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Abstract

The huge variation in forced vibration response levels of mistuned bladed
discs, which are bladed discs with slightly different blades, is investigated
in this thesis. The issue is known as the blade mistuning problem. A mis-
tuning management strategy is proposed and assembled to manage the high
vibration response levels of mistuned bladed discs. This strategy involves (i)
evaluation of the range of the response level, (ii) achieving a better bladed
disc design, and (iii) monitoring the status of the actual hardware.

The severity of the vibration problem of a mistuned bladed disc is usually
quantified by the “amplification factor”, which is clearly defined in this thesis
to remove inconsistency among previous definitions. A new procedure is
proposed to estimate the small probabilities of high amplification factors
more accurately and more efficiently than is possible with typical Monte
Carlo simulations.

By casting the blade mistuning problem as a robust design problem,
parameter design and tolerance design concepts are used to find methods of
improving robustness of bladed discs. The design parameters of the bladed
disc design are changed in parameter design while, in contrast, the mistuning
parameter distribution on a bladed disc is controlled in tolerance design.

If the blades and the disc form a single component (also known as a
blisk), the uncertainties of joint properties are removed and the responses of
the bladed disc can be predicted. A response-prediction procedure proposed
previously is validated experimentally, and the quality of experimental data
required is evaluated.

The investigation in this thesis has shown that a mistuning management
strategy is viable. A new procedure is developed to fulfil (i), design guide-
lines are formed to facilitate (ii), and the monitoring in (iii) is practical in
the foreseeable future.
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Chapter 1

Introduction

The effects of small variations between blades, known as mistuning, on the

vibration response levels of bladed discs in gas turbines are investigated in this

thesis. Compared with that of a tuned bladed disc, which is a bladed disc with

identical blades, the vibration response levels of a mistuned counterpart can be

much higher. This issue is called the blade mistuning problem. Extensive

knowledge on mistuned bladed discs has been gained in the past four decades

of research, but there is still a shortfall in providing industry with adequate tools

to reduce the costs related to the consequences of mistuning.

A mistuning management strategy is proposed in this thesis to manage

the blade mistuning problem. The objective of this thesis is to assemble the

strategy by reviewing the current tools available and developing new tools. The

structure of this thesis is to be described at the end of this chapter.

1.1 Overview

All blades on a bladed disc in a gas turbine are assumed to be identical at
the design stage. However, the blades on a given bladed disc are slightly
different from each other due to manufacturing tolerances, variations in
material properties and wear and tear. The issue to be investigated in
this thesis is the effect of the existence of these small variations between the
blades, known as mistuning, on the forced vibration response levels of blades
in gas turbines. This is known in gas turbine design as the blade mistuning
problem.

A bladed disc is designed to withstand two types of vibration: flutter and

1



Chapter 1. Introduction

resonance due to forced excitations. Forced excitation on rotating bladed
discs comes from air and gas pressure variations around the annulus due to
upstream vanes, and is unavoidable. While mistuning is generally believed
to be beneficial for flutter, it is found that small mistuning can lead to a huge
variation of peak vibration responses across blades under forced excitation,
and the highest vibration response level in a mistuned bladed disc can be
much higher than that experienced on a tuned counterpart. For example, a
5% variation in the blade cantilever frequencies on a 92-bladed high pressure
turbine disc can lead to one blade suffering a response level of over 500% of
that observed on every blade on a tuned bladed disc [89]. The potentially
high response levels lead to much shortened fatigue lives on one or few
blades due to high cycle fatigue (HCF), while the other blades exhibit good
conditions at the same time.

Research in the blade mistuning problem began more than 40 years ago
and extensive knowledge about the structural dynamics of mistuned bladed
discs has been gained. However, the blade mistuning problem is considered
unsolved because industry still faces risk of much shortened fatigue lives and
unexpected failure due to high vibration response levels. The cost incurred
by high cycle fatigue-related problems is reported to be around $400 million
each year [41], which corresponds to 30% of all jet engine maintenance costs
[131].

On the one hand, researchers have tried to understand the forced vibra-
tion response level distribution of mistuned bladed discs and wished that the
variation of vibration response levels can be greatly reduced by coming up
with a better bladed disc design. Alas, there are no indications in the previ-
ous research of how this can be achieved. On the other hand, the possibility
of mistuning-related failure is usually addressed after an early failure, and
not much has been learnt from experience, not least because the mistuning
pattern of a failed bladed disc is no longer obtainable.

Given our understanding of bladed disc properties, it is timely to con-
solidate the current research capability into a strategy suitable to industrial
applications.
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1.2 A Mistuning Management Strategy

Assuming bladed disc designs without the blade mistuning problem do not
exist, a new strategy called the Mistuning Management Strategy (MMS) is
proposed to manage, instead of to eliminate, the potentially high vibration
response levels in mistuned bladed discs. Vibration response levels in bladed
discs are managed by estimating the extent of the problem precisely, finding
a best practical design and monitoring mistuning bladed discs in operation
more closely. This strategy involves three steps:

Step 1: evaluation of the vibration problem. The potential locations
of resonances are identified for a given initial design. The variation
of the forced vibration response level at each resonance is calculated,
either in terms of the upper bound of the vibration response or the
level with an acceptable risk (e.g. the 99.9th percentile).

Step 2: achieving a better bladed disc design. If a significant portion
of bladed discs experience unacceptable levels of vibration responses,
or the highest response level possible exceeds the acceptable level, de-
sign changes are sought to reduce the response levels by a combination
of methods. This can include (i) changing the design of the disc or
the blade (ii) controlling the mistuning and (iii) adding damping. The
benefits and issues related to these consequences are considered by
taking these as factors in design optimisation.

Step 3: Monitoring the status of actual hardware. For integral bladed
discs (also known as blisks), the vulnerability of any specific bladed
disc to high cycle fatigue due to mistuning-related issue is checked
regularly, both after manufacture and throughout the service life.

The blade mistuning problem is proposed to be considered as a robust
design problem because the dependence of response variability on design
parameters is required in this strategy. Robust design is a concept which
aims to keep the output of a system close to a target (i.e. robust) un-
der variability at input or design parameters. This approach has not been
advocated partially because robust design is a new concept in structural
dynamics research.
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1.3 Objectives of the current research

In this thesis, the Mistuning Management Strategy is assembled using ex-
isting and additional tools and techniques. In particular, this thesis aims to
achieve

1. efficient estimation of small probabilities compared with current Monte
Carlo simulation-based methods

2. reduction of the variability of responses in blades by changing the de-
sign, controlling mistuning and/or adding damping

3. validation of a response-prediction procedure recently proposed by Grif-
fin and Feiner [43]

1.4 An overview of the thesis

This thesis is divided into eight chapters.

The current state-of-the-art of the mistuning problem in structural dy-
namic aspects is reviewed in Chapter 2. The necessary but missing tools in
the new mistuning strategy are identified. As the mistuning management
strategy is based on robust design concepts, a brief review of available robust
design methods is also presented.

The “amplification factor” is examined in Chapter 3. The amplification
factor is used to measure the severity of the consequences of mistuning in
the vibration response levels of the blades on a mistuned bladed disc, and
it is a random variable. The maximum amplification factor, which indicates
the worst scenario, and the amplification factor distribution are studied. A
new procedure comprising a conjugate gradient-based optimisation analysis
and the importance sampling method is presented to tackle industrial need
for reliable estimates of the small probabilities related to high amplification
factors.

In Chapter 4, the possibility of managing the blade mistuning problem
by adopting a robust design concept is discussed. Common robust design
methodologies are introduced, and the input variability and robustness in
the blade mistuning problem are defined according to approaches either
based on (i) probabilistics or (ii) interval analysis.
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The robustness of bladed discs in studied in Chapters 5 and 6 following
two robust design concepts, namely parameter design and tolerance design.
At the beginning of Chapter 5, the dependence of the fatigue life of a su-
peralloy to high cycle fatigue (HCF) failure on vibration response level is
discussed. By reducing the variation in blade vibration responses related
to blade mistuning, the fatigue lives of blades can be extended significantly
and the variations of the fatigue lives of blades on the same bladed disc can
be reduced. The potential for decreasing the maximum amplification factor
by changing the design parameters, including the level of damping, is inves-
tigated using three representative models. The distribution of amplification
factor in damping mistuned bladed discs, bladed discs excited in the veering
region and apparently-tuned bladed discs are also investigated.

