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ABSTRACT

Modal analysis is a rapidly growing field in vibration research. It has been used

effectively in the identification of structural dynamic characteristics and has become a

flourishing area of vibration research. There are some aspects of the modal analysis

method which hinder the application of the method to practical cases. Among them are

analytical model correction, damping properties investigation and nonlinearity study. This

thesis seeks to present the newest development on these aspects.

The dynamic characteristics of a vibrating structure are usually predicted by analytical

techniques such as the Finite Element (FE) method. It is believed that errors in the

analytical model are inevitable, while the modal data extracted from measurement are

usually accepted to be correct, albeit incomplete. Hence, the correlation of an FE model

and corresponding measured data becomes a very important process for structural

vibration research. In this thesis, a new technique is developed to locate the area(s) in an

analytical model where the errors are concentrated by using the incomplete modal data

obtained from tests. An iteration process is introduced for the correction of the analytical

model after the errors are localized and the feasibility of these new techniques is assessed

by both theoretical and practical cases.

Associated with the correction of analytical models, this thesis also investigates the

damping properties of a vibrating structure. It is believed that the most significant

damping often comes from the joints between the various components of a structure and a

method is proposed to locate the spatial damping elements from measurements on the

structure. It is also shown that the located damping could then be quantified using the

iteration process.

Nonlinearity is encountered in many practical structures. However, currently available

means for studying this effect are not fully developed. This thesis describes an

advantageous method, based upon a new understanding of the FRF data measured on a

nonlinear system, to identify more conclusively the nonlinearity and to offer much better f

chance for its quantification. This method has been shown to be effective and convenient

in application and could be very useful for further investigation such as modelling the

nonlinearity and/or predicting the vibration response of the nonlinear system.
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subscript for analytical model
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frequency response function of a dynamic system

impulse response of a dynamic system

cross power spectrum

auto power spectrum
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the Fourier transform of f(x)
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diagonal analytical natural frequency matrix (real)

diagonal experimental natural frequency matrix (real)

analytical mode shape matrix (real)

experimental mode shape matrix (complex or real)

the rth analytical mode shape (real)

the r* experimental mode shape (complex or real)

the ‘pq’  element in the mode shape matrix of the updated model after ‘r’

iterations

damping coefficient of the rth mode

damping loss factor of the rth mode
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CHAPTER1

INTRODUCTION

l-l THE IDENTIFICATION OF STRUCI’URAL  DYNAMIC CHARACT’EmCS

In many practical circumstances, the vibration characteristics of a dynamic structure

require to be understood and, subsequently, an accurate mathematical model needs to be

derived. Such a model is needed for response and load prediction, stability analysis,

system design, structural coupling etc.

Since a dynamic structure is a continuous system rather than a discrete one, theoretically,

an infinite number of coordinates are necessary to specify the position of every point on

the structure and hence the structure can be said to have an infinite number of degrees of

freedom. Its vibration characteristics should then include an infinite number of vibration

modes and cover the active frequency range from zero to infinity. However, for most

practical applications, only a certain frequency range is of major interest and only those

vibration characteristics which fall in this range will be investigated. In this case, only a

certain number of vibration modes are to be sought and it becomes feasible to represent

the continuous system by an approximate, discrete, one.

For a discrete linear dynamic system with lumped masses and massless elastic

components, theory has been well developed to study such vibration characteristics. This

is because the differential equations of a discrete linear dynamic system are generally

available, and hence mathematics can be introduced directly to solve the equations of

motion and the vibration characteristics can then be defined accurately. For a truly

continuous system, such as a practical structure, such advantages do not exist. However,

like many other sciences to achieve good approximation by discretization, the strategy of

investigating the vibration characteristics of a practical structure relies basically on the

.

.
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hypothesis of discretizing the structure so that the theory for discrete systems can then

apply and the mathematical model for the structure can then be built. It is evident that as

the number of coordinates employed in the discretization approaches infinity, the discrete

system will approach the continuous one.

Basically, there are two ways of achieving a mathematical model for a dynamic structure

with the help of the discretization concept, they being by theoretical prediction and by

experimental measurement respectively. Both approaches effectively assume that the

vibration characteristics of a continuous system within certain frequency range can be

described approximately by a limited number of coordinates. In the following, both

approaches are reviewed briefly.

1-2 TIIEORE-I’ICAL  PREDICI-ION  APPROACH

Physics and mathematics have been so developed nowadays that for commonly

encountered mechanical components, such as beams and plates, accurate analytical

solutions are readily available to predict their vibration characteristics. For instance, the

natural frequencies and mode shapes of a lengthy uniform beam could now be easily

computed.

For a rather complicated practical structure, however, there is generally no analytical

solution to predict its vibration characteristics. With the help of new computational

technology, the Finite Element (FE) approach is now widely used in the study of the

vibration characteristics of various practical structures. The fundamental principle of the

FE method is to discretize a complicated structure into many small elements. For each

such an element, known as a finite element, the mass and stiffness properties are assumed

to obey a known and relatively simple linear pattern. Thus, the mass and stiffness

matrices of an element can be constructed. The global mass and stiffness matrices of the

structure can be assembled using these element matrices and also by considering the

connectivity and the boundary conditions. These global mass and stiffness matrices,

c
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which actually constitute the so-called FE (analytical) model for the structure, can then be

used to derive the description of the vibration characteristics of the structure, namely, the

natural frequencies and mode shapes.

The natural frequencies and mode shapes derived from the global mass and stiffness

matrices from the FE model are often referred to as undamped natural frequencies and

undamped mode shapes since the damping properties for a structure cannot be predicted

in the same way as mass and stiffness and a FE model does not normally include a

damping matrix. Although an approximation for the damping properties can be made by

introducing a proportional damping matrix (i.e. to assume that damping matrix is

proportional to a linear combination of the mass and stiffness matrices), the mode shapes

obtained from such a FE model are still the same as the undamped ones. Besides, it has

been generally accepted that damping properties thus predicted can be incorrect in most

cases.

1-3 EXPERIMENTAL MEASUREMENT APPROACH

Apart from the approach of theoretical prediction to achieve a analytical model for the

study of vibration characteristics of a dynamic system, another major approach is to

establish an experimental model for the system by performing vibration tests and

subsequent analysis on the measured data. This process, including the data acquisition

and the subsequent analysis, is now known as ‘Modal Testing’. In the last two decades,

modal testing (it is believed that this name is much younger than its real practice)

continues to develop, both in theory - new methodology, and in practice - new test

techniques and modern instrumentations - because of continuous new challenges from
c

real life and capabilities offered by powerful computer technology. It is not surprising that

modal testing has penetrated into many branches of engineering.

In common with the approach of theoretical prediction, modal testing assumes that the

vibration characteristics of any systems or structures, discrete or continuous, can be
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described by a selected number of coordinates within a frequency range of interest. In

reality, modal testing can serve many purposes according to different requirements. In

vibration engineering, current modal testing practice has shown its application in various

aspects and they can be categorized briefly as follows:

(i) The most significant application of modal testing is perhaps to produce modal data

(natural frequencies, damping loss factors and mode shapes) of a dynamic system so

that they can be used to compare with the corresponding modal data produced by the

system’s analytical model, in order eventually to validate the analytical model itself.

Further investigation involves using the experimental model consisting of the derived

modal data to improve the analytical model - a practice known as model improvement

or correlation of the experimental and analytical results - and this is substantially

studied in this thesis;

(ii) In the absence of an analytical model, the experimental modal data are used sometimes

to construct a spatial mathematical model for a dynamic system which will then be

used to predict the effects of modifications on the system and to conduct sensitivity

analysis.

(iii) For some practical structures consisting of various components, direct testing may

present certain difficulties. If mathematical models can be obtained for each

component, and boundary conditions are correctly assumed, then a global model can

be constructed. This process, often referred to as ‘substructuring’ or ‘modal

synthesis’, requires an accurate derivation of the modal data from modal testing for

each component.
c

(iv) In the absence of an analytical model, an experimental model consisting of the modal

data is sometimes used to predict the system’s vibration response under certain

external excitation conditions. Alternatively, it can also be used to determine the

dynamic loading if the vibration responses of the system are measured.
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Modal testing practice involves two major aspects: measurement to acquire data

(frequency response function or time domain response) and modal analysis to extract a

modal, or experimental, model. Although the final goal of modal testing is produced by

the analysis, the importance of measurement could never be overstressed.

Currently, there are two main excitation techniques in common use, they being of single

point excitation and multi-point excitation. The single point excitation method excites a

structure at one coordinate and measures the response at all the coordinates. Theoretically,

such a test - one point excitation and multi-point responses - is sufficient for the

subsequent analysis in order to extract the experimental model. However, it is often found

that the single excitation point is not appropriate to expose all the vibration modes of

interest. Thus, changing the excitation point and repeating the measurement for several

points is essentially required. This single point excitation method involves less

instrumentation, employs inexpensive computer software and is easy to master, but is

obviously not suitable for exciting a large structure. Unlike the single point excitation

method which excites a structure to vibrate in several modes simultaneously, the

multi-point excitation method attempts to excite a structure in order to eliminate the

unwanted modes so as to get a single pure mode. This brings about a significant

advantage for the subsequent analysis. The price, however, is paid to require much more

sophisticated instrumentation and the measurement operation could become very

involved.

The data acquired from measurement are to be analysed in different ways, depending on

the different requirements made of the data. It is believed that the direct requirement in

most cases is to derive the natural frequencies, damping loss factors and mode shapes.

Since the data acquired from measurement are normally in the form of frequency response

functions, two methods are widely applied in the modal analysis process known as

‘Single Degree-of-freedom (SDOF) Curve-Fit’ and ‘Multi-Degree-of-freedom (MDOF)

Curve-Fit’ respectively.

c
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The SDOF curve-fit method assumes that, in the vicinity of a resonance, the frequency

response function is dominated by this vibration mode and can therefore be approximated

to that of a SDOF system plus a constant quantity, which is usually referred to as the

‘residual’. Thus, by applying the nature of the Nyquist circle or its equivalent for a SDOF

system, a curve-fit can be made for each mode to extract the natural frequency, modal

constant and damping loss factor. Although the assumption itself restricts the condition of

close modes, it is found in practice that using an iterative process for this SDOF curve-fit

method even cases with close modes could often produce satisfactory results.

The MDOF curve-fit method seeks to derive a theoretical frequency response function

which provides a “best fit” to the measured frequency response data. Since it operates for

several modes simultaneously, it can be used directly for the case of close modes when

the interactions among vibration modes are taken care of at the same time. Besides, when

the damping in measured data is so small to cause difficulties on Nyquist circle-fit, the

MDOF curve-fit method can still analyse the data[l].

Among other methods being used in the analysis of measured data, Ibrahim Time Domain

method (ITD) is one of the noticeable techniques. Unlike the previous descriptions, the

lTD makes use of the measured data in time domain form (rather than frequency domain).

The basic idea of ITD is to extract the modal data from the free decay response of a

system. Once the free decay response is measured or computed from other forms of data,

the modal data extraction can be made routine, requiring much less interactive effort. This

characteristic accelerates the analysis process, while in the mean-time loses visual control

of the modal data extraction and, as a result, could end up with unrealistic results in some

circumstances.

l-4 CORRELATION OF FE MODEL AND MODAL TESTING RESULTS

Due to their own respective advantages, both the Finite Element approach and Modal

._ I



testing approach are widely used nowadays to study the vibration characteristics of

dynamic systems and structures. The FE method predicts the vibration characteristics by

theoretical studies so that no experimental facilities are needed. It can employ a large

number of coordinates so that the vibration characteristics can be described in detail and

can cover a comparatively wide frequency range. In addition, it can be used at the design

stage to predict the vibration behaviour of a future structure and, possibly, to modify the

blueprint. However, due to the crucial complexity of practical structures, especially the

joints between the components in them, the modelling of the mass and stiffness properties

could be inaccurate or even incorrect, and that of the damping properties is generally

artificial or omitted altogether. Modal testing is supposed to identify the ‘true’ vibration

characteristics of a structure, since it deals with the real object rather than an idealisation.

Thus, the experimental model possesses the information of the ‘correct’ mass, stiffness

and damping properties. However, due to the limited number of coordinates and

incomplete number of modes - both are the consequences of various practical restrictions

in measurement - the information thus obtained is available primarily as the modal

parameters, rather than the spatial  properties as provided by the FE model.

No doubt, differences will exist between the FE model and the experimental model.

The principle of correlating the models derived from these two different approaches is

basically to make use of the advantages on both and to overcome their disadvantages.

Since a representative spatial model is increasingly demanded in vibration practice, current

efforts are mainly directed to using modal testing results to improve or to correct the FE

model. This is nowadays often referred to as ‘model improvement’ or ‘model correction’.

In a model improvement study, the advantages of both modal testing results - containing

correct information (albeit incomplete) of the vibration characteristics - and of the FE c

model - a complete model - are retained. The improved model is expected to be a better

approximation of the correct but unavailable model.
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l-5 NONLINEARITY

In the previous description, there is an important assumption for using the two main

approaches to identify vibration characteristics, namely, that the dynamic system to be

studied should behave linearly in vibration. In general, a dynamic system is said to be

linear if: (i) doubling the input force will double the vibration response and (ii) the

summation of the responses due to two independent inputs should be the same of the

response due to the summation of these two inputs. Failure to obey these relationships

implies the structure to be nonlinear. Thus, the measured frequency response function

data of a linear dynamic system from different tests with different force levels should be

the same.

It is believed that all real structures have a certain degree of nonlinearity. In many cases,

they are regarded as linear structures because the degree of nonlinearity is small and

therefore insignificant in the response range of interest. While in other cases, nonlinearity

may have to be tolerated simply because of lack of effective means to cope with it.

Basically, the existence of nonlinearity has two consequences in the realm of identification

of vibration characteristics. Firstly, the analytical model of a nonlinear system will be

erroneous because, unless a real measurement is taken, the existence of nonlinearity

usually cannot be foreseen merely by theoretical prediction and nor can it be quantified

theoretically. Secondly, since the frequency response function data become input

force-dependent, the significance of the modal parameters extracted by modal testing has

to be considered much more carefully.

The theoretical study of known types of nonlinearity such as cubic stiffness can be dated ’

back to the beginning of this century. Although the nonlinearity described by known

differential equations has been thoroughly understood in textbooks, the difficulty faced by

modal testing is to investigate unknown type(s) of nonlinearity from practical structures.

Nevertheless, using modal testing techniques to study the theoretical or simulated data
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with known type(s) of nonlinearity paves the way to an understanding of nonlinearity in

practical structures. Once the types of nonlinearity most commonly encountered in

practice have been categorised by their effects on modal data, the results can be referenced

helpfully by the analysis of measured data from real structures.

Current efforts in modal testing practice are directed towards the detection and

identification of nonlinearity in real structures, although the quantification of nonlinearity

is still in its infancy. The detection of the existence of nonlinearity from measured data is

believed to be relatively much easier, if the excitation method is properly selected and

measurement is performed appropriately. However, it is its identification that has attracted

most efforts in modal testing study. Despite the complexity of practical structures, the

main difficulty for the identification is to be able to produce a conclusive answer from the

analysis.

l-6 PREVIEW OFTHETHESIS

Despite the rapid development in the identification of dynamic characteristics of structures

in recent decades, there are still some aspects in modal analysis research with common

interests, which hinder the vast application of modal analysis to practical cases. Among

these aspects, damping properties of structures, analytical model correction using modal

testing results and nonlinearity are three notable subjects. The research project presented

in this thesis is intended to seek new improvements on these three subjects and, as a

result, to pursue better understanding of the dynamic characteristics of structures.

Conventional methods to modify, or to correct, an FE model using modal testing results

are discussed in Chapter 2, including the perturbation method, the constraint minimization

method and the error matrix method. It is found that, when the number of measured

vibration modes is insufficient, these methods could not successfully improve the FE

model. In fact, the resultant model suggested by these methods could be mathematically

optimal although physically unrealistic, Since it is generally accepted that errors existed in
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an FE model are often small and isolated, efforts in this thesis are directed towards first

enabling to locate the existent errors and then to correct them objectively rather than to

modify the whole model. Chapter 3 presents the development of a new technique to locate

the errors in an FE model using a very limited number of measured modes. It is then

suggested that an FE model should be improved by only correcting the located errors

using the measured modes. In Chapter 4, damping properties are studied in order to offer

an existing FE model with a sensible damping model, rather than merely a proportional

one or none at all.

One of the practical difficulties faced by the model correlation process is the

incompatibility of the FE model and the modal testing results in the sense of the adopted

coordinates. Chapter 5 concentrates on resolving this difficulty. Both undamped and

damped conditions are investigated. The new development in this study is assessed by a

practical application presented in Chapter 6.

For those cases where nonlinearity cannot realistically be ignored, Chapters 7 and 8 seek

to investigate this phenomenon by modal testing techniques. The measurement of

nonlinear systems is discussed in Chapter 7, including the excitation methods and the

simulation of various commonly encountered types of nonlinearity. In Chapter 8, the

present development of nonlinearity study is discussed and summarized. Based upon

these present developments and a new interpretation of the effect of nonlinearity on modal

data, a new method is proposed to identify the nonlinearity from measured data.

Finally, Chapter 9 reviews all the new developments presented in this thesis and exhibits

the direction from which possible further studies can be cultivated.
c
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CHAPTER 2

ANALYTICAL MODEL IMPROVEMENT -

THEORETICAL BASIS

2-l PRELIMINARIES

When the identification of structural dynamic characteristics is undertaken by both of the

two widely-used techniques, i.e. (1) theoretical analysis (normally by Finite Elements)

and (2) modal testing and analysis, an inconsistency often exists between the vibration

data predicted by the theoretical model and those identified experimentally. Although the

argument of what causes this inconsistency has been raised[4],  it is nowadays often

believed, that more confidence can be placed on the experimental modal data than on

either the analytical mass or stiffness matrices and, as a consequence, the analytical model

of a structure should be modified upon the basis of the experimental modal data, provided

this modification is required in practice. In this Chapter, we shall deal mainly with

systems with little damping so that all the vibration modes involved are real. Special

interest is paid to the stiffness properties although it will be seen that the methodology can

be similarly applied to the mass properties. The darnping  and complex mode case will be

investigated in Chapter 4.

When both an analytical model of a structure and experimental modal data are available,

the analytical model improvement can be cast into the following mathematical problem:

>>> for a linear and undamped system, the dynamic characteristics (natural

frequencies and mode shapes) can be described by a set of second order

differential equations:

L -
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[M,lI:l + [KJxl = (0) (2-l)

where [M,] and [KJ are NxN approximate (due to modelling errors) mass and

stiffness matrices, comprising the analytical model of the system

The “analytical” modal data (natural frequencies and mode shapes) can be

derived by solving equation (2-l), yielding a set of solutions:

tK,l - (yJ,2[Mal)(4&  = WI (2-2)

where (o,)~ and {Q,}, (x=1, . . . N) are the r* mode analytical natural frequency

and mode shape respectively. All the mode shape vectors are Nxl in

dimension.

Meanwhile, the modal data from measurement provide the experimental natural

frequencies (O,.)r and mode shapes (Q,}, (r=l, . . . m), and have all the mode

shape  vectors {@Jr  are nxl in dimension. They are incomplete (because not all

coordinates are measured) and relate to an experimental model consisting the

experimental mass matrix [MJ and stiffness matrix [K,] which are generally

close to, but different from, their analytical counterparts [MJ and [K,]. The

difference between the analytical mass (or stiffness) matrix and the

experimental mass (or stiffness) matrix can be represented by a mass error

matrix [AM] (or stiffness error matrix [AK]).

c

It is supposed that the analytical model (W,] and [KJ) needs to be updated

using the experimental modal data (6.Q and {+,Jr,  (x=1, . . . m) so that it

represents more accurately the dynamic characteristics of the modelled

structure. cc<
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In recent years, a number of methods have been published in the literature to deal with

analytical model improvement by a variety of approaches. It is believed that the problem

of model improvement was fust addressed intuitively by Berman and Flannelly[5]. In the

paper, they stress the incompleteness involved in model improvement and suggest that

measured vibration modes are used to improve an analytical mass matrix and to identify

an ‘incomplete’ stiffness matrix, although the stiffness matrix thus deduced is certainly

not appropriate from today’s point of view. Collins et alC6] employ a technique of

statistical parameter estimation in an iterative procedure to adjust an analytical model.

Instead of directly improving the constructed analytical mass and stiffness matrices, their

technique seeks to modify the physical parameters (such as mass per unit length) of which

the analytical model consists. Although the method preserves the connectivity of the

original analytical model during the iterative procedure, the formulation of the method

