also verified the observation on
the consistency of the updated receptance curves. The number of iterations to reach
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convergence, which varies between frequency points sets, was on average approximately
the same and hence there is no additional benefit in increasing the number of frequency
points to decrease CPU time.

0.0 I * I - I = , . ,

0 10 20 30 40 50 60
No. of times overdetermined

Fig. 7.14: Standard deviation against the number of frequency points for the beam

example with 10% random noise

Of course, the ability to regenerate the measured FRFs depends to a large extent on the
capability of the original FE model and updating parameters to represent the structure
under study. If there are fundamental differences between the structure and the FE model
it is unlikely that the model can ever represent the structure satisfactorily. Similarly,
localised response variations cannot be represented adequately if too coarse an FE model
is used. So far, a reasonable comparison between FE model and structure has been
assumed. The adverse effects of model mismatch were illustrated in section 5.6 and local
effects, in particular due to structural joints, are discussed in more detail in chapter 9.
Apart from these fairly general comments, no guidelines of maximum allowable
discrepancies for which the RFM will work are included here. The use of some
maximum relative Euclidean norm based on the error matrices and the original FE system
matrices to define a maximum allowable error is, in the opinion of the author, unrealistic
as this bounds the unknown quantity to be identified. It would be more realistic to define
a numerical variable based on the measured receptances in comparison with the FE model
equivalent values, i.e. based on Il{Aol} II. Although this scalar would give some
indication of feasibility, it is not investigated in more detail on the basis that it is an over
simplification of a very complex problem. The ability of the RFM to update successfully
depends on:

(i) the structure under study
(ii) the quality and quantity of the experimental data,
(ii) the FE model chosen to represent the structure,
(iv) the updating parameters selected,
(v) the type, location and spread of modelling errors.
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Two situations where a norm based on II{ Aa}ll will probably fail to indicate whether
RFM updating will be successful are:

(i) in case of one substantial modelling error at a specific location in the model
resulting in a large Euclidean norm while the RFM can be applied
successfully; and,

(ii) an approved II{Aa}II but due to too few badly measured receptance curves
and a very coarse FE model failure to update the FE model using the RFM.

In Fig. 7.15 the updated point receptance curves using 6 RFM runs of 15 frequency
points are compared with the updated receptance curves using 3 runs with 30 frequency
points, using both all the mean p-vales and the mean p-values of the erroneous elements
only. All updated receptance curves shown here are of comparable quality. It is
noteworthy that using all mean p-values to calculate the updated system gives better
results than using the mean p-values of the indicated erroneous elements only.

Above 1600 Hz the best results were obtained using the mean p-values from 6 runs
(Fig. 7.15b). For error location, both data sets located 7 modelling errors correctly,
but when 3 runs of 30 points were used, 4 additional modelling errors were indicated.
Hence, if the main objective is error location, it is beneficial to carry out more RFM runs.
In all the examples of previous chapters 6 RFM runs produced adequate results.
Statistically, more reliable results are obtained for an increased number of data sets, each
data set consisting of p-values obtained from a RFM run, provided that the chosen p-
values are able to approximate the actual modelling error. More runs are especially
beneficial if the standard deviation of the p-values is high due to (i) noise, (ii) a high ratio
of unmeasured-to-measured coordinates and/or (iii) model mismatch. The number of
RFM runs required can be determined from the standard deviation of the p-values. The
variation in the average standard deviation by including another set of p-values from an
additional RFM run must be negligible. In this case 6 runs appeared to be sufficient
(Fig. 7.16a). One advantage of carrying out more runs is that, as anticipated for an
increasing number of runs, the mean p-values approximate the expected p-values better
than if less RFM runs are carried out (Fig. 7.16b).
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Fig. 7.15: Experimental and updated receptance curves using all- and selected p-valw
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Fig. 7.16: Standard deviation against the number of runs for the beam example with
10% random noise

Let us also consider the error threshold used for error location; that is, the cut off value
for mean p-value to standard deviation ratio above which the elements are considered to
be in error. Previously, an error threshold of 2 has been applied successfully, although it
has also been suggested that for substantial standard deviations, a lower threshold might
be more appropriate. For the beam example with 10% noise, the standard deviation was
fairly large and both error thresholds were applied and compared to the 10 true modelling
errors ( Fig. 7.17). For an error threshold of 2, additional elements were identified as
being in error only when the number of RFM runs was less than 4. When the number of
RFM runs was more than 3 between 60-80% of the true erroneous elements were
identified. There was no significant improvement by conducting more RFM runs.
Reducing the error threshold to 1 identified all erroneous elements correctly independent
of the number of RFM runs. However, all cases using less than 18 RFM runs also
identified additional errors. The mean p-values for the additional errors were small and
decreased as the number of runs increased. The updated receptance curves, using an
error threshold of 2, are compared with their experimental counterparts in Fig. 7.18.

0
2 3 4 5 6 7 6 6 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 6 1 6 2 0

No of runs No of runs

n true errors located
q  additional errors

(a) error threshold = 2 (b) error threshold = 1

Fig. 7.17: Number of modelling errors located for the beam example with 10% random
noise. for an increasing number of RFM runs

Page 121



Chapter 7 - Computational Aspecrs  of the  RFh4

15w X0 Frquency(Hz~

(b) 12 runs

-2oo-

0 500 1500 XN Frequency (Hz)

(c) 20 runs

Fig. 7.18: Updated and experimental receptance curves, for an increasing number of
RFM runs

Fig.7.18 shows that for the frequency range of interest all examples regenerated the
experimental FRFs well. Above 1600 Hz, using more frequency point sets improved the
comparison, as was to be expected from the previous results. Increasing the number of
RFM runs is more beneficial than increasing the number of frequency points used per
run, but increases the CPU time. Again the requirements of the updated model need to be
assessed together with the available computational facilities. If the model is to be used for
further analysis it is of more interest to locate and understand the modelling errors
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identified so that these can be inspected. Physical understanding should be preferred to
visual and numerical correctness obtained by comparing measured and updated FRF data,
especially as the modelling errors can also be due to incorrect measurement set-up.

Another possibility to obtain a unique answer is by introducing additional constraints.
Additional constraints in the form of reducing the number of unknowns, as mentioned in
chapter 5, can be applied by (i) updating material properties rather than each element or
(ii) by grouping elements together to form macro elements. This might be appropriate to
identify a damping matrix but not necessarily for updating mass end stiffness matrices.
However, in the opinion of the author, although the computational effort of the RFM will
be reduced, to a large extent the error location capability of the RFM will be lost and the
resulting p-values will be a further approximation of local errors. Thus the results
become artificially unique rather than approaching the correct model. A priori knowledge
of correct parts of the analytical model can be incorporated in the RFM without any
difficulty, but care must be taken that so-called engineering judgement does not include
sweeping assumptions because it can lead to numerical instability and/or correct elements
being changed to represent the modelling errors.

Alternatively, extra constraints can be introduced in the form of:

This can be formulated in a similar way to the RFM and can be compared to an equation
error optimisation method. As such, it could be an updating method in its own right, as
has recently been suggested [ 105-1071. The advantage of this approach over the RFM is
that the analytical and subsequently updated receptance matrices are not required.
However, the benefits of including equation (9) as an additional constraint within the
RFM is doubtful as the above equation is implicitly incorporated within RFM.

An updating algorithm based on equation (9) can be beneficial if used in parallel with the
RFM. Updating using a combination of techniques increases the confidence in the
obtained results, which is especially useful for updating using modal data where all
experimental data are used at once and the procedure cannot be repeated for other data
sets. For the RFM, the need is not so great as there are usually enough experimental data
available. For example, in the beam test case only 15 frequency points are necessary
while typically 801 points are measured. The RFM can therefore, in theory, be repeated,
avoiding frequencies below the first resonance and in the direct vicinity of experimental
resonances, over 40 times.
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7.4.4 Recommendations

To obtain a least-squares solution the SVD technique should be used wherever possible
as it gives a direct indication of the rank and condition of the solution matrix. If space
and CPU time are limited then the generalised inverse provides a good alternative. In that
case, it is recommended to include a check on inversion. In most cases it is more cost
effective to calculate the full receptance matrix using modal summation, only a partial
eigensolution being required for large analytical systems.

Numerical studies on a beam example with 10% noise showed the benefits of including
more frequency points for each RFM run and conducting more runs. One should always
consider the requirements from the updated model and the resources available. If updated
FRFs only are required one RFM run using many frequency points is sufficient. For
error location purposes more runs and subsequent statistical analysis of the results are
necessary. As expected, increasing the number of runs improves the final results.

7.5 CONCLUDING REMARKS

Although the RFM is case-dependent and it is difficult to generalise from the simple cases
investigated in this chapter, some specific trends were observed in the RFM, in particular
concerning: solution stability, frequency point selection, measurement sites and statistical
aspects.

It has been shown that balancing the matrices both towards element type and frequency
point selection is beneficial for the convergence of the solution. It is
recommended that such a procedure should be included in the solution process.

therefore

The success of the RFM depends on the frequency points used. The effect varies along
the frequency range and it also depends on the modelling errors. Measurements taken
directly at the point(s) of error will identify a modelling error more easily. It is
recommended that frequency points below the first mode should be avoided in the
frequency point selection. In general, better results are obtained for frequency points
with larger differences between experimental and analytical receptance values, as the
effect of the noise on the experimental data becomes less dominant for larger differences.
Equally, frequencies in the direct vicinity of the experimental resonances should be
avoided.
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The adverse effect of the substitution of the unmeasured FRF values by their analytical
counterparts is indicated. During a preliminary assessment on the use of expanded data
is it is observed that, assuming an expanded set for all unmeasured coordinates can be
obtained, the estimated values of the unmeasured coordinates should be used to substitute
missing coordinates in the rows retained in the RFM and not to increase the number of
linear equations for each frequency point selected. Thus the rows of Aa corresponding
to unmeasured degrees of freedom should still be deleted.

Numerical studies on a beam example with simulated 10% simulated noise show the
benefits of increasing the number of frequency points included in each RFM run and of
conducting an increased number of runs as compared to the 6 runs used previously. One
should always consider the requirements of the updated model and the resources
available, if updated FRFs only are required one RFM run using many frequency points
is sufficient. For error location purposes, more runs and subsequent statistical analysis
of the results are necessary. As expected, increasing the number of runs improves the
final results.
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CHAPTER 8

COORDINATE INCOMPATIBILITY

8.1 INTRODUCTION

One of the major problems in most practical model updating applications is the coordinate
incompleteness of the experimental model when compared with the Finite Element
model. As discussed in previous chapters, experimental coordinate incompleteness with
respect to the FE model can be due to:

(i) coordinates being to difficult to measure (e.g. rotations);
(ii) physically inaccessible (e.g. internal) coordinates; or
(iii) expense of measurements at all FE coordinates.

There are two possible avenues to overcome coordinate incompatibility: (a) reducing the
Finite Element model to the measured degrees of freedom or (b) expanding the measured
data to the full size of the FE model.

In previous chapters an iterative process has been applied to overcome the problem of
coordinate incompleteness whereby unmeasured values are estimated from the
corresponding FE data. It has been suggested in chapter 7 that expanding the
experimental FRF receptance column to include all FE coordinates might improve the
updating process. The possible benefits have been illustrated in section 7.4.5 on a 2 DOF
example assuming that expanded coordinates can be obtained with some accuracy.
Unlike mode shape coordinate expansion, which is commonly used in updating
procedures based on modal data, expansion of FRF data has not been attempted before.
In this chapter two methods are proposed to expand an incomplete column of receptances
to the size of the full FE model.
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8.2 RECEPTANCE COLUMN COORDINATE EXPANSION
METHODS

8.2.1 The inverse-reduction method

The first proposed expansion technique for a column of experimental receptance data is a
‘physical’ interpolation which makes use of the analytical system matrices. It is an
inverse procedure of model reduction and is similar to the approach employed for the
expansion of modal data (section 4.2.1). One disadvantage of this technique is that the
expansion depends on the knowledge and the validity of the original FE model, while an
advantage is that by using the partitioned
connectivity properties are imposed directly.

analytical system matrices the physical

Starting from the basic equation, at an excitation frequency o:

(1)

where {al }x is the measured part of the receptance column while { a~}~ is the unknown
part, o the frequency of interest and ui = 1 at the point receptance coordinate while Ui = 0
at all other coordinates. If one assumes that the modelling errors are predominantly in the
measured coordinates, the lower matrix equation will be more correct. Rearranging the
lower matrix equation, gives:

- [IK22Al - d[“22Jl;&(N_n)  [[Iq - W2[M2’dl(N_n,xn{alX(0)} (2)
nxl

8.2.2 Using analytical mode shapes

The second method proposed assumes that each column of experimental receptance data,
i.e. a forced response shape for a certain excitation frequency, can be expressed as a
linear combination of the analytical mode shapes. This is a valid assumption if the mode
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shapes of the analytical model span the same subspace  as the true structure, which is an
acceptable supposition if there are enough degrees of freedom used.

Thus, it is possible to expand the experimental receptance column on the strength of the
analytical mode shapes:

(3)

The matrices can be rearranged such that the known measured coordinates are contained
in the top part of the matrix equation:

(4)

Assuming the analytical mode shapes away from the excitation frequency of interest have
a negligible contribution to the forced response shape at that excitation frequency, then
equation (4) can be partitioned accordingly, including m appropriate modes. Hence:

Thus ( y1 } can be found from the known coordinates:

So that:

Where:

{YlI& = [~lll’ {ai)
A X

mxn

t 1 E 911
a [ 1XNxl = $21 *

[e 1
l1 lrnxn

1 1
a1 x nxl

N = total number of analytical coordinates
n = number of measured coordinates
m = number of modes selected.