The amplification factor on a mistuned bladed disc is managed in Chap-
ter 6 by controlling the mistuning pattern on a bladed disc either by (i)
imposing tight tolerances on blade dimensions, known as the small mistun-
ing approach or (ii) incorporating non-identical blades of specific patterns,
known as the intentional mistuning approach. The maximum adjusted am-
plification factor sensitivity in single-DOF-per-sector systems is derived to
provide a guide on the small mistuning approach and a theoretical basis
to a new way to quantify the coupling between blades. A tool based on
the importance sampling method is used to reduce the computational effort
in determining the magnitude of intentional mistuning. The potential of a
“linear” pattern to become an intentional mistuning pattern is evaluated.

In Chapter 7, the challenges and opportunities in managing the extreme
vibration response levels in mistuned blisks are discussed. As the uncertainty
and variability of friction properties related to joints are absent in blisks,
the maximum vibration response level of a blisk test piece in operation can
be predicted by testing that blisk under controlled conditions. A procedure
proposed in previous research for such use is demonstrated experimentally
on a test piece. The sources of error in the experiments are analysed and
recommendations for future experiments are made.
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Literature review

The current state of the mistuning problem in structural dynamic aspects is

reviewed in the current chapter. The necessary but missing tools in the new

mistuning strategy are identified. As the mistuning management strategy is

based on the robust design concepts, a brief review on available robust design

methods is also presented.

2.1 Introduction

Given the amount of the literature related to the blade mistuning problem,
the literature review is carried out in a dedicated chapter.

Although the blade mistuning problem is considered unsolved, the forced
vibration behaviour of mistuned bladed discs are much better understood.
The current state-of-the-art of the blade mistuning problem in structural
dynamic aspects is reviewed in Section 2.2 categorically, and the research
output in each category is presented in a chronological order. Research
related to aeroelastic aspects of mistuned bladed discs is included where
appropriate, and the modal properties of bladed discs are explained sepa-
rately in Appendix A. The previous achievements in understanding the vi-
bration responses of mistuned bladed discs are compared with the needs of
the mistuning management strategy proposed in Chapter 1, and the missing
components are identified in Section 2.3.

Besides the blade mistuning problem, a brief review of the robust design
concept is presented in Section 2.4 to provide a background for the discussion
in Chapter 4.
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2.2 Current developments in the blade mistuning

problem

The origins of vibration analyses of bladed discs and non-symmetric discs
can be traced to the work carried out by Armstrong in 1955 [3] and Tobias
and Arnold in 1957 [132], respectively. The study of the forced vibration
response behaviour of mistuned bladed discs, which is known as the blade
mistuning problem, started by Whitehead in 1966 [140], Ewins in 1969 [31]
and Dye and Henry in 1969 [30]. Since then, more than 400 papers have
been published in topics related to the blade mistuning problem. This review
intends to discuss the key research papers in the blade mistuning problem
published after 1990. Readers are referred to the literature surveys presented
by Ewins [33] and Castanier and Pierre [23] for the earlier developments of
the blade mistuning problem, and Srinivasan [127] for an overview of blade
vibrations in gas turbines.

The research in the blade mistuning problem is mainly carried out in
a handful of research groups around the world. The major contributors to
the structural dynamic aspects of the blade mistuning problem after 1990
are listed in Table 2.1, such that the names appearing in the review can be
connected to their respective research groups.

Affiliation Principal Members
investigator

Imperial College London Ewins Imregun, Nikolic, Petrov,
Sever, Sanliturk, Yiu

Whitehead
Arizona State University Mignolet Choi, Lin, Rivas-Guerra, Xiao
Carnegie Mellon U. Griffin Ayers, Feiner, Kenyon, Rossi,

Yang
Duke University Kielb Miyakozawa
Pennsylvania State U. Sinha
Polish Academy of Sciences Rzadkowski
United States Air Force Cross Jones
University of Michigan Pierre Bladh, Castanier, He, Judge,

Lim, Kruse, Óttarsson, Song

Table 2.1: Major contributors to the blade mistuning problem since 1990.
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2.2.1 Our ability of analysing mistuned bladed discs

Provision of accurate mistuned bladed disc models

The improved understanding of the vibration response levels of mistuned
bladed discs relies on geometrically and physically accurate bladed disc mod-
els. The earliest bladed disc models were lumped parameter models [30] and
beam-disc assemblies [32], and the vibration response levels were found using
receptance methods. The lumped parameter and beam-disc models are still
applied occasionally, because these models are small in sizes. Rzadkowski
used a beam-disc model in 1994 [108] and added the torsion and warping
effects to the beam elements. In the 21st century, Sinha in 2006 [121] and
Beirow et al in 2007 [9] used lumped parameter models for statistical study
and aerodynamic analysis, respectively.

As computing capabilities in the past 40 years have been dramatically
improved, the geometry and material properties of bladed discs can be mod-
elled accurately with the finite element method. However, these models,
which can contain as many as 15 million degrees of freedom (DOFs) [89],
are not suitable to the blade mistuning problem because the system matrices
are too large for Monte Carlo simulations (Section 3.3). To run Monte Carlo
simulations using accurate models, methods known as reduced order model
(ROM) algorithms have been developed to (i) reduce the sizes of stiffness
and mass matrices of a finite element model without losing the key features
and (ii) consider the mistuning pattern, which has far fewer parameters
than the number of DOFs in a finite element model, as an input parameter
instead of a system parameter.

Two major “families” of ROM algorithms have been developed by the
research groups at the University of Michigan and Carnegie Mellon Univer-
sity. At the University of Michigan, Castanier et al [19] proposed one of the
first ROM algorithms called REDUCE in 1997, and REDUCE was extended
to cover shrouded bladed discs in 1999 by Bladh et al [12]. The REDUCE
algorithm is refined by Bladh et al in 2001 [13] to become the SMART algo-
rithm, and the most recent version of the ROM algorithm presented by this
research group is the component mode mistuning (CMM) method by Lim
et al [65] in 2003.

At Carnegie Mellon University, Yang and Griffin [149] began their inves-
tigation in ROM algorithms in 1997, and Yang and Griffin [150] proposed

8



Chapter 2. Literature review

the “subset of nominal modes” (SNM) algorithm in 2001. The SNM algo-
rithm was refined to become the fundamental mistuning model (FMM) in
2002, and the current format of the FMM was published by Feiner and Grif-
fin in 2004 [35]. The FMM algorithm has been applied to reduce the finite
element models in investigating the aeroelastic effects of mistuned bladed
disc by Kielb et al in 2004 [59] and the effects of intentional mistuning on
vibration response levels by Jones in 2008 [52]. Martel et al at Universidad
Politécnica de Madrid developed the asymptotic mistuning model (AMM) in
2009 [71] to improve the accuracy of the FMM algorithm in flexible bladed
discs.

Several other ROM algorithms have been proposed, for example, Bah et
al [6] proposed an algorithm to find the mode shapes of mistuned bladed
discs, and an exact reduced order model was developed by Petrov et al in
2002 [94].

In typical ROM algorithms, mistuning is represented either by nodal
components like point masses, springs and dampers, as in Petrov et al’s
algorithm [94], or by scaling the strain potential energy in blades, as in
the FMM [35]. However, the commonest form of mistuning in blades is
the variations in blade dimensions. The small differences between ways of
representing mistuning can be significant, if the responses are contributed
by more than one mode family. Characterisation of geometric mistuning
was discussed by Capiez-Lernout et al in 2005 [18]. ROM algorithms taking
account of global and local geometric mistuning were proposed by Sinha in
2009 [123] and by Ganine et al in 2009 [40], respectively.

Incorporation of all related physical phenomena

All related physical phenomena have to be included in a blade disc model to
predict the vibration response levels of a bladed disc specimen under oper-
ating conditions accurately. The physical phenomena considered in previous
mistuned bladed disc analysis include

1. the variation of the level of damping between sectors (also known as
damping mistuning) in tuned and mistuned bladed discs, which were
studied by Muszynska and Jones in 1983 [77] and Lin and Mignolet in
1996 [68], respectively,

2. stress stiffening due to centrifugal forces by Rzadkowski in 1994 [108],

9



Chapter 2. Literature review

3. spin softening by Petrov and Ewins in 2003 [89],

4. the coupling between multiple bladed discs, also known as multistage
coupling, investigated by Bladh et al in 2003 [14], Sinha in 2007 [122]
and Song et al in 2007 [126], and

5. Coriolis effects on mode localisation and mode splitting, by Huang and
Kuang in 2001 [48] and Nikolic et al in 2007 [81], respectively. This
issue was previously overlooked in analysing mistuned bladed discs.