restricts its application for practical structures. Matrix perturbation theory was later

~~~uc~[71S31 as an attempt to modify an analytical model using measured modes. On

the other hand, Baruch and Bar Itzhack[9]~[10] employed constraint minimization theory

from control engineering in model improvement and developed formulations to modify

the analytical stiffness and flexibility matrices after the measured vibration modes are

optimized using analytical mass matrix, based upon orthogonality property. The resultant

model thus modified has analytical modes identical to the corresponding measured modes

used. Having considered that analytical mass matrix improvement could be the primary

goal (rather than the stiffness case), Be-L1 11 applied the same constraint minimization

theory and obtained a modified analytical mass matrix using measured modes. Later,

Caesar[12] developed an algorithm to apply these formulations derived from constraint

minimization theory. Some applications of model improvement are also found in the ’

literature[14]~[151. Apart from the methods summarised above, the Error Matrix

Method[161 is notably different from others. It aims at using the measured vibration

modes to locate errors existing in an analytical model.
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In the following, some of the methods which have been mentioned are summarised.

Moreover, the Error Matrix Method (EMM) has been given special attention in this thesis

and will be studied in detail later in this chapter.

22 SOME CLIRRENT  APPROACHES F’ORMODEL IMPROVEMENT

2-2-l Matrix Perturbation Theory for Model Improvement

The essential objective of analytical model improvement can be stated as aiming to find the

differences between the analytical model mass and stiffness matrices [MJ and [K,] and

the experimental model mass and stiffness matrices [q] and &I, the former matrices

being assumed erroneous and the latter ones to be correct. Since the difference between

these two models is generally believed to be small compared with the analytical model

itself, it is supposed (here) that [AM] could be regarded as the perturbation of the

analytical mass matrix [M,], which consequently leads w,] to the perturbed mass matrix,

[M,]. The same argument can be made for the stiffness matrix case. Thus, matrix

perturbation theory can be applied to develop a relationship between the perturbations

[AM] and [AK] and the corresponding differences in the modal data, including natural

frequencies and mode shapes.

Supposing the analytical model of a system ([MJ and [K,]) differs from the assumed

correct experimental model ([MJ and [KJ) by [AM] and [AK], then

&I = [MaI + WEI

[&I = &I + WI

(2-3) +

(2-4)

The consequence of introducing [AM] and [AK] on the predicted modal properties can be



__ 27 __

written as:

[@,I = NJ + [Ml

[xox2_]  = [x0,2.]  + [-Ao2.]

G-5)

(2-6)

If the two difference matrices [AM] and [AK] are small compared with [M,] and [KJ, and

hence can be regarded as a perturbation of the analytical model, then, according to matrix

perturbation theory, the mode shape difference can be approximated by a linear

combination of all the analytical mode shapes:

Ml = [@Jai (2-7)

where [a] is a transformation matrix with zero diagonal elements. Thus, equation (2-5)

becomes:

[@,I = ([II + [aI> P&l (2-W

The modal data [$,I and [*wx2.] should satisfy the orthogonality conditions:

r~,pDq[~xl  = Kl (2-9)

r~,lTwJ r4q = [‘@x2.l (2- 10)

The substitution of equations (2-3) to (2-6) into equations (2-9) and (2-10) yields the

following formulae:

[AM-j  = [M,l[@J (Wl - [@JTIMal[@xl - [~xlTIMal[~,l)  [+JTwal (2-11) *

[AK] = [M,I@B]  (b’,z.l + [‘O:.l  -

[@JTIKal[~,l  - [~,lT[KJ[~,l)[~~T[M3 (2-12)
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Equations (2- 11) and (2- 12) represent the relationship between the perturbation matrices

[AM], [AK] and the modal data of the system before and after the perturbation. These

equations give the correct [AM] and [AI(I provided the complete modal data are available.

However, in practice, the high-frequency modes which happen to dominate the estimation

of [AM] and [AK] in the equations are not obtainable from measurement. This makes

these equations less practical in reality.

2-2-2 Constraint Minimization  Method (CMM)

The ideal model of a vibration system including mass and stiffness matrices is a model

such that the modal data derived from it should not only satisfy the eigendynamics

properties (see (i) below), but must also satisfy physical constraints such as symmetry

and orthogonahty  of the model. Baruch and Bar Itzhack proposed a methodf9] by which

the analytical stiffness matrix [KJ can be improved using experimental modal data. The

method assumes that the analytical mass matrix [M,] is reliably accurate (and hence that

[AM]=[O]) and applies the following physical constraints which the improved stiffness

matrix [KJ is required to satisfy:

(0

(ii)

[K,l [&J = ~M,l[~,l  [‘wx2.1 eigendynamics and

&IT = [&I SYmmetry.

The difference between the analytical stiffness matrix [K,] and the objective stiffness

matrix II(x] is evaluated by the following Euclidian norm, which is a physically sensible

and mathematically convenient function:

d = ll[M,l-“2([K,]-[K~])[Mxl.l/211
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The two physical constraints are incorporated by Lagrange multipliers into a Lagrange

function which is to be minimized to derive the optimal stiffness matrix, K]. The final

stiffness matrix thus optimized is given by:

[ql = [K,] - [K,I[@~I  [~,lTWxl  - [M,l[@J[+,lTIKal  +

Alternatively, it may be said that the difference between the optimized and analytical

stiffness matrices is defined by the CMM as:

[AK] = - ~,l[~,lEO~T~M,l  - [~l[~xlbt’xlTIKal  +

[MJ[$J  [y2.]  [$,lTIM,l  + WJ [$,I [@xlTIKal  [+,I [@,lT[%l c2- ’ 3b)

It can be seen from equation (2-13) that this method does not require the analytical modal

data. Instead, it attempts to improve the stiffness distributions which are the physical

parameters by using the experimental modal data directly. This simplifies the procedure of

analytical model improvement. However, the basic assumption that the analytical mass

matrix is reliable - which this method requires - does not hold in some practical cases and

this limits the applicability of this method to improve the analytical stiffness matrix of

practical structures.

It is found that because of the inevitable incompleteness of experimental modal data, the

optimal stiffness matrix deduced by equation (2-13) will somehow dramatically change

the structural connectivity of the system being modified. In this case, the analytical f

stiffness matrix is improved in such a way that the modified model will surely represent

the incomplete modal data from measurement, but at the expense of the structural

connectivity which is also an essential constraint on the model. Hence, it is desirable that

the structural connectivity be imposed directly into this method as another necessary
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constraint so that the stiffness matrix can be adjusted in a more convincing way.

Unfortunately, this is mathematically difficult to achieve.

Berman has successfully applied a similar methodology to the case of analytical mass

improvement[ll].  He imposed the orthogonality constraint during the correction

procedure and derived an optimal mass matrix by minimizing the following Euclidian

norm:

d = II[M,l-1’2([Mxl-[M,1)[MJ-“211

and this yields an optimized mass matrix:

[MJ = [MaI + [M,lD&lbal-’ ([El-[maI) b,]-‘[f&lTIMal (2-14)

where matrix [ma] is a modal mass matrix defined as:

As has been seen above, that the main drawback for the Matrix Perturbation Method is its

b&l = ~o,lT[qb&l

failure to estimate the dominant parts in matrices [AM] and [AK] due to the usual absence

of high frequency modes from the measured data. On the other hand, the Constraint

Minimization Method requires an accurate analytical mass matrix for analytical stiffness

matrix improvement, and this requirement is not likely to be fulfilled in reality. Besides,

the current methods concentrate on modifying the analytical model while few of them pay

attention to locating the errors which exist in the model. Hence, the model improvement

problem somehow needs a different approach and the Error Matrix Method described
c

below is intended to fill this requirement.
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23THEERRORMATRlXMETHOD(EMM)

2-3-l Principle and Essence of the Error Matrix Method @KM)

The  Error Matrix Method (~~~$161 is a different approach to the others in the analytical

model improvement study. The EMM correlates the analytical modal data, which are

generated by the analytical model, with the corresponding modal data from measurement

in an attempt to identify and locate the cause of the differences between the analytical

model and the experimental model. To begin with the stiffness case, the EMM first

supposes that the complete experimental stiffness matrix [Kx]  is available as well as the

analytical one [K,] and then defines the difference between the two stiffness matrices as

the “stiffness error matrix”:

[AK1 = [%I - [&I (2-15)

Equation (2-15) can be rearranged and inverted on both sides, leading to:

[%1-l  = (EK,l + [AK])-’

= [U$l(III  + KJ-‘WI)]-’

= [KJ-1 - [KJ’[AK][KJ-’  + [KJ-‘[AK][K,]-‘[AK][KJ-’  - . . . . .

= f&l-’ - (~IWWal-lP+W)  &I-’ (2-16)

When that matrix [AK] is small compared with [K,],  the matrix product ([KJ’[AK])’

tends to zero as the exponent 9” becomes large. under these conditions, the flexibility

matrix [KJ’ in equation (2-16) can be approximated by:

.%‘  .:.,. -._
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rq-’ E [KJ-’ - [KJ-‘[AK][K,]-’

so that WI z &,I UKJ-’  - K,J-‘)  WJ

32 --

(2- 17)

(2-18)

Equation (2-18) can be used to estimate the stiffness error matrix [AK] by constructing

each of the two flexibility matrices from the corresponding modal data. A flexibility

matrix can be expressed in terms of modal data as follows:

(2-19)

(2-20)

It is realised that, in practice, modal data from measurements are incomplete in two

aspects; one, the number of modes which can be studied (ma) and two, the number of

coordinates which are measured to describe the mode shapes (ncN).  Due to these two

sources of incompleteness, the flexibility matrices in equations (2-19) and (2-20) are

necessarily approximated using:

(2-21)

(2-22)

Therefore, a stiffness error matrix can be estimated using the incomplete experimental

modal data and the corresponding analytical modal data from the following expression:

The error matrix thus deduced can be used to identify and to locate the difference(s)

between the experimental stiffness matrix (which is supposed to be correct) and the
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analytical one (which is believed to contain errors).

A similar procedure can be applied in the case of the mass matrix. The mass error matrix

[AM] is defined as the difference between the experimental mass matrix and the analytical

one:

[AMI = W,l - [MaI (2-24)

Following similar algebra to that used for the stiffness case, the mass error matrix can be

estimated as:

[AMI z [MaI WJ-’ - [$I-‘> [MaI (2-25)

(2-26)

Again, the incomplete experimental modal data and the corresponding analytical modal

data are used in to evaluate the mass error matrix [AM].

The essence of the EMM should be noticed. First of all, it does not presume or require an

accurate analytical mass matrix (&@[M,])  for analytical stiffness matrix improvement.

Physically, this means that the stiffness matrix is not determined with a mass matrix being

its direct reference basis. Instead, a group of measured modes is used as the reference

basis. This point is reasonably acceptable in many practical cases such as the

determination of stiffness matrix of a car body where a significant amount of mass comes

from attached objects. (It should be borne in mind here that although the mass matrix [M,]

is not the direct reference basis, it is an implicit one due to the derivation of [$J and [hJ ,

from [MJ and [I&]).  Similarly, the EMM does not presume an accurate analytical

stiffness matrix ([K,]=[K,])  for the analytical mass matrix improvement, with the same

advantage. Lastly, the EMM focuses the analytical stiffness matrix improvement on the

flexibility matrix, where lower frequency modes dominate. This agrees with the fact that,
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in practical measurements, only the lower frequency modes are readily available.

Nevertheless, according to the nature of its approximation, the EMM could be applied

repeatedly, in an iterative process, - a feature which is discussed below.

2-3-2 Validation of the Assumption Made by the EMM

Since the Error Matrix Method (EMM) first appeared as a useful tool for analytical model

improvement[16], a number of applications have been reported in recent

literature[l71,[l81,[191 . However, the assumptions made by the method have not yet

been fully assessed and this task will be addressed below. The fundamental assumption

suggested by the EMM is the supposition that the matrix product ([KJ’[AK])’ in

equation (2-17) goes to zero as “r” becomes large so that the higher terms in equation

(2-17) can be ignored.

matrix product ([K,]-l[AK])r  goes to zero as 9”

becomes larger so that terms for r22 can be ignored.

This assumption eventually raises a number of subsequent questions if the course of the

derivation of the EMM is carefully inspected, and this, in turn, raises a query about the

physical meaning behind the mathematical manipulation upon which the EMM is derived.

(1) Is [KJ’ G [KJ - (gl(-l)r([KJ-l[AK])r)  [K,] a good approximation of [KJ’?

(2) Is [%I = (&I - 2 (- l)-l([K,]-l[AK])r[K,])-l a good approximation of [Kx]?
I=1

(3) Will F] thus approximated preserve the connectivity of the original [K,]?

(4) Will [KJ thus approximated preserve the correct location of stiffness errors?

In order to answer these questions and so to assess the fundamental assumption, it is

appropriate to perform some numerical studies for which the exact stiffness error matrix is

c

L ,
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known so that it can be used in the assessment.

A case study has been carried out. The system used was an 8 degree-of-freedom discrete

system shown in Figure 2-l. The lumped masses are connected by light stiffness

components. In order to define a similar, but slightly different system, it is supposed that

the stiffness component between coordinates 2 and 3 is not correctly represented by the

analytical model: the analytical estimate for this component was 1.5E+6 N/m in

comparison with the correct stiffness 1.95E+6 N/m, which is 30% larger than the

analytical stiffness quantity. Apart from this difference, the analytical model coincides

with the experimental model both in stiffness and in mass conditions. Table 2-l contains

the simulated experimental (or correct) stiffness matrix and the analytical (or approximate)

stiffness matrix while the correct [AK] for this case is shown in Figure 2-2. It is to be

demonstrated by this numerical study that the questions put forward above can be

answered positively and, in turn, the assumption employed by the EMM is validated.

It can be seen by re-examining equation (2-16) that the matrix product ([KJ“[AK])’

(r=1,2,  . . . ) is virtually a weighting factor for matrix [Ka] in each term on the right hand

side of the equation. Therefore, the product ([Ka]-l[AK])r can be assessed by comparing

it with a unity matrix [I]. It is found in this case study that this matrix product truly

becomes smaller and smaller as the exponent r increases and an indication of how this

matrix product decays is presented in Table 2-2. These results are the matrix products

([Ka]-‘[AK]Y  as r increases. They are equally scaled by a unity matrix and, therefore, are

comparable quantitatively. The results in Table 2-2 have shown, as the first stage, that the

assumption stated above is justified as far as the estimation of [KJ’ is concerned. In c

other words, it is found that matrix product ([Ka]-l[AK])r  becomes smaller and smaller

when r increases and hence equation (2-17) represents a good approximation of the

flexibility matrix [KJ1.

_,.
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Thus, attention is now turned to examine whether this flexibility matrix will represent a

good approximation of the stiffness matrix when it is developed, because small errors in a

flexibility matrix may not still mean the same degree of small errors after a matrix

inversion takes place. To examine this, stiffness matrices which are obtained by inverting

the approximate flexibility matrices (taking into account the first two and then more terms

on the right hand side) in equation (2-16) are compared with the correct stiffness matrix

[K,J in Table 2-3. It is clearly seen that the approximate stiffness matrices thus deduced

are very close to the correct one. Perhaps more interestingly, it is noted that these

approximate stiffness matrices preserve the correct connectivity of the system. This

suggests that the assumption is mathematically reasonable because of the good

approximation for both flexibility and stiffness matrix estimation, and physically sensible

because of the preservation of the correct connectivity of the system.

Further examination of Table 2-3, by comparing the correct stiffness matrix with the

approximate ones deduced from inverting flexibility matrices in equation (2-17),  reveals

that each approximate stiffness matrix indicates the correct location of the stiffness errors

(elements 2,2; 2,3; 3,2; 3,3 in the stiffness matrix). This suggests that the mathematics

and the physics are satisfactorily consistent in the EMM before modal data are introduced

into it (in equation 2-22). Nevertheless, the stiffness matrix thus estimated is merely an

approximation. It is again interesting to find that repeated use of equation (2-17) results in

estimated stiffness matrices which improve progressively towards the correct stiffness

matrix. Table 2-4 shows the [AK] obtained when equation (2-17) is used iteratively and

indicates that the EMM could be used in this way with the convergence to the correct

answer. c

It has been demonstrated by the detailed case study that the stiffness error matrix derived

by the EMM in equation (2-18) is an acceptably good estimate which also preserves the

correct connectivity and the error location of a system and questions (l)-(4) raised above

L.
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have been answered positively. However, in a real case, the number of measured

vibration modes will generally be insufficient and [AK] has to be estimated by equation

(2-23) using less than all the vibration modes. Table 2-5 shows the stiffness error matrix

for this case study of 8DOF system using the first four modes only. It can be seen by

comparing Table 2-5 with Table 2-l that the connectivity is no longer preserved but,

nevertheless, the stiffness errors can still be located (elements 2,2; 2,3; 3,2; 3,3). This

suggests that an incomplete set of modes will not maintain the connectivity characteristics

and will make the error location less clear, although this may still be identifiable if the

number of modes used is sufficiently large. It is worth mentioning that an insufficient

number of modes losing the connectivity is an inevitable consequence of all approaches in

model improvement.

2-4 MODEL IMPROVEMENT USING ITERATION

Since it is inevitable that experimental data will be incomplete, model improvement

performed by any approach has to be an approximation or optimization with certain

aspects. The Constraint Minimization Method (CMM)]~]  tends to modify the analytical

model in a single optimization effort so that the modified model can represent perfectly all

the measured modes involved while the correctness of the remaining modes of the thus

optimized model (which are not experimentally identified) is actually rather problematic.

As a matter of fact, those remaining modes of the modified model normally do not

represent the corresponding modes presumably observed experimentally since the

optimized model could have enormously changed the connectivity of the system the

original model describes and, hence, the optimized model is determined to be unable to

predict the vibration characteristics of the system in the frequency range (normally high
c

frequency range) where no experimental data exist.

Therefore, on the whole, the modified model could not satisfactorily represent the

dynamic characteristics of a structure since the principle does not ensure the correctness of

the unmeasured modes. Similarly, the EMM aims at comparing the available measured
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modes with the corresponding analytical modes to locate errors existing in the analytical

model. Again, the incompleteness of the modes involved and the approximate nature of

the method makes the results approximate and violation of the connectivity condition is

also inevitable. To overcome this problem, it is thought that an iteration procedure could

be employed in the model improvement analysis, using the available measured modes

repeatedly so that the effects of the approximate nature of the EMM could be minimized

and the violation of connectivity condition could hopefully be diminished and as a result,

the improvement may be more efficient and effective.

24-l Strategy of the Iteration Procw

If the stiffness case is considered, and the stiffness error matrix [AK] is small, then - in

theory - it might be hoped to obtain a reasonably good approximation of the true error

matrix [AK] by a single application of the EMM using all the available modes observed in

measurement. If the analytical model is modified by adding this estimated stiffness error

matrix to the original stiffness matrix, then the modified model may be supposed to be

closer to the correct model than the original analytical one and can be regarded as the new

analytical model. At this stage, revised analytical modes can be found from an

eigensolution for this new analytical model and a second stiffness error matrix can be

estimated using the EMM a second time. On each repetition of this process, a smaller and

smaller [AK] should be obtained and if the obtained [AK] is added each time to the

analytical stiffness matrix, then the consequently modified stiffness matrix should

converge to the correct one. The whole procedure is illustrated in Figure 2-3.

It is worth noting, before describing specific applications of the iteration technique, that

because the Constraint Minimization Method (CMM) is an optimization approach, the ’

stiffness or mass matrix thus modified is a uniquely optimized result and any iteration

process can only lead to the very same result. Thus, there is no point in using iteration for

the CMM. However, the Error Matrix Method (EMM)  is fundamentally an approximation

approach and is thus suitable for iterative application.
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242 Criteria for the Assessment of the Iteration Results

In order to assess the results of the iteration process suggested in the last Section, certain

criteria have to be defined. Since the model improvement process takes the measured

modes as its basis, it is thought that the analytical modes of each modified model should

be compared with the measured modes in such a way as to quantify the closeness of the

two sets of vibration modes. However, merely assessing the closeness of the two sets of

vibration modes is not enough since the number of measured modes is incomplete and a

modified analytical model producing the analytical modes which are very close, or even

identical to, the available measured modes could easily be obtained, such as the result of

applying the CMM. However, such a model still does not describe correct vibration

characteristics of the objective system or structure. In other words, identity of the two sets

of modes does not necessarily mean a perfect model. Therefore, since model

improvement results in varying the analytical model by correlating the two groups of

vibration modes, it is intended that the each modified stiffness matrix (or mass matrix)

could be compared with the correct stiffness matrix. Consequently, a suitable criterion

would be based on both the modal parameters (natural frequencies and mode shapes) &

the spatial parameters (elements in the stiffness matrix or mass matrix) in order to assess

the correctness of the modified stiffness matrix on both a modal and the global model

scale.

The parameters which were chosen in this study are:

Percentage of frequency error = I((O,), - (O@,)l /(o&J  X100%

Percentage of pti mode shape error =

Percentage of total mode shape error

= 100%x { $ ; (Icp,l, - lcp#)2}  ‘“/Z &&
p=l q=l p=l q=l

Percentage ratio of elements of stiffness matrices = 100%x  <k(r))m/  (kJ,

, -, , .f.. ,
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where (&J,, qMtr) and (kc”), are the natural frequency of p* mode, element “pq” of

the mode shape matrix and element “pq” of the stiffness matrix, of the improved model

after the Ith iteration respectively, and kw is the element “pq” of experimental stiffness

matrix. It should be noted that this procedure implies a re-computation of the “analytical”

solution after each iteration using the modified model and the new analytical modes each

time are compared with the corresponding measured modes and so is the modified

stiffness matrix each time with the correct stiffness matrix.

It is known that, in practice, a measurement exercise cannot provide data of all the modes

of a structure and, also, the correct stiffness matrix is generally unknown. Hence, the

current intention is to evaluate the feasibility of the iteration approach using a simulated

vibrating system whose ‘experimental’ and ‘analytical’ models are given. Thus, while all

the simulated experimental modes are in fact known in this case, only some of them

actually participate in the iteration process to modify the analytical stiffness matrix. The

complete stiffness matrix (from the ‘experimental’ model of the system) is also assumed

to be known in order to calculate the ratio of elements of stiffness matrices.

2-5 NUMERICAL STUDY

In this section, a numerical study is presented for two tasks. The first is to assess the

stability of using the EMM or the CMM to locate errors existing in an analytical stiffness

matrix when the number of experimental modes for which data exist varies and, the

second one is to establish the feasibility of using the iteration technique for the EMM. *

The first and perhaps the primary goal for model improvement is to use available

experimental modal data to localize the errors existing in an analytical model. The EMM

was designed to facilitate this location task and the CMM also seeks to achieve the same
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goal by optimizing the analytical stiffness matrix. However, despite the inaccuracy of

experimental data, the number of measured modes may be very limited and this feature

could be vital to obtaining the correct location.

Also, as suggested above, the stiffness error matrix [AK] is usually small compared with

the analytical stiffness matrix [K,] and it may be expected that if the EMM is applied

iteratively, and each time the analytical stiffness matrix is updated by the estimated error

matrix [AK], then the resultant error matrix [AK] should become smaller and smaller and

the updated matrix [K,] should approach the correct stiffness matrix.

The typical system on which the numerical study was based is the 8DOF system in Figure

2-l which was used in the previous investigation[16] to validate the basic assumption

made by the EMM. There are two Case Studies simulating different ‘analytical’ stiffness

matrices while the simulated ‘experimental’ stiffness matrix is the same as in Table 2-l.

Throughout, the mass matrix is supposed to be unchanged during the study. These two

Case Studies will be referred to again in the next chapter.

Case One The ‘analytical’ and ‘experimental’ stiffness matrices (of course, both are

analytical in fact) are shown in Table 2-l. Here, all 8 ‘analytical’ and ‘experimental’

modes can be found by eigensolving, as in Table 2-6. In order to locate the stiffness

errors introduced between coordinates 2 and 3 in the system (or on elements of 2,2; 2,3;

3,2; 3,3 in the analytical stiffness matrix) by evaluating the stiffness error matrix [AK],

both the CMM and the EMM are used with different numbers of modes being involved.

Figure 2-4 shows the results of the estimated error matrix [AK] using the CMM (on the 4

left hand side) and the EMM (on the right hand side) with the simulated experimental

modes involved being the first 2, 4, 6 and 8 modes respectively. It was found from

Figure 2-4 that when the number of modes is small (say 2 out of the total of 8), the errors

in the analytical stiffness matrix are not confidently localized. As the number of modes

* I
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used is increased, the stiffness error location becomes clearer. The results suggests that

error location using either the EMM or the CMM relies significantly on the number of

measured modes for which data are available.

Once the error matrix [AK] is estimated by either the EMM or the CMM, the analytical

model can be updated by adding the obtained [AK] into the original stiffness matrix KJ.

This is effectively the current technique for improving the analytical model. In addition to

the fact that the thus-modified stiffness matrix often does not make sense physically, the

vibration modes represented by the improved model cannot be correct - for the CMM

case, the improved model can represent the experimental modes which have been used to

estimate [AK] and other modes may well be incorrect; for the EMM case, all the vibration

modes of the improved model may be either inaccurate or incorrect although they may be

closer to those vibration modes if observed experimentally. Table 2-7 shows the natural

frequency and mode shape errors of those modes deduced from the analytical model

improved by the CMM using the first four experimental modes. It can be seen that the

first four analytical modes show perfect agreement with the experimental modes which

were used to improve the analytical model - both the mode shape errors and the frequency

errors being zeros - while the remaining modes are quite inconsistent, showing errors in

both mode shapes and natural frequencies. The similar results for the EMM case are

presented in Table 2-8. These results indicate that one single application of the current

methods cannot effectively improve an analytical model when the number of experimental

modes is incomplete.

Case TWQ This second case study seeks to assess the effectiveness of the iteration process

applied with the EMM. To simulate the experimental stiffness condition, the system
.

shown in Figure 2-l is used again and the spring component connecting coordinates 2

and 3 is increased by 30 per cent and the neighbouring spring component between

coordinates 3 and 4 is decreased by 15 per cent, resulting in changes to 7 elements in the

analytical stiffness matrix (2,2; 2,3; 3,2; 3,3; 3,4; 4,3 and 4,4), while the mass matrix
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again remains unchanged. The ‘analytical’ and ‘experimental’ stiffness matrices are

shown in Table 2-9. Thus, all the 8 analytical and experimental modes are eigen-solved

by using the simulated ‘analytical’ model and ‘experimental’ model respectively and they

are shown in Table 2-10.

The EMM was applied iteratively using just the first four simulated experimental modes

and the results from the iteration are assessed by the parameters defined in the early part

of this chapter. The total mode shape error after each iteration is shown in Figure 2-5, and

the ratios of elements 2,2; 2,3; 3,2; 3,3; 3,4; 4,3 and 4,4 of the experimental stiffness

matrix to these in the improved stiffness matrix each time are shown in Table 2-l 1. It can

be seen from Figure 2-5 and Table 2- 11 that the iteration results do not improve after a

certain number of iterations. The corrected model does not represent experimental

vibration modes and, further, the spatial parameters (ratios of elements of stiffness

matrices) vary irregularly.

The same case was studied further by using the first six of the 8 experimental modes

(rather than the first 4). Again, the total mode shape error after each iteration was

calculated (in Figure 2-6) and the ratios of elements from the two stiffness matrices are

shown in Table 2-12. Comparing Figure 2-6 with Figure 2-5 and Table 2-12 with Table

2-l 1 one finds that, as the number of modes involved increases, the effect of the model

improvement process tends to be a little better than the earlier case, but is still not really

adequate. Meanwhile, the need to use such a large number of modes would generally be

impractical because the number of measured modes in real cases could be very limited.

One possibility for the failure of the direct iteration technique to bring about significant
c

improvements is that it might be over-demanding to try to “correct” &l of the n2 elements

in the stiffness matrix [K J using only a restricted number of measured modes [&I,

constituting only nxm elements (mln).  On closer consideration of the model

improvement study, it is generally found that not all the elements in matrix [K J need to be



adjusted or corrected. Indeed, the error is more than likely to be concentrated in one or a

few comparatively localized  regions within the matrix [K,]. Hence, the improvement

process might be more effective if it were to concentrate on that part of the system where

the errors are believed to exist. This idea is developed in the next chapter.

2-6 CONCLUSIONS

The identification of structural dynamic characteristics is nowadays dealt with by both

analytical methods and modal testing and analysis methods. Both have their particular

advantages and the model improvement study has evolved in order to provide a better

understanding of structural dynamic characteristics by correlating the analytical model of a

structure with the experimentally-observed vibration modes. Among the developed

techniques, the Constraint Minimization Method (CMM) and the Error Matrix Method

(EMM) are two typical methods. The former tends to optimize the analytical model by

using the limited number of measured modes and the latter one focuses on locating the

errors existing in the analytical model. The key difference between these two methods is

the premise of a correct mass matrix required by the CMM.

The assumption made by the EMM - of the matrix product ([K.J’[AK])’  in equation

(2- 17) approaching

it has been found

sensible.

zero as the exponential “r” becomes larger - has been investigated and

that the assumption is mathematically acceptable and physically

It is also shown that, if the number of measured modes is insufficient, then the EMM

does not succeed in achieving the correct error location, but neither does the CMM. It is ’

also discovered that direct application of an iteration process to the EMM does not lead to

an ideal analytical model. In fact, divergence often occurs even when the number of

modes involved is reasonably large.



_- 45 --

This results suggests that there is a demand to locate more precisely where the errors are

in the analytical model alternatively and to refine the iteration process so that it could

improve the analytical model properly.

c
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Table 2-2

([Ka]-l[AK])r for Case 1 when r=1,2,3
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Table 2-3

Stiffness matrix obtained by inverting the approximate flexibility matrices in equation

(2-16) taking into account from the fust two, three and four terms on the right hand side.



__ 49 __

o.ooooo 0.00000

O.OOOOO 363677.

O.OOOOO -363677.

O.OOOOO 0.00000

O.OOOOO 0.00000

O.OOOOO 0.00000

O.OOOOO 0.00000

O.OOOOO 0.00000

O.OOOOO

-363677.

363677.

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

O.OOOOO 0.00000 O.OOOOO

O.OOOOO 83147. -83147.

O.OOOOO -83147. 83147.

O.OOOOO 0.00000 O.OOOOO

O.OOOOO 0.00000 O.OOOOO

O.OOOOO 0.00000 O.OOOOO

O.OOOOO 0.00000 O.OOOOO

o.ooooo 0.00000 O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

O.OOOOO 0.00000 O.OOOOO

O.OOOOO 3172. -3172.

O.OOOOO -3172. 3172.

O.OOOOO 0.00000 O.OOOOO

O.OOOOO O.OOOOO O.OOOOO

O.OOOOO 0.00000 O.OOOOO

O.OOOOO 0.00000 O.OOOOO

0.00000 0.00000 O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

O.OOOOO

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
c

Table 2-4

[AK] for Case 1, obtained by repeatedly using equation (2-18)

e ,
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-5075. 12072. 7563. -4973. 4548. -157. 1123. 21190.

12072. 311520. -354154. 5010. -8096. -76033. 68394. -50770.

7563. -354154. 370633. -11732. -11750. 138287. 127229. 43541.

-4973. 5010. -11732. 630. 5211. -41879. 38543. -17 176.

4548. -8096. -11750. 5211. -4039. 1244. -2952. -22504.

-157. -76033. 138287. -41879. 1244. 173770. 167646. 76132.

1123. 68394. 127229. 38543. -2952. 167646. 161751. -69036.

21190. -50770. 43541. -17176. -22504. 76132. -69036. 20994.

Table 2-5

Stiffness error matrix for Case 1 by the EMM using the first 4 modes

I,
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Mode No. 1 2 3 4 5 6 7 8

Nat. Freq.
Hz 21.373 33.858 78.452 89.864 103.423 212.566 296.473 406.767

X l

x2

x3
mode

x4
ShapeS

x5

x6

x7

x8

.07057 xx3130 .05016 .05977 .12481 .22656 .5rn16 .80582

.07373 .01#8 -DE67 26796 25354 30933 .36546 -.38938

06631 -.05485 .14783 .03574 28551 .13239 -.26471 .07730

.04279 -.03918 .20808 .10846 .10775 -.32322 .10084 -.01170

-.04571 -.05066 .03370 .0865 1 .13254 .22928 .52365 .80923

-.06263 .04423 .21387 -.03252 .2489 1 .33844 .40893 -.40756

-.06325 .07242 .15945 .11500 26519 .12384 -.27473 .08122

-.02595 .03320 -.04266 -.03719 .29410 -.33922 .10193 -.01164

Vibration modes for the analytical model of Case 1

Mode No. 1 2 3 4 5 6 7 8

Nat. Freq.
Hz 21.384 34.443 79.597 93.286 103.494 213.326 303.898 410.018

xl .06989  .08018 .05977  .05086 .12412 .21841  -56229 .77958

x2 .07284  Xl0282 .04372 .26106 .244% .29917  .36014  -.40978

x3 .06700 -.05084 .14785 .02759 28540 .13883 -.25943 .08887
mode

x4 I14324 -.03673 .22139 .07998 .10615 -.32638 .09066 -.01314
shapes

x5 -XI4563 -.05329 .05016 .07670 .13098 .22107 .56596 .78284

x6 -05277  .04561  .21024  -.07046 .25604 .32209  .39508 -.42654

x7 -.06349 .07418  .17019 .10602 26163 .13174 -.26746 LB244

x8 -.02606 .033% -.05188 -.01579 .29418 -34245 .09140 -.01305 )

Vibration modes for the experiemntal model of Case 1

Table 2-6

All analytical and experimental vibration modes for Case 1

. c
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ModeNo.  1 2 5

before 0.054 1.699 1.439 3.668 0.069 0.356 2.443 0.793
after 0.000 0.000 0.000 0.000 0.095 0.365 2.468 0.797

Percentage frequency errors

ModeNo. 1 2 3 8 total

before 0.728 5.764 10.86 19.18 1.368 3.181 5.279 4.514 50.87
after 0.000 0.000 0.000 0.000 0.642 3.369 5.332 4.486 13.83

Percentage mode shape errors

Table 2-7

Percentage errors before and after the model is improved
by the CMM using the first 4 experimental modes

ModeNo.  1 2 3 4 5 6 7 8

before 0.054 1.699 1.439 3.668 0.069 0.356 2.443 0.793
after 0.009 0.281 0.225 0.114 0.187 0.413 2.773 0.886

Percentage frequency errors

ModeNo.  1 2 5 8 total

before 0.728 5.764 10.86 19.18 1.368 3.181 5.279 4.514 50.87
after 0.108 0.917 3.403 34.51 6.251 3.828 5.956 5.003 59.97

Percentage mode shape errors
c

Table 2-8

Percentage errors before and after the model is improved
by the EMM using the first 4 experimental modes
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4.5E+O6

-1.5E+O6

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

-1.5E+O6

4.OE+O6

Analytical stiffness matrix

2.5E+O6

-1.5E+O6

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

-1.5E+O6

3.45E+06

-1.95E+06

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO O.OE+OO

-l.95E+O6 O.OE+OO

4.753+06  -2SE+06

-2.8E+O6 4.7E+O6

O.OE+OO O.OE+OO

O.OE+OO O.OE+OO