(3

(6)

(7)
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Choosing n to be greater than m, equation (7) is overdetermined and either the generalised
inverse or the SVD inversion technique can be used to invert [$I 11. The expanded forced
response shape is a smoothed version of the measured receptance column. Either the
entire smoothed expanded receptance column can be used or the expanded coordinates
only can be used for substitution while the regenerated measured coordinates are used to
verify the quality of expansion. Notice that the analytical modes selected must be such
that [$I 11 can be inverted, therefore the mode shapes selected must be linearly
independent for the subset of measured coordinates. Care must be taken that coordinate
aliasing does not occur.

One advantage of this technique is that it involves only one inversion for all frequency
points, if suitable analytical mode shapes are selected for the entire frequency range. The
main disadvantage of the expansion procedure using analytical modal data is that a choice
of suitable modes is required in contrast to the inverse reduction technique which can be
used directly. This modal based receptance column expansion technique is similar to
the modal transformation method for the expansion of modal data as described in
section 4.2.2.

8.3 COMPARISON OF COORDINATE EXPANSION METHODS

The two expansion methods were explored on the free-free beam test cases of the
previous chapters. Firstly, the experimental data were assumed to consist of 15 out of 90
noise-free measured coordinates, i.e. a correspondence factor of 16.7%, for excitation in
the y direction at node 5. Due to the decoupling of the degrees of freedom in this
theoretical example, only the cross receptances with the 8, direction were of interest
(other receptances for excitation in the y direction at node 5 were zero). Typical expanded
receptance curves, obtained using both the inverse reduction technique and the analytical
modal solution are shown in Figs. 8.1 and 8.2 respectively, together with the
corresponding analytical and true experimental receptance curves.
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Fig. 8.1: Expanded cross receptance, c+,lez, for a correspondence factor of 16.7%
obtained from the inverse reduction expansion technique
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Fig. 8.2: Expanded cross receptance, called, for a correspondence factor of 16.7%
obtained from the modal exnansion techniaue

Around resonances both sets of expanded receptances compared very well with their
expected experimental counterparts. Away from resonance the inverse reduction

technique showed much better agreement with the correct response. The method using
modal data requires a decision on how many and which mode shapes should be included
in the selection used for the expansion and it has been found that best results are obtained
using a few modes below and a few above the excitation frequency. In this case in-plane
modes, i.e. modes with deflections in the y direction, were selected as the beam was
excited in the y direction only.

The number of experimental coordinates was reduced to 7 and typical expanded
receptance curves are shown in Figs. 8.3 and 8.4. Again expansion was very
successful around the experimental resonances. The effect of reducing the number of
coordinates on the method using inverse reduction is not as significant as for the modal
expansion method. Comparing Fig. 8.2 and Fig. 8.4, the discrepancies were found
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to increase significantly as the number of measured coordinates decreased. An advantage
of the modal based approach is that the expanded receptance data can be checked by
comparing the reproduced measured coordinates with their initial values. This option is
not available for the inverse reduction technique. Advantages of the inverse reduction
receptance column expansion technique are that it is successful for a much wider
frequency range around each experimental resonance and it does not require decisions.
The modal approach requires only one inversion for a wide frequency range while the
inverse reduction method needs an inversion at each excitation frequency of interest.
Hence, in comparison, the inverse reduction technique is more CPU-intensive.

0 200 400 800 IWO I200 I‘uM Frcquency(Hz)

-200 J

'0 200 400 600 800 ICUM 1200 1400 Frequency (Hz)

W wylez /w

Fig. 8.3: Expanded receptances for a correspondence factor of 7.8% obtained from the
inverse reduction expansion technique
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_ b
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Fig. 8.4: Expanded receptances for a correspondence factor of 7.8% obtained from the
expansion technique using modal data

As for the mode shape coordinate expansion methods, analytical modelling errors and a
low ratio of measured to unmeasured coordinates have adverse effects on the success of
the two receptance column expansion techniques. As is shown, both techniques can
expand the receptance columns well around resonant frequencies but not so well around
anti-resonances. This is a severe disadvantage if agreement over the entire frequency
range is required. For each RFM run, a selected number of frequency points only is
required and hence the use of expanded receptance columns is likely to be beneficial.

8 . 4 EXPANDED EXPERIMENTAL COORDINATES IN THE RFM

8.4.1 2 DOF test case

The two proposed expansion techniques were applied to the 2 DOF example with a 20%
error in k2 as used in section 7.2. As expected from the previous comparison, both
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resonances but were not so accurate at off-resonance frequencies. This was reflected in
the results obtained using the RFM. As previously, the RFM was repeated many times
selecting each frequency point consecutively to find the p-values (Fig. 8.5). Comparing
the p-values with those obtained substituting the missing experimental data with their
analytical counterparts (Fig. 7.5), the results were found to have improved substantially
for frequency points chosen around experimental resonances while, as expected, for
frequency points selected between resonances the substitution using either set of
expanded data was not so successful. The range of frequencies for which the RFM did
not converge was substantially larger for the expansion technique employing analytical
modal data than for the inverse reduction method.
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Fig. 8.5: RFM applied to update a 2 DOF system using expanded experimental data

Despite the existence of a frequency range between the resonances where the expansion
was not successful, represented by wrong p-values and non-convergence of the RFM,
the results were encouraging as the experimental resonances are at fixed frequency points,
independent of measurement position while anti-resonances change with measurement
location.
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8 .4 .2 Beam test cases

As a 2 DOF lumped mass-spring system does not test expansion methods adequately,
especially if there is only one measured coordinate, the investigation of the use of
receptance column expanded data was continued on the beam example. Three cases were
explored:

(i) replacing unmeasured coordinates with their analytical counterparts,
(ii) replacing unmeasured coordinates with inverse reduction expanded

receptances,
(iii) replacing unmeasured coordinates with modal expanded receptances.

Assuming 15 noise-free experimental coordinates were measured the RFM was executed.
Substituting the missing 75 coordinates with their (updated) analytical counterparts, 9 out
of 10 consecutive runs converged in an average of 7 iterations. Replacing the missing
coordinates with the expanded data only 4 out of 10 runs were successful for both
expansion methods and the number of iterations to reach convergence was substantially
increased. This can be explained as follows; due to calculating the updated system for
each iteration the replacement updated analytical values become closer to their true
experimental values while the expanded data remain constant throughout the iterative
process.

The iterative procedure was changed to include expansion at each iteration. This, of
course, has the disadvantage of increasing the CPU time per iteration, especially for the
inverse reduction expansion technique which requires a matrix inversion for each
frequency point selected within the RFM. The method using the analytical modal data
was harder to implement as it involves a choice of how many and which modes to use for
expansion. In this example, in-plane modes close to the frequency point selected
produced well-expanded receptance columns. For the modal expansion method an
additional inspection was implemented, for each iteration a surplus of receptance columns
were expanded and only those reproducing the measured coordinates within a correlation
bound of 0.95 were acceptable for use in the iterative RFM procedure. This is in contrast
to the normal utilisation of the RFM where the frequency points selected remain the same
throughout the iterative process.

The test cases were carried out for 10 randomly selected frequency point sets. In this
case all three approaches (i-iii) located all erroneous elements correctly using an error
threshold of 2. Both for the standard RFM and for the version employing expanded data
using the analytical mode shapes, 9 runs out of 10 converged successfully and
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approximately the same number of iterations to reach convergence were required. Thus
there was no apparent additional benefit using the modal based expanded receptance data.
Including the inverse reduction technique within the RFM gave an improvement over the
standard procedure; all runs converged successfully in half the number of iterations as
compared with the standard RFM. However, the CPU time was nearly doubled for each
iteration due to the additional matrix inversions necessary for expansion. Thus, despite a
great reduction in the number of iterations to reach convergence the total CPU time for
each run was on average approximately the same as for the standard RFM. An advantage
of employing expanded data for unmeasured coordinates is that it improves the stability of
the solution process, especially during the first few iterations during which p-values can
fluctuate erratically.

The same test cases were repeated for 5 measurement sites only, i.e. a correspondence
factor of 5.6%. It was found that in this case including the modal-based expansion
technique in the RFM resulted in non-convergence due to the very limited success of the
expanded coordinates as a result of coordinate abasing. With the standard RFM 3 out of
10 runs converged successfully while including the inverse reduction procedure resulted
in 7 out of 10 runs converging. For the latter case, pre-selecting frequency points around
resonances improved the solution stability. This is therefore a recommended procedure if
receptance coordinate expansion is included in the RFM.

Adding 3% random noise to the experimental data reduced the speed and success rate of
convergent solutions. Including the inverse reduction technique in the RFM resulted in 4
out of 10 runs converging in, on average, 25 iterations compared with 2 out of 10 for the
standard RFM in an average of 36 iterations. However, the average CPU time per run
was again approximately the same in both cases due to the additional matrix inversions
for the inverse reduction approach. The standard deviation of the p-values using the
inverse reduction expansion technique was reduced to 0.13 compared with 0.17 for the
standard RFM, and 7 out of 10 elements in error were correctly identified compared with
6 out of 10. This showed that including expanded data is also beneficial for the RFM in
the case of noisy experimental data.

For more complicated systems where the ratio of measured to unmeasured coordinates is
small, there will be an even greater necessity for expansion, as was already shown in the
beam example when reducing the number of coordinates to 5. If expanded data are
required, the inverse reduction technique ought to be used as the modal based receptance
coordinate expansion method deteriorates quickly as the number of measured coordinates
decreases.
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One ought to bear in mind that the RFM is case-dependent. This could be working to our
disadvantage to illustrate the potential of coordinate expanded experimental receptance
data. For example, it is likely that the use of expanded data is vital in the event of
unstable p-values. In the beam case studies there are no distinctive unstable elements in
the analytical model, although to a certain extent this is addressed by assuming less
measurement sites resulting in a less stable RFM. Another area where expanded data are
expected to be useful is the updating of joints when a more detailed local error description
is required. Further investigation is therefore recommended on more complex and/or
detailed structures.

8.5 REDUCED ANALYTICAL COORDINATES IN THE RFM

Reducing the size of the analytical model can be achieved by using matrix condensation
techniques which rely on choosing a number of coordinates as masters and expressing the
initial mass and stiffness matrices in terms of these coordinates only. The main
disadvantages of condensation techniques have already been discussed in chapter 2, but a
summary will be given here;

(i) the measurement points often are not the best points to choose as masters,
(ii) there may not be enough measurement coordinates to be used as masters,
(iii) the connectivity of the original model is lost,
(iv) the reduction introduces extra inaccuracies,
(v) the efforts in creating a detailed analytical model are compromised.

The main reason the author considers using condensation techniques unsuitable for the
RFM because the connectivities of the full analytical system are lost. Since the RFM
employs an element-by-element error location procedure it is imperative that the
connectivities of the element system matrices are represented in the analytical system
matrices.

Alternatively, one can delete the unmeasured coordinates from the analytical receptance
matrix. The resulting reduced receptance matrix is fully representative of the dynamic
behaviour of the full analytical system as there are no approximations made. For a
deleted analytical receptance matrix, the basic RFM becomes:
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where the error matrix, [AZR(o)], is reduced to the experimental coordinates, and
superscript D denotes deleted.

Now that the experimental receptance column is fully known with respect to [AZR(o)],
the results can be obtained directly without iteration. There are three variations in the
definition of [ Az~(o)]  :

0) [~RWl,,, = [[AKRl - ~~~~~~~~~~~ (9)

Where [AKR] and [AMR] are obtained using standard condensation techniques with the
aforementioned drawbacks.

A more appropriate approach using condensation techniques is proposed by Conti and
Donley [lo61 in a recent publication on updating methods using response data. Both the
complete system and the element system matrices are condensed using the same
transformation prior to updating. This assures that the connectivity of the analytical
model is retained and enables an element by element error location procedure. But the
other disadvantages mentioned still apply.

(ii) [~R(0)lnxn = [MD1 - w~[AM~II~~,, (10)

Where [AKD] and [AMD] are obtained by deleting the unmeasured coordinates from the
full system. Equation (10) suggests that all modelling errors are at the measured
coordinates only. This approach can be suitable for lumped parameter systems, but will
not produce the required results if there are errors at the other degrees of freedom (see
example in Appendix B). Thus for more realistic systems and for an element-by-element
approach of error
satisfactory results.

location, this deleting approach in the RFM will not produce

(iii) An alternative approach to define [AZR(m)]nxn has recently been suggested by
Larsson L105J201. Starting from the following definition of a reduced dynamically
equivalent stiffness matrix,

(11)
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Now [Z][o?]=[I]and[ZD][czD]=[I] (12)

From the product rule: WI- [ a ]  +  ,Z]Y =  0
6P

and since: S[& 6 a D-= -
SP [ 16P

Substituting equations (12) and (14) into equation (13) and rearranging gives:

SE9-= _[zD] 7
SP

[i?] =
[

WI
1

D
-GDl [aI - [a

SP
1 GDl (15)

Larsson uses (15) in a force balance, or equation error approach:

(13)

(14)

(16)

which is effectively the same as the RFM (pre-multiply both sides of equation (8) by the
analytical receptance matrix). As mentioned in chapter 2 the advantage of this approach
is that it is not necessary to calculate the entire analytical receptance matrix for each
iteration if the system is fully known. If the missing coordinates are substituted by their
analytical counterparts (as in the RFM), a full analytical system receptance matrix is still
required and if Larsson’s  dynamic equivalent reduction technique is used, all analytical
receptances are required for equation (15). Thus the equation error approach is only
advantageous over the standard RFM if the experimental data is complete.

A disadvantage of Larssons’ approach is the increased CPU time due to the additional
matrix manipulations involved to relate a change in the analytical system matrices to
changes in measured receptance data, although this will be offset by a reduction in CPU
time due to the smaller system matrices involved. This approach appears to be very
promising as there are no assumptions that all modelling errors should be in the measured
coordinates only. A 2 DOF example (see Appendix B) showed that the dynamic
equivalent by deletion approach is an approximation except in some special circumstances
which will be case-dependent. For a particular 2 DOF system (also Appendix B)
equation (16) is an equality if o=O or if p2 = p4. These limitations are due to the first-
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order truncation of the Taylor expansion defining the relationship between [?$I and [
22:

[qJ=[Z,s+ aql
- Ap + 0 (Ap)*

SP
(17)

Thus the approach adopted by Larsson is equivalent to a perturbation theory based
method and it has no obvious advantages over the standard RFM for the general case,
although it may be that the solution process itself is more stable.