Non-linear vibrations in bladed discs have to be considered to construct
accurate models. Vakakis et al [135] studied the non-linear stiffness in bladed
discs in 1992, and the non-linear vibration related to gaps in shrouds was
studied by Yang and Griffin in 1995 [148] and by Song et al in 2007 [126] in
tuned and mistuned bladed discs, respectively. However, the most significant
form of non-linearity comes from friction damping. The two-dimensional
properties of friction contacts were studied by Sanliturk and Ewins in 1996
[113], and the multi-harmonic vibration due to friction was studied by Petrov
and Ewins in 2005 [90]. The friction model was refined by Petrov in 2007
[92] by considering the masses and stiffnesses of friction dampers. While
friction dampers are commonly used to provide damping in bladed discs,
other concepts of damping, such as a piezoelectric network [130], have been
proposed.

The forced vibration response levels of bladed discs are strongly influ-
enced by the additional coupling and damping caused by the air flow around
the blades, which are known as the aeroelastics. The aeroelastics of bladed
discs is usually treated as a separate research topic, but aeroelastic effects
can be included in structural dynamic analysis of mistuned bladed discs ei-
ther (i) by incorporating an extra forced excitation vector according to Kielb
et al [59] and Kahl [54], or (ii) by adding extra structural components in
structural dynamic models according to Sladojević [125] and Beirow et al
[9], or (iii) by adding extra modal stiffness and mass matrices according to
He et al [46], or (iv) by replacing the structural modal damping ratios by the
aeroelastic counterparts, which are found by running a computational fluid
dynamics-fluid structure interaction (CFD-FSI) code on a tuned bladed disc
model, as Sladojević [125] carried out.

Responses of mistuned blades are sometimes assumed to be contributed
by a single blade-alone mode shape [140, 35]. This assumption is valid
except in the veering region, where the natural frequencies of two mode
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shapes with the same number of nodal diameters but different blade mode
shapes are close to each other. The veering region was singled out as a
physical phenomenon in 1992 by Afolabi and Alabi [1] and the responses of
mistuned bladed discs excited in a veering region were studied in various
papers between 2002 and 2005 [15, 8, 58].

With the variety of bladed disc designs applied to gas turbines, re-
searchers tried to represent every bladed disc design using a small number
of dimensionless parameters, such that the vibration response level distri-
butions due to mistuning can be compared between different designs. The
common dimensionless parameters used in previous research are number of
blades, N , the level of damping, η, blade-to-sector mass ratio (see [32]) and
the interblade coupling ratio. While the highest vibration response level of a
mistuned bladed disc with N sectors is known (Section 2.2.2), the relation-
ship between the range of vibration response levels and other dimensionless
parameters is not clear. Moreover, there is no agreed definition of interblade
coupling ratio. The three groups of definitions [137, 127, 78] are introduced
in Section 6.3.

Many physical phenomena related to bladed discs have been considered
in mistuned bladed disc analysis individually. However, accurate forced vi-
bration response level estimates can be found only if all the above-mentioned
effects are included in the model, which has not been carried out yet. In
addition to this, we lack the ability to predict the response behaviour of a
new bladed disc design under mistuning, based on that of existing bladed
disc designs.

2.2.2 Range of response levels in mistuned bladed discs

Since the beginning of research into the blade mistuning problem, we know
the vibration response levels of mistuned bladed discs are almost always
higher than that of the tuned bladed disc design. We would like to know

1. the highest vibration response level possible in a mistuned bladed disc
(i.e. the worst case), and

2. the distribution of the response levels of blades, given the distribution
of mistune in blades.
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A term called the “amplification factor” has been introduced in previous
research to quantify the increase of the response level. While this term
is defined in Section 3.1, for the moment it will suffice to be treated as the
maximum response level of a mistuned bladed disc with respect to the tuned
counterpart.

Three previous research papers indicated that the amplification factor of
bladed discs can be smaller than unity (i.e. mistuning can reduce the forced
vibration response level in blades). Óttarsson in 1994 [84] reported that a
small portion of mistuned bladed discs have amplification factors smaller
than unity under very small damping loss factors, and Jones [52] explored
such a phenomenon to design an intentional mistuning pattern. Petrov
argued in 2009 [87] that the maximum amplification factor can be smaller
than unity if unequal aerodynamic modal damping ratios are considered.
However, these are usually considered as exceptions.

Explanation of variation of forced vibration response levels

It was discovered in the early history of the blade mistuning problem (e.g.
Ewins in 1969 [31]) that the maximum responses of blades on a mistuned
bladed disc vary greatly. By plotting the maximum response of mistuned
blades from 100 random bladed discs against the corresponding blade-alone
natural frequencies, Griffin and Hoosac [44] further observed in 1984 that
the highest maximum responses under an nEO excitation would occur on
blades with blade-alone natural frequencies near to the natural frequency of
the nND-mode of the bladed disc.

Previous research has attempted, using localisation analysis [10], to ex-
plain the variability of vibration response levels in mistuned bladed discs.
An early study of localisation in mistuned bladed discs was carried out by
Wei and Pierre in 1988, who studied the localisation of modes [137] and
responses [138] in mistuned assemblies with cyclic symmetry. Afterwards,
the studies of response localisation and mode localisation divided into two
groups.

Castanier and Pierre in 1993 [20] studied the spatial decay (i.e. locali-
sation) of vibration response level in a nearly-periodic structure by exciting
only one sector harmonically. In 1996, Óttarsson and Pierre [83] studied the
blade mistuning problem using a transfer matrix approach. In 1997, Cas-
tanier and Pierre [22] introduced Lyapunov exponent, which is a quantity
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related to the study of chaos [47], to investigate the localisation of vibration
response level in disordered cyclic structures. The idea of spatial decay of vi-
bration studied by Castanier and Pierre in 1993 was developed by Mignolet
et al in 2000 [73] into the partial mistuning concept. However, all previous
studies in response localisation dealt with lumped parameter models only,
and did not provide methods to reduce the extent of response localisation.

Besides response localisation, mode localisation was also studied after
1990. Pierre and Murthy in 1992 [97] and Pierre et al in 1994 [98] studied
the localisation of the aeroelastic modes. Afterwards, Xie and Ariaratnam
in 1996 [147] and Klauke et al in 2009 [60] believed that mode localisation
contributes to the high forced vibration response levels on mistuned bladed
discs significantly. However, as Nikolic et al [82] pointed out, the high vi-
bration response levels on mistuned bladed discs are usually contributed by
more than one mode, and those modes are not necessarily localised.

Upper bound (or maximum) of the amplification factor

Finding the upper bound of the amplification factor is one of the earliest
topics discussed in the blade mistuning problem, because such a value can
inform gas turbine designers of the “worst case”. Surprisingly, the most-
often cited upper bound is the first research output in the blade mistuning
problem presented by Whitehead in 1966 [140]. Based on aeroelastic cou-
pling, and assuming the responses being contributed by a single blade-alone
mode shape, he proposed that the upper bound of the amplification factor
depends on N , the number of sectors in a bladed disc, only:

ÂWH =
1
2

(
1 +
√
N
)

(2.1)

The expression shown in Equation (2.1) is called the Whitehead Factor.
Based on a structural dynamic analysis and the balance of vibration energy
in a single sector, Lim et al in 2004 [67] proposed that the Whitehead Factor
is an upper bound of the amplification factor in a single-DOF-per-sector
system, if the maximum vibration response level in a mistuned bladed disc
is normalised against the peak vibration response level of a tuned cantilever
blade.

Other upper bounds of the amplification factor have been proposed.
Whitehead proposed an alternative upper bound in 1976 [141] for n, the
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order of excitation, being not equal to 0 or N/2:

ÂWH’ =
1
2

(
1 +

√
N

2

)
(2.2)

However, Whitehead retracted Equation (2.2) in 1998 [142]. Although
Kenyon et al [57] proposed in 2003 that the expression in Equation (2.2) is
the maximum amplification factor due to mode distortion only, abundant
simulation results in previous research has shown that the amplification
factor can be higher than the expression in Equation (2.2).

Amplification factors close to the Whitehead Factor were seldom encoun-
tered. According to their refined highest amplification factor expression,
Rivas-Guerra and Mignolet [101] in 2003 showed that the maximum am-
plification factor of any single-DOF-per-sector lumped parameter system is
lower than the Whitehead Factor. Martel et al [71] also proposed an upper
bound of the amplification factor lower than the Whitehead Factor in 2009.

As mentioned above, the derivation of the Whitehead Factor assumes
either a system where the blade responses are dominated by one blade-alone
mode shape [140] or a single-DOF-per-sector system [67]. Kenyon et al [58]
showed that the amplification factor can exceed the Whitehead Factor if the
bladed disc is excited in the veering region, and Xiao [145] proposed that the
maximum amplification factor of a finite element-based bladed disc model
depends on the bladed disc design, and is a value between the Whitehead
Factor and

√
N .