O.OE+OO O.OE+OO

O.OE+OO O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

2.8E+O6

-1.OE+O6

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

-1.OE+O6

4.OE+O6

-3.OE+M

O.OE+OO

O.OE+O

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

-3.OE+O6

4.5E+O6

-1.5E+O6

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

O.OE+OO

-1.5E+O6

4.OE+O6

Experimental stiffness matrix

Table 2-9

Simulated analytical and experimental stiffness matrices for Case 2
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Mode No. 1 2 3 4 5 6 7 8

Nat. Freq.
Hz 21.373 33.858 78.452 89.864 103.423 212.566 296.473 406.767

xl

x2

x3
mode

x4
shapes

x5

x6

x7

x8

.07057 .08130 .05016 .05977 .12481 .22656 .52016 .80582

.07373 .01048 -.00267 .26796 .25354 .30933  .36546 -.38938

.06631 -.05485 .14783 .03574 28551 .13239 -.26471 .07730

.04279 -.03918 .20808 .10846 .10775 -.32322 .10084 -.01170

-.0457  I -.05066 .03370 .0865  1 .13254 .22928  .52365 .80923

-.06263 .04423 .21387 -.03252 .2489 1 .33844  .40893 -.40756

-.06325 .07242 .15945 .11500 26519 .12384 -.27473 .08122

-.02595 .03320 -.04266 -.03719 .29410 -.33922 .10193 -.01164

Vibration modes for the analytical model of Case 2

Mode No. 1 2 3 4 5 6 7 8

Nat. Freq.
Hz 21.314 34.428 79.411 93.203 102.684 210.721 302.901 409.954

X l

x2

mode

shapes

x3

x4

x5

x6

x7

x8

.06991 .08023 .05787 .04678 .12727 .20900  .56453 .78043

.07328 SKI272 .04137 .25358 .25431 .28997  .36685 -.40960

SE782 -.05110 .14243 .01794 .29096 .14051  -.25630 .08786

.04267 -.03621 .22214 .07650 .10725 -.32802  .08502 -.01230

-.04527 -.05354 .04833 .07248 .13473 .21160 .56824 .78369

-.06239 .045 16 .20443 -.07982 .25980 .3 1193 .40230 -.42634

-.06313 .0737 1 .16551 .09659 .27005 .13451 -26476 XI9147

-.02589 .03372 -.05512 -.02046 .28827 -3479 1 Al8665 -.01235

Vibration modes for the experimental model of Case 2

Table 2- 10

All analytical and experimental vibration modes for Case 2
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k-a
Y

22 23 (32) 33 34 (43) 44

iteration No.

0 87.0 76.9 94.7 107.1 104.3

: 96.3 89.1 94.1 61.4 99.8 85.1 102.9 92.0 101.8 99.4
8 96. I 77.7 93.3 96.6 100.1

12 95.6 79.4 96.6 100.4 101.5
16 95.1 77.6 97.0 100.7 101.6
20 95.9 78.3 98.1 101.6 101.9

Table 2- 11
Percentage ratios of elements of stiffness matrices (k-(‘j/k-)  %

(Direct iteration using the first four modes in Gale 2) ”

k --1J
iteration No.

22 23 (32) 33 34 (43) 44

0 87.0 76.9 94.7 107.1 104.3

i
8

12
16
20

96.9 93.6 99.0 95.9 97.8
97.8 96.0 99.0 100.6 100.5
97.8 96.0 99.1 100.8 100.6
97.8 96.0 99.2 101.0 101.6
97.8 96.0 99.3 100.7 101.7
97.8 96.1 99.3 101.1 101.7

Table 2-12

Percentage ratios of elements of stiffness matrices (kg(‘)/kij)  %
(Direct iteration using the first six modes in Case 2)

Y
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1

Incomplete Complete
experimental model analytical model
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Error Matrix Method
b to calculate

stiffness error matrix
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analytical model
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Improved
analytical
model
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failed

Figure 2-3 Iteration process to improve an analytical model

c



-- 58

using First 2 modes

using First 6 modes

using First 8 modes

using First 4 modes

using First 6 modes

using First 8 modes

c

Figure 2-4 Stiffness error matrix [AK] for Case One, estimated by the CMM
(left-hand side) and the EMM (right-hand side) using first 2,4,6 and

8 modes respectively.
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Figure 2-5 Percentage of total mode shape errors for Case Two after
each iteration using the EMM with the first 4 modes.

7
1

!2 - 00

c

Figure 2-6 Percentage of total mode shape errors for Case Two after
each iteration using the EMM with the first 6 modes.
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CHAPTER 3

LOCATION OF MISMODELLED REGIONS

- NEW DEVELOPMENTS

3-l PRELIMINARIES

It was noted in the last Chapter that when the number of modes for which data are

available is insufficient - a situation which is very likely in practice - techniques such as

the CMM and the EMM might not successfully serve the purpose of locating errors in the

analytical model. It was also found that using an iteration process directly in an attempt to

improve the analytical model may end up with an unsatisfactory result. In fact, the

iteration often diverged from the expected answer. This is mainly because the information

contained in the measured modes is rather limited and it is over-demanding to try to

correct the whole analytical stiffness or mass matrix.

Although one has to accept the fact that the modes available for the attempt can be very

limited, it is also generally accepted that errors in the analytical model are normally

localised or isolated rather than spread throughout the whole model, since the FE

technique has been highly developed and computer facilities nowadays are sophisticated.

It is therefore believed that the major errors in the model should be located before an

attempt is made to improve the analytical model. If this location were successful, then the 4

model could be improved locally and this would be much more efficient. The attempt by

the CMM or the EMM to improve the whole analytical mass or stiffness matrix using only

a limited number of modes is not physically realistic.
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3-2 STRUCI’URAL  CONNECI’MTY IN AN ANALYTICAL MODEL

The first and intuitive attempt to locate errors is to use the structural connectivity defined

by the analytical model itself. As described above, the structural connectivity inherent in

the analytical model should generaIly  be respected during the model improvement and

hence this provides an obvious form of localization.  As far as the stiffness properties are

concerned, this suggests that errors - if there are any - can only occur in the non-zero

elements of the analytical stiffness matrix [K,].  It is known that theoretically the

experimental stiffness matrix which is normally a banded matrix can be derived from the

modal data and the correct mass matrix, provided they are available:

(3-l)

To simulate the practical case where only the first m modes are available, the experimental

stiffness matrix can be taken to consist of two parts, including the first m modes and the

(3-2)

(3-3)

These two matrices can be shown schematically in Figure 3-l. Although neither is a

banded matrix, when be put together they will form the banded matrix [K.J. Normally,
c

only matrix [K,]r can be determined from experimental modal data due to the

incompleteness of the measured modes. However, it can be said that all the elements in

matrix [KJ, which do not fall in the area band defmed by the structural connectivity in

w,] are supposed to be the errors because of the insufficient modes used and they will be

. , .I..
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changed into zeros if more and more modes are involved. Therefore, those elements

violating connectivity should be suppressed artificially, as in Figure 3-2, since they are

known to be zero. The iteration process can therefore be applied with the connectivity

requirement imposed as the means of error location, albeit only approximate. Physically,

this implies that only those stiffness property changes physically allowed by the system or

structure will be accepted.

As previously explained, the CMM is an optimization approach and, therefore, is not

directly applicable as an iteration approach. However, if the connectivity could be

imposed on the optimized stiffness or mass matrix by the CMM, as described above, then

it will become possible to apply the CMM iteratively. Each time, the connectivity

suggested by the original analytical model is enforced onto the resultant mass or stiffness

matrices obtained by the CMM.

A number of numerical studies were carried out using the EMM and the CMM iteratively

with the connectivity condition being imposed each time on the improved analytical

stiffness matrix as described above. However, it is found that this refined iteration

procedure does not generally produce much improved results. In fact, in the case where

the number of modes used is limited, so that directly applying the EMM or the CMM to

update the analytical model tends to diverge, this new iteration considering the

connectivity was unsuccessful.

It can be said that by considering the connectivity we confine the errors to occur inside the

connectivity area. The philosophy of the approach is simply requiring the errors to be

such that they cannot violate the connectivity while it does not pinpoint exactly where they

are in the analytical model. If the errors existing in the analytical model could be located c

exactly, and the iteration process implemented merely to correct these errors, the

improved model would be desirable. The results in Chapter 2 have shown that, due to the

limited number of modes, the EMM or the CMM could not exactly locate the errors and

direct iteration could not succeed either, so that a new technique needs to be developed to



enable the exact error location using limited number of modes and to facilitate the iteration

with this exact error location.

$3 LOCATION OF MISMODELLED REGIONS IN THE ANALYTICAL MODEL

3-3-l The Analytical Stiffness Case

It is generally believed that in most practical cases the mass properties of a vibration

structure are somewhat easier to model than are the stiffness properties. As a result, the

analytical mass matrix is generally acceptably accurate due to the highly sophisticated

theoretical modelling techniques used and so, when the stiffness matrix case is

investigated here, it is hence presumed that the analytical mass matrix is the same as the

experimental one ([M,]=[MJ).  Any areas in the analytical stiffness matrix where errors

exist are generally small and local compared with the whole matrix and these areas are

called “mismodelled region(s)” here. The aim becomes to pinpoint these regions using the

limited number of measured modes when existing techniques do not effectively serve that

purpose.

According to definition, the stiffness error matrix is:

[AK1 = W,l - [&I (3-4)

Equation (3-4) can be post-multiplied on both sides by the incomplete measured mode

shape fnatrix  [Q.J,  leading to:

[AK][@J = I&] [+,I - &] [+,I (3-5) ,

Although the experimental stiffness matrix [KJ is unknown, so that the right hand side of

equation (3-5) cannot be specified, the measured modal data should satisfy the following

relationship,
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vq [$,I = [qJ E~,l bx2.1 (3-Q

where the mass matrix N] here could be replaced by the accurate analytical mass matrix

so that the right hand side of equation (3-6) consist of all known matrices. Thus,

substituting equation (3-6) into equation (3-5) yields:

[AK][+x] = [MaI [9,1[~w,2.1 - fKal[%l (3-7)

Post-multiplying both sides of equation (3-7) by the transpose of the incomplete measured

mode shape matrix, [$,I, leads to:

[AK] ([$,I [(&IT)  = [MaI NJ [y2.1 [@,lT  - [Kal hxl[@,lT) (343)

It is clear that matrix ([$X][Q,]T) cannot be inverted to obtain the stiffness error matrix

[AK], because the mode shape matrix [@,I does not contain all the modes and is rank

deficient. However, it is of considerable interest to note that matrix product in the left

hand side of equation (3-8) happens to provide an indication of the mismodelled regions,

and this matrix product can be derived from the right hand side of the equation which

consists of all known matrices. This is explained further in the following.

Equation (3-8) can be transposed to become:

(NJ [$JT)Wl  = [@,I [*~:.I [~JTIMal  - ([~,IhP,lT)[Kal (3-9)

and both equations (3-8) and (3-9) are illustrated in Figure 3-3. Since it is supposed that

the mismodelled region(s) in [K,] is usually a local and isolated area, this region can be
4

represented in Figure 3-3 as a small shaded area on the left hand side. It is clear that

equation (3-8) indicates the rows in [KJ which contain errors. Since the stiffness

matrices [K,] and [KJ are usually symmetrical, as is matrix [AK], equation (3-8) has

actually located the mismodelled region. In common with equation (3-8), equation (3-9)
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shows the columns in matrix [K,] which contain errors and consequently locates the

r&modelled  region. Therefore, the n&modelled  region can be located by either using

equation (3-8) to locate the rows in [KJ containing errors or equation (3-9) to locate the

columns in [K,] containing errors. It will be visually more obvious to add these two

equations to form the results shown in Figure 3-4, where the overlapped area indicates

exactly where is the mismodelled region of the stiffness matrix.

Further examination reveals that equation (3-5) and its derivatives can be written using as

few as just one measured mode { Cp,); (i=l, 2, . . . N) at a time, rather than all the available

measured modes [QJ,  giving:

(3- 10)

Following the same procedure of matrix manipulation from equations (3-5) to (3-8) leads

to:

(3-l 1)

Equation (3- 11) shows that only one measured mode is needed as far as the location of

the mismodelled region is concerned, provided that this mode is vibrationally sensitive to

[AK]. Thus, the location of the mismodelled regions in [K,] can be performed by using

any one of the measured modes or combination of the  measured modes and this provides

the error location with an alternative indication which could make the location process

more reliable.
c

It should be noted that throughout the development of the theory above, there is no

assumption that matrix [AK] is small necessary to qualify the feasibility of the theory.

This is unlike the cases of the EMM or other methods. Although the theory here
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obviously cannot be used to update the matrix [I&] by any kind of iteration process -

rather, it can only be employed to locate the errors from [KJ using the measured mode(s)

- it is clear that the location of the mismodelled regions is the primary concern for the

model improvement study in most times and it has been shown above that the model

improvement could hardly be effective or sensible if this location is not provided

3-3-2 The Analytical Mass Case

The same methodology as described in the last section can also be applied to the mass

matrix case where a mass error matrix [AM] exists. In practice, it can be said that cases

where the analytical mass matrix is less reliable than the stiffness matrix are relatively

rare. As far as the joints between the components of a structure are concerned, stiffness

modelling errors are expected to be much more serious than those for the mass. However,

there are still some practical structures for which the mass modelling could be technically

very demanding and the credibility of the resultant analytical mass matrix may be

questioned.

In a similar way to the last section, this analysis first presumes that the analytical stiffness

matrix is acceptably accurate so that it can be taken as the same as the experimental one

([K,]=[KJ)  when the mass matrix case is investigated. Also, the area(s) in the analytical

mass matrix where errors exist is generally small and local compared with the whole

matrix and such areas are similarly called “mismodelled region”. The aim becomes the

pinpointing of these regions using the limited number of measured modes available.

The mass error matrix is defined as:

[AMI = IMJ - [MaI (3-12)

Equation (3-12) can be post-multiplied on both sides by the incomplete measured mode
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shape  matrix [@,I and the natural frequency matrix [++2.1,  leading to:

[AMI [$,I [*q2.1 = [&I N,l bx2.1 - [Ma1 [@,I b’x2.1

Substituting equation (3-6) into equation (3-13) will lead to:

(3-13)

(3- 14)

post-multiplying equation (3-14)  on both sides by the transpose of the mode  shape  matrix

[$,I will finally yield:

[AMI ([O,l[~w~.l  [$,lT) = [&I [OxI I$xlT - [Mal([@xl  [‘ax2.1 [(&IT) (3-15)

The right hand side of equation (3-15) consists of known matrices. Compared with

equation (3-8), it is found that this equation provides a significant indication of the

mismodelled region(s) in the analytical mass matrix, although the matrix product

([~,][~x~.][$,]~)  cannot be inverted to obtain [AM] directly. If equation (3-15) is

transposed, giving:

([+,I [*@;.I  [4+lThW = [$,I [~,fKJ - ([$,I W:.l M,lT)CMal (3-16)

then, combining equations (3-15) with (3-16) will indicate the r&modelled  regions in

[MJ clearly and can be presented pictorially in Figure 3-4, as for the stiffness case.

of copse, equation (3-15) can dso be written using any one of the measured modes,

yielding:
c

Again, the location of the mismodelled regions in [M,] can be performed by using any
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one of the measured modes or different combinations of measured modes and this

provides the error location with multiple references which could make the location more

reliable.

3-3-3 General Case

The stiffness matrix and mass matrix cases have been investigated separately in the last

two sections. In reality, however, a combined situation may well occur and the

mismodelled regions in both [K,] and [M,] need to be located simultaneously using the

mode shapes from measurement. In this case, the premise of [M,]=[M,]  for equation

(3-7) is no longer applicable and equation (3-12) should be substituted into equation (3-7)

to deal with this problem. This leads to:

[AK]]@,] = ([Ma1 + Wl)[~xl[‘~x2.1 - [K,l[+xl (3-18)

Post-multiplying both sides of this equation by the transpose of the measured incomplete

mode shape matrix [$,,I yields:

Wl([@J [@,lT)  - [W([@J bx2.1 [@JT)

= [MJ(  [$,I b&l b&lT) - [K,l @l @,lT) (3-19)

Equation (3-19) may also be obtained by substituting equation (3-4) into equation (3-14).

Akin to equations (3-8) and (3-15) to locate the mismodelled regions in [K,] and
c

MJseparately,  equation (3-19) facilitates the error location in the same way. However,

the complication involved here is the coexistence of [AK] and [AMJ and equation (3-19)

only provides the location of the mismodelled regions in the analytical model. Therefore,

it is to be identified from the results of equation (3-19) which error region is caused by



__ 70 __

[AK] and which by [AM].

3-4 DIRECI’ NUMERICAL CALCULATION OF [AK]

In addition to revealing mismodelled regions in the analytical mass and stiffness matrices,

the advantage of the location technique proposed in the previous section is that it offers

the possibility of estimating [AK] (or [AMJ) by immediate numerical calculation, provided

the number of measured modes is sufficient. It is believed that the errors in the analytical

model are often local and isolated while, without the effective error location, the model

could normally be updated artificially everywhere in such a way that the resultant model

would severely violate the structural connectivity and dramatically alter the physical

properties in a way which is not practically sensible or acceptable. However, instead of

simply applying methods such as the EMM and the CMM to end up with this undesirable

new model, the measured modes may well be adequate to quantify these local and isolated

errors, once they have been localized, and the analytical model can be updated in a way

which not only preserves the connectivity but also presents the correct dynamic

characteristics of the system or structure without sacrificing the physical properties.

This section investigates the implementation of this numerical calculation. Only the [AK]

case is dealt with here and it is presumed that the analytical mass matrix [M,] is correct

and hence [M,] is used in following formulations when w,] occurs in the analysis. The

principle is equally valid for estimation of [AMJ

Using one measured mode (Cp,)i  (instead of the set, [+,]>, equation (3-7) becomes: i

[WI (Cp,)i = CO,2>ilM~l  ((P,)i - lKJ(TxIi (3-20)

The right hand side of this equation consists of known quantities. If it is supposed, for

c  I
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the sake of simplicity, that there is only one mismodelled region and that this lies in the

upper left hand comer of [AK], having dimension pxp, so that equation (3-20) can be

illustrated schematically as shown in Figure 3-5.

Matrices [MJ, [K,] and [AK] can each be partitioned into a set of column vectors:

[AK1 = [(AIL IA2L . . . . {A$, (AB+l),  . . . . . (AN}]

[M,l = HMJ,, IMx12v . . ..W& (Mx}p+l’  .-+- ($&I

[KJ = [IKJ,, Wa12. -{K,Jp~ {Ka)p+1’  -.tKa)~l

where (A)B, {M,)P and {K,lP  @=1,2,.  . . . N) are the p” columns in matrices [AK],

[M,] and [K,] respectively.

Equation (3-20) can then be rewritten as a set of linear simultaneous equations:

{41TIq9,  = (q),~~12T(cp,~, - K~2T~cp,)r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{Ap]T{~,],  = (c@,{&]pT&‘,,,  - IK,]bT@,]r

{A~+t)T{~,],  = (W,2),(&]p+tT((Px]r  - (K,]p+rT(qx]r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3-21)

c
{ANJToX),  = (w:)~ (M,INT((P,]r  - {KahT((J’,), t=l, 2 ,.........  m

It can be seen that equation (3-21) contains as many as Nxm linear simultaneous

equations. Since the (pxp)  region of errors in [AK] is symmetrical, the number of linear
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simultaneous equations required for numerical determination of [AK] is only p@+l)/2  out

of the total number of Nxm in equation (3-21), provided these equations are independent

one another. As each mode can produce up to p linear simultaneous equations, this means

the number of measured modes required is reduced to @+1)/2 - which is relatively small.

However, further algebra reveals that the linear simultaneous equations in (3-21) are not

independent. Further, it is concluded that only p modes are needed in order to obtain the

[AK] by solving the first p linear simultaneous equations numerically.

It will naturally be the case in practice that more than one localized mismodelled region in

[K,] has to be dealt with. For instance, suppose that there are two such regions, as shown

in Figure 3-6, having dimensions (pxp) and (cxxa) respectively. Since the two non-zero

regions can be dealt with separately in terms of the numerical calculation described above,

the number of modes needed to obtain matrix [AK] will still be p, provided here a<p.

3-5 NUMERICAL ASSESSMENT OF LOCATION TECHNIQUE AND

REFINED ITERATION PROCESS

The location of the mismodelled regions in an analytical model by a limited number of

measured vibration modes is, in most cases, the primary goal since it pinpoints the failure

of the theoretical analysis and provides the analyst with useful information of which part

of the structure or system needs to be carefully reanalysed. On the other hand, once the

mismodelled regions in the analytical model have been successfully located, the analytical

model can also be improved by the available measured modes using existing techniques

such as the iterative EMM. Unlike the direct iteration procedure introduced earlier this

time only the localized regions in the analytical model will be modified while the

remaining major parts in the model can be kept unchanged. Figure 3-7 shows the strategy

of this refined iteration process to improve an analytical model. It can be said that this
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refined iteration is physically more sensible than the direct iteration applied in the last

chapter which tends to modify the whole analytical model.

The dynamic system used to assess the location technique introduced here is the same as

that used in the last chapter. The two case studies investigated there are studied further

here: the system description and corresponding simulated analytical model and the

experimental modes being as in the last Chapter.

The mismodelled region in the analytical stiffness matrix [KJ will then be located using

the new technique developed in this chapter. Once the region has been accurately located,

a refined iteration process similar to that direct iteration used in the last Chapter and the

slightly improved iteration introduced in the beginning of this Chapter can be used. The

refinement for this new iteration process will be in conjunction with the proposed location

results and will include restriction of any changes in matrix [IS,] to the mismodelled

region which has been located. Any other changes (beyond the localized  region) indicated

by the results of EMM or the CMM will be regarded as errors caused by the

incompleteness of the experimental modes and will not be admitted.

Case Study 1 The simulated analytical and experimental stiffness matrices used in this

study are for the system shown in Figure 2-l and are the same as those shown in Table

2-1, and the simulated experimental modes are in Table 2-6. The actual stiffness error

matrix is shown in Figure 2-2 and indicates a mismodelled region in the analytical

stiffness matrix. Equation (3-l 1) can be used to locate this mismodelled region and Figure

3-8 shows the results of using equation (3-l 1) with a single mode at a time - from mode 1

to mode 8 - and it can be seen that each mode locates errors on rows 2 and 3 of matrix .

F.-J,  indicating errors on elements 2,2; 2,3; 3,2; 3,3 of the matrix - which are, in fact,

exactly in the mismodelled region. Comparing Figure 3-8 with Figure 2-4 indicates that

the location technique suggested in this chapter is much more accurate and efficient and

requires considerably fewer experimental modes than other existing methods.
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Case Study 2 The simulated analytical and experimental stiffness matrices in this study are

the same as those shown in Table 2-7 while the corresponding simulated experimental

modes are in Table 2-8. In order to locate exactly the mismodelled region in matrix [K,],

equation (3-l 1) is used in turn with each mode individually, as in Case Study 1. Figure

3-9 shows the results of using equation (3-l 1) with single mode each time (from modes 1

to 4) and it can be seen that the result for each mode locates the same mismodelled region

- on elements 2,2; 2,3; 3,2; 3,3; 3,4; 4,3; 4,4 of matrix [KJ - it can also be seen from

Table 2-7 that this located region is correct.

Since the mismodelled region in matrix [K,] has been successfully located, the iteration

process can then be carried out to improve the analytical model by updating matrix [K,,].

This time, only the localized region in the original matrix [K,] will be modified by the

results of the EMM or the CMM using the first four modes (the same as the case studied

in Chapter 2). The total mode shape error is then recorded in Figure 3-10 and the ratios of

elements of stiffness matrices are presented in Table 3-1. It can be seen by comparing

Figure 3- 10 with Figure 2-7 and Table 3-l with Table 2-9 that using this refined iteration

process on the same case as before shows significant advantages over using direct

iteration. Furthermore, a much faster rate of convergence to the correct solution has been

achieved than that when only the connectivity was considered.

3-6 CONCLUSIONS

Since the number of vibration modes which can be measured on practical structures is c

likely to be limited, the corresponding analytical model cannot usually be corrected by a

simple application of either the EMM or the CMM, because the results violate the

connectivity of the analytical model and could be unacceptably approximate. Under these

circumstances, the iteration process is introduced, seeking to improve the analytical model



iteratively and to produce an eventually satisfactory result. This direct iteration process

was found in the last chapter to be relatively unsuccessful for model improvement since

the iteration can hardly converge to the correct answer.

A first attempt to improve the iteration process was made by applying the connectivity

requirements of the analytical model. It is noted that the improved or corrected analytical

model must preserve the connectivity of the original model, based on a physical view of a

vibration system the model describes. The results of the EMM and the CMM (which

violate connectivity each time in the iteration process) are errors due to the insufficiency of

the number of measured modes (and other approximations incurred) and should not be

taken into account in the model improvement. This slightly improved iteration process has

been assessed numerically but has not given convincing results. A possible reason for the

relative lack of success of this refined iteration process is that even when connectivity is

preserved, the model improvement still implies that all the non-zero stiffness (and/or

mass) properties theoretically predicted are erroneous and it tends to “improve” the whole

of the analytical model (albeit preserving the connectivity conditions).

It is concluded that difficulties in constructing an analytical model for the vibration

properties of a structure are generally encountered only in some local parts of it due to

sophisticated analytical modelling techniques now available. Therefore, errors in an

analytical model are generally localised and can be referred to as “n-&modelled  regions” in

the analytical model. A sensible model improvement procedure should thus seek to

modify these mismodelled regions only, rather than to improve the whole analytical

prediction. Hence, an exact location of these mismodelled regions from the analytical

model is crucial.

Considering the practical situation where the number of measured modes is very limited,

and the current methods such as the EMM or the CMM cannot always locate the

mismodelled regions in a clear-cut way, a new method has been proposed in this chapter

which enables the location to be made with a very limited number of measured modes



(even with only one measured mode). The method is successfully evaluated using the

same test cases as before in contrast to less successful location using conventional

techniques. It is also proposed in this chapter that if the number of modes is greater than

the dimension of the mismodelled region (or the dimension of the biggest mismodelled

regions if there are more than one), the exact model correction can be carried out by

numerical calculation.

The iteration process to improve the analytical model can now be refined, once the

mismodelled regions have been exactly located in the analytical model. Only these

mismodelled regions are modified each time in the iteration process by repeatedly using

the measured vibration modes. The results have shown marked advantages over those for

direct iteration, or for iteration considering connectivity constraints only. It is therefore

suggested that the analytical model improvement should be carried out in this way.

c
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k
ij

22 23 (32) 33 34 (43) 44

Iteration No.

0 87.957 76.923 94.737 107.143 104.255

1 96.300 94.408 99.786 102.920 101.758

4 100.073 99.65 1 100.026 100.195 100.171

8 100.066 99.767 99.839 99.969 99.964

12 100.060 99.795 99.839 99.855 99.952

16 100.054 99.8 14 99.852 99.873 99.955

20 100.049 99.831 99.90 1 99.878 99.959

Table 3- 1

Percentage ratios of elements of stiffness matrices (kijWkij)  %

(Location and iteration using the first four modes in Case 2)
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Figure 3- 1 Illustrations of equation (3-3)

Figure 3-2 Forcing [K J to be a banded matrix by correct connectivity

c

,. -
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Figure 3-3 Illustrations of equations (3-8) and (3-9)
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Figure 3-4 Location of the mismodelled region in [AK]
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Figure 3-5 Schematical presentation of equation 3-21
when only one mismodelled region exists
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Figure 3-6 Schematical presentation of equation 3-21 when

more than one mismodelled region exist
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Figure 3-7 Refined iteration process  to improve an analytical model
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Figure 3-8 Location of stiffness error for Case One using experimental

modes from  1 to 8 individually.
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Figure 3-9 Location of stiffness error for Case One using experimental

modes from 1 to 4 individually.

- .--
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Figure 3- 10 Percentage of total mode shape errors for Case Two after each
iteration using the EMM and the stiffness error location results.
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CHAPTER 4

IDENTIFICATION OF DAMPING PROPERTIES

OF VIBRATING STRUCTURES

4-1 PRELIMINARIES

In the previous Chapters, the location of r&modelled  regions in an analytical model and

the subsequent model improvement using measured vibration modes have been dealt

with. When a structure is lightly damped, the vibration modes identified from

measurement are often regarded technically as real modes, and it has been suggested that

the mismodelled regions can be located effectively by using just a few measured modes.

Moreover, once those regions have been successfully located, the analytical model

improvement can be focussed in the located regions with the iterative process often

producing convincing results which are physically sensible (in contrast to the less

convincing results of conventional techniques in many cases).

However, some practical structures are more heavily damped and the measured modal

data in such cases are sometimes no longer real. This provokes difficulty in applying the

theory discussed in the last two Chapters for investigating the analytical model. Besides,

theoretical modelling cannot generally predict the damping properties in detail and so the

most likely form for a damping matrix is one which is ‘proportional’ to the mass and/or c

stiffness properties, in which case the analytical vibration modes are still real. Although

this proportional damping model can readily be applied theoretically, it rarely represents

the correct damping properties of real structures.
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There have been a number of approaches reported in the literature[28]-[32] which seek to

deduce the undamped vibration modes from the measured damped complex modes so that

the deduced real modes could be used to modify the erroneous analytical stiffness or mass

matrix. In that case, the new development in the previous chapters could be applicable for

error location from an analytical model and for the subsequent model improvement.

However, the undamped modes thus deduced are often merely a rough approximation

since the experimentally identified complex modes are essentially incomplete and the

deduction itself relies to some extent on the analytical model which is erroneous.

Furthermore, these approaches are not applicable to the location of the damping elements

in a structure since they stand on extracting the undamped modes and, in the process,

throw away that information concerning the damping properties. It is therefore thought

that the experimentally identified complex modes could be used in order to locate the

damping elements.

The identification of dynamic characteristics of a damped structure becomes more

complicated due to the fact that the erroneous analytical model is to be modified at the

same time as the damping properties remain to be investigated. It is believed that it would

be possible to investigate the damping properties when the analytical stiffness matrix is

relatively accurate. However, this Chapter will consider the general case, i.e. when the

structure is damped and its analytical stiffness matrix is in error, and suggests that it is

possible to locate the mismodelled regions in the stiffness matrix and meanwhile to locate

the damping elements. It will also be shown that the iteration process followed by a

successful location could convincingly quantify the damping matrix and the errors

existing in the analytical stiffness matrix separately.

4-2 CURRENT APPROACHES FOR Sl-‘UDWG DAMPING PROPERTIES c

The damping properties of a practical structure are perhaps the most difficult aspect to

investigate, compared with the mass and stiffness characteristics. The difficulty results

mainly from the the fact that the damping in a vibrating structure cannot be specified by



__ gg --

analytical methods in the same precise way as can the mass and stiffness characteristics.

For some lightly damped structures, the theoretical modelling often assumes them to be

undamped and for other cases, where the damping existence cannot be ignored, a linear

and proportional damping model is often used. This theory suggests that distribution of

damping in a structure takes the same form as that of the mass or stiffness (or both)

properties, hence the hysteretic damping matrix N or viscous damping matrix [C] could

be described by:

WI = dK1 + PM1 (4-l)
o r

[Cl = r[Kl + 6Dfl (4-2)

The notable advantage of using this proportional damping model is that the mode shapes

of a structure with such damping are identical to the corresponding undamped model and

the natural frequencies will be just slightly different. (It is of interest to note that

proportional damping models defined by equations 4- 1 and 4-2 are not the only cases to

produce the identical modes with the undamped ones and the more general condition is

discussed in literature[28]).  However, due to the increasing complexity of the dynamic

structures to be studied and more stringent demands on the analytical models to include an

accurate damping matrix, this assumption of proportional damping becomes less and less

appropriate to cope with practical applications.

It is believed that the nature and extent of the damping present in most practical structures

can only be determined by experiment. Indeed, measured modal data which come from a

successful measurement contain “true” information about the damping properties of a

structure. To investigate the information on the damping properties from measurement, it

is supposed that the dynamic characteristics of the vibrating structure can be described by ,

a discrete multi-degree-of-freedom system whose equations of motion are as be10w[~~]:

(-w2[Mx]  + [KJ+i[HJ){q}eia  = {F)eiO’ (4-3)

where it is presumed that the damping is of the hysteretic type and (q} is a vector of

complex harmonic amplitudes. Or, in case of the other widely used damping type -
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viscous damping - the equations of motion will be:

(-w~[M,]  + wi[C] + [KJ){q]eiU = (F}eiat (4-4)

Under the circumstance of single point excitation, the receptance of the system between

points “j” and “k” with hysteretic or viscous damping can be defmed  respectively by:

ajk
f$k + ‘Pjk

I=1 1 - (oJw,)2  + Q,

ajk
& + i(o/o,)~j~

r=l 1 - (o/o,)2 + 2i(o/o,)5,

(4-5)

(4-6)

where A, B are the real and imaginary parts of the modal “constant”.

Information about the damping properties is contained in the complex modal constant, the

natural frequency  Or (which slightly differs from the undamped natural frequency) as well

as the damping loss factor r\, (or h). The major drawbacks of this information are: (1) it

is normally insufficient because of the incompleteness of the measured modal data and,

(2) it does not explicitly yield the damping distribution in the structure.

If, in any case, only a few damped vibration modes rather than a representative damping

model are of interest in a given practical application, then these damped modes can

generally be identified experimentally to fulfil the requirement. However, as far as the

stringent demands on the analytical models are concerned to include the damping matrix,

the incomnlete  damping information revealed by the measured modes are certainly not

straightforward to enable it. In the literature, effort has been paid to the derivation of a

damping matrix directly from a limited number of measured modes[34]-[38]  as well as to

derive the mass and stiffness matrices. Such derivation may be appropriate in the cases

where the vibration characteristics of a structure will be defined only by the