The derivation of the 2 DOF example in appendix B verifies the explanation by Larsson
that at the natural frequencies of the system obtained using the unmeasured degrees of
freedom, the resulting equation becomes invalid (in this case k2 - o*m2 = 0), Larsson
states that the equations can only be used for frequencies up to the first natural frequency
of the measured coordinates.

8.6 CONCLUDING REMARKS

This chapter focused on the coordinate incompatibility between experimental and
analytical models within the RFM. Two techniques to expand the coordinates of a
receptance column were proposed; (i) an inverse reduction procedure employing the
analytical mass and stiffness matrices and (ii) a method based on the assumption that a
forced response shape can be expressed as a linear combination of the analytical mode
shapes.

Both expansion procedures give good expanded data for frequencies in the vicinity of
resonances but are not so accurate between resonances. Generally the inverse reduction
method produces better expansions. As for the mode shape expansion techniques, both
receptance column expansion procedures depend on the ratio of measured to unmeasured
coordinates and on the accuracy of the analytical model. In particular, the expansion
technique employing analytical modal data deteriorates rapidly as the ratio of measured to
unmeasured coordinates decreases.

To include an expansion procedure within the RFM it is recommended that the
experimental data be expanded for each iteration using the newly-updated analytical
model. This has the disadvantage of increasing the CPU time per iteration, especially if
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the inverse reduction method is used which requires an inversion for each frequency point
selected. A smoother solution process, especially during the first few iterations, is
achieved when using expanded experimental data compared to analytical coordinate
substitution. However, if the RFM converges easily by substituting with updated
analytical counterparts, it does not warrant the extra CPU time required for a full
expansion. For unstable solutions and few measured coordinates with respect to the
number of unknown p-values, the use of expanded data obtained by the inverse reduction
procedure is recommended. Including the inverse reduction expansion procedure in the
RFM, selecting frequency points around resonances is preferable to selecting frequency
points between resonances, due to the improved expansion of receptance columns at
frequencies in the vicinity of resonances.

The reduction of the analytical model to the measured coordinates is not a recommended
practice for the RFM. The condensation techniques used in practise loose the analytical
model system connectivities and introduce additional inaccuracies and as such are
unsuitable for the RFM. Using a dynamic equivalent reduction procedure by deleting
rows and columns of the receptance matrix is an improvement over the standard
condensation techniques. However, including this procedure within the RPM one also
incorporates the (inherent) assumption that all modelling-errors are at the measured
coordinates only. This is an invalid prerequisite for most realistic updating applications,
and hence this type of reduction is also not advocated in general.



CHAPTER 9

UPDATING OF STRUCTURAL JOINTS

9.1 INTRODUCTION

In previous chapters the applicability of the RPM both for error location and updating of
analytical models has been demonstrated. So far, the main emphasis of this thesis has
been on analytical model updating without distinguishing between various sources of
modelling errors. A major source of modelling errors is usually in structural joints and
boundary conditions as these are the most difficult to model. It is much easier to model a
complex but smooth 3 dimensional geometry than it is to represent a structural joint.

A wide variety of joints such as welded, bolted, adhesive joints are encountered in
engineering structures (see Fig. 9.1). In general, certain industries tend to use specific
types of joints more frequently than others:

Aircraft - lap joints, bolted and riveted joints, adhesive bonds
Automotive - spot-welded joints
Construction - bolted and welded I beams
Manufacturing - all
Marine - Stiffened plates, offset beams
Off-shore - welded tubular joints
Power / Nuclear - butt-welded, fillet-welded  and bolted flanges

Although these are representative examples, a mixture of joints will be found in any one
complex structure, a typical joint being the usual simplification of the analyst.
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Corresponding FE model
_-B u t t  w e l d e d  j o i n t .

Lap joints:

(i) spot welded
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Stiffened plate
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G u s s e t t  p l a t e‘T

Sealed pipe

Fig. 9.1: Joint examples and typical FE models

Let us consider the FE modelling of these joints. A detailed model is usually set up for
structures where accurate results are imperative, such as in the aerospace industry, or for
structures with known high stress concentrations, e.g. pressure vessels and tubular
joints. However, these models are primarily used to predict stress distributions, the joint
model not necessarily being appropriate for a dynamic analysis. During a stress analysis,
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the main load path is through the stiffest direction of the joint, while during a modal
analysis the lowest modes are determined by the smallest stiffnesses of that joint which is
often in the most ill-defined direction(s). This can result in inaccuracies in the dynamic
analysis.

FE modelling of joints for dynamic analysis is usually very simple. The use of stick-
models for modal analysis of large structures is very common. The joint is represented
by one node at which adjacent elements are connected directly. Typical FE model
representations of joints are also illustrated in Fig. 9.1.

In addition to flexibility, joints are also the main source of damping in a structure,
especially if there are overlapping surfaces which introduce Coulomb damping (non-
linear). The assumption of structural (material damping) is adequate for continuous parts
of the structure, where one damping value is often sufficient to represent these parts: this
presents no problem for model updating. However, it is essential to define damping due
to structural joints in more detail. Therefore, the use of damping elements at, and in the
direct vicinity of, joints will be necessary to produce a correct updated analytical model of
many practical structures.

9.2 PROPOSED JOINT UPDATING PROCEDURE

In the light of these observations, updating of joints is not an easy task. Before applying
the RFM to specific problems of structural dynamic joint updating, some general aspects
of a joint updating strategy are considered.

There are several possibilities for representing the effects of structural joints for model
updating purposes. Three suggestions are proposed: (i) the introduction of additional
spring-damper elements between coincident nodes at the joint, (ii) to introduce only one
additional element representing the entire joint and (iii) to introduce more than one element
depending of the number of brunches being joined together. These three options are
illustrated in Fig. 9.2.
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Typical FE model

coin
x_”

ident nodes

option (i)

option (ii)

option (iii)

Fig. 9.2: Updating of joints, options.(i), (ii) and (iii)

Considering option (i), an example of which is shown in Fig. 9.2, there are two
disadvantages, apart from increasing the number of degrees of freedom:

- by introducing additional springs in any one direction a large stiffness
disparity across the joint is also introduced. This is not representative of the
true interfacing at the joint and it will be kinematically inconsistent, which,
due to the smearing effect of FE analysis in case of discontinuities, will result
in an approximate solution.

- if a joint model is not stiff enough, an additional spring element cannot
increase the stiffness as compared to fully connected nodes, unless an
additional spring element across the joint is introduced. Thus if the joint is
modelled too flexibly a spring element between adjacent nodes of the joint
should be introduced while if a joint model is too stiff, an additional spring
element between joint nodes has to be introduced (spring in parallel or series).

Therefore it will be more appropriate to introduce and/or to adjust elements around the
joint which represent the area of the joint and slightly beyond, as in options (ii) and (iii).
The latter, although introducing more unknowns, also gives greater versatility. Both
options (ii) and (iii) can give additional versatility as different p-values can be assigned to
any one joint, e.g. corresponding to various directions, provided experimental data is
available for sufficient measurement sites. This is in contrast to option (i) which can just
have one p-value for each joint stiffness element and additional flexibility is achieved by
introducing more spring elements at the joint. Option (iii) is most versatile and is
therefore considered to be the most appropriate. The additional joint elements can also be
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used to obtain damping estimates of a joint by assuming the damping to be a linear
combination of the stiffness elements of that joint.

These additional joint elements can be introduced either before or after a first error
localisation process. Taking the original FE model as it is, a first error localisation
procedure will indicate modelling errors by an averaged p-value smeared out over FE
elements adjacent to the joint(s) in error. This is not as accurate but it keeps the initial
error localisation problem down in size. Then additional joint elements can be introduced
at the indicated erroneous joint(s). A subsequent second updating process will produce
refined estimates for the joint correction values. This approach relies on the success of
the initial error localisation process and also incurs additional costs due to setting up two
FE models.

If the additional joint elements are introduced at the start of the updating problem, the
problem size increases but a direct estimate of the joint p-value is obtained. An additional
advantage of introducing the joint elements at an early stage is that in that case a priori
knowledge of the joint can readily be included in the original model before error location.
Therefore the author considers introduction of (additional) joint elements at the initial FE
stage more appropriate.

Thus the proposed model updating strategy for a structure with joints is to introduce
additional joint elements in the initial set-up of the FE model. One joint element for each
brarzch of the joint is recommended and any a priori knowledge of the joint should be
included. To reduce the possibility of modelling disparities it is advised that the joint
elements are of the same type as the elements used to model adjacent continuous parts of
the structure under study. Error location using the RFM can then be carried out directly
on the FE model.

9 . 3 CASE STUDIES ON A

9 . 3 . 1 The 2D frame models

FRAME STRUCTURE

Some difficulties associated with joint updating were investigated on a 2D frame
structure. The frame consisted of 21 elements and 20 nodes as shown in Fig. 9.3. The
excitation point was at node 10 in the x direction , and a frequency range of O-1600 Hz is
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considered. Sixty in-plane coordinates were measured. To focus attention on joint
modelling errors only, noise-free experimental data was used.

9.3.2 Joint discontinuity

A complete break in one of the joints was considered as a most severe case of joint
modelling error, the location of the fracture being indicated in Fig 9.3a. Both the
experimental and analytical models consisted of 21 2D beam elements. Typical
receptance curves for both models are shown in Fig. 9.3b.  As can be seen the
dynamic behaviour is significantly different.

52.  4 l 5 l 6

3

.

10

.

11

(a) Frame model with discontinuity

f-
; -loo-
E
f
9
2
2 -150.

-200.

b 200 400 600 800 1000 1200 1400
Frcqucncy (Hz)

(b) Receptance FRF al~l~  obtained from frame models with and without a joint
discontinuity at Jl

Fig. 9.3: 2D frame models
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First, a discontinuity in the experimental model was investigated. Of six RFM runs none
converged as in each run the matrix solution became rank deficient. As before, the sum
of the squared percentages difference between experimental and updated receptance
values for each iteration was calculated to monitor convergence. The p-values at the
iteration where this scalar reaches its minimum were used to calculate the mean p-values

and the mean-to-standard deviation ratio of the p-values. These are plotted for mass and
stiffness elements in Fig. 9.4.

The stiffness modelling error was located at element 1, at the correct position (next to 51)
with a mean to standard deviation ratio of 12.6 and a mean value of -0.97. A mean p-
value of -0.97 meant that element should be deleted and this adequately represented the
discontinuity in the experimental model. Three additional stiffness errors were also
indicated with mean-to-standard deviation ratios between 2 and 3. There are 3 mass
elements in error which were indicated with a maximum mean-to-standard deviation
ration of 12.3 at element 1 and a mean p-value of -0.89. Despite the non converging
solution and some spreading of errors over the entire structure, the results obtained
pointed towards the true modelling error location .
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Fig. 9.4: RFM results for a discontinuity at joint Jl in the experimentul model

Next a reversed scenario, a joint discontinuity in the analytical model, was considered.
Again none of six RFM runs converged but in this case erroneous elements were
indicated over the entire analytical frame model. Knowing that the joint discontinuity is at
Jl, one can see that stiffness modelling errors were indicated at all elements adjacent to
this joint. However, the mean p-values associated with these elements were inconsistent
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with the actual modelling errors and the maximum mass modelling error was indicated
near 53 (Fig. 9.5).
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Fig. 9.5: RFM results for a discontinuity at joint Jl in the analytical model

The difference between this case and the previous one is clear: a connectivity in the
analytical model can be broken by deleting the appropriate element while it is not possible
to make a connection if the connectivity in the analytical model is not there in the first
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place. This is to be expected as in the latter case there is no element to represent the
connectivity and the p-values of the RFM are directly representative of element errors.

9.3.3 Joint stiffness modelling errors

A discontinuity is an extreme case of joint modelling error. The test cases in this section
regard more realistic joint modelling errors where the analytical model had the correct
connectivities but there were some discrepancies in joint properties e.g. due to the
manufacture of the joint. Another experimental model was set up with an additional small
joint element at the position of the joint Jl. This element, number 22 (see Fig. 9.3),
was created by reducing the length of element 1 by one tenth of its original length. The
joint element had the same properties and dimensions as the other beam elements but the
element stiffness matrix was multiplied by a constant factor, kj. A range of kj values
between 0.0001 and 1000 is investigated (where kj=l is equivalent to no modelling
error). The joint element mass matrix remained unchanged in all test cases although all
mass elements are still retained in the updating process.

It is interesting to note that for these test cases, convergence was achieved for all runs
with an increased joint stiffness (kj>l), while for a reduced joint stiffness (kj<l) no
convergence was achieved. For the latter cases either the maximum allowed number of
iterations (50) was reached without achieving convergence or the solution process became
rank deficient due to complete elimination of stiffness element 1 and/or 2. This is
probably because (i) the p-values expected for a decreased joint stiffness are close to -1
which makes it likely that during the iterative process a value of - 1 is obtained and (ii) the
change due to an increased joint stiffness on the receptance curves is small. Typical
results of 6 RFM runs for reduced joint stiffness are shown Figs. 9.6 and 9.7, for
kj=O. 1 and kj=O.OO 1 respectively.