While there were attempts of refining the upper bound of amplification
factor expression by incorporating other design parameters other than N ,
the Whitehead Factor remains the most popular upper bound used in anal-
ysis because

1. the Whitehead Factor is simple

2. amplification factors exceeding the Whitehead Factor rarely occur in
practice

3. significant extra computational effort is needed

4. some maximum amplification factor expressions, like the one proposed
by Rivas-Guerra and Mignolet in 2003 [101], have not been validated
in finite element models
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Besides the theoretical approach, the maximum amplification factor of
a specific bladed disc design can be found by carrying out an optimisation
analysis. The only information required in this approach is the relationship
between amplification factor and mistuning pattern in that design. The
blade mistuning problem was first modelled as an optimisation problem by
Petrov et al [93] in 1999, and Petrov and Ewins [89] used a gradient-based
optimisation analysis in 2003 to find the maximum amplification factors of
a 26-bladed fan bladed disc design and a 92-sector shrouded turbine disc
design. Scarselli and Leece carried out optimisation analyses based on ge-
netic algorithms and the neural network algorithm in 2005 to find the max-
imum amplification factor of a bladed disc design [115]. While all methods
discussed above use random initial mistuning patterns, Rivas-Guerra and
Mignolet in 2003 [101] carried out optimisation analysis according to the
partial mistuning model. Their proposal involves finding an initial high-
est amplification factor by allowing only 3 neighbouring blades to be mis-
tuned, and the maximum amplification factor is approached by allowing
more blades to be mistuned gradually.

The introduction of optimisation analysis solved the problem of eval-
uating accurate maximum amplification factors of particular designs, and
the results show that the maximum amplification factor can be much lower
than the Whitehead Factor in some designs. For example, the maximum
amplification factors in two designs analysed by Petrov and Ewins in 2003
[89] are very different - 62% of the Whitehead Factor in a 26-bladed fan but
nearly 95% of the Whitehead Factor in a 92-bladed high pressure turbine
disc! The combination of design parameters leading to this discrepancy is
not well understood, let alone the reason.

The amplification factor as a random variable

The amplification factor is a random variable because of the random na-
ture of blade mistuning. The amplification factor is sensitive to changes
in mistuning parameters and, as shown by Petrov and Ewins in 2002 [88]
and Ayers et al in 2005 [5], the order in which a given set of N mistuned
blades is arranged. In light of the Whitehead Factor, the amplification fac-
tor distribution is dependent on the number of sectors N , but Myhre in 2003
[78] showed that the amplification factor distribution also depends on other
design parameters as well.
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Monte Carlo simulations are commonly used to find the amplification
factor pdf and, more importantly, the probabilities of extremely high ampli-
fication factors, which are related to early failure of blades. The probabili-
ties of high amplification factors are usually small. Because a Monte Carlo
simulation run with R samples cannot evaluate probabilities smaller than
1/R, many samples have to be taken to find a reliable estimate of a small
probability p. Monte Carlo simulations of those sizes are time-consuming
to run and sometimes not possible at all. Previous research tried to avoid
large-scale Monte Carlo simulations using one of the two approaches below:

• Research has been carried out to find the blade response level pdf
without running simulations in 1989 by Sinha and Chen [124]. Lin
and Mignolet [68] used a similar method in 1996 in studying the re-
sponse distribution of damping mistuned bladed discs. This approach
is attempted recently by Bah et al in 2003 [7] and Sinha in 2006 [121]
using the stochastic reduced basis approach and the polynomial chaos-
based stochastic finite element method [42], respectively. However, no
research based on this approach is capable of of finding the amplifica-
tion factor distribution. A likely reason for this blank is the highly non-
linear relationship between the N values of normalised maximum re-
sponses on a mistuned bladed disc and the amplification factor, which
is the single maximum of those N values.

• By assuming the tail of the amplification factor pdf following a re-
verse Weibull distribution, Castanier et al [21] developed a method
in 1997 to find the small probabilities of extremely high amplification
factors using Monte Carlo simulation runs with as few as 50 samples.
However, the method does not guarantee those extreme amplification
factors would happen, as the mistuning patterns related to those am-
plification factors are not sought. Also, the maximum amplification
factors estimate used in the method can be lower than true counterpart
(see Reference [66] for an example).

Although Monte Carlo simulations have been carried out extensively, the
dependence of the maximum amplification factor on design parameters is not
well understood as simulations were usually carried out on selected bladed
disc designs. Moreover, the current approach based on Monte Carlo simula-
tions is not efficient. The statistical methods of finding the peak responses
pdf are not considered further in this thesis because such an approach fails
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to find the amplification factor distribution, which is important in analysing
the response distribution of mistuned bladed discs. More efficient sampling
approaches are needed to find the small probabilities and example mistuning
patterns related to extremely high amplification factors.

2.2.3 Sensitivity studies

It has been found that the transition from the tuned bladed disc, where the
response levels experienced on all blades are equal, to the situation where
one or few blades suffer very high responses is gradual by increasing the
degree of mistune. As a result, the sensitivity of blade responses to the
degree of mistune is studied, including

• deriving the analytical relationship between the amplification factor
and the degree of mode splitting, which is a function of the degree
of mistune. MacBain and Whaley implemented such an approach in
1984 [69] by assuming the mode shapes of a mistuned bladed disc being
identical to the mode shapes in the tuned counterpart

• deriving the response level distribution sensitivity to mistuning pa-
rameters distribution, as Kaneko et al carried out in 1994 [55]

• finding the maximum allowable mistune given a threshold maximum
amplification factor by an inverse method, as Sanliturk and Imregun
[114] presented in 1994

• finding the modes of a mistuned bladed disc by the perturbation
method, as Watson and Kamat [136] carried out in 1995

• deriving the sensitivity of the response of every blade in the Fourier
domain. The sensitivity expression presented by Shapiro in 1999 [118]
is k/η, where k and η are the blade stiffness and damping loss factor,
respectively. He claimed that the sensitivity does not depend on the
level of interblade coupling.

There is relatively little research in finding the sensitivity of the ampli-
fication factor to the degree of mistune, but the potential and limitation of
the approach have been shown. On the one hand, the sensitivity approach
can explain why the vibration response levels of some bladed discs reach
their maximum at a much lower degree of mistune than others, as asked by
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Nikolic [80]; on the other hand, the highly non-linear relationship between
the amplification factor and the degree of mistune restricts the valid range
of first-order approximations. Besides the sensitivity analysis carried out in
previous research, the maximum amplification factor sensitivity to design
parameters has not been studied.

2.2.4 Intentional mistuning approach

The intentional mistuning approach means incorporating non-identical blades
in a bladed disc design. The relatively low amplification factors of particular
mistuning patterns were briefly mentioned in 1984 by Imregun and Ewins
[51] and 1994 by Rzadkowski [109]. An intentional mistuning scheme of
installing two types of blades alternatively, also known as “alternate mis-
tuning”, was described inter alia by Griffin and Hoosac in 1984 [44]. In more
recent research, the increased robustness of intentionally mistuned blisks was
demonstrated by Castanier and Pierre in 1997 [21]. Research after that date
attempted to find the optimal mistuning pattern. Current candidates of in-
tentional mistuning patterns include a harmonic (i.e. sinusoidal) pattern
[72, 56] and a linear pattern. Jones proposed the latter in 2008 [52] after a
theoretical study.

A mistuning pattern can be taken as an intentional mistuning pattern
only if the amplification factor variation is small under additional, random
mistuning. Besides Castanier and Pierre, Choi et al [25] and Lim et al [66]
have carried out related studies in 2003 and 2004, respectively. Also, Ayers
et al [5] incorporated experimental data in showing the effect of intentional
mistuning in 2005.

There were other proposals to avoid high amplification factors. In 2008,
Nikolic et al [82] suggested using a large mistuning strategy to reduce the
likelihood of encountering extremely high amplification factors.

While it is generally agreed that the intentional mistuning approach can
improve the robustness of a bladed disc design, further research work has
to be carried out to find an optimal intentional mistuning pattern, deter-
mine the optimal strength of the intentional mistuning pattern and evaluate
the non-structural dynamic consequences of bladed discs due to intentional
mistuning patterns.
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2.2.5 Blisks and the need of mistuning identification

Bladed discs are traditionally assemblies of blades and rotors connected by
fir-tree joints (other types of joints existed in the early history of gas turbines
[102].) While blades can be replaced easily in a bladed disc assembly, extra
weight is needed to support the fir-tree joints. Moreover, the properties
of a bladed disc assembly are unpredictable because the uncertainties of
contact conditions at root joints are significant, as investigated by Petrov
and Ewins in 2006 [91]. This means the mistuning pattern measured on
individual blades is not relevant to the behaviour of a mistuned bladed disc
assembly comprising those blades.