experimentally-specified number of coordinates and the same number of modes.
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4-3 IDENTIFICATION OF DAMPING TYPE FROM MEASURED DATA

The first phase to use the damping information revealed by the measured modes will be to

identify the damping type. Although attempts have been made to introduce new damping

models in vibration analysis [391, the hysteretic and viscous damping models are still the

most often encountered models used for vibrating structures.

4-3-l Methodology for Identification of Damping Types

One conventional basic modal analysis approach curve-fits the receptance Nyquist circle

based on the SDOF assumption[ 331. This approach gives a damping loss factor but is

unable to specify clearly the damping type.

One alternative approach to the Nyquist plot curve-fitting is to use the reciprocal of

receptance data[ 40]v i41]. In this case, the SDOF model for the r* mode of a structure

with hysteretic or viscous damping, presuming the residual effects of other modes are

negligible, will yield the reciprocal of receptance data respectively as:

1 o2 + iqq2
- =
aH Cr

= Re( l/aH) + h( l/aH)i

(4-7)

(4-Q

c

1 cor2 - a2 + 2ic06$
- =
% Cr

= Re( l/o+) + Im( l/cxv)i

When the modal constant Cr is a real quantity, the imaginary parts of the reciprocal

receptance data become:

(4-9)
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or Im( l/cQ = 2w,w5/C,

In a plot of the imaginary part of l/a against frequency o (Figures 4-la and 4-lb), these

two damping types are indicated by either a horizontal line for hysteretic damping or a

straight line with non-zero slope for viscous damping. Equations (4-9) and (4- 10) are the

basis of the identification of damping types.

The simplicity of thus identifying the type of damping is, however, sometimes

undermined by the practical situation in which we can hardly rely on the modal constant

from the measured data to be real, especially when the damping magnitude is significant.

The complexity of the modal constant, as often exists, will tend to mix the real and

imaginary parts of the receptance data and hence the reciprocal of the receptance data will

not be so directly able to identify the damping type. In order to identify the damping when

the mode is complex, it is now proposed that the complexity of the modal constant can be

removed once its phase angle is accurately identified by Nyquist circle curve-fitting.

4-3-2  Removal of Complexity from Measured Data

A complex modal constant can be written as the expression in equations (4-7) or (4-8)

multiplied by a complex number (cosCl+isine)  with unity modulus. The effect of the

complexity of the modal constant in the Nyquist circle will thus be to rotate the whole

circle from the original position by an angle 8, as illustrated in Figure 4-2. Hence, the

reciprocal of the receptance data with a complex modal constant is given as:

l/cc = Re(l/a)  + Im(l/a)i

= [Re( l/a) + Im( l/&i] [(co& - isine)] (4-11)

where IQ is referred to as the receptance when the modal constant is real.

.
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Thus, it can be thought that the measured data are in such a form that a set of receptance

data with no complexity are transformed by a complex quantity with unity modulus and

so the measured data could be subjected to equation (4-l 1). The phase angle 6 in equation

(4- 11) may be deduced by the Nyquist circle curve-fitting and, consequently, the purely

real and imaginary parts (before being transformed by the complexity) can be deduced

from equation (4- 1 l), being respectively:

Re( l/m> = Re( l/a)cose - Im( l&sine

Im( l/m>  = Im( l/a)cost3  + Re( l&sine
(4- 12)

Thus, data Im(l/& can be used to identify the damping type, as described above.

4-4 LOCATION OF DAMPING ELEMENTS FROM A STRUCI’URE

441 Usual Damping Condition of a Vibrating Structure

From the point of view of modal analysis, the damping properties of a vibrating system

defined by equations (4-3) or (4-4) can be specified by the system’s modal data (i.e. by

the damped natural frequencies, complex modal contansts and, above all, the damping

loss factors) in equations (4-5) or (4-6) respectively. However, these modal data are not

directly related to the spatial distribution of damping in the system. For instance: given a

damping matrix, the modal data (especially those damping loss factors which most

significantly reflect the damping properties) will change if there is a change in the stiffness

matrix. As has been discussed in the last two Chapters, the theoretically-predicted

stiffness matrix will generally contain errors, and so the damping properties indicated by

the modal data should be treated with considerable care.
c

Fortunately, unlike the mass and stiffness characteristics which are generally contributed

to by all parts of a structure, the most significant damping in structures usually comes

from the joints between the various components [42lJ431. In other words, it can be said

that damping mainly occurs at or between a restricted number of coordinates in terms of
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the analytical model, and so the usual assumption of proportional damping will not

satisfactorily cope with such practical cases. Figure 4-3 shows schematically a damping

matrix which could be regarded as representing a ‘true’ damping matrix case for a

practical structure.

Hence, it is supposed that useful information about the damping distribution in a structure

could be revealed by localizing  the damping elements in a vibration model determined

from measurements, such as those obtained from a modal test. If the damping elements

can be successfully localized by the measured data, then the damping matrix of the

corresponding analytical model of the structure will be provided in an acceptable form,

similar to that in Figure 4-3, rather than conventionally assuming it to be proportional to

the mass and stiffness matrices as in equations (4-l) and (4-2), and any further attempt to

quantify the damping level could be directed to those local&d elements.

4-4-2  The Approach for Damping Element L+ocation

When hysteretic damping exists in a vibrating structure, it is generally accepted that the

damping matrix [Hj can be combined with the stiffness matrix [K,J (or [KJ if it comes

from the analytical model and is with errors) to form what is called ‘complex stiffness

matrix’, (as was introduced in Chapter 3):

&I = l&l + ilKI (4-13)

For the sake of simplicity, it is first assumed that the mass and stiffness properties of the

analytical model of the structure are acceptably accurate when the location of damping

elements from the structure is investigated and, hence, the stiffness matrix [Kx]  in 0

equation (4-13) can be adequately represented by the analytical stiffness matrix. The more

general case, with an erroneous analytical model, will be considered later. Since the

structure is damped, its measured vibration modes will be complex and the mode shape

matrix, denoted by [+,I, will be incomplete with less than all the modes included.



__ 94 __

Equation (4 13) can be post-multiplied by the complex mode shape matrix [+,I, yielding:

[&I [OxI = [&I N,l + i[HJ M,l

Since the following relationship holds for the experimental model,

(4- 14)

&I [@,I = W,l [@,I  [‘@;.l (4-15)

it can be substituted into equation (4-13) to eliminate the unknown complex stiffness

matrix [K,] and, by rearranging and post-multiplying the resultant equation on both sides

by the transpose of the measured complex mode shape matrix [QJT, yields:

(4-16)

In common with the approach developed in Chapter 3 to locate the mismodelled regions in

the mass and stiffness properties of the analytical model, equation (4- 16) can be used in a

similar way to locate the damping of the structure by pinpointing the significant elements

in the damping matrix. It should be noted that the incomplete measured mode shape

matrix [@,I and the measured natural frequency matrix [‘wx2.] are both complex while the

structure’s stiffness, mass and damping matrices are all real. With this in mind, equation

(4-16) can be split into two equations, representing its real and imaginary parts

respectively. It is the imaginary part of equation (4-16) which enables the location of the

damping by pinpointing the significant elements in the damping matrix [III. Moreover,

equation (4-16) can be written using as few as just one measured complex mode to cope

with the practical situation when the number of measured complex modes could be strictly

limited. z

As mentioned earlier, a complication of damped structures lies in the argument that the

analytical model is erroneous when the damping properties remain to be investigated. It is

believed that it would be somewhat easier to investigate the damping properties when the
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analytical stiffness matrix is effectively accurate. However, to consider the general case,

when the analytical stiffness matrix is not correct, equation (4-13) will become:

&I = [Kal+[~Kl+ UII (4-17)

The derivation from equation (4- 13) to equation (4 16) will now yield:

[AK] [@,I [ (&IT  + i[Eil [@,I  b&IT = M,J NJ [*~~~.l  [$JT - FJ[$JhlT (4-18)

Comparison of equation (4-18) with equation (4-16) indicates that equation (4-18) tends

to locate the mismodelled regions in the analytical stiffness matrix and the damping

elements simultaneously. Theoretically, when equation (4-18) is split into its real and

imaginary parts, the effects of [AK] and [HJ will show up in both and it is thought that

closer inspection of the structure might be helpful in order to identify the non-zero parts in

[AK] and [HI from the results of equation (4-18). However, it can generally be expected

that the effect of [AK] will dominate the real part of equation (4-18) and that of [HJ the

imaginary one. Again, equation (4-18) can be written using as few as only one measured

complex mode. The application of equation (4-l 8) will be presented later in this chapter.

4-5 EZXIMATION OF DAMPING MATRIX

4-S-l Extension of the EMM to Estimate Damping Matrix

Once the significant elements in the damping matrix IHJ have been localized,  the attention

of the damping property investigation is consequently turned to the possible evaluation of

the damping matrix itself using the limited number of measured complex modes available.

Although the standard EMM (Chapter 2) is available to estimate the stiffness or mass error ’

matrices [AK] or [AM], there is no corresponding technique to estimate the damping

matrix and the following paragraphs develop the EMM in order to facilitate the damping

matrix estimation.



For generality, the analytical stiffness matrix [K,] (assumed to be derived from an FE

analysis, or similar) is taken to be erroneous, albeit only slightly. The error is denoted in

Chapter 2 as [AK], is called ‘the stiffness error matrix’ and is usually small compared

with [K,]. It is convenient to define here a complex stiffness error matrix [AKJ which is

the difference between the correct complex stiffness matrix in equation (4-13) (which is,

in practice, unavailable) and the (real) analytical stiffness matrix, i.e.:

[A&l = [&I - WJ (4-19)

= UK,1 + WI) - <&I - WI)

= [AK] + i[HJ (4-20)

The real part of this complex stiffness error matrix [AK,] is effectively the stiffness error

matrix defined by the EMM in Chapter 2 while the imaginary part of [AK,] represents the

damping matrix.

From equation (4-19),  the correct complex stiffness matrix [K,] can be written as:

WC1 = @,I + [AK,1

Inverting both sides leads to:

[KJ-’  = tl&l + WJ)-’

= ( El + [~al-‘[~cIY1[~al-l

= t [II - WJ-‘WC11 + Wal-‘[~,l)2  - . . . . .HKJ-’

= [KJ-’  - ([KJ’[AKJ)[K,]-’ + ([KJ-‘[AKJ)2[KJ-’  - . . . . . (4-21) c

Since matrices [AK] and [H] can be assumed to be small compared with [K,], similar

validation to that used in Chapter 2 shows that matrix product ([KJ’[AK,])”  approaches
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a zero matrix as n increases, i.e.:

([KJ1[AKC])* +[O] as n+w.

Then, equation (4-21) becomes:

[KC]-’  = [KJ-’  - [KJ-‘[AK,][K$’

so [&I-‘k=,I[KJ-’ = KJ-’ - KJ-’

and [AK, = [KJ ( KJ’ - [&I-’ ) KJ (4-22)

(4-23)

Since the real part of the complex stiffness error matrix [AKJ is defined as [AK], and the

imaginary part as [HI, equation (4-22) can be split into its real and imaginary parts to

yield both the stiffness error matrix and the damping matrix:

[AK] = Real ([AK,])

= RealI  W,l ( W,l-’ - [KJ-’ 1 [&I 1

= [&I ( [KJ-’ - Red  (KJ-'1  1 l&l

Wl = Irw WK,I)

= Imad EK,l ( &I-’ - l&l-’ 1 [KJ 1

= I&l Wag ([K,l-lIJ [&,I (4-24)

,

Equations (4-23) and (4-24) indicate that the stiffness error matrix [AK] and damping

matrix [HI can be estimated separately when they coexist. Estimation of the damping

matrix can thus be implemented by estimating the imaginary part of [AK,] only,
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In order to use an incomplete set of vibration modes to estimate the stiffness error matrix

[AK] and the damping matrix [III, the analytical flexibility matrix [KJ’ and the

experimental complex flexibility matrix [KC]-’ must be approximated by the

corresponding real and complex modal data:

[&I-’ = N+J _[~@I-‘_ MaIT
mxn

&I-’ = [$,I _[.q2J1 _ MxlT
m m

(4-25)

(4-26)

Therefore, the stiffness error

equation (4-24) can be obtained

[AK] = Real ([AK,])

matrix in equation (4-23) and the damping matrix in

using the modal data as:

= EKJ ( [$,I ba2.1-'  MJT - Red { [$JPo,2.1-’  [@,JT 1) &I (4-27)

WI = Imag WK,I)

= &I bag { l$JlI ‘q.l-‘M,lTl) l-&l (4-28)

It should be borne in mind that the damping matrix estimated by equation (4-28) will be a

full matrix, ‘predicting’ damping properties throughout the structure. This is due to the

limited number of modes available from measurement and is contradictory to the usual

damping condition of a vibrating structure as indicated above (i.e. damping concentrated

at relatively few points). It also needs to be noted that as the number of measured modes

increases, the significant elements in damping matrix [HJ will show up more and more c

clearly in the damping matrix estimated by equation (4-28) and such a trend could be an

additional means of confuming  the damping element location suggested in $4-4.

One interesting feature in estimating the damping matrix is that close modes will play a
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significantly important part in the process. Since the damping matrix [H] is small

compared with [KJ, it can be regarded as a complex perturbation of [KJ.  The complex

stiffness matrix [K,] (i.e. &]+i[Hj)  is then the result of this perturbation. According to

perturbation theory, the consequence of a perturbation i[HJ  on the stiffness matrix K] is

that each complex mode shape { $Jr  (r=1,2 . . ..n) after perturbation can be expressed as a

combination of the corresponding real mode shape {Q,},  before perturbation Dlus a

contribution of all the other (real) mode shapes. Mathematically:

If two modes, r and s, are very close to each other, then, since (wf’ - os2) is small, they

will both contribute significantly to the change of each mode shape. This means that close

modes are likely to have a considerable effect in the perturbation i[Hl on [KJ and may be

expected to contain significant information of the perturbation on mode shapes so that

they will be especially effective in estimating the damping matrix. Therefore, the damping

matrix estimated using equation (4-28) will be more accurate if two measured vibration

modes are very close and are employed in the estimation.

4-5-2 Iterative Approach to Improve the Estimation of [HJ

Since the significant elements in the damping matrix [Kj can be localized before the

damping matrix itself is estimated by equation (4-28), the elements in [HJ estimated by

equation (4-28) which are not localized by means of the measured complex vibration

modes will be regarded as errors introduced by the insufficiency of the number of 0

measured modes and will be artificially suppressed, as used in the stiffness error matrix

case studied in Chapter 3. The same argument will be applied to the stiffness error matrix

[AK] estimated by equation (4-27). In addition, matrices m and [AK] thus estimated will

be expected to be rough estimates since the number of measured complex modes used will
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significantly important part in the process. Since the damping matrix [H] is small

compared with [KJ, it can be regarded as a complex perturbation of [KJ.  The complex

stiffness matrix [K,] (i.e. &]+i[Hj)  is then the result of this perturbation. According to

perturbation theory, the consequence of a perturbation i[HJ  on the stiffness matrix &] is

that each complex mode shape { $JT (r=1,2 . . ..n) after perturbation can be expressed as a

combination of the corresponding real mode shape {Q,), before perturbation Dlus a

contribution of all the other (real) mode shapes. Mathematically:

If two modes, r and s, are very close to each other, then, since (of’ - os2) is small, they

will both contribute significantly to the change of each mode shape. This means that close

modes are likely to have a considerable effect in the perturbation i[Hl on [KJ and may be

expected to contain significant information of the perturbation on mode shapes so that

they will be especially effective in estimating the damping matrix. Therefore, the damping

matrix estimated using equation (4-28) will be more accurate if two measured vibration

modes are very close and are employed in the estimation.

4-5-2 Iterative Approach to Improve the Jlstimation  of [HJ

Since the significant elements in the damping matrix [Kj can be localized before the

damping matrix itself is estimated by equation (4-28), the elements in [l!-IJ  estimated by

equation (4-28) which are not localized by means of the measured complex vibration

modes will be regarded as errors introduced by the insufficiency of the number of 0

measured modes and will be artificially suppressed, as used in the stiffness error matrix

case studied in Chapter 3. The same argument will be applied to the stiffness error matrix

[AK] estimated by equation (4-27). In addition, matrices m and [AK] thus estimated will

be expected to be rough estimates since the number of measured complex modes used will



often be very limited. However, with the knowledge of the location results, this

estimation can be carried out iteratively with the limited number of measured complex

modes in order to achieve a reasonably accurate damping matrix. The process can be

illustrated as in Figure 4-4 and is subjected to a numerical case study below.

4-6 NUMERICAL ASSESSMENT OF DAMPING PROPERTY INVESTIGATION

A series of numerical studies were carried out in order to validate the technique proposed

above for locating the damping in a vibrating structure. Also, by examining the damping

matrix obtained using an incomplete set of measured vibration modes, an attempt is made

to produce an acceptable damping matrix for the structure based on the accurate damping

element location.

The system used for the numerical study was the same as that shown in Figure 2-l and

used in the previous two Chapters, with the exception that it is now supposed to

include

one hysteretic damper, with a value of 4.5~105 N/m, attached between coordinates 6 and

7, thus forming the system shown in Figure 4-5. The correct damping matrix for the

system is shown in Figure 4-6. Three damping cases are investigated:

(i) when the analytical stiffness matrix is reliable;

(ii) when the analytical stiffness matrix is erroneous and;

(iii) when close modes exist for the system.

These three cases are denoted as “Case Dl, Case D2 and Case D3” respectively. For all

the various cases investigated, the mass matrix remains unchanged (and correct).

Case Dl The stiffness matrix of the system is the same as the analytical stiffness matrix in

Table 2-l and is supposed to be correct. Thus, all 8 simulated ‘analytical’ modes and

‘experimental’ modes can be obtained by eigensolution. It should be noted that the

‘analytical’ modes are real and the ‘experimental’ modes are complex since the system is

now damped and the ‘analytical’ model does not include the damping properties. Table
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4-l presents all eight undamped and damped natural frequencies and damping loss

factors.

Equation (4-16) is applied to locatethe non-zero elements in the damping matrix [II’j. To

simulate the practical situation of having only a limited number of measured vibration

modes, and to assess the feasibility of the approach proposed in this Chapter, only one

simulated measured complex mode is used at a time in applying equation (4-16). Figure

4-7 provides graphical presentations of the location results obtained by equation (4-16)

using one mode at a time - from mode 1 to mode 4. This figure suggests that the damping

element can be located by using as few as one measured complex mode, provided this

measured mode is sensitive to the damper.

Case D2 To consider the more general practical situation, it is thought that the analytical

stiffness matrix will often be erroneous for a damped structure and hence, the case of

coexistence of [AK] and [II’J has to be investigated numerically in order to lend fully

support to the approach developed in this Chapter. To simulate this case, it is supposed

that the analytical and the experimental stiffness matrices are the same as Case 1

investigated in the previous two Chapters (Chapters 2 and 3) while the damping condition

is the same as for Case Dl above. The stiffness error matrix [AK] is then the same as that

in Figure 2-2. The objectives of this case study are first, to locate both the m&modelled

region in the analytical stiffness matrix between coordinates 2 and 3 and the damping

element between coordinates 6 and 7 and, second, to assess the possibility of determining

both [AK] and [IIJ accurately using the iterative process illustrated in Figure 4-4.

Table 4-2 presents the natural frequencies and damping loss factors for both undamped

analytical and damped “experimental” cases. It is interesting to note - by comparing Table

4-l with Table 4-2 - that the damping loss factors in these two cases are quite different

from each other, even though the damping distribution in the system is the same in both

cases. This supports the suggestion made in the early part of this Chapter that a given

damping matrix may not present a unique set of damping loss factors in the modal data,

c
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because the damping loss factors depend on mass and stiffness properties as well as the

damping distribution. However, it can be seen from the results detailed below that correct

damping element location will still be achieved.

To locate the mismodelled region in [KJ and the significant elements in [III, equation

(4-18) is used with any one of the measured complex modes. Figure 4-8 shows the

results of using equation (4-18) with just one mode at a time. The left-hand column in the

figure is the real part of equation (4- 18) and the right-hand column the imaginary part. It

is clear from this Figure that results from each application consistently pinpoint the correct

location of the stiffness errors in the analytical matrix [K,] (between coordinates 2 and 3)

and the damping element between coordinates 6 and 7.

Once the correct location for [K,] and [HJ has been achieved, equations (4-27) and (4-28)

can be used to calculate respectively the stiffness error matrix [AK] and the damping

matrix [HI. It is also attempted in this case study to assess the iterative process suggested

in Figure 4-4. Accordingly, the first four complex modes were used together in applying

equations (4-27) and (4-28) iteratively and for each iteration the results were modified in

accordance with the correct location already available. Figures 4-9 to 4-14 show the

natural frequency errors, the damping loss factor errors of all 8 modes, the total mode

shape errors of the real and imaginary parts of the mode shapes and the errors of each

mode shape. All the results indicate the notable success of the iteration process. The final

improved analytical stiffness matrix and the constructed damping matrix are considered to

be accurate enough, when compared with the correct stiffness and damping matrices.

Case D3 It can be seen from Tables 4-l and 4-2 that neither Case Dl nor Case D2 has any *

close modes (close in the sense of natural frequencies). To investigate the effect of close

modes on damping element location, the stiffness matrix of Case Dl is adjusted so that

the undamped and damped natural frequencies and damping loss factors are as shown in

Table 4-3. It can be seen that modes 4 and 5 are very close to each other in this new
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configuration and hence only these two modes are used in equation (4-28) to calculate a

damping matrix. The result shown in Figure 4-15 indicates clearly the dominance of these

two modes in estimating the damping element between coordinates 6 and 7 and confirms

that close modes can be decisive in investigating the damping properties of a vibration

system.

4-7 CONCLUSIONS

The difficulty of investigating the damping properties of a vibrating structure lies mainly

in two aspects (in addition to the inevitable practical situation of incompleteness in the

measured vibration modes): (1) the damping properties cannot be specified by analytical

methods in the same way as can the mass and stiffness characteristics, and (2) the

damping properties of a structure have to be investigated in many cases where the

analytical model of it is erroneous in the stiffness and/or mass properties as well.

It is expected that the damping properties of most vibrating structures are not distributed

in a similar way to the mass and stiffness, and so the conventional proportional damping

model is not appropriate to represent the true damping distribution. Rather, damping often

comes from the joints between the various components of a structure, or from the

structural failures such as internal cracks. Therefore, it believed to be more appropriate to

investigate the damping properties by first locating the major damping elements using the

measured complex vibration modes and then, if the number of measured vibration modes

is adequate, estimating the damping matrix based on the suggestion of a successful

damping element location.

It is believed that modal data from a successful measurement contain the necessary

information about the structure’s damping properties. However, the information provided

by the experimenta.l  modal data does not reveal explicitly the spatial or global damping

distribution of the structure. Moreover, the information can be misinterpreted when the

erroneous analytical model of the structure is applied to investigate the damping
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properties.

An analytical approach has been developed to locate the damping elements in a vibrating

system using a very limited number of measured complex vibration modes. Case studies

using the approach have demonstrated that the mismodelled regions in an analytical

stiffness matrix can be located by the real part of equation (4-18) while the damping

distribution is revealed by its imaginary part. Once a successful location has been

achieved for both [K,] and [HJ, improving matrix [KJ and estimating [HI can then be

implemented by using the extended EMM in a iterative process. Encouraging results

based on simulated data have been obtained that validate the analytical approach.

Furthermore, it has been found that close modes contain much more valuable information

about the complexity of the system than do isolated modes, suggesting that they are

especially important in methods for constructing the damping distribution. It is suggested

that the approach proposed in this Chapter is feasible in investigating the damping

properties of vibrating structures.

c



-- 105 --

UNDAMPED DAMPED
NATURAL NATURAL DAMPING LOSS

FRJZQURENCIES FREQUENCIES FACTORS

21.3729 Hz
33.8582 Hz
78.4522 Hz
89.8641 Hz

103.4225 Hz
212.5663 Hz
292.4734 Hz
406.7665 Hz

21.3729 Hz
33.8756 Hz
78.4983 Hz
89.8756 Hz

103.4224 Hz
212.7217 Hz
296.6479 Hz
406.5155 Hz

.ooooO
JO776
JO523
.03052
MI028
.01140
.06077
.01643

Table 4-l
Natural frequencies and damping loss factors for Case Dl

UNDAMPED
NATURAL

FREQURENCIES

DAMPED
NATURAL DAMPING LOSS

FREQUENCIES FACTORS

21.3729 Hz
33.8582 Hz
78.4522 Hz
89.8641 Hz

103.4225 Hz
212.5663 Hz
292.4734 Hz
406.7665 Hz

21.3834 Hz .00001
34.4070 Hz .00771
79.5351 Hz S-IO293
93.0651 Hz .03648

103.4838 Hz .00005
213.3700 Hz .00918
303.3162 Hz .05499
409.3685 Hz .01804

Table 4-2
Natural frequencies and damping loss factors for Case D2

UNDAMPED
NATURAL

FREQURENCIES

DAMPED
NATURAL DAMPING LOSS

FREQUENCIES FACTORS

5.0029 Hz
8.8321 Hz

20.3547 Hz
24.0661 Hz
25.5812 Hz
51.6245 Hz
79.9811 Hz

114.8575 Hz

5.0045 Hz .00375
8.8483 Hz .02667

20.3561 Hz .00049
24.2047 Hz a4409
25.4991 Hz .02115
51.6300 Hz XI0279
78.0000 Hz .04938

114.8295 Hz a0966

Table 4-3
Natural fkquencies and damping loss factors for Case D3

-
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Real
Wa)

0

63

Viscous damping case

Real
(l/a)

4 co2 0

Hysteretic damping case

Figure 4- 1 Reciprocal of receptance data of one vibration mode with viscous or hysteretic damping

c
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Im I Im

Re

Figure 4-2 Rotate the Nyquist circle to remove the effect of complexity

.

Porportional damping matrix

L

Practical damping matrix

Figure 4-3 A typical practical damping matrix compared with a proportional damping matrix *

.
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1 Incomplete ComDlex  1 I Complete ti

t-i

experimental model analytical model

NJ, [ql W,l, D&J (N$,ls b$

*

Location for
FKl and WI

I

Modify analytical model
&

construct damping matrix

I

No

Yes I

Yes No

accurate [H]
a&

Improved
analytical
model

Iteration
failed

Figure 4-4 Iteration process to estimate [HJ and to improve [K,]
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i-1xl I
I

L-

cx3 X

Figure 4-5 An 8DOF system with an incorrect stiffness component
and a theoretically unpredicted damper.

Figure 4-6 Correct damping matrix for the system
shown in Figure 4-5.



mode 1 only mode 2 only

mode 3 only mode 4 only

Figure 4-7 Graphical presentations of the location results for Case Dl
using equation (4-16) with modes from 1 to 4 individually.



Figure 4-8 Graphical presentations of the location results for Case D2 using
equation (4-16) with modes from  1 to 4 individually.
Left-hand side columr\:  location of stiffness errors.
Rm location of damping elements.
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a..w

Figure 4-9 Percentage errors of all 8 natural frequencies for Case D2 after each
iteration using the EMM and the error location results.

-4-

a.
4

.w

Figure 4-10 Percentage errors of all 8 damping loss factors for Case D2 after each
iteration using the EMM and the error location results.
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SI
d

?2
d

d-00 I .oo 0.00 al.00 lb.00 lb.00 li.00~ lb.00  lb.00  I

Figure 4-l 1 Percentage of total mode shape errors (real parts) for Case D2 after
each iteration using the EMM and the error location results.

I I I I I I I I I

,W

Figure 4- 12 Percentage of total mode shape errors (imaginary parts) for Case D2
after each iteration using the EMM and the enw location results.
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Figure 4-13 Percentage errors of all 8 mode shapes (real parts) for Case Two after
each iteration using the EMM and the error location results.

a
6

8
d

8%.w f.00 4.00 d.00 d.00 rb.oo  1k.00 $4.00  Il.00 lb.00  0

Figure 4- 14 Percentage errors of all 8 mode shapes (imaginary parts) for Case
Two after each iteration using the EMM and the en-or location results.

I . _, , -6,  I.
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Figure 4-15 Effect of two close complex modes in Case D3 in estimating

damping matrix using equation (4-28).
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CHAPTER 5

COMPATIBILITY OF MEASURED MODES AND

ANALYTICAL MODEL

5-l PRELlMINARJEs

As described earlier, the incompleteness of the set of the measured modes has two

aspects. First, the number of modes available from measurement (m) is usually very

limited (mcN) and second, the number of coordinates identifiable by measurement (n) is

less than the number of coordinates specified in the analytical model (n<N).

It has been shown in the earlier part of the thesis that, theoretically, the mismodelled

regions in an analytical model could be located from just a few measured modes using the

new approaches proposed in Chapters 3 and 4 when neither the basic EMM nor the CMM

are successful in doing so. However, the location of mismodelled regions can be

implemented only when the measured modes are compatible with the analytical mass and

stiffness matrices in terms of specified coordinates and, in the majority of cases, this

compatibility is not present.

Usually, an analytical model will employ a far greater number of coordinates to describe

the vibration characteristics of a structure than is practical for the measured data. The

reason for the measured modes to have a limited number of coordinates lies mainly on c

two counts: (1) vibration measurement is too expensive to permit testing many

coordinates and (2) some coordinates may be either technically difficult to test (such as

rotation coordinates) or physically inaccessible (such as those coordinates specified by the

analytical model which are ‘inside’ the structure). Experience has shown that modal tests
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of typical structures may be limited to some 50 points while the analytical model of a

structure could be theoretically as fine as possible and, due to the sophisticated computer

facilities nowadays, and examples involving up to thousands of coordinates are not

unusual in practice.

The attempt to locate the mismodelled regions in an analytical model and probably

proceeding to update it cannot be implemented directly if an incompatibility between the

measured vibration modes and the analytical model exists. To overcome this

incompatibility, much effort has been devoted. In principle, two strategies are possible: (i)

to condense the analytical model so that it is compatible with the measured modes or (ii) to

expand the measured modes somehow to the full set of coordinates of the analytical

model, possibly by using the analytical model itself.

5-2 MODEL CONDENSATION BY GUYAN REDUCTION

The problem of this incompatibility of the measured modes and the analytical model was

first dealt with effectively by Guyan 1211. In his paper, he suggested that the mass matrix

of a real structure can be reduced, as well as the stiffness matrix, by eliminating the

coordinates at which no forces are applied. This matrix reduction method was then

employed in vibration studies to ‘condense’ an analytical model to be compatible with

measured data. More specifically, the analytical mass and stiffness matrices can each be

partitioned into four submatrices respectively, as follows:

[MaI = [Ml11  [Ml21

[ 1[%ll F221

[K,l = P
[Kill F211 1[FBI &I

(5-l)

where, [Ml11 and [K1 r] are nxn submatrices corresponding to those coordinates

experimentally tested. To be compatible with the measured modes, the analytical model is

also condensed so that the condensed model contains the following two matrices:

[KalR = &I - [K,21[K221-1~~Il (5-2)
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and WalR = [MI11 - [M121[K221-1[~11 -

(l?$21-‘lK121)T([M,,l  - [~21[K221-1[K211) (5-3)

The mathematical consequence of this Guyan reduction - as it is now widely referred to -

is that the eigen-problem is closely but not exactly preserved. An implicit assumption

inherent in the derivation of Guyan reduction from the viewpoint of structural dynamics

was later revealed by Kidder[221 and is introduced as below in 53.

5-3 EXPANSION OF MEASURED MODES BY THE ANALYTICAL MODEL

The vibration characteristics of an undamped system can be described by its

eigen-equations:

6w,2Wl+ Kl)W, = UN (5-4)

where or and { cp ) r can be any one of the total N natural frequencies and the

corresponding mode shapes.

If the vibration mode (cp),  is partitioned into those elements relating to coordinates of

specific interest and those which are not, then equation (5-4) can be rearranged so that

those coordinates specifically of interest will be on the upper part of the mode shape

vector {cp),  and those which are not will be on the lower part. The mass and stiffness

matrices will also be rearranged accordingly. Equation (5-4) will then become:

and during the elimination of the sub-mode (cp,),, it can be pointed out that the

approximation nature of Guyan reduction implies the pre-requisite that:

I..., ‘?b
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It can be shown that such a condition will be reasonable only for the low frequency case

and hence there may be an acceptable agreement between the low frequency vibration

modes of a vibration model and those of the condensed model but this agreement is

expected to deteriorate for high frequency modes, Moreover, it is found from equation

(5-5) that the sub-mode ((~~1~  of a vibration mode ((p}, can be expanded by means of the

mass and stiffness matrices and the sub-mode {(pr}r:

(q,), = -(-W,2EM221 + [K,,l)-l(-~~[M,,l  + [K&P~)~ (5-6)

Once the sub-mode {(p,), is obtained by equation (5-6) and is added into sub-mode

{ ‘pl )p rearrangement of the coordinates should be performed to recover the original order

in mode shapes corresponding to the mass and stiffness matrices.

If a measured vibration mode of a structure is defined at some of the coordinates of its

analytical model, then the mode can be expanded to the same coordinate scale compatible

with the analytical model using equation (5-6), based upon the analytical mass and

stiffness matrices. A measured mode thus expanded is effectively interpolated by the

analytical model. If the analytical model contains errors, it can be imagined that those

interpolated coordinates in the expanded measured mode will not contain any information

of the errors existing in the analytical model. Use of this mode expansion approach has

been reported in the literature[15]  and practical cases[14].
c



-- 121 --

54 COMMENTS OF DIFWBENT APPROACHES

5-4-l Guvaq Reduction

The Guyan  reduction was originally developed not for the location of mismodelled

regions from the analytical model of a dynamic structure, but for condensing the analytical

model of a structure to an economical size so that the dynamic characteristics of the

structure could be described in fewer coordinates by a condensed model which possesses

reasonably similar natural frequencies and mode shapes of the structure. In order to use

the Guyan reduction for the process of locating the mismodelled regions in the analytical

model, it will be necessary to condense the analytical model down to those coordinates

which were tested experimentally. No doubt, the condensed analytical model will be

much smaller in size than the original one. Hence, the computational effort in calculating

the analytical vibration modes will be reduced greatly for any approach requiring those

analytical modes, such as the EMM, if it is to be used for the error location and the model

improvement. However, the approach of locating the mismodelled regions by the

application of this model condensation technique could sometimes be severely

undermined both in theory and in practice for the following reasons. Guyan reduction

does not preserve the eigensolution of the model exactly and hence the analytical modes

deduced fi-om  the condensed model will not, in some cases, represent the true analytical

properties of the modelled structure. This in itself may not be a serious problem compared

with the possible consequence that the mismodelled regions existing in the analytical

model could very likely be scattered during the model condensation process so that

location of the mismodelled regions in the analytical model may become more difficult.