The results for kj=O.l were promising as the maximum mean p-value to standard
deviation ratio is 5 14 and occurred at stiffness element 1. Additional fictitious modelling
errors were also identified both for the mass and for stiffness elements but, in
comparison, their maximum mean p-value to standard deviation ratio is much smaller
(less than 10) and the associated mean p-values were also smaller. On decreasing the
experimental joint stiffness (kj=O.Ol or kj=O.OOl), the picture became less clear. The
maximum mean-to-standard deviation ratio still occurred at stiffness element 1 but the
error location and mean p-values for wrongly identified erroneous elements became more
significant in comparison with the values associated with stiffness element 1 (Fig. 9.7).
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The additional erroneous elements identified were distributed over the entire analytical
model again and their number increased for decreasing joint stiffness modelling error.
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Fig. 9.6: RFM results for a joint modelling error, kj=O. 1,
at joint Jl in the experimental model
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Fig. 9.7: RFM results for a joint modelling error, kj=O.OOl,
at joint Jl in the eqerimentul model

The frame test cases for increasing joint stiffness modelling errors (kj=lO, kj=lOO)
showed only small changes in error location. Typical results for an increased
experimental joint stiffness are given in Fig. 9.8 (kj=lO). There was a considerable
spread of wrongly identified elements in error but the maximum of their mean p-values is
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only -0.12. For frame test cases with an increased experimental joint stiffness,
reasonable results were achieved. Comparing RFM results for an increase in
experimental joint stiffness (Fig. 9.8) with those for a decrease in experimental joint
stiffness (Fig. 9.6-9.7), improved convergence were observed and p-value estimates
for wrongly identified erroneous elements were smaller.
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Fig. 9.8: RFM results for a joint modelling error, kj=lO,
at joint Jl in the experimental model

Page 153



Chapter 9 - Updating of structural joints

9.3.4 Discussion

For all cases except that of joint discontinuity in the analytical model, the erroneous
stiffness element was located correctly. Hence the RFM can indicate joint error regions
correctly if the connectivities between the analytical and experimental models are
compatible. For most test cases, some additional mass and stiffness errors were indicated
distributed over the entire structure. The mean p-values of these wrongly identified
erroneous elements were generally less significant than those obtained for stiffness
element 1. The updated receptance curves, using the mean p-values of the elements in
error, reflected these promising results favourably. However, the updated model
obtained was not an adequate reflection of the actual experimental structure as the joint
modelling was approximated by a large element in comparison with the actual
discrepancy. Also the error location results became less clear as the modelling error
became more significant.

The spreading of wrongly-indicated erroneous elements over the entire analytical model
and not just to elements adjacent to the actual joint modelling error indicated that the
approach introducing additional joint elements after a first error location process is not
advisable.

9.4 APPLICATION OF THE JOINT UPDATING PROCEDURE

9.4.1 The analytical frame model

In this section the frame joint modelling test cases were repeated using the proposed joint
updating procedure by introducing additional joint elements prior to error location (Fig.
9.2 option (iii)). The analytical FE model of the frame was changed to include small
joint elements at each of the joint branches. The length of these joint elements was one
fifth of the original element length. As suggested in the joint error location strategy, the
additional joint elements covered the area of the joint and beyond. The new analytical
model consisted of 31 elements and 30 nodes (Fig. 9.9). The experimental model used
was the same as before, with joint elements of zero length and one tenth of the original
beam element length (Fig. 9.3).
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I Fig. 9.9: The analytical frame model with additional joint elements.

9 . 4 . 2 Joint discontinuity

Discontinuities in both the experimental model and the analytical model were investigated.
As before, none of the six RFM runs converged and the p-values from the minimum of
the sum of the percentages difference squared between the experimental and updated
models were used. Results for a discontinuity at Jl in the experimental model are shown
in Fig. 9.10. A distinct improvement on the error location results was obtained by
employing the joint updating strategy. This is evident by comparing Fig. 9.10 with the
direct RFM results shown in Fig. 9.4.

For a discontinuity in the analytical model no such improvement was achieved as can be
seen comparing Fig. 9.11 with Fig. 9.5. Thus, as expected, the RFM cannot detect
connectivities which are not there in the original FE model. Unfortunately the mean p-
values, both for the original analytical model and for the model with the additional joint
elements model, did not reflect the actual modelling error at all. This is in contrast to a
discontinuity in the experimental model which can be represented by removing the
appropriate element in the analytical model.
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Tig. 9.10: RFM results using the proposed joint updating strategy for a discontinuity at
joint Jl in the experimental model
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Fig. 9.11: RFM results using the proposed joint updating strategy for a discontinuity at
ioint Jl in the analvtical  model
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9.4.3 Joint stiffness modelling errors

The test cases of section 9.4.2, with joint stiffness modelling errors introduced on
element 22 of the experimental model for a range of kj values between 0.0001 and 1000
and an unchanged joint element mass matrix were investigated.

As in section 9.3.3, convergence was again achieved for all runs with an increased joint
stiffness while for a reduced joint stiffness convergence was not achieved. Typical
results of six RFM runs for reduced joint stiffness for kj=O.l, kj=O.OOl and kj=lO are
shown Figs. 9.12-9.14.

Each of the test cases carried out showed a remarkable improvement using the analytical
model with additional joint elements (Figs. 9.12-9.14) as compared with the earlier
results for the original analytical model (Figs. 9.6-9.8). Stiffness error location was
entirely focused on the actual joint modelling error and significantly fewer mass elements
were indicated as being in error. Also, the resulting changes to the analytical model due
to wrongly identified erroneous joint mass elements had only a small influence on the
overall dynamic behaviour of the model.
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Fig. 9.12: RFM results using the proposed joint updating strategy for a joint modelling
error, kj=O. 1, at joint Jl in the experimental model

Page 159



Chapter 9 - Updating of structural joints

1 2 3 4 5 6 7 8 9 1011 1213141516171819202122232425262728293031
Jl J2 J2 5353 5454 JlJl 53

Element ref.
(a) Mass elements, mean p-value

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
J1 52 52 J3 53  34 54 Jl Jl 53

Element ref.

(b) Mass elements, mean p-value to standard deviation ratio

1.‘

0.8
0.4 -

u - -Id -u

-l.2! -. . . - * -. - * ’ -. . . . . . . . . ‘. . . . . . . .

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
Jl J2 52 5353 5454 JlJl 53

Element ref.
(c) Stiffness elements, mean p-value

2

1

0 rl.rl.n.ll._.n.ll.  .ll.rl.n,rljl,  1.’ ‘.’ ~.ll.n.-.n,rln.ll.~

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
J1 52 J2 53 53 54 J4 Jl Jl 53

Element ref.

(d) Stiffness elements, mean p-value to standard deviation ratio
0 Error-free  elerrm&  identified
n Erroneous elements identified

Fig. 9.13: RFM results using the proposed joint updating strategy for a joint modelling
error, kj=O.OOl, at joint Jl in the experimental model
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9.4.4 Discussion

From the frame test cases it is shown that the proposed modelling strategy for joint error
location was clearly an improvement over error location in the original FE model as
discussed in section 9.3. This reinforced the recommendation that additional joint
elements ought to be introduced prior to a first error location procedure.

For the frame examples one joint modelling error only without any additional analytical
modelling errors was considered. This can be justified in the light of the RFM results for
the beam test cases of chapter 5. The beam examples had a combination of modelling
errors in the analytical model. Using the RFM all elements in error were localised
independent of size or nature in the case of noise-free experimental data. The smallest
analytical modelling errors disappeared first from the error location results as the
coordinate incompleteness increased and as the noise on the experimental data increased.
Small modelling errors can also vanish due to model mismatch. Similar trends will be
observed for joint modelling errors. The most significant modelling errors will feature
most prominently in the error location results, depending on the accuracy of the
experimental data and the closeness of the analytical model to the actual structure. For
most practical applications it is likely that the joint modelling errors are more significant
than modelling errors in continuous parts of the structure.

If several correction factors for each joint modelling error are desired, it is imperative to
measure receptance columns for various excitation directions, especially if response
directions in the analytical model are independent of one another. As mentioned in
chapter 5, FRFs obtained from excitation at one coordinate only can locate modelling
errors for each element if the analytical response model is sensitive to changes in the p-
values selected for those elements.

It must be pointed out that it will always be difficult to locate errors in the analytical FE
model if the assumed connectivity is wrong. If the connectivity is not in the analytical
model in the first place, as shown in both analytical joint discontinuity test cases, it is
unlikely that this error will be located.

If a joint (or the elements around a joint) has been identified as being in error, then a
closer inspection of the connectivities in the FE model is recommended. Inspection of the

experimental data is also suggested as the indicated discrepancies can also be due to
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experimental set-up and equipment problems, such as added mass at measurement points
and additional constraints due to supports and/or the excitation systems.

Although the examples used in this chapter were based on relatively easy joint modelling
errors they can be considered representative case studies for the problems encountered
during updating of structural joints. More case studies with variations on the theme of
joint modelling errors will show similar trends to those demonstrated in the previous
chapters and therefore will be of little added benefit. It is considered more useful to
highlight difficulties encountered during a true to life updating problem. Hence, in the
next chapter, updating of a fairly complicated structure with joints using experimental data
is presented.

9 . 5 CONCLUDING REMARKS

In this chapter the problem of joint modelling errors, a primary cause of FE modelling
errors, is addressed. Several ideas to update structural joints are discussed. The
proposed joint updating strategy is to introduce additional joint elements for each brunch
of the joint. These elements should cover the area of the joint and slightly beyond. It is
recommended that the additional elements are incorporated into the FE model prior to a
first stage of error location to include any a priori knowledge of the joint.

The success of the proposed strategy is demonstrated employing several representative
test cases on a 2D frame structure. Reasonable results are achieved by applying the RFM

to an FE model without implementing the suggested joint error updating strategy. The
main drawback is that there is a considerable spread of additional erroneous elements
indicated both for mass and stiffness elements, especially for more severe joint modelling
errors. A marked improvement is achieved by introducing additional joint elements prior

to updating. The identified erroneous stiffness elements are all focused on the actual joint
in error and there are considerably less, and less significant, wrongly identified erroneous
mass elements.

The significance of correct connectivities is emphasised. It is unlikely that the RFM can

identify erroneous connectivities if the connectivities are not represented in the analytical
model in the first place.
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CHAPTER 10

EXPERIMENTAL CASE STUDY

10.1 THE 3-BAY TRUSS STRUCTURE

In this chapter the application of the RFM to a fairly complicated engineering structure
with joints is investigated. For this purpose the 3-bay truss structure, shown in Fig.
10.1, was used. The structure is made of Dural (L105) and it consists of 18 cylindrical
side-members and 3 ridge-members connected by 8 side-joints and 4 ridge-joints.
Engineering drawings of the various parts are given in appendix C.

Z

Z
Y74%

0Y 0x
X

J4

I Fig. 10.1: The 3-bay truss structure

10 .2 EXPERIMENTAL DATA

Experimental data were acquired at DRA, using a DIFA SCADAS 64 channel data
acquisition unit and LMS Test and Modal software (version 2.4) running on an HP
computer and employing a MIMO, multi-input multi-output, test procedure. The
structure was freely suspended. Three-point simultaneous excitation in the form of
bandlimited noise was applied by Ling Dynamics VP100 shakers at the following
coordinates: (i) in the x-direction, at joint Jl;

(ii) in the y-direction, at joint 58; and
(iii) in the z-direction, at joint 54.
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The force gauges, 2 of Entran type ELF TC500 5 and 1 PCB type 208B, were mounted
at the ‘wrong’ ends of the pushrods, i.e. at the shaker end, to minimise cross-axis
loading effects. Further details of the physical excitation system are also given in
appendix C.

Thirty six response coordinates, namely three translational degrees-of-freedom at each
joint, were measured using Entran type EGA 125F accelerometers. The accelerometers
were attached to the structure using double sided tape so as to be as close to the centre of
each joint as possible. Other hardware used included: 2 Vishay strain gauge bridge
amplifiers, a PCB 483A02 conditioning unit, KEMO filters on excitation drive signals
(bandpass 20- 156 Hz) and MAMA power amplifiers.

Each of the 108 FRF curves (3x36) was measured at 2048 frequencies for a baseband
frequency range of 128 Hz. The number of averages was set to 16. The data were stored
in universal file format and transferred to an IBM RISC 6000 workstation and an IBM
compatible PC for subsequent analysis.

10.3 THE FINITE ELEMENT MODEL

ANSYS Finite Element models were set up in accordance with the updating strategy for
structures with joints as proposed in chapter 9. To obtain a model which was neither
under-defined nor over-defined several FE models were set up. In order to get these
different models each of the cylindrical side and ridge trusses was modelled using various
numbers of beam elements for the main, continuous, part of the strut (360 mm). 2 small

beam elements represented the joint area of the cylindrical trusses. A length of 20 mm
was selected for these joint beam elements, this being the length of the tapered section of
the trusses. Part of each tapered section of a truss goes into a joint. The 12 joints of the
3-bay truss structure were modelled using lumped masses.

Each continuous part of a truss was alternately modelled using 4, 3, 2 and 1 beam
elements resulting in models with 702,576,450  and 324 DOFs respectively. The natural
frequencies and mode shapes for the first 40 modes were compared for all four models.
The natural frequencies and mode shapes for the 3 models with 2,3 and 4 beam elements
between joint elements compared very well with each other, the maximum difference in
natural frequency was 0.6%. The model with only 1 beam element between joint
elements was notably stiffer and a maximum discrepancy in natural frequency of 13.9%
was observed. For updating purposes the number of elements should be as small as
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possible to keep the number of unknowns down while still adequately representing of the
structure under study. Therefore, the model with 2 beam elements between joint elements
was selected for updating.

The effect of the three excitation devices were also represented in the FE model. The
pushrod was modelled using a beam element with lumped masses at the ends to represent
the nuts, the threaded rod, the force gauge and the carrier, and torsional springs to
represent the shaker constraint. Displacement constraints were applied to the shaker end
of the pushrod which only allowed translation along the axis of excitation and 2 of the
rotations were constrained by the torsional springs while the rotation about the axis of
excitation was left free. The final FE model consisted of 105 mass elements and 90
stiffness elements resulting in a total of 462 DOFs (Fig. 10.2).