An alternative of using a bladed disc assembly is to use an integral bladed
disc, such that the friction surfaces at joints can be eliminated. Blisks were
first incorporated into military helicopter engines, with the power turbines
of Bristol Siddeley Nimbus engines in 1969 and the low pressure compressors
of General Electric T700 engines in the early 1980s [49] as two examples.
Blisks are gradually introduced to compressors in EJ200 Eurofighters and
the Joint Strike Fighter [107]. In addition, blisks will be used in civil aviation
applications in the near future, such as Rolls-Royce BR725 [103] and Trent
XWB [104] engines.

While there are advantages in incorporating blisks into aero engines, it
poses challenges to investigate the mistuning pattern of a blisk as blades
are no longer detachable from the disc. In such a situation, a mistuning
identification algorithm is needed to extract the mistuning parameters from
mode shapes of a mistuned blisk. Mistuning identification is a focus of
research in the blade mistuning problem since Mignolet and Lin published
their work in 1997 [74]. Four additional research groups have proposed
their mistuning identification algorithms for blisks in aero engines. Research
groups at the University of Michigan and Carnegie Mellon University have
presented mistuning identification algorithms based on the component mode
mistuning (CMM) model [70] and the fundamental mistuning model (FMM)
[35], respectively. Pichot et al [96] and Laxalde et al [62] have also presented
their mistuning identification algorithms. In 2007, Griffin and Feiner [43]
claimed their FMM-based method is capable of extrapolating the mistuning
pattern on a rotating blisk test piece using that identified on the test piece
while it is stationary.

The application of mistuning identification algorithms are not limited to
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gas turbines, as Sheng [119] designed an mistuning identification algorithm
to identify mistuning parameters of turbocharger bladed wheels.

The quality of the identified mistuning pattern depends heavily on the
experimental procedure taken. The mainstream of previous research in mis-
tuning identification used Laser Doppler Vibrometers (LDV) to measure the
vibration response, while Salhi et al in 2008 [110] proposed extracting the
modal parameters by using tip-timing data on rotating bladed discs. In
contrast, the bladed disc can be excited by at least five different methods
according to previous research. These include mechanical excitation by an
electromagnetic shaker by Laxalde et al [62], acoustic excitation by Judge
et al [53], electromagnetic excitation using multiple electromagnets by Rossi
[105], magnetic excitation using a single DC magnet by Di Maio [28] and a
electromagnetic excitation using a single AC electromagnet, also by Di Maio
[28].

Although many mistuning identification algorithms have been proposed,
there is much work to be carried out in finding the best experimental pro-
cedure, refining the mistuning identification algorithms and predicting the
accurate vibration response levels of blades under operating conditions.

2.3 Questions to be answered in this thesis

Much knowledge on the forced vibration response properties of mistuned
bladed discs has been gained after 40 years of research. However, as men-
tioned in the introduction, the blade mistuning problem is considered as
unsolved, and the mistuning management strategy is not feasible with the
current available tools. In particular, the following questions have to be
answered:

1. Can we find the small but significant probabilities of extreme amplifi-
cation factors with less computational effort than running Monte Carlo
simulations?

2. What is the amplification factor distribution under damping mistun-
ing?

3. Does the Whitehead Factor represent the upper bound of the amplifi-
cation factor if the modes in the veering region are excited?
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4. How are the amplification factor distribution and the maximum am-
plification factor influenced by with the design parameters of a bladed
disc design?

5. Does the maximum amplification factor sensitivity to the degree of
mistune depend on the design parameters of a bladed disc design? If
so, how?

6. If the intentional mistuning approach can lead to more robust bladed
discs, how can we determine the optimal level of intentional mistuning
at the design stage?

7. How well can we predict the responses of real bladed discs with tools
currently available? How can this capability be improved?

8. What are the options available to manage the potentially high vibra-
tion response levels of mistuned bladed discs?

2.4 A brief review of robust design concept

The core issue of the blade mistuning problem is that small variations of the
system parameters, known as mistuning parameters, lead to huge variations
at the output in terms of vibration response levels of blades. The same
problem is experienced in many other engineering systems, and these are
called non-robust systems. The robust design concept attempts to reduce the
variations at the output, preferably without putting additional constraints
at input or at system parameters.

Although some components in robust design were developed in the 1920s
[37], it is generally agreed that the foundation of robust design was first laid
down by Genichi Taguchi [153, 11]. Besides the brief overview presented
below, the robust design concept has been surveyed by Park et al [85] and
Bayer and Sendhoff [11]. A sample robust design problem in structural
dynamics was presented by Zang et al [153].

If the output variation of a system is a function of design parameters,
the output variation can be reduced by carrying out a normal design opti-
misation analysis, as Han and Kwak did in 2001 [45]. Otherwise, one of the
two robust design methods - namely the Taguchi method and the Robust
Optimisation method - has to be adopted. The two robust design methods
were developed independently until 1997 [133], and still, little research in
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robust design methods nowadays addresses the two methods equally except
in literature surveys.

The Taguchi method. Taguchi developed his method of robust design,
known as the Taguchi method, after the Second World War to design
reliable telecommunication equipments in a systematic manner. The
first components of the Taguchi method appeared in 1957 [128], and
the Taguchi method was fully developed in the 1980s [27]. Readers
interested in the overview of the Taguchi method are recommended to
read Reference [129], which outlines the Taguchi method and its ap-
plication in various disciplines. Another demonstration of the Taguchi
method was provided by Lee et al in 1996 [63]. In 1996, Chen et al
[24] adjusted the Taguchi method by introducing the response surface
methodology, before the relationship between the robust optimisation
method and the Taguchi method was established.

However, the popularity of the Taguchi method does not mean that
it gains unequivocal praise. A debate was carried out in 1992 [79]
on the statistical techniques used in the parameter design stage of
the Taguchi method and Taguchi’s approach to condense robustness
into a single parameter (i.e. the signal-to-noise ratio). According
to the critics of the Taguchi method, the parameter design stage is
statistically either inefficient [139] or too simplistic [79]. Also, Chen et
al [24] argued that multiple robustness parameters are needed to fulfil
multiple design objectives. At the extreme end, Pease opposed the
application of the Taguchi to analogue electronic circuits manufacture
in a 2-part critique published in 1992 [86].

The Robust Optimisation method. The term “robust optimisation method”
was first proposed by Murphy et al in 1995 [75], but the need of tak-
ing into account of parameter uncertainties in operational optimisation
was addressed earlier. The first applications of the robust optimisation
method were in operational science [75] and topological optimisation of
structures [111]. Previous research to the robust optimisation method
can be divided into three areas, which are (i) determining the input
variation, (ii) determining the output variation, and (iii) improving
existing optimisation algorithms.

Determining the output variation is the most important research area
because it can only be evaluated by stochastic methods in many prob-
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lems, and Monte Carlo simulations are not computationally efficient.
The importance sampling method has been proposed on several occa-
sions to improve the efficiency of Monte Carlo simulations: Du and
Chen [29] proposed a Most-Probable-Point (MPP)-based importance
sampling method in 2001, Fonseca et al [38] designed an importance
sampling-based method in 2007 to reuse samples in design iterations,
and Rubinstein and Kroese [106] developed the cross entropy method
in 2008 to find the optimal importance sampling parameters.

Although all optimisation algorithms available in the robust optimisa-
tion method can be classified into three groups - namely determinis-
tic methods, randomised methods and genetic algorithms, there were
numerous attempts to improve the optimisation algorithms. For ex-
ample, Lee and Park proposed a simplified sensitivity analysis in 2001
[64] and Sandgren and Cameron improved the efficiency of the genetic
algorithms in 2002 [111].

2.5 Summary

The recent research in the structural dynamic aspects of the blade mis-
tuning problem has been reviewed and our understanding in the vibration
response levels in mistuned bladed discs is presented. However, there are
still outstanding questions to be answered before the mistuning manage-
ment strategy can be implemented. As the mistuning management strategy
in Chapter 1 treats the blade mistuning problem as a robust design problem,
the available robust design methods have been introduced as well.
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Evaluation of the range of
the amplification factor

The amplification factor is a number used by the majority of the mistuning

research community to measure the severity of the consequences of mistuning

in the maximum vibration response level of a mistuned bladed disc. The am-

plification factor is normally defined as the ratio of the highest forced vibration

response level found in a given mistuned bladed disc to the highest forced vi-

bration response level found in a tuned counterpart, under the same excitation

pattern. New names are given to alternative definitions introduced in previous

research for specific purposes.