For instance, if an analytical stiffness matrix [K,] contains modelling errors, then the the ’

mismodelled regions could be scattered into all its four partitioned submatrices in equation

(5-l) by the reduction process, depending on the choice of the coordinates experimentally

identified.
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Figure 5-l shows an NxN analytical stiffness matrix @,I before Guyan  reduction with

four erroneous elements A,B,B,C on rows r and r+l of the matrix. In order to condense

the stiffness matrix using the Guyan  reduction approach, the matrix should firstly be

partitioned by equation (5-l). If the measured and unmeasured coordinates are alternate

from the first one to the number N coordinate, and row r in matrix [K,] corresponds to a

measured coordinate while row r+l does not, then matrix &] will be partitioned in such

a way that the four submatrices are as shown in Figure 5-2. It can be seen that the

erroneous elements A,B,B,C are now scattered into these four submatrices and the

condensed stiffness matrix by Guyan reduction in equation (5-2) is as shown in Figure

5-3 and does not exhibit the original error location. If it happens that both rows r and r+l

correspond to the measured coordinates, then all the four erroneous elements in matrix

[K,] will contribute to submatrix [Krr] and the correct location of mismodelled regions is

preserved in the condensed stiffness matrix under these conditions. However, it must be

recognised that this is not always possible in real life.

It is also worth noting from equation (5-3) that the the mismodelled regions in the

analytical stiffness matrix will pollute the analytical mass matrix since the mass matrix

condensation process makes use of the analytical stiffness matrix. It can be seen from the

last example that it would be unrealistic to expect the condensed analytical stiffness matrix

[KJR in equation (5-2) still to hold the same location of the r&modelled  regions as the

original [K,] does. Nevertheless, it is accepted that the Guyan reduction is the most

effective technique at present, as far as the model condensation is concerned, and it can be
c

very useful in reducing an analytical model, provided the model is relatively accurate.

In consequence, it is suggested that great care should be taken when Guyan reduction is

to be used to condense an analytical model since the correct location of n-&modelled

.
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regions depends markedly on the coordinates experimentally identified and could possibly

be violated in practical cases when the number of these coordinates is necessarily

restricted.

S-4-2 Expansion of Measured Modes

Another strategy for coping with the incompatibility of the measured modes and the

analytical model is to expand the measured modes to the same coordinate set as the

analytical model, possibly using the analytical model itself. The possibility of scattering

the errors in the model is then avoided due to the fact that this process does not change the

connectivity in the original analytical model. It needs to be emphasised here that such a

mode expansion approach does not change the measured vibration modes at all: what the

approach does is to use the analytical model to interpolate those coordinates in the

experimental model which are not measured. Then, since the measured modes are

expanded by the analytical mass and stiffness matrices, it can be expected that modes

thus obtained are not exactly the same as those modes actually measured at all the

coordinates. In common with employing the Guyan reduction technique to condense the

analytical model to the coordinates tested, in the attempt to locate the the mismodelled

regions in the model which are to be pinpointed using those coordinates, location using

the expanded measured modes could only define the the mismodelled regions by those

coordinates tested and other coordinates in the expanded measured modes which were not

tested cannot be expected to be able to possess any error location information. This is

further explained below.

Suppose that coordinates i and i+l of a structure in Figure 5-4 are two among all of the

measured coordinates, while in the analytical model, ten coordinates are specified between

(and including) i and i+l and, further, among these ten coordinates, modelling errors

exist between coordinates j and j+l and there is no other modelling errors situated in other

part of the structure.
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If the model condensation procedure described above is used in order to apply methods

such as the EMM and the CMM, then the dynamic characteristics of the structure defined

by all the ten coordinates will be concentrated into coordinates i and i+l and, further,

coordinates i and i+l will also contain the dynamic characteristics information from all

other coordinates of the structure due to the condensation process specified by equations

(5-l), (5-2) and (5-3). It is hoped that an error location result will pinpoint the

r&modelled  regions between coordinates i and i+l, provided the modelling errors

situated between these two coordinates (or more precisely, between coordinates j and j+l)

are not scattered into other part of the analytical model. Clearly, there is no point

whatsoever to expect any approach to locate the mismodelled regions between coordinates

j and j+l, because these two coordinates are not actually measured and the measured

mode shapes do not include them

If the measured modes are expanded using the analytical model, then the location

technique proposed in the early part of this thesis could be used to locate the mismodelled

regions and again, the mismodelled regions could only be defined between coordinates i

and i+l. However, in this case, there is no risk of the errors being scattered in the

analytical model and misleading the error location process.

5-S EXPANSION OF MEASURED COMPLEX MODES

In the previous studies, only the undamped case has been considered. The vibration

modes from measurement have been supposed to be effectively real so that they can be

expanded using the analytical model. As already mentioned, such applications have been

found in the literature, although not for the purpose of error location. However, some

vibrating structures are significantly damped and the vibration modes experimentally 0

identified will be complex. In order to use such measured modes to locate the

mismodelled regions in the analytical model and to locate the damping components from

the vibrating structure, the measured complex modes have to be expanded in some way to

the full coordinate set. Although there is no appropriate analytical damping matrix in

‘i
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existence, it is suggested that the measured complex modes could still be expanded in a

similar way as for the case of measured real modes, if some technical difficulties could be

solved.

A complex mode from measurement includes the natural frequency CO,,  the damping loss

factor rl, and the complex mode shape (cp,).  If the expanded complex mode shape is

denoted as { cp,] and which is:

(5-7)

where the first sub-mode (9,. } is the complex mode shape as identified experimentally

and the second sub-mode {Q) is the yet to be determined part of the complex mode

shape corresponding to the coordinates defined in the analytical model. Then, the usual

eigen-equations in equation (5-5) can be similarly partitioned into two parts, representing

respectively the coordinates in the complex mode shape (cp,r } experimentally identified

and those remaining to be specified from the analytical model, ((Q}):

(-(w:(l+~~~ [ LvI:; :;I+ [ :EL:: ~1) [zl;] =  UN (5-ga,b)

The sub-mode ( qx2} of (cp,) can then be expanded by means of the analytical mass and

stiffness matrices:

~cp,,) = - { -w,2(1+Q)[h$21  + [&I 1“ { -o,2(l+rli)[&,l  + lK2J Op,J) (5-9)

This mode expansion approach involves mathematically inverting a complex matrix and ’

this technical problem is discussed in Appendix 2. Thus, the measured complex modes

can then be expanded to the full coordinate set to be compatible with the analytical model,

based upon the analytical mass and stiffness matrices. Again, sorting the coordinates in

the expanded complex mode in equation (5-7) to the same order as the original analytical
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model will have to be done.

5-6 ASSESSMENT OF APPROACIIRS  FOR COMPATIBILITY

The different approaches discussed and developed above to solve the problem of

incompatibility between the measured modes and the analytical vibration model of a

structure need to be fully assessed. It is thought that it would be appropriate to carry out

some specific numerical studies to assess these approaches. The system used in the

assessment is the 21 degree-of-freedom system in Figure 5-5. The analytical stiffness and

mass matrices can be constructed as the stiffness components and the masses are given

and hence all the simulated real analytical vibration modes are known.

It is supposed that the analytical model of the system has two ‘defects’, one being that the

stiffness component between coordinates 5 and 6 is underestimated by 20% and the other

being that there is a hysteretic damper in between coordinates 13 and 14. By considering

these two defects, the “experimental” model of the system can be constructed and thus,

the complex experimental vibration properties can be computed and are used to facilitate

this study. Table 5- 1 shows natural frequencies and damping loss factors of all 21 modes

for both models. The correct stiffness error matrix and the damping matrix of the system

is shown in Figure 5-6 and Figure 5-7 respectively.

If a modal test is conducted on the system using all the 21 coordinates, so that the

experimental vibration modes are defined in terms of the full coordinate set, then the

measured modes are completely compatible with the analytical model and there is no

requirement either to condense the model or to expand the modes. The measured complex

modes can then be used to locate the stiffness mismodelled region in matrix w,] and the *

damping elements in matrix [Hj. Figure 5-8 shows the location results of the approach

proposed in Chapter 4 using each of modes 1,2 or 3 respectively and it can be seen from

this figure that both the stiffness errors between coordinates 5 and 6 and the damper

.
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between coordinates 13 and 14 are well local&d.

In order to simulate the practical case where the experimental vibration modes are defined

at less coordinates then in the analytical model, the coordinates with odd numbers in the

complex experimental mode shape matrix are selected, representing the mode shapes

which are experimentally identified. Then, these modes are expanded by equation (S-9)

using the analytical stiffness and mass matrices. The thus-expanded modes are then used

to locate the stiffness mismodelled region in matrix [I<,] and the damping elements in

matrix [HJ.

Figure 5-9 shows the location results using the expanded modes 1, 2, 3, 5, 7 and 9

individually. Since the even-numbered coordinates in the expanded modes are expanded

by the analytical model, the stiffness errors and the damping will not be expected to show

up on these coordinates. Therefore, the mismodelled region in matrix [K,] will now be

defined between coordinates 5 and 7, both being experimentally-identified coordinates.

Indeed, the results using every expanded mode in Figure 5-9 indicate consistently the

stiffness errors between coordinates 5 and 7, with coordinate 6 showing no stiffness

modelling errors. The same argument for location of the damper between coordinates 13

and 14 is validated by Figure 5-9. The results using all the expanded modes in it

consistently locate the damping distribution between coordinates 13 and 15.

5-7 CONCLUSIONS

In practice, a degree of incompatibility always exists between the analytical model of a

vibrating structure and the vibration modes which are identified experimentally. If this c

incompatibility problem is not resolved, then no further use can be made of the measured

vibration modes to improve the analytical model.

Basically, there are two approaches to bridge this incompatibility: one seeks to condense

c
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the analytical model to those coordinates which are or can be identified experimentally and

the other attempts to expand the measured vibration modes using the existing analytical

model to the full set of coordinates.

No doubt, model condensation is a very economical means of studying the vibration

characteristics of a practical structure, considering the possible large numbers of

coordinates involved. As far as the location of the modelling errors and damping

components is concerned, however, it is believed that model condensation approach can

be quite vulnerable since the modelling errors in the analytical model will probably be

scattered during the condensation process and which will mislead the location effort.

In order to preserve the correct location of modelling errors in the analytical model, and

the correct damping distribution, it is suggested in this Chapter that the measured

vibration modes be expanded on the basis of the analytical model so that the expanded

modes can be used to locate the modelling errors and the damping distribution. A complex

mode expansion technique is also proposed.

Numerical assessment is carried out to validate the feasibility of the mode expansion

technique and results of using the expanded modes to locate the stiffness modelling errors

and the damping distribution simultaneously. It is suggested by the notable results that

such a mode expansion technique can be used in practical modal studies.

c ,
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21 DOF
System

Analytical model Experimental model

Mode No.
Undamped
frequency (Hz)

Damped
frequency (Hz) damping loss factor

1
i
5

7”
t

:7
12
13
14

::
17
18
19
20
21

10.247 10.433
26.615 26.974
48.950 48.995
65.561 66.574
77.270 78.512
94.436 94.401

129.425 129.805
154.283 156.197
165.128 166.831
184.810 184.808
205.195 205.197
221.929 221.932
249.918 249.873
269.443 279.794
283.824 288.980
290.790 290.928
292.867 307.798
330.097 330.097
371.159 388.123
47 1.907 47 1.907
491.147 491.147

.040673

.079168
BOO944
.095412
.038553
XI05943
.001260
.006836
XI03896
.001321
.000040
BOO685
.016287
.000172
BOO297
BOO263
.OOOOO1
.OOOOOO

:ZZKZ
BOO153

Table 5- 1

Natural frequencies and damping loss factors of the 21 DOF system
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Figure 5-l An analytical stiffness  matrix with four erroneous elements

Figure 5-2 Erroneous elements scattered into four submatrices
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\]

B
_

.

\

B

\
.

Figure 5-3 Guyan  reduction process

c
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0 II 0 0 ?1 0

i j j+l i+l

Figure 5-4 A structure with coordinates ‘5” and “i+l” being tested

. . . . . . . . . . . . .

L,, L,,

. . . . . . . . . . . . .

Ll3 Ll4 Lx21

Figure 5-5 A 21 DOF system with an incorrectly predicted stiffness  compoment
and an unpredicted hysteretic damper

c
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Figure 5-6 Correct stiffness error matrix [AK] for the system shown in Figure 5-5.

Figure 5-7 Correct damping matrix [HJ for the system shown in Figure 5-5.

L ,



mode 1 only

mode 2 only

mode 3 only

Figure 5-8 Location  of stiffness errors and damping elements in the system shown
in Figure 5-5 using experimental modes 1,2 and 3 respectively.

Left-hand side column: location of stiffness errors.
Bight-hand  side column: location of damping elements.



Expanded mode 2 only

Expanded mode 3 only

Figure 5-9 Location of stiffness errors and damping elements in the system shown
in Figure 5-5 using experimental modes 1,2 and 3 individually after the
experimental modes are expanded.

Left-hand side column: location of stiffness errors.
fight-hand side column: location of damping elements.
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CHAPTER 6

APPLICATION OF MODELLING ERROR LOCATION

TO A PRACTICAL STRUCTURE

6-l INTRODUCI’ION

In the early parts of this thesis, it has been noted that the dynamic characteristics of a

structure are widely investigated by two approaches, these being theoretical modelling and

experimental testing. It has also been stressed that the dynamic characteristics can be fully

and correctly understood only if these two approaches are made in parallel, in order to

offset the weaknesses of both. The strong demand in vibration research and engineering

practice to use the measured vibration modes in order to improve the analytical model of a

vibration structure has also been identified.

Several methods which currently facilitate the model improvement process have been

reviewed and studied in Chapter 2. It is found that the main drawback of these methods is

that the resultant improved analytical stiffness or mass matrix does not adequately

represent the structure modelled analytically since these methods attempt to modify the

whole analytical model and end up with an ‘improved’ model which violates the actual

connectivity of the structure. The vibration characteristics deduced by a thus-improved

model will therefore not be correct and even the iteration process suggested in Chapter 2

cannot overcome this drawback and achieve the correct model. In addition, we lack an

appropriate method to investigate the damping properties of vibrating structures and the ’

proportional damping assumption is believed to be impractical in real Iife applications.

Since it is realized that, for most vibrating structures, the modehing  errors inherent in their

analytical models are usually local - due to the sophisticated modelling techniques - and

L I
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these local errors in the models are referred to as the k&modelled’  regions, it then

becomes extremely important for the model improvement methods to be able to localize

these regions using a limited number of measured vibration modes. Without this location,

the models cannot be modified in the right areas and the model improvement can be

neither structurally meaningful and nor computationally efficient. A new approach has

been developed in Chapter 3 to enable the localisation of mismodelled regions using as

few as just one measured vibration mode. It has also been established that once the

mismodelled regions are localized, an iterative improvement of the analytical model can

become remarkably effkient.  A similar philosophy has been applied to an investigation of

the damping properties and again, it is proposed that the major damping components of a

vibration structure can be located using a limited number of complex modes obtained by

modal testing and it then becomes promising to construct a meaningful damping matrix

for the analytical model by using the measured complex modes and the existing analytical

model, even if this contains some errors.

Although these approaches to localize the mismodelled regions from an analytical model

and the damping components of a vibration system have been successfully validated using

numerical case studies, it is necessary to investigate a real structure using the same

approach in order to demonstrate satisfactorily the feasibility of the applying the approach

in practice. This Chapter investigates the vibration characteristics of a beam structure

using both theoretical modelling and modal testing and analysis, in an attempt to

demonstrate that the local errors in the analytical model of the structure can be

successfully localized by applying the approach developed in this thesis.

6-2 ANALYTICAL MODELLING OF THE STRUCIURE
c

The structure used in this study is the beam shown in Figure 6-1, with a uniform cross

section but with a joint, which is ignored in the predicted model. The structure actually

consists of two beam subsystems connected by a nut and bolt so that the tightness of the

joint can be adjusted to produce different local stiffness conditions. The beam is made of
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steel and is about 2m long with cross section of 25mm x 18Smrn.

A finite element analysis is carried out for this beam structure, ignoring the joint, so that

the structure is regarded as a uniform beam shown in Figure 6-2. This is divided into 9

equal length beam elements and, taking into account both the translational and the

rotational displacements in directions x and 8, as shown in Figure 6-3, mass and stiffness

matrices can be derived for the beam element (Appendix 3). Global analytical mass and

stiffness matrices which form the analytical model of the structure can then be

constructed. The analytical mass and stiffness matrices thus obtained have a dimension of

20x20. It is believed that the analytical mass matrix of this structure is reasonably accurate

since the structure does not have any sudden changes of section while the analytical

stiffness matrix obviously does not represent the true stiffness distribution because it does

not take account of the local stiffness change near the joint

The analytical vibration modes of the structure are obtained by the eigen-solution of the

analytical model. Table 6-l shows all the 20 natural frequencies of the analytical modes,

including two zero natural frequencies for the rigid body modes. The left hand column in

Table 6-2 shows the mode shape vectors of 4,5, and 6 analytical vibration modes derived

by the analytical model. It can be seen that the analytical vibration modes are defined in

both the rotational and translational coordinates and these are alternately positioned in the

mode shape vectors. Specifically, those odd-numbered coordinates are translational

coordinates and the even-numbered rotational ones.

6-3 MODAL TESTING AND ANALYSIS OF THE BEAM STRUCTURE AND THE 4

COMPARISON OF lTS MODAL MODEL AND FE MODEL

The modal testing was carried out with the structure supported by two soft strings at its

ends, simulating a free-free boundary condition, as shown in Figure 6-4. The testing was
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carried out at ten translational coordinates in the x direction, as indicated in the Figure 6-4.

As suggested by the modal testing theory, one column of the FRF matrix of a system is

theoretically sufficient to extract the modal model of the system, provided the excitation

point is selected such that all the interesting vibration modes can be excited. After careful

examination, it was decided that structure was to be excited at point 3 (coordinate 5)

where all the interested modes show up. Equipment set-up is also displayed in Figure

6-4. The frequency response analyser used in this test was Solartron 1250 analyser which

facilitates standard discrete sinusoidal signal. The Modal Testing software ‘POLAR’ is

used for the data acquisition and software ‘MODENT’  used for the analysis. Both

programs are developed in the Modal Testing Unit in this department and, in this study,

they were run on an HP computer.

A fast sinusoidal excitation sweep was used first in the frequency range of interest in

order to identify the vibration modes. Then, a roomed sinusoidal excitation was used in

the test and the acceleration response at each coordinate was recorded while the excitation

force is applied on point 3, so that the frequency response function (FRF) could be

obtained from the frequency response analyser. Figure 6-5 shows a typical frequency

response function obtained in measurement. Its counterpart in the Argand plane is shown

in Figure 6-6. The data exhibit quite clearly-defined modal properties for the structure

within the measured frequency range.

In this study, only three vibration modes were measured and analysed for the purpose of

stiffness error location. The measured natural frequencies of these three modes are shown

in the right hand column of Table 6-l. Table 6-2 compares these three measured vibration

modes with those predicted by the analytical model. The difference between the measured

natural frequencies and those predicted analytically, and that between the mode shapes, is *

apparent and is expected to be caused by the fact that the analytical model does not

correctly model the true stiffness distribution of the beam structure because of the joint.

Figure 6-7 shows the FRF data measured from point 6 within a certain frequency range

and the corresponding FRF data predicted by the FE model. It can be clearly seen that the
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vibration modes predicted theoretically exhibit different dynamic characteristics of the

structure from the vibration modes obtained experimentally. Again, this is due to the

different stiffness conditions which apply to the analytical and experimental configuration.

6-4 LOCATION OF THE MISMODELLED REGION IN ANALYTICAL

STIFFNESS MATRIX USING MEASURED VIBRATION MODE

641 Expansion of Measured Vibration Modes

In order to localize the modelling errors in the analytical stiffness matrix, the

incompatibility between the analytical model and the measured vibration modes in terms

of the coordinates specified has to be overcome first. As proposed in Chapter 5, the three

measured vibration modes are expanded to include those rotational coordinates which are

not measured, using the analytical mass and stiffness matrices. The three thus-expanded

measured mode shapes (rearranged to the original coordinate order as the analytical mode

shapes adopt) are listed in Table 6-2, together with the corresponding analytical mode

shapes for the sake of easy comparison. It can be seen fi-om  Table 6-2 that the measured

translational coordinates in the expanded mode shapes are unchanged while the rotational

coordinates in the expanded mode shapes are effectively interpolated into the mode shapes

by the analytical model. In addition, the measured natural frequencies are not changed

during this mode shape expansion procedure.

6-4-2 Location of Mismodelled Region in the Analytical Stiffness Matrix

The three expanded measured vibration modes are then used to locate the errors in the

analytical stiffness matrix. Figure 6-8 shows the results of locating the errors using each *

expanded measured vibration modes individually and then using three measured modes

together, and this figure indicates that each result consistently points to the same region in

the analytical stiffness matrix where stiffness modelling errors exist. Namely, the errors

are confined in those elements between rows 13 and 17, corresponding to the testing
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points between 7 and 9.

To interpret the results shown in Figure 6-8, it has to be noted that the unpredicted joint in

the beam structure (ignored in the analysis) is situated between the test points 7 and 8 and,

according to the explanation of Chapter 5, the stiffness modelling errors should be located

between test points 7 and 8 (which correspond to the global coordinates between 13 and

16). However, the results in Figure 6-8 for using each expanded measured vibration

consistently indicate the stiffness modelling errors between testing points 7 and 9, which

relate to global coordinates 13 to 18. This is eventually answered by inspection of the

structure. Since the joint which is sited between test points 7 and 8 is close to point 9

side, the significant tightness of the joint eventually affects the stiffness condition between

points 8 and 9, so that the modelling errors are indicated not only between points 7 and 9,

but also between 8 and 9.

To be fully convinced of the location obtained above using the measured vibration modes,

one extreme condition is now considered. It is understood that the measured modal data

values could possibly vary due to the testing conditions, numerical calculation errors etc.

In order to simulate the possibility of different test results, and the consequence of that on

the location of the stiffness modelling errors in this study, all the measured natural

frequencies and mode shapes of the three modes are perturbed by five percent random

errors and these revised measured modes are then used, as before for the unperturbed

modes, to locate the errors in the analytical stiffness matrix. Figure 6-9 shows the results

using the revised modes 4, 5 and 6 individually and it can be seen that just the same

modelling error location is obtained, as before. This shows that the correct modelling

error location can be achieved even the measured data have some realistic errors.
c

6-5 CONCLUSIONS

A practical application of the approach proposed in the early part of this thesis to locate the

r&modelled  region in the analytical model of a structure has been carried out. The
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primary purpose of this part of the study is to assess the practical feasibility of the

approaches proposed so far in this thesis in locating the modelling errors which exist in

the analytical model of a structure using just a few number of the measured vibration

modes.

The structure upon which the investigation was performed is a beam structure with an

analytically ignored joint which causes the modelling errors in the analytical stiffness

matrix of the structure. The analytical model is obtained assuming the structure to be a

uniform beam and the analytical mass and stiffness matrices can be derived by Finite

Element modelling. The stiffness matrix thus derived contains errors relating to the local

area where the joint exists while the mass matrix is believed to be acceptably accurate

since there is no sudden mass change on the structure.

Modal testing was carried out using the ten translational coordinates of the structure only,

as the remaining rotational coordinates defined by the analytical model are technically

difficult to test. Only three vibration modes were identified experimentally.

Since an incompatibility exists between the measured vibration modes and the analytical

model, the three measured vibration modes were expanded using the analytical mass and

stiffness matrices, as suggested in Chapter 5. These three expanded vibration modes were

then used to locate the modelling errors assumed to be present in the analytical stiffness

matrix.

The results of using the expanded vibration modes individually to locate modelling errors

in the analytical stiffness matrix have consistently pinpointed the correct region in the

*matrix which relates the local area in the structure where the unpredicted joint is situated.
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Mode Natural frequencies(Hz) Natural frequencies (Hz)
of complete model of measured modes

:

:

i
7

;
10
11
12
13
14
15
16
17

:;
20

E%Ei
350970
98.328 1 78.99

196.4980 170.16
331.1097 287.83
501.6208
701.4584
913.3696

1094.408 1
1598.5626
1811.2545
2076.2880
2398.3894
2824.3952
3430.9070
4355.4700
5758.2817
8079.045 1
8494.8225

Table 6- 1

predicted and measured  natural frequencies of the beam structure

Sourse analytical model

Coords

measured mode expanded measured

:.
3
4

:
7

;
10

::.
13
14
15
16
17

:;
20

0.75065
-3.0957 1
0.10554
-2.82288
-0.38516
-1.51959
-0.50100
0.49832
-0.21322
1.95468
0.23680
1.90327
0.50582
0.37366
0.36850
-1.60837
-0.13817
2.86949
-0.79146
-3.12549

0.67238

0.15084

-0.28598

-0.46880

-0.3 1209

0.07480

0.44332

0.51650

-0.0725 1

-0.71877

0.67238
-2.47615
0.15084
-2.34668
-0.28598
-1.54197
-0.46880
0.04462
-0.31209
1.41524
0.07480
1.91141
0.44332
1.37209
0.51650

-1.31651
-0.0725 1
-3.25774
-0.71877
-2.89180

Table 6-2(a) Mode 4 - mode shapes from different sourses

* i’
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Sourse analytical model

Coords

measured mode expanded measured

1

i
4

z
7

:
10
11
12
13
14
15
16
17
18
19
20

0.757 10
-4.36470
-0.12437
-3.46185
-0.52608
0.07181
-0.12887
2.99139
0.46508
1.72114
0.44841
-1.86534
-0.15752
-2.93444
-0.52382
0.07077
-0.09219
3.578 10
0.81509
4.48759

0.75609

-0.08800

-0.49158

-0.21981

0.37643

0.49969

0.01540

-0.49303

-0.11456

0.52150

0.75609
-4.22389
-0.08800
-3.267 15
-0.49158
0.30012

-0.21981
2.55901
0.37643
2.10325
0.49969
-1.00436
0.01540
-3.09858
-0.49303
-0.40925
-0.11456
2.93072
0.52150
2.95846

Table 6-2(b) Mode 5 - mode shapes from different sourses

Sourse analytical model

Coords

measured mode expanded measured

:.

:
5
6
7

:
10
11
12
13
14
15
16
17
18
19
20

0.76419
-5.59298
-0.31916
-3.51529
-0.40384
2.68520
0.40342
2.87411
0.39647
-2.9259 1
-0.41110
-2.82433
-0.3873 1
2.983 17
0.40729
2.63293
0.29849
-3.6487 1
-0.84007
-5.95857

0.67992

-0.32269

-0.38506

0.39950

0.40743

-0.36426

-0.42412

0.333 12

0.25655

-0.51613

0.67992
-5.28993
-0.32269
-3.16451
-0.38506
2.59939
0.39950
2.77730
0.40743
-2.67267
-0.36426
-2.93672
-0.42412
2.61191
0.333 12
2.43214
0.25655
-2.64746
-0.51613
-4.01821

Table 6-2(c) Mode 6 - mode shapes from different sourses

Table 6-2
Mode shapes for vibration modes 4,5,6 of the beam structure
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Figure 6-l a uniform with an unpredicted joint
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Figure 6-2 FE modelling of a uniform beam
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Figure 6-3 A typical beam element for FE analysis



Test point 1

Coord. No.(  1)

0 0 0 0 0 l 0
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Beam structure
A

Shaker 4

Charge amplifier

Power amplifier cl Sine signal geberator

Frequency response function
b

for modal analysis

Figure 6-4 Modal testing of the beam structure
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Figure 6-5 A typical frequency response function obtained from modal test
of the beam structure shown in Figure 6-4.
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Figure 6-6 The FRF in Figure 6-5 is presented in the Argand plane.
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Expanded mode 4 only Expanded mode 5 only

Expanded mode 6 only A Expanded modes 4,5 and 6

Figure 6-8 Location of stifTncss  enors  for the beam structure shown in Figure 6-4
using experimental modes 4.5 and 6 individually and then together

\ after the experimental modes arc expanded.



Expanded mode 4 only

Expanded mode 6 only Expanded modes 4,5 and 6

Figure 6-9 Location of stiffness errors for the beam structure shown in Figure 6-4
using experimental modes 4,5 and 6 individually and then together after
the experimental modes are expanded and 5% artificial random errors are
added into the natural frequencies  and mode shapes.
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CHAPTER 7

MEASUREMENT OF NONLINEARITY

7-1INTRODUCFION

In the previous Chapters, we have covered one of the most important and demanding

topics in the recent vibration research: that of correlating the analytical model of a dynamic

structure and its measured vibration modes so that an improved model can be obtained.

This is expected to combine the advantages of the two widely used approaches (analytical

modelling and experimental testing) in order to understand better the dynamic

characteristics of the structure under investigation. The damping properties of a structure

have also been studied.

In those previous studies, it is assumed that linearity exists for the structures modelled

analytically and tested but it is realised that all real vibrating structures are nonlinear to

some degree. However, many of them may be nonlinear to a tolerable extent so that they

can still be investigated using the theory for linear structures. For those structures known

or suspected to be noticeably nonlinear in their vibration behaviour, the linear assumption

fails to be applicable and special analysis is needed to investigate the nonlinearity.

Generally, it can be said that nonlinearity is similar to the modelling errors and damping

properties discussed earlier in the sense that it also cannot be predicted analytically and

can only be identified by experimental measurement.
c

The study of nonlinearity is very complicated. This results from the fact that the

superposition principles whereby the response of a system to different excitations can be

added linearly is not valid in the case of nonlinear systems. As a consequence, the

dynamic characteristics of nonlinear structures become excitation-dependent and much
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less predictable. Since the nonlinearity encountered in vibrating structures is often difficult

to identify, and even more difficult to quantify, they are in many practical cases significant

to the vibration behaviour of the structure, and the requirement for special investigation

methods is clear.

It is noted that theoretical methods have been developed extensively for those nonlinear

systems whose equations of motion can be expressed analytically. The fundamental point

of the analysis can be classified briefly as linearising either the parameters of a nonlinear

system or its vibration response. There are currently quite a number of methods which are

available to examine the vibration behaviour of a nonlinear system analytically. For

example, the Small Oscillation Method is an approach which replaces the nonlinear term

in the differential equations of a nonlinear system by its Taylor series with respect to

displacement and velocity and considers only the fast two terms, thereby extracting a

linear system which will exhibit a response like the nonlinear system; The Quasi-harmonic

Method[54]  aims at deriving a periodic solution for a nonlinear system in the form of a

power series in E (a parameter which indicates the perturbations of the system and is

considered to be very small). Thus, a time-dependent solution which does not differ

appreciably from the solution of the corresponding linear equation can be sought. The

Method of Krylov and Bogolyubov supposes that the solution to the equation of a

nonlinear vibrating system is still in the same form as that of its linear counterpart, except

that the amplitude and phase are slightly varying with time and, as a consequence, the

approximate solution of the nonlinear system is a periodic function of both the amplitude

and phase angle, as weIl  as time. An equivalent natural frequency and damping coefftcient

of the nonlinear system subjected to an external excitation can then be obtained as

functions of the response amplitudef 551. Iwan’s  New Linearisation Method[561 is a

generalisation of the method of equivalent linearisation. It introduces a weighting function c

into the averaging integrals used in the equivalent linearisation method and suggests that a

nonlinear second order system can be replaced by a linear system in such a way that an

average of the difference between the two systems is minimized. It also shows that the

replacement is unique and can be accomplished in a straightforward manner.

. .
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Apart from the methods summarized  above for general nonlinear cases, analysis could be

further developed to cope with systems having known types of nonlinearity. For instance,

such studies can be traced back to dates long before the computer was available[57]  or,

they can be found from time to time in recent ~terature[~*l~[~~l.

Although many types of nonlinearity have been studied extensively, based on

mathematics and analysis used in control engineering, the theory is often not directly

applicable to experimental modal analysis of real structures because of the absence of

explicit equations of motion for practical vibration situations. The major difficulty in these

situations is the detection and identification of the nonlinearity when what is available is

the response of a nonlinear structure to excitation by external forces rather than an explicit

analytical description. Nevertheless, the theoretical study provides many specific and

frequently encountered types of nonlinearity with characteristic response patterns which,

in turn, provide a helpful reference in practical modal analysis.

7-2 EXCITATION TECHNIQUES

It is customary to assume that for linear structures, the dynamic characteristics will not

vary according to the choice of the excitation technique used to measure them. However,

the effects of most kinds of nonlinearity encountered in structural dynamics are generally