2

z
YY&k

OY 8x , J_ torsional spring elememt grounded at
T translational displacement constraint

one end

Fig. 10.2: The FE model of the 3-bay truss structure

10.4 CORRELATION BETWEEN EXPERIMENTAL AND FE DATA

Prior to updating the FE model, comparisons of the experimental and FE data sets were
carried out. Firstly a straightforward comparison of the FRF data was carried out. For
the lower frequency range, the FRF data matched reasonably, the discrepancies
increasing as the frequency increased. The experimental model seemed to be stiffer than
the analytical model. A typical comparison of an experimental receptance curve and its
analytical counterpart is shown in Fig. 10.3.
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2 0 40 60 SO 100 120
Frcqucncy  (Hz)
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Fig. 10.3: 3-bay truss structure experimental and analytical receptance FRF CCJ~~  542

The experimental FRF data were analysed using MODENT, a modal analysis package
running on IBM compatible PCs. The modal analysis method used was GRF-M, a
global multi-FRF analysis method. GRF-M is based on the rational fractional method
and is an improvement of the standard method as the modal parameters are found a
number of times and averaged to yield a single consistent set. The universal file
containing the experimental data was separated into an FRF data set for each of the 3
excitation points. Each FRF data set contained 36 individual FRFs in appropriate file
format for MODENT. The data sets were analysed by applying 20 GRF-M runs to
consecutive limited frequency ranges covering the entire frequency range. The most
consistent results were saved in a modal data set.

It was observed that some of the FRFs regenerated from the experimental modal data
exhibited a sign (phase) change compared with the measured FRF. Closer inspection of
the modal analysis results obtained via SDOF curve-fitting of the 3 available point
receptances showed that 2 of these had negative modal constants for all the modes. This
indicated a sign convention error in the data as the modal constants for a point receptance
are always of positive sign. If one or more of the measured FRFs is of the wrong sign,
the RFM cannot work.

As it is of vital importance to have a consistent sign convention throughout the acquisition
of the experimental data and the updating process, it was necessary to resolve the
observed inconsistency. This was achieved by comparing the phase of the experimental
FRFs with their analytical counterparts for each of the 108 FRFs. It was found that not
only the two point receptances were of wrong sign but all other FRFs for these excitation
coordinates too. As each FRF was inspected, noisy parts of the measured data were also
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monitored so that later during the frequency point selection of the RFM these frequency
ranges could be avoided.

The signs of the input coordinates at joint 8 in the y-direction and joint 4 in the z-direction
of the measured data were corrected accordingly and the 3 measured FRF data sets were
analysed again. The 3 experimental data sets will from now on be referred to as XJlx,
XJ8y, XJ4z for experimental data obtained from excitation at Jl in the x-direction, 58 in
the y-direction and J4 in the z-direction respectively. The various modal data sets were
compared to verify that the analytical model resembled the actual structure under study.
After a visual comparison the MAC values of experimental and analytical modal data were
calculated.

MAC plots of the experimental modal data sets with one-another (Fig. 10.4) showed a
lack of correlation between experimental modes 9,lO and 11. This could possibly mean
that there was some inconsistent local dynamic behaviour which depended on the
excitation direction and/or that the GRF-M method was unable to adequately identify
these close local modes.
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1 1

(a) Modal data sets XJlx- XJ8y (b) Modal data sets XJlx- XJ4z

I mx
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(c) Modal data sets XJ8y - XJ4z

Fig. 10.4: 3-bay truss structure MAC values between various experimental data sets

As can be seen from MAC plots of the experimental with the analytical modal data (Fig.
10.5) there were 9 correlated modes for the excitation at Jlx and J8y and 8 correlated
modes for excitation at 542. Experimental modes 9, 10 and 11, which were already seen
to be inconsistent between the various experimental data sets (Fig. 10.4), were not
correlated with any of the analytical modes (Fig. 10.5).
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(b) Modal data sets XJ8y - FE

(c) Modal data sets XJ4z - FE

Fig. 10.5: 3-bay truss structure MAC values between experimental and analytical data I
The natural frequencies of the 3 experimental modal data sets compared very well with
one-another, the maximum discrepancy being less than 0.6%. A comparison of the
natural frequencies of the correlated mode pairs for one of the three experimental modal
data sets and the analytical modal data is presented in Fig. 10.6.
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0 40 60 80 100 120

Frequew  WI
Experimental

I Fig. 10.6: Natural frequency comparison of the 3-bay truss structure
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The COMAC values were calculated using 9 correlated mode shapes pairs of each of the
experimental modal data set with the FE modal data set. Fig. 10.7 shows that the
modelling errors indicated by COMAC were mainly at joint coordinates Jl, 52, 53 ,J4 ,

J9, JlO, Jll, 512 in the x-direction and J3 and possibly 54 and J8 in the y-direction.

(a) Modal data sets XJlx - FE

(b) Modal data sets XJ8y - FE

(c) Modal data sets XJ4z - FE

Fig. 10.7: 3-bay truss structure COMAC values between experimental and FE data

The COMAC values of the 3 experimental modal data sets with one-another were also of
some interest (Fig. 10.8). Small COMAC values at some coordinates indicated lack of
correlation at these points between the simultaneously-measured experimental data sets.
This can be due either to experimental error or to errors in the modal analysis of the
measured data. The coordinates with small COMAC values are at Jl 52 53 in the x-
direction, J4 in all 3 directions and J8 in the y direction. Note that these coordinates
include aLI three excitation coordinates.
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(a) Modal data sets XJlx- XJ8y

(b) Modal data sets XJlx- XJ84z

(c) Modal data sets XJ8y - XJ4z

rig. 10.8: 3-bay truss structure COMAC values between various experimental data sets

10.5 SIMULATED UPDATING CASE STUDIES

To verify the feasibility of the proposed experimental updating exercise some simulated
updating case studies were carried out using simulated experimental data with known
modelling errors in one of the joints. The generated data were noise-free and, like the
experimental data, consisted of 36 coordinates for each of the 3 excitation points. Several
RFM runs for receptance columns for each of the excitation points indicated that the
dynamic response was insensitive to changes in p-values for some elements. Hence the
RFM did not converge. In particular, the mass elements of the little joint beams, mass
elements at the shaker end of the excitation systems and the torsional spring elements of
the excitation systems were found to be unstable.

The number of unknown p-values was reduced by assuming some elements to be correct
and grouping some elements into macro elements. Mass changes in the small joint beam
elements were considered to be insignificant. Should the mass in any of these elements
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be wrong this could be compensated by the lumped mass elements representing the actual
joint. Furthermore, single correction factors were assumed for the mass of the 2 beam
elements between the joint beam elements representing each truss. And similarly the 2
stiffness elements of the same 2 beam elements were grouped together. This was
considered appropriate as these macro-elements represent continuous parts of the 3-bay
truss structure. The stiffness elements representing each of the excitation systems were
also grouped into 3 macro elements. This reduced the total number of unknowns from
195 to 99.

For these 99 unknowns convergence was readily achieved for excitation in the y- and z-
directions. The most significant p-values identified the joint in error correctly. There
were some additional smaller p-values which were due to convergence being reached
under the criterion of defined by the maximum allowed difference between experimental
and updated receptance values rather than that of the maximum allowed incremental
changes of the p-values between iterations. For excitation in the x-direction, convergence
was not so easily achieved. As the mode shapes have significant deflections mainly in the
y- and z-directions, the receptance curves for excitation in the x-direction have many
resonant peaks which are less pronounced than those obtained for excitation in the y and z
directions. By re-selecting frequency points to concentrate on regions where the response
was significant, the RFM solution process improved but convergence was still not
reached after 30 iterations. Therefore the number of unknowns was reduced further to 29
by selecting a single correction factor for each of the major parts of the 3-bay truss
structure (see Table 10.1). In this case convergence was reached and again the most
significant p-values indicated the modelling errors correctly.

10.6 MODEL UPDATING USING MEASURED FRF DATA

10 .6 .1 Direct use of the experimental data

The element groups used in the preliminary simulated test cases were also employed for
the first test cases using the experimental data. At this stage, the modelling of damping
had to be considered. The modal analysis of the experimental data showed that the modal
damping was in the order of 0.5% for most modes and so a proportional damping factor
of 0.005 was selected for each stiffness element. For the 3-bay truss structure the
damping elements were grouped into 4 macro-elements: namely, (i) for ridge- and (ii)
side-continuous trusses and (iii) ridge- and (iv) side-joint elements. These 4 damping
macro-elements should give an adequately representation of the damping distribution in
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the 3-bay truss structure without adding too many unknowns to be solved for in the
RFM.

Frequency points were selected in accordance with the recommendations made in
previous chapters, avoiding those from the noisiest frequency ranges, as detected by
visual inspection. The ridge joint x-direction coordinates in FRF data set XJ8y were
substantially different from their FE counterparts. Thus, these FRFs were eliminated
from that data set and the number of coordinates employed from XJ8y was reduced from
36 to 32. Several RFM runs employing each of the 3 experimental data sets were carried
out but, unfortunately, convergence was not achieved.

Next, the structure was assumed to be lightly damped such that a damping matrix was not
required in the model and the imaginary part of the FRFs were set to zero. Again, no
convergence was achieved. To overcome the difficulties in achieving a converging
solution, the number of unknown p-values was reduced from 103 to 99,31,29,  10 and 8
unknowns for experimental data sets XJSy and XJ4z and from 31 to 29, 10 and 8
unknown p-values for experimental data set XJlx. Details of the different sets of
unknown p-values used are presented in Table 10.1.

el.
We

part of 3-bay truss structure
represented

test case reference

all els. I II III Iv v VI

M ridge truss beam elements 366 l?3 ;‘s 1 1 1 1
side truss beam elements

ridge joint beam elements 14 : 0 :,

1 1 1

side joint beam elements 28 0 0 : : :
joint lumped masses 12 12 12 12 12 2 2

excitation lumped massessystem 6 0 0 0 0 0 0

K ridge truss beam elements 366 l?3 138 1’1 :1 1 1
side truss beam elements 1 1
ridge joint beam elements 14 14 14 4 4 1 1
side joint beam elements 28 28 28 8 8

exc i ta t ion  beam andsystem 9 3 3 1 1 :, :
spring elements

D ridge and side beam elements 0 2 1 1
ridge and side joint beam elements 0 ;

::
;

:
(:

::
exc i t a t ion  e lementssystem 0 0 0 0

total number of unknown p-values 195 103 99 31 29 10 8

Table 10.1: Number of p-values in the 3-bay truss structure case studies
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Some inconsistent FRFs as indicated by the COMAC plots of experimental data sets with
one another (Fig. 10.8) were eliminated from the experimental data sets to improve the
general accuracy of the experimental data sets. Several RFM runs were carried out for
each of these different sets of p-values. However, none .of the runs converged. The
results are summarised in 6 tables which are presented in appendix D.

10.6.2 Employing regenerated experimental data

As the previous results were unsatisfactory another approach was adopted: experimental

FRFs were regenerated using modal analysis results instead of using the raw measured
data. This should reduce the effects of the random noise on the experimental receptance
curves and some of the inconsistencies between different receptance curves. However, it
does not alleviate the problem of consistent bias errors in the experimental data.

One experimental data set, that for excitation at 542 which from now on will be referred to
as RJ4z was regenerated and a typical FRF from the measured and regenerated data sets
is plotted in Fig. 10.9. Data set RJ4z was employed in several RFM runs for the
different numbers of unknown p-values as indicated in Table 10.1. However, again,
convergence was not reached. It was observed that the standard deviation of the results
was reduced as compared with the RFM results employing data set XJ4z, indicating that
the RFM results employing RJ4z were more consistent.

-120
40 60 80 LOO

Frqd:;  (Hz)

x x experimental
- regenerated experimental

Fig. 10.9: Experimental and regenerated receptance FRF cCJ4,  J4z

for the 3-bay truss structure
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10.6.3 Error location using the RFM

Even if convergence is not reached it is still possible to locate modelling errors using the
p-values of the iteration where the difference between experimental and updated
receptance values used in the process reaches a minimum as demonstrated by the
GARTEUR III exercise (section 5.7). It was observed that in some 3-bay truss structure
RFM runs this difference increased directly at the first iteration and obviously, these
results were not included in the statistical analysis. For each p-value reference set the
indicated modelling errors and their mean p-values are presented in appendix D. An error
threshold of mean-to-standard deviation ratios greater than 2 was used.

It was also observed that in some cases the natural frequencies of the iterative updated
model within each RFM run diverged from the experimental model. The error location
process was repeated selecting the p-values at the iteration where the difference between
the first natural frequency of the experimental and the updated models reached a minimum
while omitting runs with increasing natural frequency difference. These error location
results are also presented in appendix D. There were numerous inconsistencies between
all these error location results. This is not surprising considering the large standard
deviations of the p-values. In most cases including 6 RFM runs gave standard deviations
between 0.6-0.8 and 0.3-0.4 for RFM results obtained employing raw experimental data
and regenerated experimental data respectively. The most consistent modelling errors are
indicated in Fig. 10.10.

Fig. 10.10: Locations of modelling errors in the FE model of the 3-bay truss structure

0 lumped M elements, +ve p-values
- K joint beam elements, -ve pvalues
and some M, K side truss beam elements +ve p-values
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10 .6 .4 Updating the FE model

Results of 12 RFM runs obtained by employing data set XJ4z were combined. The mean
p-values of those elements indicated by Fig. 10.10 and having a mean-to-standard
deviation ratio greater than 1 were used to update the FE model. These p-values are
shown (in (italics)) in Fig. 10.11. However, the updated model showed no
improvement on the original model, a typical comparison of experimental, analytical and
updated receptance curves being shown in Fig. 10.12. The difference between the
natural frequencies of the updated model and those measured was either the same or
increased as compared with the difference between the original data sets. The same
procedure was repeated for mean p-values obtained by employing data set RJ42.  The
mean p-values of the located erroneous elements are also shown in Fig. 10.11.