The amplification factor is bounded from above by the maximum amplifi-

cation factor which depends on number of blades on a disc, the detailed design

and the damping loss factor. In previous research, the term “maximum ampli-

fication factor” has been used to refer to any of the three different quantities:

firstly, it has been referred to a theoretical upper bound of the amplification fac-

tor (e.g. the Whitehead Factor); secondly, the term has been applied to describe

the maximum found in optimisation, or thirdly, it can mean the highest ampli-

fication factor found in a simulation involving many samples (i.e. Monte Carlo

simulation). In this thesis, only the second quantity is called the “maximum

amplification factor”.

Because mistuning patterns (i.e. the arrangement of the mistuning on a

mistuned bladed disc) are random, the amplification factor is also a random

variable having a probability density function (pdf). The consequences of mis-

tuning can be quantified by the 99.9th (or any other) percentile of the pdf, and

this value is usually found by Monte Carlo simulation. The 99.9th percentile
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amplification factor is often significantly lower than the maximum amplification

factor, and amplification factors between these two values seldom occur, i.e.

these are rare events. These small probabilities are of practical interest because

the rare events are associated with extreme amplification factors and short fa-

tigue lives, and industry is interested to assess the risk of their occurrences in

practice.

A new procedure is developed in this chapter to tackle industrial interest in

rare events. Because Monte Carlo simulation fails to give reliable prediction of

the probabilities in that range, importance sampling is applied to close the gap

between the maximum amplification factor provided by optimisation analysis

and the 99.9th percentile amplification factor given by Monte Carlo simulation.

The new procedure is demonstrated on a 24-bladed integral bladed disc.

3.1 Introduction

From structural dynamics principles, the forced vibration response of Blade i
in a bladed disc, expressed as ui, is controlled by the design parameters of the
bladed disc design (including damping), mistuning pattern, the excitation
pattern and the excitation frequency, which are denoted {z}, {x}, {f} and
Ω respectively:

ui = ui ({z} , {x} , {f} ,Ω) (3.1)

The potentially high forced vibration response is of interest in the blade
mistuning problem, because the blades experiencing high response levels are
likely to fail earlier than others. To investigate the severity of the conse-
quences of mistuning, the response levels of a mistuned bladed disc are first
normalised against the peak response level of every blade on a hypothetical
tuned bladed disc of the same design, under the same excitation pattern.
The response levels of blades on a particular mistuned bladed disc over a
resonance region are plotted in Figure 3.1.

After that, the maximum response level of each blade over a resonance
region is sought, and it is customary to plot the N maximum responses of
the N blades on a mistuned bladed disc against the corresponding blade-
alone natural frequencies. Figure 3.2 is such a plot corresponding to the
responses shown in Figure 3.1.

At last, the maximum normalised response level of all blades is sought to
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Figure 3.1: Blade responses in tuned and mistuned 64-bladed discs.
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Figure 3.2: Blade responses against blade-alone frequencies of a bladed disc.

show the highest vibration response level possible in a particular mistuned
bladed disc, which is plotted as a cross on the left hand side of Figure
3.2. This value is called the amplification factor. The amplification factor
has been used in research since 1966, but no names were given before it was
called “magnification” in 1994 [84], and finally “amplification factor” in 2003
[101]. It is more appropriate to call this ratio “amplification factor” than
“magnification factor” because the highest vibration responses in mistuned
bladed discs are actually, instead of apparently, higher than the highest
vibration response of a tuned bladed disc.
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Mathematically, the amplification factor can be defined as the output of
the amplification factor function (a) as shown in Equation (3.2):

A =
maxi=1,2,··· ,N maxΩ

∣∣ui ({z} , {x} , {f} ,Ω)
∣∣

maxi=1,2,··· ,N maxΩ

∣∣ui ({z} , {0} , {f} ,Ω)
∣∣

= a ({z} , {x} , {f}) (3.2)

The definitions of the inputs to the amplification factor function will be
discussed in Section 4.4.1. The vectors {z} and {f} can be omitted from
the written expression if the amplification factors of only one design under
a particular excitation pattern is considered.

While the traditional definition of the amplification factor is widely used
in research related to the blade mistuning problem, the term “amplifica-
tion factor” has been used in two other ways described, and more precisely
defined, below.

Partial amplification factor. In some previous experimental studies, the
responses were not measured in all blades (e.g. 23 out of 64 in Refer-
ence [54]), and the ratio of the highest measured response to the tuned
peak response is found. It is called the partial amplification factor in
this thesis.

Adjusted amplification factor. Lim et al [67] defined the amplification
factor as the ratio of the highest response found in a given mistuned
bladed disc to the peak cantilever response of the mistuned blade where
the highest response is found, such that the energy flow in a mistuned
bladed disc can be studied. In this thesis, the amplification factor
derived from this definition is called the adjusted amplification factor.
The adjusted amplification factor of a tuned bladed disc is not equal
to 1 due to the existence of interblade coupling.

The adjusted amplification factor apparently introduces complexities
but there are two advantages: (i) the adjusted amplification factors
of different bladed disc designs are comparable as long as the same
blade design is used, and (ii) the adjusted amplification factor can
quantify the response increase in bladed discs with unequal damping
ratios across blades (also known as damping mistuning).

Obviously, the maximum blade responses and all variants of the ampli-
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fication factor are random variables as mistuning means random changes
of blade properties. For example, the maximum blade responses of 1,000
randomly-picked mistuned bladed discs are plotted in Figure 3.3. From the
64,000 data points, it can be seen that the blade responses are scattered
between 0.2 and 2.5 times the tuned peak response level. In addition, the
maximum blade response is apparently bounded from above, so is the am-
plification factor.
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Figure 3.3: Blade responses against blade-alone frequencies in many bladed
discs.

While it is true that the blade response cannot be infinite due to ex-
istence of damping, the amplification factor can be much higher than the
highest amplification factor found in the 1,000 mistuned bladed discs. One
extreme situation is also plotted in Figure 3.3: in such a situation, the natu-
ral frequency of the blade experiencing the highest response level (0.9922ωb)
is close to the 6ND natural frequency of the bladed disc (0.9916ωb).

The discussion in the rest of this chapter is focused on the extremely high
amplification factors: the maximum possible amplification factor, called the
maximum amplification factor, is discussed in Section 3.2, and Sections 3.3
and 3.4 discuss the methods to evaluate the small probabilities of occurrence
of extremely high amplification factors.
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3.2 Evaluation of the worst scenario: the quest to
find a realistic maximum amplification factor

Because a conservative estimate of the amplification factor is needed in
bladed disc design, much of the previous research effort has been concen-
trated in finding the maximum amplification factor. The maximum ampli-
fication factor has been referred to as any of the three quantities below:

1. a theoretical upper bound of the amplification factor. This value,
called “the upper bound of the amplification factor”, is discussed in
Section 3.2.1;

2. the maximum output of the amplification factor function (Equation
(3.2)) under a given set of design parameters and a known excitation
pattern. This approach, together with a new optimisation algorithm
introduced to the blade mistuning problem, is discussed in Section
3.2.2.

The maximum amplification factor only refers to this value in this
thesis because every maximum amplification factor found in this ap-
proach corresponds to a mistuning pattern, which means it can occur
in practice; or

3. the highest amplification factor found in a numerical simulation in-
volving many random samples (e.g. Monte Carlo simulation). This
approach is not discussed further in this section because Monte Carlo
simulations are not designed to find maxima or minima. Instead, the
Monte Carlo simulation approach is analysed in Section 3.3.

3.2.1 Upper bound of the amplification factor

Some researchers have tried to find an analytical upper bound of the am-
plification factor (i) to avoid dealing with an infinite amount of possible
mistuning patterns and (ii) to gain insight into the causes of high ampli-
fication factors in mistuned bladed discs. The most well-known research
outcome in this topic is called the Whitehead Factor [140], named after the
person who first derived such an expression in 1966. While Whitehead de-
rived the factor by considering aeroelastic coupling between blades, it has
also been proven to be the upper bound of the adjusted amplification factor
in a single-DOF-per-sector system using structural dynamics principles [67].
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The Whitehead Factor involves only N , the number of blades on a bladed
disc:

ÂWH =
1
2

(
1 +
√
N
)

(3.3)

In practice, the Whitehead Factor is a conservative upper bound of the
adjusted amplification factor. The results from attempts [101, 146] to in-
clude other design parameters of bladed discs into Equation (3.3) are not
widely used because of the complexities involved.