found to vary with the external excitation and hence the fust problem of a nonlinearity

investigation will necessarily be to decide a proper means of excitation so that the

nonlinearity can be easily exposed and then identified. There are currently mainly three

types of excitation method widely used in vibration study practice and each of them is

discussed below.
c

7-2-l Sinusoidal Excitation

Sinusoidal excitation is the traditional excitation technique in vibration testing and also in
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recent modal testing practice. Although many other techniques such as random, transient,

periodic and pseudo-random excitations etc have been developed, sinusoidal excitation is

still commonly applied in practice because of its uniqueness and precision. The main

advantages of this excitation can be summarised as:

(a) sinusoidal excitation can accurately control the input signal level and hence it

enables a high input force to be fed into the structure. This is especially significant

when large structures are tested,

(b) for discrete sinusoidal excitation, the signal-tonoise ratio is generally good as the

energy is concentrated in one frequency band each time and even swept sinusoidal

excitation can normally achieve similar concentrated energy conditions compared

with other excitation methods;

(c) sinusoidal excitation is widely regarded as the best excitation technique for the

identification of nonlinearity in most applications of modal testing and analysis;

(d) when the harmonic distortion effects of nonlinearity are investigated, sinusoidal

excitation is also uniquely required.

It is the item (c) that contributes most to the continued wide application of this traditional

excitation technique. In this study, sinusoidal excitation is employed for each nonlinearity

simulated on an analogue computer in order to facilitate the nonlinearity identification

process.

The main drawback of the sinusoidal excitation technique is that it is relatively slow

compared with many of the other techniques used in practice. The obvious reason is that

the excitation is performed frequency by frequency and, at each step, time is needed for

the system to settle to its steady-state response. However, it is believed that for many

practices of the identification of structural dynamic characteristics, correct measurement *

results often become the primary criterion over time-saving in the test. For instance, when

the modal analysis results are to be used to improve an FE model of the tested structure -

an application which appears to be in great demand in recent years and has been

exhaustively discussed above - a major concern lies on the precision and comprehension
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of the modal analysis results. Consequently, sinusoidal excitaion is preferred in modal

testing in order to provide the post analysis stages with the optimum data.

7-22 Random Excitation

Random excitation attracts analysts and researchers primarily because of its potential time

saving in obtaining frequency response functions of the tested objects. Using this

technique, the system is excited simultaneously at every frequency within the range of

interest. This wide frequency band excitation enables the technique to be much faster than

sinusoidal excitation. Further, the effects of noise can be successfully eliminated by

averaging if the measurement time is long enough.

The derivation of the input and output relationship under random excitation relies on

Fourier transform theory and is based upon Duhamel’s Integral. As the Duhamel’s

Integral presumes a linear system behaviour, it has been suggested in the literature that the

linearity characteristic of the response from the random excitation is automatically

assumed. It will be shown below that this is not true. The actual reason for the inability of

random excitation to expose the nonlinearity from the response is the randomness of the

amplitude and phase of the input force.

In the measurement, spectral estimates for each recorded data block have random

amplitude and random phase. Thus, at each frequency the system can be considered to be

excited by different amplitudes and phases, sample after sample. By considering the effect

of nonlinearity as noise in the response, it can be understood that after the averaging

process the frequency response function obtained from the FFI’ analyser will always

comply with the behaviour of a linear system. It can then be roughly concluded that as far ’

as the identification of nonlinearity is concerned, conventional random excitation and

signal analysis is not a feasible technique in practice.

It should be noted here that the problem of impedance mismatch between the tested

_-
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structure and the shaker always exists and this can result in problem of noise. Usually,

the spectrum of the excitation signal is uniform along the frequency range of

measurement. However, when a mismatch occurs, the spectrum of the excitation force

applied to the structure may be distorted, yielding noise problems. The mismatch problem

is most serious at the resonances of the structure when the response spectrum at the

vicinity of resonance tends to drop because of the low impedance input to the structure,

resulting in a low signal-noise ratio.

Sometimes, when the dynamic modelling of a nonlinear system is of concern rather than

the identification of nonlinearity, the primary interest will be on extracting a linear model

of the system which behaves vibrationally in the frequency range of interest in as similar a

manner as possible to the nonlinear system, regardless what type of nonlinearity the

system possesses, then random excitation could be an effective technique.

7-23 Transient Excitation

Since the Fourier Transform was fust developed in the early nineteenth century, the

theoretical foundation had been provided for transient testing. However, not until digital

computers with FFT capabilities were developed did transient excitation and analysis

become practically feasible and has now received great interest because of the unique

characteristics differing from other excitation techniques.

In transient excitation measurement, the data involved are the time histories of the

excitation force f(t) and of the response x(t). The frequency response function is defined

by the division of the Fourier Transforms of these two time series signals. The

denominator is the Fourier Transform of f(t) whereas the numerator is the Fourier c

Transform of x(t):

H(o) = X(O)  /F(W) (7-l)
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The actual computer analysis approach to obtain the frequency response function depends

on the estimates of the auto-spectrum of the force signal and the cross-spectrum of the

force and response. The computation is performed as:

H(o) = X(0) /F(O)

= X(o)F*(o) / F(o)F*(o)

(7-2)

where F*(o) is the complex conjugate of the Fourier Transform F(o) and SJo) is the

cross-spectrum of the force and the response of the system. Therefore, obtaining the

frequency response function in transient testing becomes a matter of spectral analysis.

The form of the forcing function in transient excitation is important. The input forcing

function theoretically suggested for transient excitation is of a pulse type. This is,

unfortunately, mechanically difficult to achieve in practice. Usually, a mechanical impact

is used to generate the required forcing signal. If the impact is well controlled, the forcing

signal would have a comparatively short time duration and contain desirable energy

spectral properties. However, a very short duration of an impact, covering a broad range

of energy distribution in the frequency domain, can be extremely difficult to obtain in

practice. This means that in the frequency domain the input force energy at high

frequencies is not always large enough to excite the system effectively. Hence, care

should be taken when transient excitation is applied to the case where vibration properties

at high frequency are of primary interest. Moreover, it is quite obvious that the excitation

frequency bandwidth cannot be controlled conveniently.

One possible alternative to the mechanical impact forcing signal is an electrical, instead of *

mechanical, impulse which can be applied to the strncture  through a conventionally used

shaker. Indeed, this type of electrical pulse test has been adapted. Despite the fact that an

electrically-produced forcing signal has well controlled amplitude, a desired rectangular

c
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shaped pulse signal is still not easy to achieve due to a number of error sources such as

the “digitising error” occurring in the operation of A/D (analogue to digital) conversion.

Besides, the frequency characteristics of a shaker could be a problem and this is perhaps

more important,

Another forcing function referred to as “rapidly swept sinewave” or “chirp”, which is

classified in the transient excitation category, has been employed with success in recent

years[60].  Unlike the discrete sinewave  used in sinusoidal excitation, the swept sinewave

here is of constant amplitude and has a sweeping frequency which varies rapidly and

continuously with time and has high cut-off rate at the starting and ending frequencies.

The time duration of the forcing signal can be as short as a few seconds. However, no

evidence has been found to back up the advantage of using such a excitation technique for

the purpose of identifying nonlinearity.

7-2-4 Comments on Different Excitation Techniques

Although there are a number of excitation techniques available nowadays for vibration

testing, the choice for the modal testing of a dynamic structure is by no means easy,

especially when nonlinearity is to be investigated.

Random excitation tends to excite the structure with a random force level and phase at

each frequency and thus the response data from a nonlinear system will behave as if the

system were linear, as the recorded data blocks are averaged. As the contribution of the

nonlinearity to the response differs from noise in that it is a systematic error and cannot be

averaged out, the response data from a nonlinear system will appear to be from a linear

system which is often referred to as a ‘linearised model’ of the nonlinear system, rather +

then the linear part of the nonlinear system. This is illustrated in Figure 7-l. Hence,

random excitation is not applicable for the purpose of the identification of nonlinearity. In

other cases, when the dynamic modelling of a nonlinear system is of interest, rather than

the identification of nonlinearity is sought, the primary concern will be on the extraction

L
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of a linear model of the system which will behave vibrationally in as similar a manner as

possible to the nonlinear system in the frequency range of interest, regardless of what

type of nonlinearity the system possesses, then random excitation could be an efficient

technique.

Transient excitation has noticeable

remarkably fast in performance. It

properties of convenience and simplicity and is

requires less instrumentation (for the case of a

mechanical impact test), facilitating mobile experiments. However, transient excitation

obviously attracts the same argument as random excitation in not being applicable for the

purpose of the detection and identification of nonlinearity. This is mainly because the

force level and phase of each data record is similarly not controllable as for the random

excitation case and, in addition, the frequency range is also difficult to control.

Nevertheless, low coherence often occurs at anti-resonances of the frequency response

function data when the impact test is carried out. This is mainly because of the low

signal/noise ratio at anti-resonances. This characteristic is different from the random test

where low coherence occurs both at resonances and at anti-resonances of the frequency

response function data. The reason for this difference is that for the random test, not only

can a low signal/noise ratio deteriorate coherence (which is similar to transient excitation

case), but also can the bias error do (also known as leakage problem)[701.

Sinusoidal excitation can have a well-controlled input force amplitude for each frequency

tested, and thus the nonlinearity inherent in the tested structure can then be exposed in the

response. In addition, it is most ideal to deduce harmonics when nonlinearity exists.

Therefore, this excitation technique is the most desirable one to use in the investigation of

nonlinearity. In this study, only sinusoidal excitation is applied.
c

7-3 PRACTICAL CONSIDERATIONS OF NONLINEARWY MEASUREMENTS

As explained above, sinusoidal excitation is strongly favoured in measurement if

nonlinearity is expected and is to be studied. However, selecting sinusoidal excitation is
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merely the first step towards being able to identify the nonlinearity. There are still a

number of possible practical problems which need to be carefully considered, otherwise

the measurement will not be successful and, as a consequence, nonlinearity will not be

correctly identified.

The main difference between measurement of a linear structure and of a structure with

nonlinearity is that the excitation force level becomes significant for the latter case. In fact,

the force level becomes vitally important in determining the vibration characteristics of a

nonlinear structure. The effect of the excitation force level on the response of a nonlinear

structure depends not only upon the degree of the nonlinearity the structure possesses, but

also upon what type of nonlinearity it possesses. For many types of either nonlinear

stiffness or nonlinear damping, increasing the excitation force level will be similar to

enlarging the degree of nonlinearity as far as the response of the nonlinear structure is

concerned. Some other types of nonlinearity can be the other way around or even, the

excitation force level can be discontinuous (it will not affect the response until it reaches a

certain quantity). For instance, cubic stiffness provides a good example of enlarging the

degree of nonlinearity being the same as increasing the excitation force level while

Coulomb friction tends to affect the response less when the excitation force level

increases. Backlash stiffness is a nonlinearity where the excitation force level does not

affect the vibration response of a system possessing it until the force level is large enough

to make the response level to exceed a given limit.

As the vibration response of a nonlinear system is eventually related to the excitation force

level, careful consideration should be taken to select the force level for the measurement.

Thus, it would be appropriate to use a relatively large force level for a system with cubic

stiffness if the nonlinearity is to be detected and identified. However, great attention *

should be paid to the characteristics of the shaker which is normally used for vibration

measurement, since the shaker tends to distort the force level. In practice, the force level

will tend to decrease near resonances and this influences the effect of nonlinearity on the

frequency response function data. In order to expose the nonlinearity so that it can be
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identified, the following possible steps could be taken in measurement:

(a) using response control to build up a series of linearised models for the nonlinear

system. This method is extremely time-consuming and conventional linear

algorithms do not enable the extraction of the linear model of the system, i.e. the

damping loss factor and modal constant for the linear model of the system is not

obtainable unless very low or very high force conditions obtain, depending on the

type of nonlinearity.

(b) using a controlled force level to measure one frequency response function (FRF)

over the frequency range of interest or on the nonlinear mode. In this case, each

data point of this FRF comes, in fact, from one FRF of the former case, thus

containing the information of that FRF. Therefore, this type of measurement is

often applied in practice to study nonlinearity. The problem here is that to obtain a

controlled force level in measurement is by no means easy, especially when

nonlinearity is significant.

It will be seen later in Chapter 8 that nonlinearity investigation does not necessarily

require these conditional measurement above. In fact, it is possible to study nonlinearity

and to identify their types simply by using the data from conventional measurement where

no control is imposed at all.

74 SIMULATION FOR NON INVESTIGATION

7-4-l Significance of Simulation of Nonlinearity

For most practical nonlinear structures, the type and extent of the nonlinearity are 0

generally unknown and, further, the extent of the nonlinearity is not controllable for the

sake of nonlinearity analysis. The identification of nonlinearity will then be ineffective or

even unsuccessful unless the types of nonlinearity the structures often possess are

thoroughly studied beforehand so that their characteristics on the vibration behaviour are



well understood and categorised. It is believed that the most effective way to investigate

nonlinearity would be to simulate those types of nonlinearity frequently encountered in

practice and to thoroughly study their characteristics on the modal data so that those

categorised characteristics will then become useful references for the investigation of the

practical nonlinear structures.

The advantage of simulation analysis in nonlinearity investigation, besides the practical

necessity suggested above, lies mainly in the fact that a nonlinear system can easily be

simulated on a device such as an analogue computer by setting up the differential equation

which governs the simulated system and the parameters of the system can then be

conveniently adjusted to simulate different extents of nonlinearity. Hence, the response of

the simulated nonlinear system can be obtained and the vibration characteristics of the

nonlinear system can be thoroughly investigated which, in turn, will be referenced for the

nonlinearity investigation of practical structures.

7-4-2 Analogue Simulation of Nonlinearity

An analogue computer is a device whose component parts can be arranged to satisfy a

given set of equations, usually simultaneous ordinary differential equations. As for the

vibration study, the equations of motion to which a nonlinear system are subject are

usually second order ordinary differential equations, and so the analogue computer is an

appropriate device to be used. Figure 7-2 shows some of the basic elements used in this

study to construct the nonlinear systems. Because the analogue computer can only

integrate a function with respect to time (rather than differentiate it), a differential equation

has to be solved for the highest derivative in the equation.

In this study, several nonlinear SDOF systems, having either nonlinear stiffness or

nonlinear damping which are believed to be frequently encountered in practice, are

simulated on an analogue computer in order to investigate the dynamic behaviour of a

system having these types of nonlinearity.
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(1) A SDOF System with Hardening Cubic Stiffness

A SDOF system with hardening cubic stiffness and linear viscous damping is governed

by the following differential equation of motion:

% + 2r;c@ + coo2 (x+px3) = F(t) (7-3)

where 5 - viscous damping ratio of the system;

o0 - natural frequency of the system;

j3 - cubic stiffness coefficient;

F(t) - function of the excitation force.

In order to set up the analogue circuit for this system, equation (7-3) should be rearranged

into:

? = - ( -F(t) + 2@q,k  + oo%+ coo2px3} (7-4)

In this study, the viscous damping ratio of the system is chosen as 0.005 and the natural

frequency as 10 rad/sec. The analogue circuit which simulates equation (7-4) is shown in

Figure 7-3.

(2) A SDOF System with Backlash Stiffness

A system with backlash stiffness and linear viscous damping can be shown in Figure 7-4

and the governing equation of motion is as follows:

% + 2&i + wo2x + q(x) = F(t) (7-5)

where:

i

+ %I% x>+x()

<p(x)  = 0 -xc<x<+xc

- 661()~xo xc -x0

Here, parameter xc - which defines the linear response level of the system - is called the

. .



“response limit” and a linear system will have a infinite response limit. The other

parameter 6 which symbolises the stiffness change is referred to later as “stiffness ratio”

and a zero stiffness ratio will mean a linear system.

Again, in order to set up the analogue circuit for the system, equation (7-5) is rearranged

into:

;; = -{ -F(t) + 2504+  + CJ$X  + q(x) ) (7-6)

With the same viscous damping ratio and the natural frequency as before, the analogue

circuit which simulate equation (7-6) is shown in Figure 7-5.

(3) A SDOF System with Piece-wise Stiffness

Piece-wise stiffness is a kind of nonlinear stiffness which is fairly often encountered in

practice. It differs from cubic stiffness in that its stiffness change is not continuous and

the stiffness effectively consists of a combination of several linear stiffnesses in different

response ranges. The backlash stiffness discussed immediately above is a type of

piece-wise stiffness. A system with piece-wise stiffness and viscous damping is governed

by the following general equation of motion:

j; + 250,~ + q(x) = F(t) (7-7)

where q(x) is a piece-wise function, contributing nonlinear stiffness effects and, for

instance, this function becomes as below for a bilinear stiffness:

Again, in order to set up the circuit for a system with piece-wise stiffness, equation (7-7)

is rearranged into:
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ii = -( -F(t) + 2&1.+,i  + q(x) ) (74)

Figure 7-6 shows an analogue circuit which enables us to simulate various types of

piece-wise stiffness due to the positions of those switches indicated in this Figure. The

piece-wise stiffnesses this circuit enables us to simulate are shown in Table 7- 1.

(4) A SDOF System with Nonlinear Quadratic Damping

Nonlinear damping appears to be encountered less often than nonlinear stiffness in

practice, although this is actually not the case. This prejudice is partly due to the fact that

some dynamic structures are not significantly damped so that nonlinear damping may not

contribute as much as nonlinear stiffnesses and hence is not paid as much attention as

nonlinear stiffness. For fairly heavily damped structures, nonlinear damping is surely

another domain of nonlinearity which cannot be overlooked.

Quadratic damping is one of the many types of nonlinear damping encountered in practical

vibration problems. A SDOF system with linear stiffness and quadratic damping can be

described by the following equation of motion:

j;+aIxIx+o,Sr=F(t) (7-9)

where a is the quadratic damping coefficient.

Equation (7-9) can be rearranged to be suitable for the analogue set-up:

j;=_ (- F(t) + a I i I f + a+,%~) (7-10)

and the corresponding analogue circuit for this SDOF system having quadratic damping is c

shown in Figure 7-7.
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7-5 THE FREQUENCY RESPONSES OF THE NONLINEAR SYSTEMS

Once a nonlinear system is simulated on an analogue computer, a FRF measurement can

be performed as if it were a practical structure. As suggested earlier in this Chapter,

sinusoidal excitation is selected to provide the input (force) to the system and the

consequent acceleration (or velocity, displacement) of the system is regarded as that of the

structure due to the sinusoidal input force. The frequency response function (FRF) of the

nonlinear system can then be obtained from a frequency response analyser. The post

measurement modal analysis will then be based upon the FRF thus obtained.

However, the most important difference between measuring a simulated nonlinear system

and measuring a practical structure should be noted here. When sinusoidal excitation is

applied to measure a simulated nonlinear system without using a shaker, the force level

for the entire measurement will be constant (mainly controlled by the generator) as the

nonlinear property of a shaker which distorts the force level is not present. Therefore, the

nonlinearity could be readily exposed and its identification is relatively easy. However,

for the measurement of a practical structure, the force level will tend to vary near any

resonances which, in turn, influences the effect of the nonlinearity on the frequency

response function data.

Figure 7-8 shows the inertance-type frequency response functions obtained from a SDOF

analogue system measured using sinusoidal excitation and Figures 7-9 and 7-10 present

the corresponding real and imaginary parts plots. The system contains hardening cubic

stiffness with different cubic stiffness coefficients. Figure 7-11 shows the frequency

response functions of the same system with an unchanged cubic stiffness coefficient c

while the excitation force level varies and again, the corresponding real and imaginary

parts are shown in Figures 7-12 and 7-13. It can easily be seen from Figures 7-10 to 7-13

that increasing the cubic stiffness coefficient has an identical effect on the frequency

response function data of the system to increasing the excitation force level. Hence,
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although the extent of nonlinearity in practice is virtually impossible to change arbitrarily

as the simulated system can be, the effect of different extent of nonlinearity on the the

frequency response function of the nonlinear system can still be demonstrated by varying

the excitation force level so that the nonlinearity can be fully exposed and identified.

For a SDOF system with backlash stiffness, the frequency response function due to

sinusoidal excitation is influenced by the nonlinearity and the excitation force level in a

slightly different way to that seen for the cubic stiffness case. There exist three possible

conditions for this simulated SDOF system to vary and they are (a) the excitation force

level, (b) the response limit and (c) the stiffness ratio - both parameters having been

defined in equation (7-5). The frequency response of this system due to the change of

each condition is studied.

Figures 7- 14 to 7- 16 show the frequency response functions and their corresponding real

and imaginary parts obtained from a SDOF analogue system by using sinusoidal

excitation. The system containing hardening backlash stiffness has an unchanged stiffness

ratio and response limit as the excitation force level varies. The comparison of Figure

7-14 with Figure 7-11 will reveal the different effects of excitation force level on the

frequency response functions in these two cases, although they are all hardening-type

stiffness. For the cubic stiffness case, the frequency response function is affected

continuously by the excitation force level and this effect becomes greater as the excitation

frequency approaches the resonance frequency. However, the effect of increasing the

excitation force level for the backlash stiffness case does not show up unless the response

of the system exceeds a certain value, and this value is relevant to the excitation force

level itself. The difference discovered here could be a useful indication of distinguishing

between these two types of hardening stiffness. c

Figure 7-17 shows the frequency response functions of the same system containing

backlash stiffness with an unchanged stiffness ratio and a constant excitation level while

the response limit varies. It is evident by comparing Figure 7-17 with Figure 7-14 that
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the response limit varies. It is evident by comparing Figure 7-17 with Figure 7-14 that

decreasing the response limit of the system will have a similar effect on the frequency

response function to increasing the excitation force level. Figure 7-18 shows the

frequency response functions with an unchanged response limit and a constant excitation

level while the stiffness ratio of the system varies. It is interesting to note that the

consequence of different stiffness ratios does not show up until the response reaches a

certain level - which is believed to be the response limit of the system - and the frequency

response functions diverge more from the one without nonlinearity as the stiffness ratio

becomes bigger. For nonlinear damping cases, such a SDOF system also simulated on

analogue computer with quadratic damping, measurement can be carried out similarly

using sinusoidal excitation. Figure 7-19 shows the FRF data with different extent of

quadratic damping. It is evident that the natural frequency of the system changes little,

while the response is obviously governed by the damping extent.

As suggested above, the frequency response of a nonlinear system due to random

excitation will appear to be that of a linear system. This is because most types of

nonlinearity are excitation amplitude-dependent while the random force signal has

randomly varying force amplitude and phase angle. Therefore, the response of a nonlinear

system due to random excitation becomes an averaged result due to the different force

amplitude and as a consequence, the effect of the nonlinearity is linearised. To appreciate

this, random excitation is used in the measurement of the simulated nonlinear systems

discussed above. The measured frequency response function data eventually show

apparently linear behaviour for the nonlinear systems.

To understand fully the linearisation consequence of random excitation tests, questions

about the Fourier Transform algorithm have to be answered. As the Fourier Transform is c

a linear operation, suggestions of this algorithm linearising the nonlinearity could be

found in some literature[ 611. In this study, a special investigation was carried out:

sinusoidal excitation is used for the nonlinear systems while the frequency response

analysis is performed by an FFT analyser. It is found that as the excitation frequency
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sweeps, the frequency response function obtained by FFI’ exhibits exactly the same

results as shown in Figures 7-8 to 7-17 which are obtained from frequency response

analyser. This verifies the discussion in the earlier part of this Chapter - the Fourier

Transform is not responsible for the linearisation of the effect of nonlinearity in

measurement using random excitation. It is the randomness of the force amplitude and

phase angle of the input signal which linearise the response of a nonlinear system and

makes the system behave as a linear system

7-6 CONCLUSIONS

Nonlinearity is a widely-encountered phenomenon in practical dynamic structures. It is

sometimes neglected because of its small extent and little contribution to the vibration

response, but for many other cases, lack of proper means to deal with the nonlinearity

could be the primary reason for ignoring it.

Theoretically, the main difficulty introduced by the nonlinearity is that the superposition

principle whereby the response of a system to different excitations can be added linearly is

violated for nonlinear systems. As a consequence, the dynamic characteristics of

nonlinear structures become excitation-dependent and much less easily predicted.

It is believed that theory has been highly developed for those nonlinear systems whose

equations of motion are expressible analytically. There are currently quite a number of

methods which are available to examine the vibration behaviour of a known nonlinear

system.

However, since the nonlinearity inherent in vibrating structures is difficult to identify and c

even much more difficult to quantify, such theory is often not directly applicable to

experimental modal analysis because of the absence of explicit equations of motion. The

efforts of nonlinearity study in practical vibration analysis are then focussed on the

detection and the identification of nonlinearity in structures from measured FRF data
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Since the effects of most kinds of nonlinearity frequently encountered in structural

dynamics are characteristically variable due to the external excitation, the first problem of

the nonlinearity investigation will be to choose a proper excitation force so that the

nonlinearity could easily be exposed and then detected and identified. Amongst those

excitation methods currently widely used in vibration study, the sinusoidal excitation

method is strongly favored for nonlinearity investigation.

Analogue computer simulation is advantageous for nonlinearity investigations. This is

mainly because a nonlinear system can easily be simulated on an analogue computer and

the parameters of the system can then be conveniently adjusted to represent different

extent of nonlinearity. Hence, the response of the simulated nonlinear system can be

obtained and the vibration characteristics of the nonlinear system can then be thoroughly

investigated which, in turn, will be referenced for the nonlinearity investigation of the

practical structures.

SDOF systems with some frequently encountered types of nonlinearity are successfully

simulated on an analogue computer. Among those types of nonlinearity are cubic

stiffness, backlash stiffness, quadratic damping and various kinds of piece-wise stiffness.

Measurement using the sinusoidal excitation method can then be performed to obtain the

frequency response functions of these nonlinear systems. The refined modal analysis can

be carried out to detect and identify the nonlinearity by analysing these measured

frequency response function data and this will be extensively studied in the next Chapter.

c
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Switch 1 A A B B A A A A

Stitch 2 z X Y Y Y X Y Y

coefficient
multiplier

kl
0 O<kl<l m #O #0 ?4l &I 20

coefficient
multiplier

k2 =0 1 1 #1 1 1 fl #l

Backlash
quantity

El=0 El=E2#0 El#E2tO El=E2#0 El=E2#0 El#E2?tO El#E2#0
E2=maximum

Table 7- 1

Various types of piece-wise nonlinear stiffnesses
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Figure 7-l Linearisation effect of random excitation test
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Figure 7-8 Inertance frequency response functions obtained from a SDOF system

with different extent of hardening cubic stiffness using sinusoidal

excitation.
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Figure 7-9 Real parts of the frequency

response functions shown in

Figure 7-8.

Figure 7-10 Imaginary parts of the frequency

response functions shown in

Figure 7-8.
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Figure 7- 11 Inertance frequency response functions obtained from a SDOF system

with hardening cubic stiffness using different sinusoidal excitation

levels.
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Figure 7-12 Real parts of the frequency

response functions shown in

Figure 7- 11.
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Figure 7-13 Imaginary parts of the frequency

response functions shown in

Figure 7- 11.
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Figure 7-14 Inertance frequency response functions obtained from a SDOF system

with hardening backlash stiffness using different sinusoidal excitation

levels.
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Figure 7- 14.
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Figure 7- 16 Imaginary parts of the frequency

response functions shown in

Figure 7- 14.
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Figure 7-17 Inertance frequency response functions obtained from a SDOF system

with different response limits of hardening backlash stiffness using

sinusoidal excitation.
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Figure 7- 18 Inertance frequency response functions obtained from a SDOF system

with different stiffness ratio of hardening backlash stiffness using

sinusoidal excitation.
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Figure 7-19 Inertance frequency response functions obtained from a SDOF system
with different extent of quadratic damping using sinusoidal excitation.
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CHAPTER 8

MODAL ANALYSIS OF NONLINEAR SYSTEMS

8-l CURRENT METHODS AND APPLICATIONS OF MODAL ANALYSIS FOR

NONLINEAR SYSTEMS

Once it is suspected that a structure or a system is nonlinear, and measurement is carried

out as discussed extensively in the last Chapter, it is necessary to analyse the frequency

response function data taking account of the effect of possible nonlinearity. The

application of modal analysis methods to such FRF data depends upon the different

requirements on the nonlinearity investigation of the system. Generally speaking, there

are three possible requirements in practice for the results of modal analysis of a nonlinear

system. First, a linearised model may be required whose vibration response will be as

close as possible to the actual vibration response of the nonlinear system. Second, the

type of nonlinearity might need to be identified in order to enable the possible

establishment of a correct mathematical model of the nonlinearity and to seek the

possibility of predicting the vibration response of the nonlinear system to a wide range of

excitation conditions. Third, the identified type of nonlinearity is to be quantified in some

extent.

It is believed that the first requirement - to obtain a linearized  model for a nonlinear system

without seeking the nature of the nonlinearity - is comparatively easy to achieve. In fact, a

family of frequency response functions with different random excitation force levels could *

always be measured, as suggested in the Chapter 7, and a conventional linear modal

analysis algorithm be employed to build up a series of models, each of them representing

the vibration behaviour of the nonlinear system under conditions of a certain excitation

force level. It is worth noting that such an investigation does not tell the nature and extent
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of the nonlinearity but, instead, it simplifies the nonlinearity problem by a piecewise

linearization  approach.

However, practice is often confronted with the requirement of understanding the nature,

and even the extent, of the nonlinearity of a dynamic structure. Hence, current modal

analysis efforts are directed towards the detection of nonlinearity, and the identification of

the type and extent of nonlinearity in structures. To summarize, the following three

questions are to be answered by the appropriate application of modal analysis methods to

structures which might be nonlinear (Figure 8-l).

(1) Is the system or structure nonlinear?; (detection)

(2) If yes, what kind of nonlinearity does it exhibit?; and (identification)

(3) What is the extent of the nonlinearity? (quantification)

A large number of papers dealing with nonlinearity can be found in the literature in recent

years. As far as the detection and the identification of nonlinearity from the modal test data

is concerned, the methods commonly employed nowadays can be summarised below. It

is important to bear in mind that sinusoidal excitation is preferred in modal tests for all

these methods in order to let the nonlinearity be properly exposed rather than be averaged

out as happens in random excitation conditions. The advantages and disadvantages of

those methods currently used and summarised below will be discussed and the direction

of further developments will then be pointed out.

8-l-l Bode Plots

The basis of using Bode plots to detect the possible existence of nonlinearity, and to

identify it, is that the nonlinearity should systematically distort the frequency response c

function data and its real and imaginary parts from the form of the corresponding linear

system’s FRF data. As the linear system’s frequency response function is very well

recognized,  the possible existence of nonlinearity could then be revealed by examining the

abnormal behaviour of the real and imaginary parts of the frequency response function