Iindicated elements in error
l lumped M elements
- K joint beam elements
- K side truss beam elements (data set RJ4.z  only)

u-values from data set RJ4z

Fig. 10.11: Indicated modelling errors in the FE model of the 3-bay truss structure

The updated model obtained by employing the regenerated data was better than the
previous one, obtained by employing raw experimental data. The updated model
obtained by employing the regenerated data showed marginal improvements for some
natural frequencies in the O-60 Hz range while other natural frequencies remained similar
or became further away from the target experimental data. A typical comparison of
experimental, regenerated experimental, analytical and updated receptance curves is
plotted in Fig. 10.12.
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20 40 60 SO 100 FE&2yO(HZ)

(a) employing experimental data set XJ4z
m

-140 1

L
20 40 60 SO 100 120
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(b) employing data set RJ4z

Fig. 10.12: 3-bay truss structure experimental, analytical and updated analytical
reCeptanCe  m aJ4z  J42

Generally, the RFM results were far from conclusive and the updated model remained far
from satisfactory.

1 0 . 6 . 4  D i s c u s s i o n

The RFM results for the 3-bay truss structure were far from satisfactory. As mentioned
in previous sections, none of the RFM runs converged: some RFM runs started diverging
at the first iteration, and the standard deviations of resulting p-values were large. There
are various reasons which might explain the lack of success of the RFM to update the FE
model of the 3-bay truss structure.
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There appeared to be a significant amount of noise and a lack of consistency within the
entire experimental data set. This was already indicated in section 10.4 and further
illustrated in Fig. 10.13 showing reciprocal receptance curves.

L-_____
20 40 60

1

SO 100 120
Frequency (Hz)

Cal aJlx J8y - aJ8y J l x

---
20 40 60 SO too 120

Frequency (Hz)

cb) aJlxJ4z - aJ4zJlx

cc) aJ8yJ4z - aJ4zJ8y

Fig. 10.13: Reciprocal experimental receptance curves of the 3-bay truss structure
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Observation of such significant noise on a logarithmic scale suggested that experimental
errors were of an order of magnitude at some frequencies. Some of the effects of the
random noise could be overcome by careful selection of the frequency points used in the
RFM and, at a later stage, by employing regenerated receptance data. Note that
employing regenerated receptance data requires accurate modal analysis while one
significant advantages of the RFM is its ability to make direct use of measured data and
modal analysis results should merely be used to verify the consistency between
experimental and analytical data.

During the course of the exercise the number of measured coordinates was decreased and
therefore the simulated test cases for 99 unknown p-values were repeated employing the
reduced number of measured coordinates. In the case of noise-free data, convergence
was achieved in 17 iterations. The same simulated test cases were repeated for noisy
simulated experimental data since there was obviously (Fig 10.13) significant
experimental noise. As it should be possible to measure FRF data to within 5% of its
actual value, 5% random noise was distributed over the simulated receptance data. In this
case no convergence was achieved in 30 iterations. After 30 iterations the most
significant mass related p-values indicated the mass modelling error correctly while the
stiffness related p-values were not so successful. Note that this also indicated that, in this
case, mass modelling errors can be located more easily than can stiffness modelling
errors.

Despite the attempts to overcome some of the noise related problems, the overall effect of
experimental noise was certainly not less than an equivalent of the 5% random noise
applied during the simulated test cases. And since the simulated test cases with 5%
random noise had convergence difficulties, it is not surprising that convergence was not
reached while employing the actual experimental data.

Although the lack of convergence during the simulated 5% noise case study should not
necessarily be detrimental to obtaining error location results, it did indicate the general
instability of the RFM updating exercise using the given set of measured coordinates. In
chapter 5, the recommendation was made that at least one coordinate per element should
have an experimental FRF associated with it. This was certainly not the case for the 3-
bay truss structure. Even by reducing the number of unknown p-values, a measured
coordinate at each (macro-)element was not accomplished because of the positions of the
actual measurement sites and the specific updating interests, namely the joints of the FE
model.
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During this case study there were also some adverse effects due to model mismatch as the
measurement sites were not at the actual FE nodes, unlike during the simulated case
studies. Again, this in itself is not necessarily detrimental to successful error location
using the RFM but adds to the unfavourable state of affairs.

The overall RFM performance might have been improved by expansion of the
experimental data to the full FE size during the first few iterations, as was demonstrated
in chapter 8. However, due to limited available computing power, this option was not
included in the RFM solution process for this case study.

In this case, the experimental data were externally provided prior to setting up the FE
model. Simulated test cases demonstrated that for the 36 measured coordinates, even in
case of noise-free data, convergence was not reached if all elements (195) were to have a
single correction factor. Reducing the number of unknowns did overcome the problem
but one must bear in mind that local modelling errors will now have to be represented
over a coarser ‘error location mesh’. For error location purposes a better approach to
overcoming these difficulties would be to acquire an increased number of measurement
coordinates. This, and the points discussed above, emphasise that, ideally, simulated
updating test cases should be carried out prior to acquisition of the experimental data in
order to indicate: (i) the number and location of measurement sites; and (ii) the required
measurement accuracy.

10 .7 . CONCLUDING REMARKS

In this chapter the Response Function Method has been applied to a second experimental
case study based on an existing physical structure with joints, the 3-bay truss structure.
The RFM results obtained using externally-provided simultaneously-measured FRFs
were far from satisfactory. This was mainly due to the amount of measurement noise,
demonstrated by checking the reciprocity of some receptance curves, and because of the
limited number of measured coordinates available by comparison with the number of
DOFs in the FE model.

Simulated updating test cases indicate the feasibility of an updating exercise but should
preferably be carried out before acquiring the measured data set in order to indicate
experimental data requirements. Consistent experimental and analytical data sets are a
prerequisite for successful updating.
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Regenerating experimental FRF curves using modal analysis results might decrease the
effects of random noise on the measured data. In this case study, employing regenerated
data instead of raw experimental data reduced the standard deviation of the RFM results.

From this case study it is shown that in practice the two most significant factors for
successful updating using the RFM are: (i) the accuracy of the measured data and (ii) the
number of measured FRFs.
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CHAPTER 11

CONCLUSIONS AND SUGGESTIONS FOR
FURTHER WORK

11.1 CONCLUSIONS

This section presents a summary of the conclusions of the work presented in this thesis.

11.1.1 Introduction

Structural dynamics model updating has been defined as the adjustment of an existing
analytical (Finite Element) model representing the structure under study, using
experimental data, such that it more accurately reflects the dynamic behaviour of the
structure. Although a considerable amount of research had been dedicated to the area of
model updating, a detailed literature survey indicated that previously the problem
remained largely unsolved and more work was needed. Potential difficulties which
updating methods must address were identified, the major difficulties being due to
incompleteness of and noise on the experimental data.

11.1.2 Updating using modal data

Most previous updating methods have been based on modal data. A new error matrix
procedure, derived from a mathematical identity rather than perturbation theory, can give
numerically better results for the unrealistic case of complete experimental models but for
cases of incomplete experimental data, the improvements are negligible since there are
inherent difficulties within the basic algorithm.

Coordinate expansion is one possible way of overcoming some of the limitations of the
error matrix method which derive from the reduction process. Well-expanded modes can
be obtained both by an inverse reduction technique and by a modal transformation
method. This latter method, as compared with the inverse reduction technique, shows no
discontinuities in the mode shapes, experimental noise can be smoothed out, the error is
generally smaller although more spread out and it is less CPU-intensive. One advantage
of the inverse reduction technique is that there are no decisions to be made, in contrast to
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the modal transformation method where the analytical mode selection is of vital
importance to the success of the method. For both expansion techniques, the expanded
set is not orthogonal with respect to the experimental system matrices, discrepancies are
case-dependent, and are mainly influenced by the closeness of the analytical model to the
experimental model. Expanded experimental modes must satisfy the mass-orthogonality
condition if employing an updating technique based on this property.

Despite numerical improvements to the error matrix procedure, updating using modal data
remains far from satisfactory.

11.1.3 Updating using frequency response data

Advantages of employing FRF data, as compared to using modal data, are that (i) each
individual FRF measurement contains information on the out-of-range modes as well as
on those within the frequency range of interest, (ii) there is surplus of data and, (iii) the
direct use of raw measured data eliminates lengthy modal analysis procedures.

(i) The response function method

The response function method (RFM), an updating technique employing frequency
response data, can locate modelling errors in the realistic case of noisy and incomplete
experimental data. The updated models are in good agreement with their measured
experimental counterparts for both resonant and off-resonant response. In the general
case, modelling errors cannot be expressed as linear combinations of the individual
element mass and stiffness matrices: hence, any attempt to model the error(s) in each
element by a single correction factor can only be an approximation. This technique is
useful for error location but not necessarily for updating.

The consequences of the incompleteness of the experimental model can be overcome to
some extent by substitution of the missing coordinates by their (updated) analytical
counterparts. This problem can also be addressed on a statistical basis, made possible
because of plentiful data, by considering several sets of solutions for various frequency
point sets. More reliable estimates of the indicated modelling errors in the presence of
noise can be achieved by judicious use of the ratio of mean to standard deviation of the
correction factors determined in this way.

Complex FRF data with noise make the RFM convergence process slow and often
numerically unstable. However, in the case of lightly damped structures, an acceptable
solution can be found by setting the imaginary part of the FRF to zero. Good initial
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assumptions about the damping present in the structure and accurate measured response
data are required to identify a damping matrix successfully.

Structural joints are a primary cause of FE modelling errors. The joint updating strategy
proposed in this work is to include additional joint elements for each branch of the joint.
It is recommended that the additional elements are incorporated into the FE model prior to
a first stage of error location. These elements should cover the area of the joint and
slightly beyond and any a priori knowledge of the joint should be included. The
proposed updating strategy gave a marked improvement as compared with updating FE
models without additional joint elements. Correct connectivities are a prerequisite to
successful model updating. It is unlikely that the RFM can identify erroneous
connectivities if these are not represented in the analytical model in the frost place.

(ii) Computational aspects of the RFM

Noise on the measured FRF data, a reduced number of measurement sites and model
mismatch all have adverse effects on error location since they tend to make the solution
process unstable and to increase the scatter of results. The number of frequency points
used for updating should be 4-8 times the minimum requirement; (i) to make the system
of equations numerically stable and (ii) to reduce the adverse effects of noisy and
incomplete experimental data.

Correction factors (the so-called p-values) can be unstable either because the system is
insensitive to changes in particular elements, or because the solution process makes them
unstable. The latter occurs especially when the number of measurement coordinates is
too small in the vicinity of the corresponding element. These difficulties can be overcome
by reducing the number of unknowns by grouping elements together into macro
elements. Balancing the matrices both with respect to element type and frequency point
selection is beneficial for stabilising the solution process and therefore the convergence of
the solution.

Measurements taken directly at the point(s) of modelling error will identify these error(s)
more easily. Frequencies in the direct vicinity of the experimental resonances make the
RFM matrix equation singular and should therefore not be included in the frequency point
selection. Frequency points below the first mode should also be avoided in the frequency
point selection. The frequency points should be selected where the differences between
experimental and analytical receptance values are significant.

If the only requirement of the updated model is to regenerate measured FRFs, one RFM
run using many frequency points is sufficient. For error location purposes, more runs

Page 185



Chapter II - Conclusions and suggestions forfurther work

and subsequent statistical analysis of the results are necessary. Increasing the number of
runs improves the final error location results.

(iii) Coordinate incompatibility

Some of the adverse effects of the substitution of unmeasured FRF values by their
analytical counterparts can be overcome by the use of expanded data. The estimated
values of the unmeasured coordinates should be used to substitute missing coordinates in
the rows retained in the standard RFM and not to increase the number of linear equations
for each frequency point selected.

Two techniques to expand an incomplete receptance column are proposed: (i) an inverse
reduction procedure employing the analytical mass and stiffness matrices and (ii) a
transformation method using the analytical mode shapes. Both expansion procedures can
give good expanded data for frequencies in the vicinity of resonances but are not so
accurate elsewhere. The success depends on the ratio of measured to unmeasured
coordinates and on the accuracy of the analytical model. Generally, the inverse reduction
method produces better expansions.

In order to include an expansion procedure within the RFM, the experimental data should
be expanded for each iteration using the newly-updated analytical model. A smoother
solution process, especially during the first few iterations, can be achieved when using
expanded experimental data instead of analytical substitutions. Reduction of the analytical
model to the measured coordinates is not a recommended practice for the RFM.

(iv) Case studies

The RFM was successfully applied to analytically-generated test cases and experimental
data for a free-free beam. However, the results from some case studies on the 3-bay
truss structure, using externally-provided experimental test data, were not so satisfactory.
The success of updating using the RFM depends on the quantity and quality, in terms of
the measurement sites and measurement accuracy, of the experimental data.

11.2 RECOMMENDED UPDATING STRATEGY

In the view of the experience gained during the course of the research, and of the case
studies presented in this thesis, the following strategy for updating analytical structural
dynamics models is recommended.

Page 186



Chapter 11 - Conclusions and suggestions forfurther work

(i) The analytical model

The analytical model must be representative of the structure under study. The model
should be detailed enough such that further refinements do not significantly change the
predicted dynamic behaviour in the frequency range of interest but it should not be too
detailed as in that case the number of elements to be updated becomes excessive and the
ratio of measured to unmeasured coordinates will be too low. It is recommended that
additional small elements for each brunch of a structural joint be incorporated into the FE
model prior to a first stage of error location.

(ii) Simulated test cases

It is advisable to check the feasibility of the proposed updating procedure by carrying out
preliminary runs using simulated experimental data derived from the analytical model.
This will indicate possible limitations, unstable elements and whether or not enough
experimental coordinates will be available. One advantage of simulated test cases
preceding measurements is that the results of these can be used to indicate which points to
measure.

Modelling errors are expressed as linear combinations of the individual element mass and
stiffness matrices. If there is no convergence, or if there are insensitive elements, several
elements can be grouped together into macro-elements. It is advocated that elements
representing continuous parts of a structure can be grouped together in this way and
enough unknowns should remain to represent adequately regions of modelling errors,
especially at, and in the vicinity of, structural joints.

(iii) Experimental data

Bearing in mind standard practice and the general recommendations for good modal
testing, the experimental data should be acquired as accurately as possible and measured
at as many coordinates as possible. Experimental measurement sites should correspond,
or be as close as possible, to points in the FE nodal grid and should have the same
reference axes. It is beneficial to have measurement sites at points where modelling
errors are more likely to be found. For solution stability, the recommended number of
measurement points is at least one per element to be updated, but this is not essential.