Whitehead derived the upper bound of the amplification factor by as-
suming the modal damping ratio of all modes being equal, and Lim et al
assumed the damping loss factor being constant throughout a bladed disc.
However, bladed discs with unequal damping on the blades, also known as
damping-mistuned bladed discs, have recently been included in the analysis
of frequency mistuned bladed discs [68]. If the stiffness mistuning is small
compared with damping mistuning, an upper bound of the adjusted max-
imum amplification factor in a single-DOF-per-sector system can be found
by taking a very similar approach to that adopted by Lim et al [67].

Finding an upper bound of the adjusted amplification factor in

damping mistuned bladed discs

It is assumed that every sector on the single-DOF-per-sector system is ex-
cited under an EO-type excitation with the magnitude being equal to unity.
The forced harmonic excitation on Sector i, fi, equals to

fi = sin (Ωt+ θi) (3.4)

where θi is the phase angle of the excitation on Sector i. Under steady-state
vibration with a period T , the displacement and the velocity of Sector i are,
respectively,

ui = |ui| sin (Ωt+ θi + ∆θi) (3.5)

u′i = |ui|Ω cos (Ωt+ θi + ∆θi) (3.6)

Suppose structural damping exist on the system and the damping loss
factor on Sector i is ηi, the damping force experienced on Sector i is fdi =
ηikiui. Under steady-state sinusoidal vibration with a period of 2π, the
average energy dissipation on Sector i due to structural damping over one
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vibration cycle, Edi , is

Edi =
1

2π

∫ 2π

0
fdi u

′
idθ =

1
2π

∫ 2π

0
ηikiuiu

′
idθ =

1
2

Ωηiki |ui|2 (3.7)

The average energy input to Sector i through forced harmonic excitation
Efi , with the magnitude of excitation normalised to unity, is calculated using
Equations (3.4) and (3.6)

Efi =
1

2π

∫ 2π

0
fiu
′
idθ =

1
2

Ω |ui| sin ∆θ (3.8)

where ∆θ is the phase angle between the forced excitation and response
on Sector i. To maintain the energy balance of energy in a steady-state
vibration, the inter-sector coupling energy, Eci , is introduced to account for
the difference between Edi and Efi :

Eci =
1
2

Ω
(
ηiki |ui|2 − |ui| sin ∆θ

)
(3.9)

The response amplitude |ui| is divided by the peak cantilever response
of that sector,

∣∣ubi ∣∣ = 1/ (ηiki) to give the normalised response ai:

ai = |ui| ηiki (3.10)

Eci =
1
2

Ω
ηiki

(
a2
i − ai sin ∆θ

)
(3.11)

As the variation of the damping loss factor across blades can be of several
orders of magnitude, mistuning of blade stiffnesses can be neglected (i.e.
ki ≈ k in every sector). Also, because −1 ≤ sin ∆θ ≤ 1, the inequality of
Equation (3.12) is created:

1
2

Ω
ηiki

(
a2
i − ai

)
≤ Eci ≤

1
2

Ω
ηiki

(
a2
i + ai

)
(3.12)

Eci is then normalised by Ω/2k to give Ēci , the normalised inter-sector
coupling energy:

1
ηi

(
a2
i − ai

)
≤ Ēci ≤

1
ηi

(
a2
i + ai

)
(3.13)

By knowing the minimum value of a2
i − ai, the minimum value of Ēci is
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found to be
min

(
Ēci
)

= − 1
4ηi

(3.14)

The minimum value of Ēci is the maximum energy drain possible from
Sector i. Suppose such an amount of energy is drained from every sector
from 2 to N and transferred to Sector 1, where the maximum amplification
factor is observed. The normalised interblade coupling energy in Sector 1 is

Ēc1 =
N∑
i=2

1
4ηi

(3.15)

To maximise the energy input in Sector 1 under forced excitation, (∆θ)1 =
π/2. Therefore,

Ēc1 =
1
ηi

(
a2
i − ai sin

π

2

)
=

1
ηi

(
a2
i − ai

)
(3.16)

Equations (3.15) and (3.16) are combined to form a quadratic equation
(Equation (3.17)), and the solution of such a quadratic equation is shown in
Equation (3.18):

a2
1 − a1 − η1

N∑
i=2

1
4ηi

= 0 (3.17)

a1 =
1
2

1 +

√√√√1 +
N∑
i=2

η1

ηi

 =
1
2

1 +

√√√√ N∑
i=1

η1

ηi

 (3.18)

If the maximum allowable deviation of the damping loss factor any blade
is ∆η, the upper bound of a1 can be found by assuming η1 = (1 + ∆η) η
and the damping ratios on all other blades as ηi = (1−∆η) η. The upper
bound of the maximum amplification factor becomes

a1 ≈
1
2

(
1 +

√
1 + (N − 1)

1 + ∆η
1−∆η

)
(3.19)

Suppose ∆η > 0, the upper bound of the amplification factor of a
damping-mistuned bladed disc is higher than the Whitehead Factor, which
is derived by assuming the modal damping ratios of all modes being equal.
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3.2.2 Numerical search of the maximum amplification factor

Besides the theoretical approach, the maximum amplification factor in a
bladed disc design under a specific excitation pattern can also be found by
maximising the output of the amplification factor function (Equation (3.2)).
As the relationship between a mistuning pattern and the corresponding am-
plification factor is not simple, no analytical means to calculate the maxi-
mum amplification factor have been found.

Nevertheless, the maximum amplification factor can be searched for us-
ing an optimisation analysis. The optimisation analysis was developed as
a numerical strategy to find the “optimal design” vector which leads to a
function (called a goal function in optimisation terminology) giving the min-
imum output. With minor adjustments, the same analysis can also be used
to find the maximum output of the goal function.

Given the bladed disc design parameters, {z}, and the forced excitation
pattern, {f}, the optimisation analysis is used in the blade mistuning prob-
lem to maximise the output of the amplification factor function (Equation
(3.2)), such that the maximum amplification factor, Â, and the mistuning
pattern that leads to that maximum, {x0}, known as the worst mistuning
pattern, can be found:

Â = max
{x}

a ({z} , {x} , {f})

= max
{x}

a ({x}) = a ({x0}) (3.20)

The resulting mistuning pattern {x0} is related to a particular combina-
tion of bladed disc design and excitation pattern only. It is noted that {x0}
is called the “optimal design” in optimisation terminology.

There are numerous references (e.g. [99, 143]) introducing the possi-
ble ways of carrying out optimisation analysis, also known as optimisation
algorithms. Optimisation algorithms can be classified into two types, and
both types have been applied to find the maximum amplification factor in
previous research. The first type of algorithm requires the gradient vector
of the amplification factor function, ∇a ({x}), with entries

∇a ({x}) =
{
∂a

∂x1

∂a

∂x2
· · · ∂a

∂xN

}T
(3.21)
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Examples of the first type of applied algorithms include Quasi-Newton
[89] and response surface methods [95]. In these, the gradient of the am-
plification factor function is found by assuming the excitation frequency
and the location of the worst blade are kept constant. The second type
of optimisation algorithms, which includes genetic algorithms and neural
network (both in Reference [115]), does not require gradient information.
In a problem with many dimensions such as the blade mistuning problem,
optimisation can be carried out more efficiently if gradient information is
used. Therefore, a gradient-based optimisation algorithm is used to find the
maximum amplification factor of every design discussed in this thesis.

An introduction to two gradient-based optimisation algorithms

The basic gradient-based optimisation algorithm is the steepest descent
method. To find the maximum value of a ({x}) using the steepest descent
method, an initial mistuning pattern {x1} is chosen and the following four
steps are carried out:

1. By evaluating the derivatives of a ({x}) with respect to individual
mistuning parameters, the gradient of the function at the selected
point {gi} = ∇a ({xi}) (where i ≥ 1) is found, and {gi} becomes a
search direction {hi}.

2. The function is evaluated at points along the line passing {xi} in the
direction of {hi}, i.e.

{x} = {xi}+ α {hi} (3.22)

where α is a variable determined either by a geometric progression [89]
or the Golden section method (if the maximum possible value of α is
known).

3. The location where the maximum of a ({x}) is found is marked as
{xi+1}.

4. i is increased by 1 and the four steps are repeated until convergence
is reached.

Although the steepest descent method is very easy to understand, the
method converges poorly if the contour lines of the function form elongated

34



Chapter 3. Evaluation of the range of the amplification factor

ellipses (Figure 3.4). This problem can be solved by employing the conjugate
gradient method, with nearly no additional computational effort.