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data.

A typical example of nonlinearity being evident in the Bode plot is provided by the

frequency response function data shown in Figure 7- 11 and its corresponding real and

imaginary parts shown on Figures 7-12 and 7-13. The system from which these data are

derived has hardening cubic stiffness and it can be seen that this nonlinearity is clearly

exposed on the data. Similarly to this cubic stiffness case, the frequency response

function and its corresponding real and imaginary parts obtained from another SDOF

system, this time with backlash stiffness, are shown in Figures 7-14 to 7-16. Again, the

existence of the nonlinearity is apparent from the systematic distortion in the plots.

Although Bode plots of the frequency response function data can reveal the existence of

possible nonlinearity in most cases, it is after all merely a straightforward presentation and

no analysis of nonlinearity is involved, As a consequence of its simplicity, this method

usually cannot distinguish one type of nonlinearity from the other - e.g. the cubic stiffness

and backlash stiffness - when their effects on the frequency response function data are

fairly similar. Therefore, Bode plots can only be used to provide a rough and basic

examination of the existence of nonlinearity.

8-l-2 Reciprocal of Frequency Response Function

The Reciprocal of frequency response function data, which was previously discussed

briefly in Chapter 4, is offered as an alternative to modal analysis by the Nyquist circle fit.

It is based upon an assumption of SDOF behaviour. Basically, it is supposed that,

neglecting the residual effects of all other modes, the p mode of the frequency response

function (receptance) data of a structure will yield: c

oljl  =
Pjl

6$ co* + iTpr2

where: aj, is the receptance between test points j and 1;

(8-l)



-- 190 --

pjl is modal constant;

cer2 is the natural frequency;

TJ,  is the damping loss factor.

Although the modal constant is in theory a complex quantity, it is often effectively real

and is treated thus here for this approach. The corresponding reciprocal of receptance &ta

is:

(l/ajJ  =
q- a2 + iqpr2

Pjl
(8-2)

= Re(l/ajJ + h(l/ajJi

Perhaps the most significant advantage of using the reciprocal of receptance data is that

the mass and stiffness characteristics (natural frequency and modal constant in modal

data) and damping property (damping loss factor in modal data) are separated out into the

real and imaginary parts of the data respectively and hence, they can be dealt with

separately. In this case, the estimation of natural frequency and modal constant will be

considerably less affected by the damping loss factor than happens in the Nyquist

circle-fit or MDOF curve-fit, since this estimation is carried out only on the real part of the

reciprocal of receptance data, and which is physically quite reasonable. Similarly for the

estimation of damping loss factor, for the same reason. In addition, the extraction of

modal data from the reciprocal of the receptance data will not require the condition of

equal frequency spacing of the data which Nyquist circle-fit does.

The significant advantage of using the reciprocal of the receptance data becomes evident c

when modal analysis is made of FRF data from systems with nonlinearity. In these cases,

the effects of a nonlinear stiffness will show up on the real part of the reciprocal of

receptance data while the imaginary part of the data will be dominated by the effect of the

damping. Figure 8-2 shows the real and imaginary parts of the reciprocal of FRF data of
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a SDOF system with hardening cubic stiffness. It can be seen that the effect of the

nonlinear stiffness distorts the real part data noticeably but the imaginary part remains just

as for the linear case since the system here does not have any nonlinearity in the damping.

In Figure 8-3, similar real and imaginary parts of the reciprocal of FRF data for a SDOF

system with hardening backlash stiffness are presented. Again, the effect of the nonlinear

stiffness is clearly observed confined to the real part data.

This characteristic - that the effect of stiffness nonlinearity only shows up in the real part -

is in contrast with the standard FRF data format where the effect of any type of

nonlinearity will influence both its real and imaginary parts equally (e.g. the real and

imaginary parts of inertance FRF data). This is due to the fact that the real and imaginary

parts of the FRF data are related to each other and it will be seen in later discussion that

the Hilbert  transformation makes use of this relationship between the real and imaginary

parts of the FRF data to investigate nonlinearity.

S-l-3 Modal Analysis and the Isometric Damping Plot

The isometric damping plot is one of the simpler methods available for the modal analysis

of nonlinear systems. Its application to the detection and identification of nonlinearity

relies on the argument that the nonlinearity will distort the spacing of the frequency

response function data along the Nyquist circle from their positions when no nonlinearity

exists. Its effect is unlike noise on the measurements, which also tends to distort the FRF

data, because the distortion provoked by nonlinearity is systematic rather than random.

Due to this character of systematic distortion, the damping estimates will vary according

to the specific point selection around the Nyquist circle and the nature of the distortion

displayed by the different damping estimates indicates the existence of nonlinearity. The -

following analysis seeks to explain the mechanism in detail.

It is well known that the damping loss factor for a vibration mode can be estimated by

curve-fitting the Nyquist circle (as shown in Figure 8-4) and using the following
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equation:

where o8 and ob are frequencies for two data points, one before and one after the

identified natural frequency. Also, it is known that for the FRF data from a linear system

without noise pollution, the damping estimate in equation (8-3) will theoretically be the

same no matter what pair of points on the Nyquist circle are chosen.

If the system is nonlinear, however, and the nonlinearity distorts the spacing of the FRF

data on the Nyquist circle systematically, as noted above, the then the damping estimates

from equation (8-3) will also vary systematically depending on the different points

selected, and variation in damping estimates becomes a good indication of the

nonlinearity. Figure 8-5 shows the Nyquist plot of the FRF data for a SDOF system with

hardening cubic stiffness and the corresponding isometric damping plot. It can be seen

that the nonlinear stiffness produces typical damping variation on the isometric damping

plot. In Figure 8-6, a similar Nyquist plot of the FRF data from a SDOF system with

hardening backlash stiffness and the isometric damping plot are shown. Again, the

damping variation in the isometric damping plot caused by the nonlinearity exhibits a

strong characteristic.

8-l-4 The Hilbert Transform

The Hilbert transform is a method for calculating the imaginary part of a complex

frequency response function from its real part (and vice versa), under certain conditions.

According to the Cauchey-Rieman  theorem, a mathematically hatmonic  complex analytical ’

function possesses the property that its real part can be derived from its imaginary part

and vice versa. This relationship is known as a Hilbert transform pair. In recent years, the

Hilbert transform technique has been borrowed from control engineering and applied to

vibration research for the identification and analysis of nonlinearity in structural

.I . ., , .‘..
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dynamics. In the following, the definition of the Hilbert transform will be briefly

reviewed and the basis for its application to modal analysis will be outlined, together with

several application examples.

S-141 The Principle of the Hilbert Transform

The Hilbert transform of a mathematical function f(x) is defined as an integral and is

denoted as H :
00

F(x)  = l/rt f(x’) dx’/(x’-x)J-00
= HVOOI (8-4)

The integral F(x) is a linear functional of f(x) and it can be shown from the theory of

random vibration that the integral in equation (8-4) can be obtained by convolving the

mathematical function f(x) with (-7tx)-‘, namely,

F(x) = (-~/RX)  f(x) (8-5)

or H [f(x)] = (-~/XX)  f(x)

Since the Fourier transform of (- l/rrx)  is i(S g n co), where s g n is a sign function and i is

imaginary unity, it can be said that the Hilbert transform is equivalent to a particular kind

of filtering in which the amplitude of the spectral components are left unchanged but their

phases are altered by 7r/2.  Thus, the application of the Hilbert transformations twice in

succession will reverse the phase of all components and the results will be the negative of

the originals:
z

f(x) = -(-l/xx) F(x) (8-6)

00

f(x) = -~/IF J_F(x’) dx’/(x’-x) (8-7)
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or
f(x) = - H [WI

8-l-4-2 Basis of the Application of the Hilbert  Transform to Modal Analysis

The frequency response function of a dynamic system G(o), which is a function of

frequency o, is the Fourier transform of I(t), the impulse response function of the system

which is a time varying functionWI:

G(o) = J I(t) dot dt-00 (8-8)

or G(o) = F [I(N

where F denotes the Fourier transformation in this work.

Since the impulse response I(t) from a linear system is real and causal (a system is causal

if, for any input, the response at any instant of time does not depend upon the future

input: a linear dynamic system should always be causal), it can always be split into even

and odd parts:

I(0 = w,,, + 1(0,&-j

= (I(t) + I(-t))/2 + (I(t) - I(-t))/2

and the even and odd parts can be linked together by the following equation:

(8-9)

wodd = W,, s 9 n (0

Since the Fourier transform of the sign function s g n (t) is:

F [sgn(t)] =-i/no (8-l 1)

the Fourier transformation of both sides in equation (8- 10) yields:

F [I(Ooddl  = F [I(~),,1 F [s g NOI

= F [I(t),,1 (-i/n@

(8-10)

(8-12)
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It can be validated theoretically[74]1[75],[76]  that, for a linear dynamic system, the real

part of the frequency response function G(o) is the Fourier transform of the even part of

the impulse response function I(t), and the imaginary part of G(o) is the Fourier

transform of the odd part of I(t), namely:

Re(GW) = F D(t>,,l

Im(G(W = F II(Oodd]

(8-13a)

(8-13b)

Thus, it can be shown as below that the imaginary part of the frequency response function

G(o) can be obtained from the Hilbert transform of its real counterpart (the same

argument holds for the other way around):

H [ReG(o)]  = (4/x0)  Re(G(o))

= F [ F-‘[(-i/m)  ReG(o)]]

= F [b&t)  W,,ll

= ImG(o)

Therefore, it is demonstrated by the above analysis that for a linear vibrating system, the

entire frequency response function can be constructed by knowledge of either its real or

its imaginary parts only or, in other words, either one of them determines completely the

vibration characteristics of the system. It should be borne in mind that although it is

suggested above that the impulse response is obtained from test, this is merely for the *

sake of simplicity to depict the theory. In practice, any kind of measurement technique

could be used and the inverse of Fourier transformation of the frequency response

function should always provide the impulse response of the system, provided this is
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linear and no noise pollution is involved.

If a system is nonlinear, then its impulse response from an impulse test is normally still

causal, provided the system is time-invariant as most structures in practice are. However,

the inverse Fourier transform of the frequency response function obtained from a

sinusoidal excitation, which is suggested in Chapter 7 as a favorable measurement

technique, would become noncausal due to the nonlinearity[74]~[75].  Thus, the result of

the Hilbert transform of the real part of the FRF data will not be the same as the imaginary

part of the FRF as it will be distorted by the nonlinearity, nor will the transform of the

imaginary part be the same as the real part, as illustrated in Figure 8-7.

To apply the Hilbert transform to the detection and identification of nonlinearity in

vibration studies, the frequency response function of a vibrating system from sinusoidal

test is used and the Hilbert transform of its real part can be calculated (as can its imaginary

part) and compared with its imaginary part. Any discrepancy between the Hilbert

transform of the real part of the FRF and its imaginary part will then indicate the existence

of nonlinearity, provided the computation of the Hilbert transform is accurate enough.

Once different types of nonlinearity can be simulated, studied and categorized by the

Hilbert transformation, the nonlinearity found in test data could by identified with a

reference to those categorized nonlinearity.

Figure 8-8 shows the real and imaginary parts of the FRF for a SDOF system with

hardening cubic stiffness and also the Hilbert transform of each. It can be seen that the

existence of the nonlinear stiffness results in a discrepancy between the original FRF and

the Hilbert transform counterparts. In Figure 8-9, a similar FRF of a SDOF system with

hardening backlash stiffness and the Hilbert transforms are shown. Again, the.

discrepancy caused by the nonlinearity is evident. These discrepancies could also be

examined in Nyquist plane.



S-2 COlMMENTS  ON CURRENT METHODS FOR MODAL ANALYSIS OF

NONLINEARlTY

Amongst those methods currently used for the modal analysis of nonlinear systems and

outlined above, the methods based on the Bode plot and on the reciprocal of FRF data can

be categorized  as types which aim at presenting the FRF data in such a way as to show up

the nonlinearity. It might be thought that when the FRF data are presented in some other

way, such as the inverse of the Nyquist circle (which is a straight line for linear cases),

the effect of an existing nonlinearity could also be expected. Therefore, it is believed that

these two methods are convenient for a straightforward inspection for the existence of

nonlinearity but this approach is not rigorous enough for a precise modal analysis of the

nonlinearity.

On the other hand, two other methods, namely the isometric damping plot and the Hilbert

transformation, tend to detect and to identify nonlinearity by investigating its effect on the

FRF data. Specifically, the isometric damping plot method demonstrates the spacing

distortion caused by the nonlinearity and the Hilbert transform examines the violation of

the functional properties of the frequency response function introduced by the

nonlinearity.

An overall and thorough examination of the application of these four methods - (i) Bode

plot, (ii) reciprocal of frequency response function, (iii) isometric damping plot, and (iv)

Hilbert transform - presented above shows that all of them are more or less feasible and

convenient for the detection of nonlinearity. In other words, the first question put forward

at the beginning of this Chapter can now be answered reasonably convincingly. c

However, not all the methods can be used to identify the nature of the nonlinearity once

its existence is confirmed. For instance, the method of reciprocal of FRF data can clearly

demonstrate the effect of nonlinear stiffness but cannot identify its actual type clearly. For

other more sophisticated methods such as the isometric damping plot, the identification of
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the type of nonlinearity becomes possible if those commonly encountered types of

nonlinearity are well categorized beforehand. However, a conclusive identification is

often difficult to achieve, considering the application on the hardening cubic stiffness case

and hardening backlash stiffness case. The same argument holds for the Hilbert

transformation technique. Moreover, it is clear that unless the type of nonlinearity is

identified confidently, its quantification is out of the question.

Apart from the immediate discussion on the identification of nonlinearity types, one

important aspect in the modal analysis of nonlinearity which these current methods are not

fully able to cope with is the need to obtain the correct modal data when the system is

nonlinear. For instance, the modal constant and damping loss factor for a system with

nonlinear stiffness should, in theory, be the same constants as if there is no nonlinear

stiffness. However, their accurate estimation is usually hindered when conventional

(linear) modal analysis algorithms are applied to extract modal data from nonlinear FRF

data.

Based upon the above study and discussion, it can be said that modal analysis of

nonlinearity requires further development so that it can more conclusively identify the type

of nonlinearity from FRF data and, based on this identification, the extent of the

nonlinearity can then be investigated, if required. In addition, the undistorted modal data

could be extracted from the nonlinear FRF data. In the following study, a new

interpretation of the effect of nonlinearity on FRF data is examined and used as the basis

for a new method to facilitate modal analysis of nonlinear structures.

8-3 A NEW INTERPRETATION OF THE EFFECT OF NONLINEARITYONFRF

DATA FROM THE MODAL ANALYSIS VIEWPOINT *

8-3-l Interpretation of FRF Data with Nonlinearity

With reference to vibration theory, it can easily be seen that some types of nonlinearity
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have been studied extensively. Using the experimental modal analysis methods discussed

above, more types of nonlinearity have been simulated and investigated. However, it is

believed that there are some aspects in applying modal analysis to identifying the types of

nonlinearity which need to be interpreted theoretically before further development of

practical nonlinearity analysis can progress. In the following, some new insights into the

modal analysis of nonlinear systems will be presented from a very fundamental point of

view and, for the sake of simplicity, these are illustrated using a SDOF system with

nonlinear stiffness. The discussion commences with the equation of motion of the system

with the spatial parameters such as mass and stiffness. It is customary that a SDOF

system with cubic stiffness will be described by the Duffing equation, as is often referred

to in textbooks:

(8- 14)

where m, k, p and c stand for the mass, linear stiffness, cubic stiffness and viscous

damping coefficients of the system respectively.

The stiffness characteristics and the frequency response function of the system subjected

to a sinusoidal excitation (f=Fe’Of)  are shown in Figures 8-10 and 8-l 1 respectively. The

type of frequency response function (FRF) shown in Figure 8- 11 is often observed in

modal testing results but its interpretation from the viewpoint of modal analysis has not

been fully explored.

Considering a sinusoidal excitation, f(t)=FeiWt,  equation (8-14) becomes:

m% + ck + k(1 - px2/k)x  = Feiot

or m? + cx + k&x = Feiot

(8-15)

(8-16) *

Here, k(i) is a function of the harmonic amplitude f. The receptance of the system can

then be defined as:
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a(o) = l/(k(i)  - o?rn + iac) (8-17)

The corresponding receptance for the same system without the nonlinear stiffness can be

denoted with a ‘0’ subscript as:

a,(o) = l/(k - o’rn + ioc) (8-18)

It can be said equivalently that the nonlinear system has different values of stiffness at

different response amplitudes. If a sinusoidal excitation with constant force (F=constant)

is applied in modal testing, then a receptance FRF of the form in Figure 8-l 1 will be

obtained for a SDOF system with softening cubic stiffness.

Since it is realised that the receptance in equation (8-17) has different values at different

response amplitudes for a given frequency, a response control technique could be

employed experimentally, as described in Chapter 7, in which each measurement is made

with the response amplitude being kept at a chosen level in order to linearise the vibration

behaviour. Figure 8-12 shows the measurement results of from SDOF system with

softening cubic stiffness in the vicinity of the resonance by using different response

amplitude controls. It can be seen that, as predicted by theory, each curve conforms to a

linear model, although the parameters of the model in each case vary according to the

selected response amplitudes. This, in fact, is one procedure for formulating a series of

linearized models for the system and thus to determine k(ic)  versus %.

If we draw a horizontal line on Figure 8-12 to represent a specific value of receptance

amplitude (see Figure 8-13),  then, for this particular value of the amplitude at the exciting

frequency ‘o’ denoted in Figure 8-13, we can take the cross point between the FRF curve c

and that horizontal line, both representing the conditions of the response amplitude which

must be satisfied simultaneously. For each point before resonance thus chosen, there is a

corresponding point (0”) after resonance lying on the same FFW  curve. Linking all the
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points thus deduced produces a new FRF curve (Figure 8- 13) which is found to be of the

same form as that in Figure 8-l 1. In other words, the response of a system with nonlinear

stiffness can be constructed from the properties of a family of linear systems, each, in this

case, having the same mass and damping properties but different stiffness values. The

usually-observed FRF of this nonlinear system with constant excitation level (Figure

8-l 1) is effectively a combination of the results of all the linear systems, each point

relating to one of them.

Based on this observation, it can now be explained in a new way why nonlinearity cannot

be identified directly from a single FRF measurement made using random excitation

since, in this case, the force level at each excitation frequency varies, causing the response

level at this frequency to be an averaged value. The resultant FRF can therefore be shown

schematically in Figure 8-14. The curve, in fact, is between the linear FRF (without

nonlinearity) and the FRF curve of maximum response level.

8-3-2  Interpretation of the Reciprocal of Receptance Data with Nonlinearity

8-3-2-l Stiffness Nonlinearity

The reciprocal of receptance data has been previously discussed in Chapter 4 for the

identification of damping type and in an earlier part of this Chapter as a tool for the

investigation of nonlinearity. It has been found hitherto that this technique is not

applicable for the conclusive identification of nonlinearity type by simple and direct

implementation. However, an appropriate interpretation of the reciprocal of FRF data

from the modal analysis viewpoint, similar to that of the ‘standard’ FRF data discussed

above, will reveal the inherent nonlinearity effect on the reciprocal of receptance data in a

way which has not been published so far.

understanding of the results from modal

explained below.

In turn, this revelation will suggest a new c

analysis of systems with nonlinearity, as

It can be seen from Figure 4-l that the real part of the reciprocal of receptance for a linear
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points thus deduced produces a new FRF curve (Figure 8- 13) which is found to be of the

same form as that in Figure 8-l 1. In other words, the response of a system with nonlinear

stiffness can be constructed from the properties of a family of linear systems, each, in this

case, having the same mass and damping properties but different stiffness values. The

usually-observed FRF of this nonlinear system with constant excitation level (Figure

8-l 1) is effectively a combination of the results of all the linear systems, each point

relating to one of them.

Based on this observation, it can now be explained in a new way why nonlinearity cannot

be identified directly from a single FRF measurement made using random excitation

since, in this case, the force level at each excitation frequency varies, causing the response

level at this frequency to be an averaged value. The resultant FRF can therefore be shown

schematically in Figure 8-14. The curve, in fact, is between the linear FRF (without

nonlinearity) and the FRF curve of maximum response level.

8-3-2  Interpretation of the Reciprocal of Receptance Data with Nonlinearity

8-3-2-l Stiffness Nonlinearity

The reciprocal of receptance data has been previously discussed in Chapter 4 for the

identification of damping type and in an earlier part of this Chapter as a tool for the

investigation of nonlinearity. It has been found hitherto that this technique is not

applicable for the conclusive identification of nonlinearity type by simple and direct

implementation. However, an appropriate interpretation of the reciprocal of FRF data

from the modal analysis viewpoint, similar to that of the ‘standard’ FRF data discussed

above, will reveal the inherent nonlinearity effect on the reciprocal of receptance data in a

way which has not been published so far. In turn, this revelation will suggest a new c

understanding of the results from modal analysis of systems with nonlinearity, as

explained below.

It can be seen from Figure 4-l that the real part of the reciprocal of receptance for a linear
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system (but with little noise) conforms a straight line when plotted against frequency

squared. From equation (8-17),  it can also be seen that the reciprocal of the receptance of

a SDOF system with a stiffness nonlinearity, and its real and imaginary parts, can be

expressed as:

l/a(o) = k(2) - 02m + ioc (8-19)

Re(l/cc) = k(g) - 02m and Im(l/a) = i6.X

As suggested earlier, the most significant advantage of using the reciprocal of receptance

is the separation of the stiffness characteristics from the damping property into its real and

imaginary parts respectively, and so the interpretation of the reciprocal of the FRF data

due to nonlinear stiffness can then be concentrated on the real part of the data:

Re(l/a) = k(ji)  - cn2m

= m ( oru2(%)  - o2 ) (8-20)

Equation (8-20) suggests that away from the resonance, where k(k) is dependent

considerably less on the response amplitude, Re(l/a)  will effectively be the same as

Re(llae) - the real part of the reciprocal receptance data of the corresponding linear

system deduced from equation (8- 18) - while in the vicinity of resonance, each data point

of Re(l/a) effectively represents a different stiffness value k(a) or natural frequency

w,2(%),  because the amplitude of vibration (a) is likely to vary considerably from point to

point.

In common with the previous interpretation of the FRF data with nonlinearity, it can be *

seen here that if the measurement is made with a controlled response amplitude each time,

the Re( l/a) versus o2 plot will be of the same form as that for linear case (i.e. a straight

line), except that for each of such a condition of constant response amplitude, the

c /
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Re(l/a)  data points will be subject to a different linear model with different natural

frequency, since the system will take different stiffness quantity for each condition.

Schematically, each time the Re(l/a) points will lie on one straight line which has a

different offset due to different natural frequency w02(%)  (or different stiffness), as

shown in Figure 8-15. Since we presume the system has constant mass and damping

quantities (i.e. they do not change with the force level) for the nonlinear stiffness case, the

modal constant of the system should not, in theory, vary according to force level and

hence these straight lines are all parallel one to another. However, one measurement made

with a constant force level can include all the information  contained in those parallel lines.

This is because each Re( l/a) data point in this case comes from one of those parallel lines

for response amplitude-controlled measurements and thus contains the necessary

information to define that line. Figure 8-16 shows the principle and is actually the

counterpart of Figure 8-13 which is for the receptance FRF case.

&3-2-2  Damping Nonlinearity

Similarly to the nonlinear stiffness case, the

imaginary part of the reciprocal of receptance

interpretation can be extended to the

data to observe the effect of nonlinear

damping. In this case, the equation of motion of the system with nonlinear damping can

be written as below for a sinusoidal forcing function:

m% + c(%)x  + kx = Feiot (8-21)

where c(W) represents the nonlinear damping which is a function of the harmonic

amplitude jz, and parameters m and k are mass and stiffness of the system and are

supposed to be constant.

c
Based on the same argument as for the nonlinear stiffness case, it is clear that the effect of

nonlinear damping is concentrated in the imaginary part of the reciprocal of receptance

data, which takes the simple form:

Im( l/a) = c(i)0 (8-22)

b
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It is customary that for linear viscous damping case, the imaginary part of the reciprocal

of Eceptance data (denoted here as Im(l/c@) versus frequency appears to obey a straight

line as the harmonic amplitude function c(g) in equation (8-22) is actually a constant. As

the damping becomes nonlinear, it can be seen from equation (8-22) that for each constant

response amplitude condition, the nonlinear damping will not vary and the system will be

subject to a linear damping model. The imaginary part of its reciprocal of receptance data

becomes a straight line, just like the linear damping case although this straight line has a

different slope from the one of Im(l&,) data representing linear damping case, as shown

in Figure 8-17. Nevertheless, one set of FRF data obtained with a measurement of

constant force level can include all the information of those non-parallel lines. This is

because each Im( l/a) data point in this case conforms to a certain harmonic amplitude and

should lie on one of those radial lines, this data point then fully contains the information

of that line. Figure 8-18 exhibits the composition of the Im(l/a) data from a measurement

of constant force level.

8-4 A NEW METHOD FOR THE MODAL ANALYSE  OF NONLINEAR SYSTEMS

8-4-l Modal Analysis of Stiffness Nonlinearity

Having presented the above interpretation of nonlinearity effects on FRF data, it now

becomes possible to apply this to the modal analysis of nonlinear systems and to develop

a new technique which will be fundamentally different from the conventional methods for

the modal analysis of nonlinearity. As the fmt phase of the technique, the modal analysis

of stiffness nonlinearity is studied. Nonlinear damping will be discussed later. c

Before embarking on a detailed discussion, it is worth re-emphasizing that nonlinear

stiffness is a displacement amplitude-dependent property of a dynamic system and that the

natural frequency of the system is therefore amplitude-dependent, too. Also for the sake
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of simplicity, it is assumed that the system’s mass properties are constant in this case (i.e.

they do not change with excitation force level) and hence the modal constant of the system

with displacement amplitude-dependent stiffness should not, in theory, depend on force

level.

Since for a given type of nonlinear stiffness, the reciprocal of receptance data has been

thoroughly interpreted from Figure 8-16, it is believed now that by analysing the

reciprocal of receptance data in accordance with the knowledge of the above

interpretation, the type of nonlinear stiffness can be convincingly identified. In the

following, it is supposed at first that the linear modal constant of the nonlinear system ‘A’

(i.e. the modal constant obtained when assuming the nonlinearity is removed from the

system) is known - although this may be very difficult to achieve in practice - although it

will be found later that this precondition is not necessary.

S-4-l-l Description of Methodology

As stiffness nonlinearity is amplitude-dependent, it is supposed that a relationship of

response harmonic amplitude versus natural frequency (equivalent to stiffness, since the

systems’s mass property does not change) is necessary to identify the type of

nonlinearity. Further, it would be ideal to quantify the nonlinearity because, unlike other

methods such as the isometric damping plot or the Hilbert  transform to extract certain

indications of nonlinearity, this relationship reveals the nonlinear stiffness feature directly

and explicitly. If it is supposed that the Re(l/a) data of a nonlinear system, such as the

curve shown in Figure 8-16, is available from measurements, then a set of parallel lines

using the linear modal constant as the slope can be drawn on the plot of Re(l/a) versus

frequency squared. The line through each FRF data point represents a linear&d  model of

the nonlinear system which is valid at a certain response amplitude, as exhibited by Figure c

8-13. Since each data point relates to a specific response amplitude, a plot of response

harmonic amplitude versus natural frequency is then obtained and this, in turn, shows

explicitly the nonlinear stiffness characteristics of the system.
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8-4-1-2 Algorithm for Modal Analysis of Nonlinear Stiffness

The algorithm of the above procedure can be initiated from equation (8-20). Using the

modal data instead of the spatial parameters such as mass and stiffness, equation (8-20)

can be written in terms of modal constant (A) and harmonic amplitude (k) as:

Re(l/cc) = ( (I+,~(%)  - o2 )/A (8-23)

The plot of data Re( l/a) against o2 is a straight line for data without nonlinearity and the

natural frequency w02 is thus a constant. However, in the case of nonlinear stiffness, the

amplitude-dependent natural frequency can be deduced from equation (8-23),  yielding;

~e2(f) = A(Re(l/a)) + O2 (8-24)

Equation (8-24) consists only of FRF data and modal data and it demonstrates that, if the

correct modal constant A is available, the receptance amplitude-dependent natural

frequency can be obtained from the reciprocal of receptance data and this is equivalent to

obtaining the nonlinear stiffness against the receptance amplitude. It is necessary to

mention here that since the linear modal constant is relatively difficult to obtain by

conducting a conventional modal analysis procedure on nonlinear data, a new technique

will be introduced later in $8-4-3 to derive an accurate modal constant estimate.

The stiffness is a property related to response amplitude (rather than receptance

amplitude), and so it is necessary to convert the latter to the former once the natural

frequency against receptance amplitude is deduced from equation (8-24). If the force level

is constant throughout a measurement (which is ideal but impractical), then the difference ’

between the two amplitudes (response and receptance) would be merely a scale factor, as

will be seen later. However, considering the inevitable non-constant force levels in a

measurement of a nonlinear system, the response amplitude of each data point is

irregularly related to the force level and hence, cannot be obtained stra.ightfoNvardly  from
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the receptance amplitude of that point. Fortunately, it is found that obtaining response

amplitude from receptance amplitude is feasible with knowledge of the force level

information because the receptance and the harmonic response under a sinusoidal

excitation have a simple relationship:

a(o) = Xeiot/Feiot (8-25)

and the harmonic amplitudes of the receptance, response and excitation force are therefore

related to one another as:

la(o)l  =IX(w)l  / IF( (8-26)

where a(o) and X(o) represent the receptance and response amplitude under the

excitation frequency o, and F(o) is the excitation force amplitude from the shaker.

Thus, the displacement amplitude can be deduced frequency by frequency from the

receptance amplitude and the force level:

IXI = Ia( IFI (8-27)

Equation (8-27) reveals the important feature that if the force level is recorded in the

measurement, then modal analysis of nonlinear stiffness can be conducted on the FRF

data measured without requiring any force or response level control. This means that

standard measurements can be made, thus saving a great deal of experimental effort.

Once the response amplitude is deduced by equation (g-27), together with the

amplitude-dependent natural frequency obtained from equation (g-24),  the stiffness

characteristics can be derived explicitly and it becomes possible to identify the type of ’

nonlinear stiffness and, possibly, to quantify it.
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8-4-2 Modal Analysis of Damping Nontinearity

The modal analysis of a damping nonlinearity is based upon the previously developed

interpretation and is subjected to the similar methodology as that for stiffness nonlinearity.

In common with that case, nonlinear damping is an amplitude-dependent property of a

dynamic system. Therefore, unlike the linear system which has a constant damping loss

factor, the loss factor of a system with nonlinear damping will be amplitude-dependent.

For the sake of simplicity, it can be assumed that the system’s mass and stiffness

properties are constant when nonlinear damping is studied. The primary aim of modal

analysis of systems with a damping nonlinearity would be - like that of stiffness

nonlinearity - to identify conclusively the nonlinear damping type and to develop a model

(of damping against response amplitude) for the system.

The vibration motion of a system with a damping nonlinearity is described previously by

equation (8-21) and the effect of damping nonlinearity on FRF data is concentrated on the

imaginary part of the reciprocal of receptance, defined by equation (8-22). As Figure 8-18

shows, each Im(l/a) data point relates to a different linearized damping model of the

system and each data point represents a different damping loss factor due to different

response amplitude. Hence, when the FRF data of a system with damping nonlinearity

are measured, a series of straight lines can be drawn on the curve of Im(l/cx)  against

frequency, each of which represents a linear damping model for a certain response

amplitude. Further, the damping loss factor corresponding to each data point can be

estimated from the straight line which passes through the point in question and represents

a linear damping model. Thus, a nonlinear damping model (of damping loss

response amplitude) can be deduced.

In order to implement the methodology of modal analysis of damping

equation (8-22) can be rewritten in terms of FRF and modal data, yielding:

factor against

nonlinearity,

I I



Im( l/a) = 2&)9p  /A (8-28)

where c(g) is the response amplitude-dependent damping loss factor which becomes

constant if the damping is linear.

Once the linear natural frequency “au ” and modal constant “A” are obtained from either

the Nyquist circle-fit or the real part of the reciprocal of receptance data, the damping loss

factor for each data point (which corresponds to a different response amplitude, x)can be

evaluated by:

e(g) = Im(l/a) A / 2~0~0 (8-29)

In order to develop the relationship of response amplitude versus damping loss factor, the

response amplitude of each data point has to be estimated from the measured data in the

same way as was introduced for the stiffness nonlinearity case. Specifically, the response

amplitude can be derived from equation (8-27) and thus the damping property of the

nonlinear system (against the response amplitude) can be then be modelled and the

nonlinear damping type be identified.

.

S-4-3 The Extraction of an Accurate Modal Constant Estimate

It can be seen from the above study for the new method of modal analysis of nonlinearity,

that the accuracy of the modal constant estimate is very important. In fact, both equation