(iv) Preliminary comparisons

A preliminary comparison of the two data sets is of vital importance, firstly to see
whether the two models show reasonable agreement and secondly to verify that consistent
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data sets are being used. Although the second reason might appear obvious, it tends to be
prone to mistakes and errors. Due care and good communication between analyst and
experimentalist are of vital importance to achieve reliable updating results. Direct
comparisons of natural frequency, mode shape and FRF curves comparisons, and MAC
and COMAC calculations are suggested.

(v) Damping estimates

At this stage, the modelling of the damping should also be considered. If the structure is
lightly damped, acceptable results can be achieved by ignoring the damping and setting
the imaginary part of the FRF to zero. For more complex structures, careful initial
assumptions about the actual damping and the number of unknowns necessary for the
damping (macro-)elements are of vital importance to achieving a representative updated
system.

(vi) Error location using the RFM

Several RFM runs using different sets of frequency points should be carried out bearing
in mind the recommendations made in the previous section. Statistical analysis of the
results, in particular the mean to standard deviation ratio, should be used to locate and
evaluate the elements in error.

It is be possible that none of the RFM runs converge; for example due to the presence of
measurement noise. There are then two options: (i) to repeat the runs for a reduced
number of unknowns, by grouping elements together or assuming some elements to be
error-free, or (ii) to use the correction factors at the iteration at which the sum of the
percentages differences squared is a minimum. Results obtained via the latter option
should be used with caution.

(vii) Updating of the FE model

If regenerating the measured FRFs is the only objective, one RFM run using an increased
number of frequency points is advised. Otherwise, the mean correction factors obtained
for the located elements in error can be employed to update the model. Careful inspection
of these correction factors is recommended as they can also indicate possible errors in the
measurement set-up. Engineering judgement should also be used to review the validity
and/or physical significance of the indicated errors. When using a set of correction
factors to update a model and to regenerate FRFs, it must be borne in mind that it is
possible that improvements only are achieved for certain response directions. For more
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refined updating, a comparison of results obtained from various excitation points can
indicate modelling errors due to linear element modelling errors, such as material
properties, or modelling errors affecting the dynamic behaviour differently for different
excitation directions, such as changes in thickness.

11 .3 SUMMARY OF CONTRIBUTIONS OF PRESENT WORK

A brief overview of contributions made in this thesis to the area of ‘Updating of
Analytical Structural Dynamics Models using Experimental Response Data’ is given here.

- Structural dynamics model updating was defined and 6 levels of correctness
of increasing complexity and vigour which an updated model ought to satisfy
were identified.

- A detailed literature survey was carried out and all the major state-of-the-art
updating techniques were classified on the basis of their approach and were
presented in a consistent notation.

- Problems encountered during model updating using modal data were
illustrated using the error matrix method and a new improved error matrix
procedure was proposed.

- Comparisons of existing modal data coordinate expansion methods showed
that the success of the coordinate expansion is case-dependent. Mass-
orthogonality was highlighted as an area of concern when employing
expansion methods in modal-based model updating techniques using this
property.

- An updating procedure using frequency response function data in the realistic
case of noisy incomplete complex experimental data, the response function
method (RFM), was developed to the point at which it can be used for
practical applications.

- Advantages of using m-based updating techniques compared with modal
based updating techniques were demonstrated.

- Different approaches for error location and regeneration of the measured

FRFs were suggested.
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- Two new methods to expand incomplete receptance columns were proposed
and evaluated.

- Problems and inaccuracies arising from the use of reduced analytical systems
were discussed and comparisons of various reduction approaches were
presented.

- A new approach to facilitate updating of structural joints was proposed. The
importance of correct connectivities was also emphasised.

- Problems encountered during updating using the RFM were demonstrated on
two true experimental test cases.

11.4 SUGGESTIONS FOR FURTHER STUDIES

Whereas extensive research work on updating of analytical structural dynamics models
has been carried out in this thesis, the study undertaken has revealed that some further
development may be necessary and of interest. Areas for possible further studies are
sumrnarised below.

The success of model updating depends on the quantity and quality of the experimental
data and, specifically on the number and choice of measurement sites and the level of
experimental noise, and hence further developments of experimental data acquisition
technique are of considerable importance. Development of a smoothing technique to
reduce the effect of experimental noise on the FRFs and a method which is able to
indicate the accuracy of the measured FRF data such that the most reliable frequency
points can be selected for use in the RFM are both required.

In general, the expectations of the model updating process in terms of maximum
allowable discrepancies between the two models and the relationship to measurement
accuracy need to be defined. The difficulty in establishing this relationship is
compounded by the difficulty of assessing the measurement noise. As the randomly
distributed noise on the simulated experimental data is an inadequate representation of the
noise encountered in true experimental data this measure of noise cannot be used for this
purpose.

In practical cases, sources of error are often to be found in boundary conditions and/or
structural joints. Although the effectiveness of a new joint updating strategy and the
RFM to locate joint modelling errors was demonstrated, further studies on the
possibilities of the RFM for more detailed updating of joints will be of interest. A
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strategy to indicate missing connectivities, which the RFM as it is at the moment cannot
detect, will also be of benefit.

As the RFM is case-dependent and since using simulated experimental data in most cases
produces satisfactory results, further studies using true experimental data will be useful to
determine trends in success and failure of the method in full scale practical applications.
In particular, further work on the 3-bay truss structure, will be of interest, especially: (i)
the use of another, more accurate, experimental data set measured at more coordinates to
see if improvements to the results can be achieved, and (ii) a more detailed investigation
on updating of the damping matrix so that the damping distribution within the structure is
reflected.

11.5 CLOSURE

The primary aim of this work was to develop a practical approach to update analytical
structural dynamics models using experimental response data. This was achieved by
critical investigation of existing methods and by exploring new techniques and a
recommended updating strategy has been presented in this thesis.

A summary of conclusions and contributions showed the advances made to the area of
model updating. Not surprisingly, however, there is still scope for further work and
suggestions for further study to improve the success and accuracy of analytical model
updating to increasingly complex practical structures have been made.

FRF-based updating techniques can update practical structural dynamics models and have
several advantages over modal-based updating methods. However, success depends on
the availability of better experimental data than is currently obtained in normal modal
tests.



APPENDIX A

THE RESPONSE FUNCTION METHOD

In this appendix the step transforming the basic RFM (equation (Al)) into a set of linear
equations where the LHS is expressed as a linear combination of the unknown p-values
(equation(A2)) is illustrated using a 2 DOF example.

Starting from chapter 5 equation (4):

to chapter 5 equation (5): [C(O)]~~+ {p), = { Ao?(o)}~ (A2)
P

Consider a 2 DOF system and suppose the first receptance column of the experimental
system is measured, then equation (Al) can be written as:

Hence:

all& la1 lx + a12AZ21”11X  + (31  lAZ12~12x  + %2Az22a12,

a1 1AZ11a1 lx + al2AZ2lallx  + a1 lAZlza12~  + a12AZ22a12,
(A4)

where, for simplicity, both references to the analytical system (subscript A) and to
frequency (co) are omitted. Unless a specific reference is made to the experimental system
(subscript X) each symbol is related to the analytical system.

For each element: Aqj = AKij - C3 AMij , thus:
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Equation (A6) is of the form: [C]( p}={Aa} where [C] and { Aa> are fully known and
the unknown {p} represents the location and the value of the modelling errors directly.
In this case there are 6 unknown p-values, namely AMIl, AM12,  AM22, AKIl, AK12
and AK22 and apart from assuming a symmetric system there are no further assumptions
made.

Consider a typical 2 DOF system with the following system matrices:

The 2 DOF svstem

Assuming that each element of the system matrices in error can be expressed as a linear
function of the non-zero elements of the analytical system matrices, which is referred to
as the Cl constraints in chapter 5, we can write:

AM, 1 = Plml, AMl2 = AM21 = 0, AM22 = P2m27

AK11 = P&+k2), AK12 = AK2I = -pdk2 and AK22 = psk2.

Now {p} contains 5 unknowns and [C(U)] becomes:

[

-~2wll.pl -m2a12a12,m2  ww,(k1+k2)  @12a11,+  QlPl2,)k2 a12a12,k2

-w2a21a1 1p1 -m2a22a12,m2 a21wp1+k2)  (Q22allx+  a21a12p2 a22a12xk2 I

w3)

Assuming each element of the system matrices in error can be expressed as a linear
function of the FE element system matrices (C2 constraints), i.e.

AM1 1 = Plmll AMl2 = AM21 = 0, AM22  = P2m27

AK11 = P3kl + P4k2~ AK12 = AK2l = -p4k2 AK22 = P4k2
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in this case {p} contains 4 unknowns and [C(o)] becomes:

-m2a1  la1 1p1 -m2,1  2Ql2)y2 allall,h h1+a12hX+  (all+al2)al2,)k2

-~2a21~ll,ml -(32a22a12,m2  a2~11,h  (@2l+a22)all,  +  @2l+a22)al2,)k2 1
(A91

For an incomplete experimental data set, say only allx is measured, the RFM becomes:

[ -02q  la1  1,q -dq2qqn2  al la1 1,kl ((al  l+al2)~11,  + (a1  1+~12)~12,)  k2 I

=  {Aall 1 WW

The RFM is now changed from a direct method into an iterative process where a12,, the
unmeasured receptance value, is replaced by its updated analytical counterpart until
convergence is reached.
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ILLUSTRATIONS OF REDUCED
COORDINATES IN THE RFM

In this appendix the consequences of using a reduced number of coordinates in the RFM
are illustrated using a 2 DOF example. The various possibilities for dealing with this
inevitable practical situation as discussed in chapter 8 are:
(i) replacing unmeasured coordinates with their analytical counterparts;
(ii) replacing unmeasured coordinates with values obtained from receptance expansion;
(in) applying condensation techniques to the full and to the element-system matrices;
(iv) deleting unmeasured coordinates from the analytical receptance matrix; and
(v) as (iv) and also using an equivalent dynamic reduction for derivatives.

For a 2 DOF system:

[y&d = 1

z(@22z(w)l1- Z(w)&

qp -z12x(w)

-qlp) q lx(W)
k&p)1 = -& 1
r

ZllAw + AZ1 1(w) 212
and: ccp~l =

A(w) + Az12(w)

‘21Atw)  + AZ21w ‘22Atw) + AZ22w I

Throughout this appendix it is assumed that only 0111x of the experimental

@lb)

032)

system is
measured. Again, for simplicity, both references to the analytical system (subscript A)
and to frequency (0) are omitted and unless a specific reference is made to the
experimental system (subscript X), each symbol is assumed to relate to the analytical
system.
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(i) Replacing missing coordinate(s) with their analytical counterpart(s)

Replacing missing coordinates with their analytical counterparts, the standard RFM
becomes:

al lAZllqX  + q2AZ21q  lx + a1 142~12~  + ~12AZ22~12,  = all - al lx 033

The unmeasured alzx is replaced by its analytical counterpart, i.e.:

a1 1AZl la1 lJ.( + a12Az21al  lx + cw=12a12  + a12AZ22a12  = a1 1 - a1 lx 036)

To get an impression of the inaccuracies introduced by this substitution, equation (B6) is
expanded to contain symbols referring to the analytical system only:

222
WAZll

222 + AZ22 + 342
m AZ21

222 + AZ22
IXI IXI

,  z22m _z12 +
1Al l2 IAI

_z12 _-z12 222 222 +  AZ22
lAl Az22 lAl = IAl - 1x1

Multiplying both sides by IAI and IXI :

222  ml1 (222 + AZ221  - 212  AZ12  V22 + A222)  - 222 AZ12  212 ‘; +

Z12 AZ22 Z12 g = q2 IXI - (q2 + A%,) IAI

(B7)

038)

Now: Z22 IXI - (Z22 + AZ,2 IAI =

222  ( (Z22  + @&Z11+  AZ,,)  - G12 + 4212  > - (Z22 + ~22C22Z11  + Z1”2>  =

z112222  + 2222  Ml 1 + q lZ22AZ22 + Z22fQl lf=22 - zl”zz22 - 2z12z2242  - z22m?i

- wG2 + z:2 222 - 741z22a22 + G2m22 =

2222  Ml1 + Z22&1A\222  - 2z1222242 - z22m122 + 2122AZ22 039)
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IXIand: IAl = 1 + Z22AZ11 + Z11AZ22 + AZllAZ22 - 2Z12AZ12 - AZ,2,

222&l-  z:2
(BlO)

Substituting (BlO) into the LHS of (B8), and comparing with the RHS of (B9), the RFM
for a 2 DOF example with only 1 measured coordinate is exact if:

Z22AZ11  + Z,,AZ,,  + AZ11AZ22  - 2Z12AZ12 - AZ&

Zw22Zw11- Z(w)&
z1122242  +

Z,,AZ,, + Z11AZ22 + AZ11AZ22  - 2Z,,AZ12 - AZ:,)

zw22zw11-  zw122
G2f=22  -

z1242m22  + ??24?2  = 0 (Bw

As can be seen, all terms are all of order A2 and 63. For incomplete experimental data the
standard RFM is applied iteratively and the discrepancies will decrease till convergence is
reached.