(8-24) for the analysis of stiffness nonlinearity and equation (8-29) for the analysis of

damping nonlinearity require an accurate modal constant estimate. However, an accurate ,

estimation of this parameter can be very difficult to achieve when the measured data are

from a nonlinear system Even for a linear system, the modal constant is often determined

after the natural frequency and damping loss factor estimation for the Nyquist circle-fit

algorithm and, hence, any inaccuracy in the latter two will directly influence the reliability
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of the former.

In order to reduce the influence of an error in the modal constant estimate for subsequent

analysis of nonlinearity, an accurate modal constant has to be obtained somehow. In the

following, the linear case is first examined to investigate the effect of an erroneous modal

constant estimate on the natural frequency estimation using the Re(lla) data and to

investigate a new method of obtaining an accurate modal constant estimate. Then, it will

be shown how the same technique can be introduced into the modal analysis of nonlinear

systems to adjust the modal constant estimate so as to achieve a satisfactory nonlinearity

analysis.

For a dynamic system with linear stiffness properties, the natural frequency can be

evaluated from any Re( l/a) data point using the following equation, provided the modal

constant estimate A is correct:

au2 = Re(l/a)A + cu2 (8-30)

The natural frequency thus estimated should theoretically be the same no matter which

data point is employed. Figure 8-19 shows the Re( l/a) data from a linear system and the

receptance amplitude against the natural frequency estimated by equation (8-30) using

each data point individually. Clearly, the same natural frequency is obtained from each

data point.

If the modal constant estimate is in error by an amount denoted by AA, then equation

(8-30) will become: c

or,2 = Re( l/a)A + w* + Re( l/a)AA (8-31)

Equation (8-31) shows that the error in the modal constant estimate will perturb the

natural frequency estimation process and produce a systematic discrepancy in the result.
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Only at the point when Re(l/a)  is zero is the natural frequency estimated correctly.

Equation (8-31) also suggests that since the discrepancy in the natural frequency estimate

is systematic due to an error in the modal constant estimate, it should be possible to alter

the modal constant estimate with frequency so that when the systematical discrepancy

disappears, the correct estimate of modal constant has been achieved, and so has that of

the natural frequency. Figure 8-20 shows the results of natural frequency estimation by

equation (8-31) with different amounts of AA and it is clear that as AA becomes smaller,

the natural frequency estimation from each data point becomes closer to the correct

answer.

The technique proposed above to obtain simultaneously correct modal constant and

natural frequency estimates is a procedure which is independent of the damping and it can

be a useful alternative to the analysis of data wirhout nonlinearity so as to improve the

modal parameter extraction. For the modal analysis of damping nonlinearity, the correct

modal constant and natural frequency estimates are required in equation (8-29) and it is

also expected that they can be obtained in this way.

8-5 APPLICATIONS OF THE NEW METHOD FOR THE MODAL ANALYSIS OF

NONLINEARITY

The new method for the modal analysis of nonlinearity proposed above has been applied

to several systems with various types of nonlinear stiffness or damping in order to assess

fully the feasibility of the method. Most of the systems have a SDOF with either one type

of nonlinear stiffness or of nonlinear damping. In this study, both analytical and electrical

analogue data are used. In a second stage of the assessment, FRF data measured on a

practical structure are employed and the nonlinearity is investigated.
c
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8-5-1 Analysis of Stiffness Nonlinearity

A SDOF system with different types of nonlinear stiffness has been simulated on an

analogue computer1 631 and studied using the traditional methods including the Hilbert

Transform and the isometric damping plot. Among these nonlinear systems, a SDOF

system with hardening cubic stiffness is typical and the data measured from it are

employed here for this study.

The inertance FRF data and the reciprocal of receptance data of the system have been

given previously in Figures 7-8 and 8-2 respectively. The isometric damping plot and the

Hilbert Transform of the FRF data with this cubic stiffness have also been presented

previously - in Figures 8-5 and 8-7 respectively. It can be seen that the existing

nonlinearity is strongly indicated by both the damping plot and the results of the Hilbert

Transformation. However, the type of nonlinearity is not conclusively identified since

other types of nonlinear stiffness - such as backlash stiffness - may well produce similar

indications and it could be extremely difficult to distinguish them from each other in either

of these two methods.

By using the new method of analysis, the system’s property of response amplitude versu.s

the natural frequency (equivalent to the stiffness) evaluated from each Re(l/a)  data point

has been obtained as shown in Figure 8-21. Here it can be seen that the system has a

continuously changing type of stiffness property and hence the possibility of backlash

stiffness is eliminated and cubic stiffness is proposed. For a SDOF system with

hardening backlash stiffness, the reciprocal of receptance data has been shown earlier in 4
Figure 8-3. It has been found that the isometric damping plot and the Hilbert Transform

results in this case could easily be misinterpreted as if the system has cubic stiffness.

However, by using the new method of modal analysis, the backlash type of stiffness

characteristics of the system can be shown as in Figure 8-22 which exhibits the true
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nonlinear stiffness type and is rather clearly distinguishable from the cubic stiffness

characteristic.

S-5-2 Analysis of Damping Nonlinearity

When the new method is applied to the study of damping nonlinearity, the results are as

encouraging as those for stiffness nonlinearity. The FRF data from a SDOF with different

extents of quadratic damping are shown in Figure 7-19 in the last chapter. The existence

of quadratic damping could be suspected from the typical apple-shape Nyquist plot

provided its extent is rather large and measurement force constant. However, the

isometric damping plot does not clearly indicate this nonlinearity.

On the other hand, the FRF data with quadratic damping can be analysed using the new

method proposed in this Chapter, with the results shown in Figure 8-23. The plot on the

right hand side is the imaginary part of the reciprocal of receptance and that on left hand

side is the analysis result. Figure 8-23 demonstrates that the damping loss factor of the

system varies linearly according to the response amplitude and this happens to coincide

with the characteristic of a quadratic damping model. Figure 8-24 shows the imaginary

part of the reciprocal of receptance of a SDOF system with a dry friction type of nonlinear

damping and the analysis result. Again, the extent of the nonlinear damping at different

response amplitude is clearly uncovered. Therefore, it can be seen that the new method of

modal analysis is quite useful in conclusively identifying the type of nonlinear damping as

well as identifying that of nonlinear stiffness.

8-S-3 Practical Applications of the New Method

c

In practical applications of techniques to study nonlinearity, it is believed that - with the

exception of the possible uncertainty of the exact type of nonlinearity - the primary

problem lies in the difficulty of applying constant force or constant response measurement

conditions, both being strictly required by conventional methods of nonlinearity analysis.
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If the force is not kept constant, then the nonlinearity cannot generally be fully exposed

and conventional methods cannot produce convincing results for analysis of nonlinearity.

Likewise, if the response is not well controlled, then a linearized model of a nonlinear

system cannot be obtained.

However, by using the new method, neither force control nor response control is required

in the measurement whereas the nonlinearity can still be analysed. In the following, a

typical example from measurements on the analogue computer is given first to simulate a

practical measurement where no force control is used and it will be seen that the

nonlinearity is successfully analysed. Second, a practical example from measuring a

vibrating structure known to exhibit nonlinear characteristics is then studied and the

nonlinearity investigated.

The FRF data shown in Figure 8-25 are obtained from the model of a SDOF system with

cubic stiffness added. The measurement is carried out in such a way that the force level

simulates the practical case; i.e. near resonance, the force applied to the system decreases

significantly due to the characteristics of the shaker. The actual force level recorded in the

measurement is presented in Figure 8-26. It is evident that the FRF data in Figure 8-25 do

not indicate the existence of nonlinearity as would be expected if the force level were kept

constant throughout the resonance frequency range. Moreover, neither the reciprocal of

receptance plot shown in Figure 8-27, nor the modal analysis results given by Figure

8-28, provides any significant indication of a cubic stiffness characteristic. All this is

attributed to the non-constant force  level employed in measurement.

The same FRF data were then analysed using the new method proposed in this Chapter.

The system is known not to have any damping nonlinearity, and the analysis correctly *

indicates a linear damping model by the form of the imaginary plot of (l/a). However,

the nonlinear stiffness is clearly indicated by the relationship of natural frequency against

response amplitude exhibited in Figure 8-29. The continuous natural frequency change

with response amplitude coincides with the cubic stiffness model. Hence, it suggests that
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the new method does not necessarily require force control or response control to be

applied during measurements in order to achieve a successful nonlinearity analysis, both

being extremely difficult to achieve in practice.

A practical structure referred to as the “NASTRAN structure” was then investigated. The

structure was known to possess certain type(s) of stiffness nonlinearity[61]  while the

exact nature of the nonlinearity is still unknown. In this study, a discrete sine sweep was

used to measure FRF data, covering the fiist mode of the structure, although neither the

force nor the response was controlled in measurement. Hence, the structure was

measured in just the same way as would be used if no considerations were taken of the

existence of nonlinearity. The inertance FRF data obtained and the force level generated

by the shaker are shown in Figures 8-30 and 8-31 respectively. It can be seen from these

figures that since the force level was not controlled, the FRF data does not show

indications of nonlinearity. The same conclusion is drawn from results of the modal

analysis presented in Figure 8-32 by circle-fitting a Nyquist plot of the FRF.

The new method was applied to the measured data and a nonlinear stiffness characteristic

was clearly revealed by the results shown in Figure 8-33. The stiffness change with

response amplitude suggests that the first vibration mode of the structure is subjected to a

softening backlash type of stiffness since the stiffness appears to be constant within a

certain response amplitude range, while beyond this range, the stiffness tends to decrease

as the response amplitude increases. By close observation of the structure, it can be

supposed that this could be due to the joints by which components of the structure are

connected. If the response amplitude is very small, then there is effectively no slip within

the joints but as the amplitude increases, the slip does occur, thereby reducing the

stiffness of the structure. c

8-6 CONCLUSIONS

Once nonlinearity is suspected in a structure, different strategies can be applied to deal
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with it, depending upon the different requirements. Despite the difficulty in extracting

correct modal data in the presence of nonlinearity, the main problems put forward by the

nonlinearity for modal analysis are: (1) Whether a dynamic system or structure is

nonlinear?; (2) If yes, what type of nonlinearity is it? and, possibly, (3) What is the extent

of the nonlinearity?

In coping with the reality of nonlinearity in structural dynamics, it is understood that there

are three common requirements for the modal analysis which can be summarized as: (1)

detecting the existence of nonlinearity and then linearising it without need for the

knowledge of its type; (2) identifying the type of the nonlinearity and (3) quantifying the

identified nonlinearity in order to devise a correct model for the nonlinear system for

subsequent analysis purposes, such as response prediction.

Four commonly-used methods for the modal analysis of nonlinearity have been reviewed

in detail in this Chapter. It is noted that both the Bode plot and the reciprocal of receptance

methods are merely different presentations of the FRF data intended to show up any

systematical distortion caused by existence of nonlinearity. They are very convenient in

the nonlinearity detection stage but not so applicable for the identification of nonlinearity

type or its quantification.

The isometric damping plot and the Hilbert  Transform both seek more specific indications

of the different types of nonlinearity. Apart from the evident results these methods

provide in validating the existence of nonlinearity, conclusive identification of its type

relies on a lot of prior studies and categorization  of different types of nonlinearity

commonly encountered in reality but, even then, some types of nonlinearity have similar

indications in the results of both methods and could mislead the identification. c

On considering the measurement of a practical structure, it is realized that to achieve a

satisfactory control on either the force or the response levels is often extremely difficult.

Nevertheless, the detection of nonlinearity and identification of its type performed by the
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above methods strictly requires the FRF data from measurement with a fairly constant

force level. Moreover, the modelling of the identified stiffness nonlinearity relies on a

number of measurements with different amount of response control. These requirements

impose significant demands on the measurement process(es)  associated with nonlinearity

studies.

Based upon the SDOF assumption, a new interpretation of the effect of nonlinearity in the

FRF data, and subsequently in the reciprocal of receptance data, is made. It is made

essentially from the viewpoint of modal analysis rather than the theory deduced from

known differential equations. It is shown that since a dynamic system having a stiffness

nonlinearity will take a different stiffness value with each different response amplitude,

every FRF data point from a measurement with constant force actually relates to a specific

FRF data curve measured with a constant response and so, in effect, contains all the

information of the latter curve. Therefore, it is possible to use one FRF curve measured

with constant force to identify the type of nonlinearity and to model it. The same

interpretation is made for damping nonlinearity case.

Based on this interpretation, a new method is proposed to analyse the nonlinearity from

measured FRF data. In addition to deriving an indication of the nonlinearity, this method

aims at discovering the relationship between the vibration response amplitude and the

extent of the nonlinearity (such as stiffness or damping quantity) from the FRF data

measured using sinusoidal excitation. Since this method reveals directly the nonlinearity

characteristics as a function of response amplitude, it provides more conclusive

identification results and immediately suggests the reference for quantifying or modelling

the nonlinearity. It is also seen that the condition of constant force is not necessary when

measuring the FRF data for the subsequent modal analysis. In fact, satisfactory analysis *

can be carried out as long as the response amplitude varies sufficiently to expose the

nonlinearity. As a consequence, the new method also suggests a technique to extract

correct modal data in case of nonlinearity.
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In addition to requiring neither force nor response control in measurement, another major

advantage of the method developed here is its simplicity, both of application and

interpretation. By separating the stiffness and damping effects (into the real and imaginary

parts of the reciprocal of FRF), there is the immediate benefit of establishing the type of

element in which any nonlinearity exists. Then, it is possible to extract the nonlinear

characteristic by a simple modal analysis process without further complex analysis.

Although the method is predicated on the assumption of a SDOF model, and the extension

to truly MDOF systems is difficult, this difficulty is a feature shared by most (if not all)

studies of non-linearity in practical modal analysis applications. In view of the

impracticability of dealing with actual structural nonlinearity in any but an approximate

way, this new approach has distinct advantages in such applications.

.
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Figure 8-l The strategy of modal analysis of nonlinearity
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Figure 8-2 Real and imaginary parts of the reciprocal of FRF data from  the SDOF
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Figure 8-3 Real and imaginary parts of the reciprocal of FRF data from the SDOF
system with hardening backlash stiffness



-- 221 --

Nyquist plane

I isometric damping plot

Figure 8-4 Isometric damping of a linear vibration mode
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Figure 8-6 Modal analysis results of the FFU?  with hardening backlash stiffness
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Figure 8- 11 Frequency response solution of the system subjected to a sinusoidal

excitation (f=Feiot),  with stiffness characteristics shown in Figure 8-10

a(o) --

response level increases

Hz

Figure 8- 12 Receptance FRFs of a SDOF system with softening cubic stiffness in

the vicinity of the resonance using different response amplitude controls

.
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a(a) r----

.

Figure 8-13

1

0’ Hz co’ ’

Composition of the FRF with constant force from the FRFs  with
different response amplitude controls using sinusoidal excitation

Figure 8-14 Illustration of the effect of random excitation on measured FRF
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Figure 8-15 Each Re(l/a) corresponds to a linear system model represented by one

straight line

Re( l/a:

Figure 8-16 Principle of using Re(l/a) data to analyse nonlinear stiffness

.
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linear model 1

co
Figure 8-17 Each Im( l/cc) corresponds to a linear system model represented by one

straight line

L

_-L---
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Figure 8- 18 Principle of using the imaginary part of the reciprocal  of receptance data

to analyse nonlinear damping



-- 230 --

ReWar)

Figure 8-19 Re( l/a) data of a linear system and the receptance amplitude against the

natural frequencies estimated by equation (8-30)

Natural Frequencies

Figure 8-20 Effect of modal constant error AA on the natural frequency estimation
using equation (8-3 1)

.
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Figure 8-2 1 Re( l/a) data with hardening cubic stiffness and the analysis results
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Figure 8-22 Re( l/a) data with hardening backlash stiffness and the analysis results
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Figure 8-23 Im( l/a) data with quadratic damping and the analysis results
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Figure 8-24 Im(l/a) data with dry friction damping and the analysis results



-- 233 --

.
l

.
. .

. .
. .

. .
. .

. .. .
. . ..

l .

0
15.00

Frequency Hr.
16.99

Figure 8-25 FRJ?  data obtained from a SDOF system with cubic stiffness
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Figure 8-26 The force level used in the measurement
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Figure 8-27 Reciprocal of receptance data of the FRF in Figure 8-25
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Figure 8-28 Modal analysis results of the FRF in Figure 8-25
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Figure 8-29 The analysis results
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Figure 8-30 Inertance  FRF data measured from  a practical structure
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Figure 8-31 The force level generated by the shaker in the meaurement
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Figure 8-32 Modal analysis results of the FRF presented in Figure 8-30
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Figure 8-33 The analysis result using the new method
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CHAPTER 9

CONCLUSIONS AND SUGGESTION

FOR FURTHER STUDIES

9-l ANALYTICAL MODEL IMPROVEMENT USING MODAL TESTING

RESULTS

As current vibration practice demands more and more realistic mathematical models for

vibrating structures, the study of analytical model improvement using modal testing

results becomes increasingly important. This is because in the identification of dynamic

characteristics of practical structures, both the analytical prediction and the modal testing

have their own advantages and shortcomings. Using modal testing results to improve an

analytical model effectively makes use of the advantages of both while at the sarne time

overcoming their disadvantages and, it is by doing so that the most reliable mathematical

model can be achieved.

It is understood from numerical studies that the major pitfall for most methods currently

used, such as the constraint minimization method (CMM) or the error matrix method

(Em), to improve an analytical model using measured modes is to tackle it from a

purely mathematical viewpoint, such as an optimization one, rather than to consider the

structural characteristics as well, such as connectivity. As a consequence, the modified

model could often be optimal in a mathematically sense, but physically unrealistic. For c

instance, the modified analytical stiffness matrix could suggest a stiffness component

between coordinates i and j which are entirely unconnected on the real structure.

Repeatedly using these methods rarely shows a convergence to correct answers. This is

mainly because of the failure to preserve the physical connectivity and, furthermore,

L
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because of the attempt to ‘correct’ the correct parts in the analytical model in the model

improvement process.

Before and during this research for better methods of analytical model improvement, one

important concept is always borne in mind, i.e. what kind of model is a good model and

therefore is our target. It is believed that a good model is one which satisfies the following

conditions; (1) it represents correct physical connectivity; (2) the corresponding vibration

modes derived from it should agree with those observed in measurement and (3) it should

predict correctly those modes which we are unable to measure or which are not yet

measured. It is thought that condition (1) is a necessity for the model to be achieved - this

is actually ignored by many current efforts to improve an analytical model - and condition

(3) is the sufficiency for a good model. Philosophically, a successful model improvement

practice should aim at achieving a model which satisfies condition (3), by imposing

condition (2), based upon condition (1).

It is believed that the major errors will, in most cases, simply occur in a few localised

regions in the analytical model. The key issue for a model improvement study is thus to

be able to locate precisely where these major errors exist in the analytical model, using the

measured modes as input. This is because it provides a useful guide either for possible

further analytical modelling or for model improvement using measured vibration modes -

or both. As far as model improvement is concerned, the improvement can be directed

towards correcting those located errors in the model and the analytical model could thus

be improved much more realistically and effectively if these erroneous regions in the

model are somehow successfully located. In Chapter 3, a new method is proposed which

uses as few as just one measured vibration mode to locate the major errors in the

analytical model. Numerical case studies consistently suggest the correct error location *

achieved by this method In addition, a new iteration procedure - to apply current methods

such as the CMM or the EMM to improve an analytical model by correcting the located

errors in the model - is suggested for analytical model improvement. This new iteration

procedure has demonstrated marked advantages in achieving the correct model.
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Nevertheless, it should be stressed that the error location process does not confine itself

only for small error cases.

9-2 DAMPING PROPERTIES FOR PRACTICAL STRUCTURES

When the actual damping in a structure becomes significant and must be included in a

dynamic analysis, the conventional approach is often to assume proportional damping for

the analytical model. This assumption has been regarded as arbitrary since most practical

damping is not distributed in the same way as stiffness and/or mass. In fact, for many

practical structures, the major damping sources come from some restricted area(s), such

as the joints between components. Since the measured vibration data contain information

of the spatial damping distribution - although this information is neither complete nor

explicit - Chapter 4 describes an investigation of the damping properties by first locating

the major damping elements using the measured damped vibration modes. A more

accurate damping model can then be introduced based on the damping element location

results. It is also shown from numerical study that a correct damping matrix could be

obtained, even quantitatively, if an iteration with reference to the introduced damping

model is applied.

It is further understood that errors in an analytical model (error matrices [AM] and [AK])

and the damping matrix can all be regarded as a kind of local properties of a vibrating

structure - either local errors or local uncertainties. The best way of investigating such

local properties is perhaps to localise them first and then, to seek their possible

quantification. It has been found from this study that the mass and stiffness errors in an

analytical model, and the damping elements, can be localised using a relatively small

number of modes from modal testing results and these specified local properties can also c

be approximated or even correctly quantified.
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9-3 COMPATIBILITY OF ANALYTICAL MODEL AND MEASURED VIBRATION

MODES

A practical difficulty for some cases of model improvement is that the analytical model

and the measured vibration modes are incompatible in the sense of the coordinates

adopted. Usually, the analytical model uses a far greater number of coordinates than the

measured modes can to describe the vibration properties. For such cases, the methods

available for model improvement will not be directly applicable, unless this

incompatibility is resolved first.

There are basically two methods currently used to cope with this incompatibility and these

have been reviewed in Chapter 5, being: (1) to reduce the analytical model to the same

coordinates as the measured modes by Guyan  (or similar) reduction methods and (2) to

expand the measured modes to the full set of coordinates as used by the analytical model

itself. It is found that, as far as the location of the errors in the analytical model is

concerned, method (2) is preferred because it preserves the physical connectivity of the

analytical model - and therefore the error location as well. Numerical study based on a 21

DOF system has shown that the errors existing in the analytical model can be correctly

located using the location technique developed in Chapter 3, after the ‘measured modes’

are expanded.

Since these two methods assume both the analytical and the experimental data to be real,

they are not applicable to study the damping properties and to improve the analytical

model when a structure is sufficiently damped that the measured vibration modes become

complex. However, a new method has been proposed in this thesis to expand the damped l

measured modes to full coordinates using the analytical model including only mass and

stiffness matrices. Thus, these expanded complex measured modes can be used, in a

similar way to the expanded real modes, to locate the damping elements and, at the same

time, to locate errors in the analytical mass and stiffness matrices.
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The location of errors in an analytical model using measured vibration modes has been

demonstrated by a practical application. The object used is a beam structure with two

straight beams jointed together by nut and bolt. It is supposed that this joint is unknown

so that the FE analysis predicts the stiffness properties of the structure as a continuous

beam, while the mass properties are the same with or without the joint. Although the

analysis covers the vibration characteristics of the structure in the frequency range up to

some 3000 Hz, only three vibration modes are actually measured, and only half the

coordinates are included. These measured modes are firstly  expanded using the FE model

and are then used, individually and collectively, to locate the errors in the analytical

stiffness matrix. The location process successfully indicate the major errors

corresponding to the joint in the structure.

9-4 NONLINEARITY IN MODAL TESTING

All the previous studies assume the vibration of the structure or system investigated to

behave in a linear way, or that the nonlinearity could be ignored due to its small extent.

This assumption can be too optimistic for some cases where nonlinearity becomes

significant in the vibration characteristics.

Unlike theoretical studies, where the vibration characteristics of nonlinear systems can be

described by differential equations, the major problem in the realm of modal testing of

nonlinear systems is to study unknown types of nonlinearity. The key issue therefore

becomes identifying the types of nonlinearity, after their existence is detected. The review

and discussion of those methods currently used to investigate nonlinearity - all aiming

basically to identify nonlinearity from their effects on the measured data - have suggested +

their practical applicability. However, conclusive identification of the types of nonlinearity

is still problematic, because some types of nonlinearity can well produce quite similar

effects on the measured data.
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With the help of closer examination of the vibration data on nonlinear systems measured

using stepped-sine excitation, a new interpretation is proposed to offer a better

understanding of the effect of nonlinearity on the frequency response function data

measured in conventional ways. It is found that one FRF curve measured with constant

force level contains all the information of a series of FRF data with different constant

response controls. Therefore, a nonlinearity study can be carried out using a single FRF

curve obtained using sinusoidal excitation with constant force. Based upon this

interpretation, and a SDOF assumption for the subsequent modal analysis, a new method

is proposed to study nonlinearity. Instead of seeking the effects of nonlinearity on certain

aspects such as the Hilbert transform or damping plot, as other methods do, this method

aims at modelling the nonlinearity directly with respect to response amplitude. Thus, the

identification of the type of nonlinearity becomes more conclusive and the quantification

of its extent becomes possible. It is also found that this method does not even require the

condition of using constant force to measure FRF data - which other methods necessarily

require. Rather, the FRF data can be measured in most conventional way of sinusoidal

excitation with neither force nor response control, as long as the force level is large

enough to expose nonlinearity.

9-5 SUGGESTIONS FOR FURTHER STUDY

One obvious aspect for further study is to apply the technique developed for locating

errors in an analytical model and/or locating damping elements in more sophisticated

structures. In this study, the application is made only to a numerical study and a

comparatively simple structure due to the limited period of time available and, success has

already been demonstrated in satisfactorily locating analytical errors and damping

elements. c

When an incompatibility exists between the analytical model and the measured modes, it

has been found that the location of errors in the analytical model and/or damping elements

relies on expanding the measured vibration modes, damped or not, to the full coordinate
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sets as the analytical model has by using the erroneous model itself. It has also been seen

that by doing so, the error and/or damping element location can still be achieved

successfully. However, further usage of these expanded measured modes, such as in an

iteration procedure to correct analytical model, needs to be investigated fully. Although

directly using these expanded measured modes to improve an analytical model has been

suggested in the literature, the expanded modes are erroneous after all in those expanded

coordinates (the measured coordinates are unchanged).

For nonlinearity investigation, it has been discovered that analogue simulation can play a

significantly important role. Due to the limited capacity of the analogue computer used in

this study, only SDOF nonlinear systems are simulated and studied. However, the

principle of constructing MDOF nonlinear systems on an analogue computer has been

demonstrated and it would be appropriate that MDOF systems with one and several types

of nonlinearity should now be investigated,

The new method proposed to identify the type of nonlinearity and to quantify it is based

upon the assumption that the mode to be analysed has little complexity. For those

vibration modes in which ignoring complexity becomes unrealistic, this new method is

not directly applicable. Further research can be oriented towards either removing the

complexity first so that the new method can be used, or, developing the method further

for cases of a high degree of complexity.

c



c
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APPENDIX 1

MATRIX PERTURBATION RESULTS

Basic perturbation theory studies the behaviour of a system subject to small perturbations

in its variables. If the system is represented by a set of linear simultaneous equations of

the following form:

WI{4 = (W (Al-l)

the problem becomes that of determining (a} I when matrix [X] exhibits a perturbation of

the form [X]+E[XI  I, and vector {b} has a perturbation of the form (b}+&(  b} 1. The

constant E is a scaler quantity which is much less than unity and is called the perturbation

factor. Sometimes E is included in lXJ1 to mean that [XJ1 contains small elements relative

to those of [Xl.

The matrix perturbation theory relevant to vibration research is to study the relationship

between the perturbation [A], of an nxn matrix [A] and the changes happening in its

eigenvalues and eigenvectors. Since the matrices dealt with in vibration research such as

mass, stiffness and damping matrices are usually symmetric, it is assumed here that

matrix [A] and its perturbation [A], are symmetric, for the sake of simplicity. If the

symmetric matrix [A] has the eigenvalues:

and corresponding eigenvectors:

.,. .__
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then the eigen-equation for matrix [A] is:

LWQII  =Um>. (Al-2)

The eigen-equation for the perturbed matrix [A]+&[A] I will become:

WI + Wll)W = Ud (Al-3)

Theory shows that the eigenvalues hi and eigenvectors (a)i (i=1,2, . . . n) of the

perturbed matrix [AI+E[AI  1 can be approximated by the eigenvalues pi and eigenvectors

(C?Y}i  (i=1,2, . . . n) of the unperturbed matrix [A] together with the perturbation [A],

such that:

hi g i& + (a): [All (m}i

and

(a)iE{(nli +  2
{a)jT [Al, (Q)i

(m)j
j=l. jzi h.i - kj

(Al-4)

(Al-5)

If its damping matrix [III for a vibrating system is small compared with its stiffness

matrix [K], then it can be regarded as a complex perturbation of [K]. The complex

stiffness matrix [K,] (=[KJ+i[Hj) is then regarded as the perturbed matrix.

According to the perturbation theory described above, the consequence of the perturbation

i[Hj  on stiffness matrix Ir<] is that each damped complex (mass normalized) mode shape c

of the system after the perturbation (@Jr  (1=1,2  . . ..n) can be expressed as a combination

of the corresponding undamped (mass-normalized) mode shapes before perturbation (Q},

plus a contribution of all other undamped mode shapes, namely:
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(Al-6)

where N is the dimension of matrices [K] and [HJ;

as2 (s= 12, . . .N) are the eigenvalues of the system before the perturbation;

<ml, (s=1,2, . . .N) are the eigenvectors of the system before the perturbation.

c

I ,
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APPENDIX 2

INVERSE OF A COMPLEX MATRIX

Supposing that there is a non-singular complex matrix [P] and it can be written by its real

and imaginary parts as:

[P] = [A] + [B]i (A2- 1)

then the inverse of matrix lp] is generally another complex matrix [Q-J which again can be

written in the form of its real and imaginary parts:

CQl=[xl+Wli (A2-2)

Here, matrices [A], [B], [XJ and Tyl are all real matrices and the inverse of the complex

matrix [P] can be obtained by deriving the two real matrices [XJ and [Ir].

According to the definition of matrix inversion,

MQl = [Il + [Oli

or

( WI + [Bli > ( Kl + Kli > = [II + [Oli

Equation (A2-4)  can be written as its real and imaginary counterparts, yielding:

WI[W - MY1 = [II

EAHYI  + lM3l= WI

(A2-3)

(A2-4)

c

(A2-5)

W-6)
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Combining equations (A2-5)  and (A2-6)  into one matrix equation leads to:

Equation (A2-7)  can be rearranged so that:

[X] = [A] -[B] -I[I[ 1VI = CBI WI

(A2-7)

(A2-8)

The substitution of matrices [Xj and [y3 into equation (A2-2) yields: the complex inverse

matrix [QJ of matrix [P].

The same conclusion can be drawn if equation (A2-3)  becomes:

[Ql[Pl  = [II + [Oli W - 9 )

c
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APPENDIX 3

FE ANALYSIS OF A BEAM ELEMENT

A beam element is as shown in Figure 6-3. In this case both ends of the element can

undergo translational and rotational displacements. The mass and stiffness matrices of this

beam element will then be:

and

156 22L 54 -13L

2 2 L  4L2 1 3 L  - 3 L 2

13L 156 -22L

-13L -3L2 -22L 4L2

i

12 6L -12 6L

EI 6L 4L2 -6L 2L2

[k] =-
L3 -12 -6L 12 -6L

1 6L 2L2 -6L 4L2

Where: m - mass per unit length;

L - length of the element;

E - elasticity of the element;

I - moment of inertia.
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