(ii) Replacing unmeasured coordinate(s) with expanded receptance value(s)

The 2 DOF example is also expanded substituting the unmeasured receptance value with
an expanded value using the inverse reduction technique, i.e.:

a1 14 la1 lx + a12m21a1  lx + a1 1Az124x  + a12u224,  = a1 1- a1 lx 0312)

where: a E
12x

z-212  all
222

-z,2 z22 ;=22 = _ .* _ Z12AZ22
x- 222 2221x1

0313)

Substituting equation (B 13) into equation (B 12),  gives:

$AZ 11
Z22 + AZ22 + -Z12

1x1 py m21
Z22 + AZ

RI

-3 -z12  Zl2AZ22  & 222 +AZ22
IAI Az22 IX I - 2&1x31 = IAI -( 1 1x1 0314)
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Multiplying both sides by IAl and IXI :

222 AZ11 (222 + m22) - 212 AZ12  (222  + m22) - 222  *Z12 212 +

212 f=22 212 +
Zl2AZ22

q2
I

= Z22 IXI - (Z22 + q2) IAl @15)

Comparing the LHS of equation (B15) to the expanded RHS of equation (B9), the
discrepancies are:

2122- Z12AZ12AZ22  + 222 AZ,2, + q,AZ,2, = 0 0316)

As for the standard RFM, discrepancies are of order AZ, but in contrast to the standard
RFM an exact solution is achieved in 1 iteration if the modelling errors are at Z11 only.
Comparing equation (B16) with equation (Bl l), the standard REM, the number of terms
showing the discrepancy are reduced, although numerical improvements during the first
iteration will be case-dependent. Even using expanded data, it is recommended that the
RFM be applied iteratively so that discrepancies will decrease till convergence is reached.

(iii) The use of condensation techniques

Conti and Donley [ 1061  advocate the application of condensation techniques to both the
full and to the element-system matrices to overcome the problem of incomplete
experimental data. For this example the RFM becomes:

aR AZRallx = all - allx (B17)

where aR is obtained using a condensation technique e.g. Guyan reduction, thus:

and @W
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To retain connectivity the same condensation is also applied to the element system
matrices and:

n

&L -
c

6ZR
6pi pi

i=l

Consider a 2 DOF consisting of 2 masses and 2 springs as used in appendix A,

assuming the error to be a linear combination of the element system matrices i.e.:

and thus: 6ZR-=m]
6Pl

m2=?

SZR-=kl=()
SP3

6ZR k22
-= k2- G= O6P4

(B19)

WW

0321)

Without further derivations it is clear that for this particular 2 DOF example the RFM by
condensation is unable to indicate errors in m2 and k2. Bearing in mind that (i) the
condensation technique is case-dependent and is likely to behave better for more realistic
structures and (ii) that there are several other condensation techniques available, this
simple illustration might not reflect the benefits of the RFM using condensation but it
does show that this approach should be used with caution.

Reducing analytical coordinates to the measured data set, such as in (iii)-(iv), the RFM
becomes non-iterative and can be solved directly.
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(iv) Deletion of unmeasured coordinate(s) from the analytical receptance
matrix

In this case all is obtained from a deleted set and hence represents
behaviour of the full analytical system (as in (i) and (ii) but not as in (iii)),
becomes:

and:

cxD AZR allx = a11 - a11x

?$AZR z22 &?22 = 2222 kfZ22

Multiplying both sides by IAl and IXI (see equation (339)):

Z22AZR(Z22+AZ22) = Z22 IXI - (Z22 + AZ22) IAI

= q224  1+ z22fG  1f%2 -2z12z2242  -z2242  + 82M22

Assuming: AZR = [AZD] = AZ11

the dynamic
and the RFM

0322)

0323)

(~24)

W5)

thus:

2224  1@22+A222>  = &?2 AZ1 1+ 222AW=22  - 2Z12Z22fG  - Z22A2122  + G2W+22
(326)

and: -2z1222242  - z22&!2  + G2m22  = 0 0327)

Now, discrepancies are of order A and, as in this case the RFM as described by equation
(B22)  is non-iterative, correct results will be achieved & if ail errors occur at ZI 1.
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(v) As (iv) and using an equivalent dynamic reduction for derivatives

Applying equation (B22) and using an equivalent dynamic reduction of the dynamic
stiffness matrix and its derivatives [ 105~201 (see equation (15) chapter 8) gives:

AZR = [AZD] = itD [[a] [AZ] [alID zD =

zzD
[[

cw=ll +a126212 %lAZl2  + a126222
D

[al ZD =
a124  1+ a22AZ12 a1242  + a22AZ22 1 1

where:

zD (a~lAZll+2alla12AZ12+  at2AZ22 ) gD

iD=E
Substituting (B26) into (B22):

IAl (522 + AZ22)
~(z222~11-2zl2~2~12+z~2A~2)~

222
IXI = - i x

Multiplying both sides by IAl and IXI:

(BW

222 1x1  - (222 + 42) IAl 0330)

Expanding (B30):

%2@  1+ 2224  lM22 - 2&2Z22f=12  - 2z1242m22  + Z?2&2 +
z:24?2

Q2 =

2222  4 1+ 2224  @22 - 2z1222242  - 2224?2  + 82AZ22

gives: Z~2~~,2,
222 - %2AZ124?2  = - z22ATf2 0331)
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Hence: Z&Z& - 2Z12222&2f=22  + 22224% = 0 (B32a)

or: (Z&Z22 - Z&Z12 )2 = 0

z12m22  = 222m12 (B32b)

Again there are discrepancies for a non-iterative approach. This is surprising as no
assumptions were made about the error locations and each equation used was an equality.
Correct results will only be achieved for a 2 DOF system if all errors occur at Z 11 or in
the special case that equation (B32) is true.

Substituting the particular 2 DOF example of equation (B20) into (B31):

(k2 - dm9 (-ks4) = (-k&k2p4 - dm2p2)

or: 02m2k2p4  = c3m2k2P2

i.e.: o=o or m2 =0 or k2 = 0 or P4=P2
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THE 31BAY TRUSS STRUCTURE

54

not to scale

The 3-bay truss structure

The 3-bay truss structure consists of four types of components. Ridge members are
indicated in the figure, all other trusses are side members. Joints 51-58 are side-joints and
joints 59-512  are ridge-joints. Engineering drawings of the components are given on the
next pages.
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Appendix C - The 3-bay  truss structure
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Appendix C - The 3-bay truss structure
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Appendix C - The 3-bay truss structure

The following information about the physical excitation systems was supplied:

Excitation in the x-direction at joint Jl:
pushrod  length 81 mm
concentrated mass at structure end 0.0021 Kg
concentrated mass at shaker end 0.0041 Kg
torsional springs at the shaker ends of the pushrods
about the y and z-axes 0.566 Nm/rad

Excitation in the y-direction at joint J8:

pushrod length 81 mm
concentrated mass at structure end 0.0021 Kg
concentrated mass at shaker end 0.0041 Kg
torsional springs at the shaker ends of the pushrods
about the x and z-axes 0.566 Nm/rad

Excitation in the z-direction at joint 54:
pushrod  length 106mm
concentrated mass at structure end 0.0023 Kg
concentrated mass at shaker end 0.01129 Kg
torsional springs at the shaker ends of the pushrods
about the x and y-axes 0.566 Nm/rad

Pushrods:
cross-sectional area 502x 1O-9 m*
second moment of area 2~10~~3  m4
torsional constant 4x10-l3 m4
Young’s modulus 207x 109 N/m*
Poison’s ratio 0.3
density 7850 Kg/m3
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APPENDIX D

31BAY TRUSS STRUCTURE - RFM RESULTS

This appendix presents error location results for the 3-bay truss structure obtained using
the RFM. The results are grouped into tables according to the number of unknown p-
values. Error location was based on a mean-to-standard deviation ratio larger than 2.
Each table presents the mean p-values of the identified erroneous elements and the details
of how these results were obtained, namely:

(i) which experimental data set;
(ii) the number of experimental receptance curves used;
(iii) the number of runs out of the number of attempted runs given in brackets;

and (iv) the criterion used for selecting the p-values: (a) where the sum of the squared
percentage difference reached a minimum or (b) where the differences between the
experimental and updated natural frequencies was a minimum.

In cases of 103 or 99 p-values and only 1 RFM run only the most significant p-values for
a particular section of the FE model and the overall results of that section are presented.



Appendix D - j-bay  truss structure - RFM  results

\
RFM details 1 I I

(0 XJ8y XJ4z RJ4z RJ4z
@>. . .
111

iements
<I 2:26) 4:66)

iv
22& 12;,

a a a b
v I I

ridge trusses
beam M els.

ridge joints J l l 0.17 4 512 -0.39 J l l -0.58
lumped M els. 512 0.17 J12 -0.34

side joints
lumped M. els.

Jl 0.12
54 0.12

ridge trusses
beam K els.

2 els. 0.18 1

side trusses
beam K els.

2 els. 0.14
2 els. 0.30
2 els. 0.11

4

2 els 0.2

many els.
mostly +ve

ridge joints
beam K els.

Jl 2 els.
53 2 els. 4
54 1 els.
J5 3 els.
56 4 els.
all z-0.14

side joints
beam K. els.

J3 1 el.
-0.31

excitation systems 542 0.12 4 4
K els.

trusses
beam D els.

4 ridge d
side 0.61

joints
beam D els.

4 ridge 4
side 0.55

where 4 = acceptable

Table D.l: RFM results 3-bay truss structure, 103 p-values



Appendix D - 3-bay truss structure - RFM results

RFM details
XJ4z XJ4z RJ4z RJ4z

4 :po, 5 :po, 4:96) 12&
a b a b

ridge trusses
beam M els.

side trusses 2 els. -0.45 2 els. -0.11 2 els. -0.14 4
beam M els.

ridge joints
lumped M els.

Jl -0.15
side joints 52 -0.68 J3 -0.21 4 J2 -0.25

lumped M. els. J8 -0.67 J5 -0.10 54 -0.24
57 -0.10
58 -0.18

ridge trusses
beam K els.

side trusses
beam K els.

2 els. 0.38
2 els. 0.71 2 els. 0.10 4 2 els. -0.27

2 els. 0.25 2 els. 0.41
2 els. 0.22

ridge joints
beam K els.

side joints
beam K. els.

4 Jll 1 el. 4
-0.14

many els.
mostly Jl lel.

Jl 1 el. z-o.1 53 1 el. -0.24
-0.57 -0.15 53 1 el.

-0.22

excitation systems
K els.

trusses
beam D els.

J8y -0.87 4 4 Jlx 0.40
J8y 0.39

joints
beam D els.

where 4 = acceptable
and - = not included

Table D.2: RFM results 3-bay truss structure, 99 p-values
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Appendix D - 3-bay  truss structure - RFM  results

RFM details
XJlx XJ8y XJ8y XJ4z XJ4z RJ4z RJ4z

(t) 29 29 25 25 29 29 29 29
6f’ 6 a (8) 6 b (8) 6 a (9) 5 b (9) 6 a (6) 3 b (6)

ridge trusses 4 4 4 4 4 4 d 4
beam M els.

side trusses 4 4 4 4 d 4 4 4
beam M els.

ridge joints
lumped M els.

side joints

lumped M. els.

ridge trusses
beam K els.

-0JpsS -Cf.; 1 -;!:4 -“0!;4
4 512 JlO $4

-0.69 -0.73 JiO
-0.76
J l l
0.64

J1,2,5 J1,2,4
Jl-J8 J7,9

-if5

J5,8 58 4 4 oY2

z.4 z.5 $3 0.68 0: :2
0.47 4 4 4 4 4 4 4

side trusses 2.81 1.76 4 4 4 4 4 4
beam K els.

ridge joints 4 4 4 4 4 4
beam K els.

all all
z-o.4 z-o.3

side joints 4 4 4 4 4 4
beam K. els.

excitation systems
K els.

joints 4 1.12 4 4 4 4 4 4
beam D els.

wnere v = acceptaole
and - = not included

Table D.3: RFM results 3-bay truss structure, 31 p-values



ridge trusses
beam M els.

side trusses
beam M els.

ridge joints
lumped M els.

4 4 JlO -0.54 JlO -0.48

side joints J1,2,3 -0.3 J5 -0.31 4 4
lumped M. els. 54 -0.8 J7 -0.23

J5,6,7 -0.3

ridge trusses
beam K els.

side trusses
beam K els.

ridge joints
beam K els.

side joints
beam K. els.

JlO -0.29 J l l -0.20 4 4
Jll -0.33
512 -0.36
Jl -0.27
J2 -0.2 J5 -0.12 4 4

J5 -0.29
56 -0.21
57 -0.24

excitation systems 4 4 4 4
K els.

trusses
beam D els.

joints
beam D els.

Appendix D - 3-bay  truss structure - RFM results

wnere v = acceptaole
and - = not included

Table D.4: RFM results 3-bay truss structure, 29 p-values
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Appendix D - J-bay truss structure - RFM results

RFM details

<ii) 29
XJlx XJ8y XJ8y XJ4z XJ4z RJ4z RJ4z

29 25 25 29 29 29 29
3 i3’ 2 (3) 3 ;3’ 3 (3) 5 (6) 6 (6)

a a
3 $3’

a b

ridge trusses 4 0.08 d d d 4 4 4
beam M els.

side trusses
beam M els.

ridge joints
lumped M els.

-0.93 4 4 4 4 4 -0.62 -0.40

side joints
lumped M. els.

ridge trusses
beam K els.

side trusses
beam K els.

1.91 4 -0.08 4 4 4 0.53 0.32

ridge joints
beam K els.

-0.52 4 -0.05 4 -0.29 4 -0.21 4

side joints
beam K. els.

-0.49 4 4 4 4 -0.16 4

excitation systems
K els.

- - - - - - - -

trusses
beam D els.

joints
beam D els.

. I . .

Table D.5: RFM results 3-bay truss structure, 10 p-values

wnere v = acceptable
and - = not included
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Appendix D - J-bay truss structure - RFM results

RFM details

ridge trusses
beam M els.

XJ4z RJ4z

1%) 6;)
a + b a

4 4

RJ4z

3;)

0.15

side trusses
beam M els.

ridge joints
lumped M els.

-0.14 -0.76 -0.46

side joints -0.50 4 4
lumped M. els.

ridge trusses
beam K els.

side trusses
beam K els.

ridge joints
beam K els.

side joints
beam K. els.

4 4 0.11

0.18 4 0.38

excitation systems
K els.

trusses
beam D els.

joints
beam D els.

wnere u = acceptat>le
and -= not included

Table D.6: RFM results 3-bay truss structure, 8 p-values
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