The conjugate gradient method can achieve comparable results to the
Newton-Raphson method [99]: theoretically, the optimum can be reached
in N iterations in an N -dimensional optimisation problem by the conjugate
gradient method if the contours are perfectly ellipsoidal. A two-dimensional
example is shown in Figure 3.4.

Steepest descent                    Conjugate gradient

Contour linesOptimum

Figure 3.4: Search paths of optimisation algorithms on a 2-D plane.

The only difference between the conjugate gradient method and the
steepest descent method is in the selection of the search direction (i.e. Step
1 of the procedure above) in the second iteration and thereafter. In the
conjugate gradient method, the searching direction of Step i, {hi}, is deter-
mined by three variables: the gradients at {xi} and {xi−1}, and the previous
search direction {hi−1}. In mathematical terms,

{gi} = −∇f ({xi}) (3.23)

{hi} = {gi}+ γi {hi−1} (3.24)

There are two methods for finding the coefficient γi, namely the Polak-
Ribiere and Fletcher-Reeves approaches (both described in [143]), and these
are shown in Equations (3.25) and (3.26) respectively. After comparing the
performances of the two approaches, the conjugate gradient method based
on the Fletcher-Reeves approach is adopted in this thesis.

γi =
({gi} − {gi−1}) · {gi}
{gi−1} · {gi−1}

Polak-Ribiere approach (3.25)

γi =
{gi} · {gi}
{gi−1} · {gi−1}

Fletcher-Reeves approach (3.26)
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3.3 Current approach of amplification factor dis-

tribution prediction

As mentioned in Section 3.1, the amplification factor is a random variable,
and it has its own probability density function (pdf). Typical pdfs of the
amplification factor and the partial amplification factors are shown in Figure
3.5. The thin tails on the right hand side of the pdfs show that the probabil-
ities of extremely high levels of amplification factors are low. The tail of the
partial amplification factor pdf is even thinner than that of the amplification
factor because the blade with the highest response is not always included.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

Adjusted amplification factor

pr
ob

ab
ili

ty
 d

en
sit

y

 

 

All blade responses measured

1/4 of blade responses measured

1/8 of blade responses measured

M
ax

. a
dj

us
te

d 
am

pl
ifi

ca
tio

n 
fa

ct
or

 =
 4

.0
7

WR = 1, N = 64, sigma = 0.01, eta = 
0.002

All blades, EO_20090527T235214
¼ blades, EO_20090528T081935
1/8 blades, EO_20090528T021255

Number of blades = 64

Pr
ob

ab
ili

ty
 d

en
sit

y

Figure 3.5: Typical probability density functions of amplification factor and
partial amplification factors.

Although there have been attempts to find the responses distribution by
analytical means, numerical simulations like the Monte Carlo simulations
are usually used to find the amplification factor pdf. The Monte Carlo
simulation is sometimes referred to any stochastic computer simulation [106],
but a narrower definition proposed by Law [61] is adopted in this thesis: the
Monte Carlo (also known as Direct Monte Carlo, DMC) simulation refers
to a numerical method of evaluating the probability p of an event function,
h ({x}), with f ({x}) being the pdf of the N -element random parameter
vector {x}:

p = Ef (h ({x})) =
∫ x̂N

x̌N

· · ·
∫ x̂1

x̌1

h ({x}) f ({x}) dx1 · · · dxN (3.27)
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In a Direct Monte Carlo simulation trial, the integral in Equation (3.27)
is approximated by pDMC, which is found by calculating the event function
h ({x}) for R selected samples {xi}. These samples are created by a (pseudo-
) random number generator such that distribution of samples is as close to
f ({x}) as possible:

p ≈ pDMC =
1
R

R∑
i=1

h ({xi}) (3.28)

In the blade mistuning problem, the probability of the amplification
factor lying above a given threshold A0 in a design {z} and an excitation
pattern {f} is sought. Therefore the event, h ({x}), to be evaluated in a
DMC simulation is the function at ({x}) shown in Equation (3.29):

at ({z} , {x} , {f}) =

{
1 a ({z} , {x} , {f}) ≥ A0

0 a ({z} , {x} , {f}) < A0

(3.29)

There are two major weaknesses associated with using the DMC simu-
lation in the blade mistuning problem to estimate the small probabilities:

1. A Direct Monte Carlo simulation run with R samples cannot predict
probabilities smaller than 1/R directly. For example, 10,000 samples
are used to produce the pdf shown in Figure 3.6. The highest amplifica-
tion factor among the samples is 1.9, while the maximum amplification
factor is known to be 2.8 from the results obtained in optimisation.
As a result, the probability of the amplification factor exceeding any
threshold between 1.9 and 2.8 cannot be evaluated. This is a seri-
ous deficiency because a difference of 32% in the amplification factor
corresponds to a 500-time difference in the fatigue life, as the correla-
tion between the vibration amplitude and fatigue life is discussed in
Chapter 5.

2. Any probability estimate pDMC in the order of 1/R found in a Di-
rect Monte Carlo simulation is unreliable due to sampling error. The
uncertainty of the estimate can be quantified by the concept of the con-
fidence interval. The “100(1− α)% confidence interval” means there
is a 100 (1− α)% chance that the true probability, p, lies within a
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Model E, 5EO, eta = 0.002, sigma = 0.03
(supposed that 10000 simulations carried 
out)
EO_20080901T103226
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Figure 3.6: Amplification factor pdf, with the highest values sought using
various methods in a 24-bladed disc design.

specified interval:

Pr
(
pDMC −∆p ≤ p ≤ pDMC + ∆p

)
= 1− α (3.30)

The quantity ∆p is called the half-width of the confidence interval, and
is calculated using Equation (3.31) after knowing the sample variance,
s2, by using Equation (3.32).

∆p = zR−1,1−α
2

√
s2

DMC

R
(3.31)

s2
DMC =

1
R− 1

R∑
i=1

(
h ({xi})− pDMC

)2
≈ pDMC

(
1− pDMC

)
(3.32)

The factor z in Equation (3.31) is the “degrees of freedom” in Stu-
dent’s t-distribution and is dependent on the number of samples in
the Monte Carlo simulation and the confidence level [106]. Typically,
the “95% confidence level” is taken, such that z∞,0.975 = 1.960 [61].
By substituting Equation (3.32) into Equation (3.31), it can be seen
in Equation (3.33) that the half-width of the confidence interval asso-
ciated with the estimated probability of 1/R is higher than 1/R. The
result means that the probability estimate is highly unreliable.
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(∆p)pDMC= 1
R

= 1.96

√
pDMC

(
1− pDMC

)
1/pDMC

≈ 1.96pDMC (3.33)

More samples could have been used to improve the range and the ac-
curacy of a CMC simulation, but such an approach is inefficient because
the half-width of the confidence interval (Equation (3.31)) is proportional
to 1/

√
R. For example, 100 times as many samples is needed in a Direct

Monte Carlo simulation to reduce the order of the width of the confidence
interval by one (e.g. from 0.1p to 0.01p).

3.4 A new procedure to predict the probabilities
of occurrence of extreme amplification factors

Figure 3.6 shows that a huge gap can exist between the highest amplifica-
tion factor found in a Direct Monte Carlo simulation run and the maximum
amplification factor. As industry is interested in knowing the probabilities
associated with the rare events, a better method is needed to predict the
probabilities of extreme amplification factors occurring, and one is intro-
duced below. The procedure comprises four steps:

Step 1: DMC simulation. A small-scale Direct Monte Carlo simulation
finds an estimate amplification factor pdf.

Step 2: search for the worst mistuning patterns. The worst mistun-
ing patterns are searched for using optimisation analysis.

Step 3: importance sampling. The importance sampling method is car-
ried out around the worst mistuning patterns to find the probabilities
of amplification factors exceeding certain thresholds.

Step 4: interpolation. The tail of the amplification factor pdf is drawn
by interpolating the probabilities found in Step 3.

The second and third steps in the procedure are uncommon in previ-
ous mistuning research. While optimisation analysis has been introduced
in Section 3.2.2, the importance sampling method is explained in Section
3.4.1 below. The importance sampling concept is then applied to the blade
mistuning problem in Section 3.4.2. Lastly, the 4-step procedure above is
demonstrated in Section 3.4.3 on a 24-bladed integral bladed disc.
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3.4.1 Introduction to the importance sampling method

Because the probabilities of very high amplification factors occurring are
low, the integral in Equation (3.27) is contributed by a small portion of
the whole domain. The distribution density in that portion is usually low
because some blades in those patterns are relatively heavily mistuned and
are not very likely to occur. As a result, a large number of samples is
needed in DMC simulations in dealing with the blade mistuning problem.
Improvements can be made by adopting the importance sampling method.

A “bombing problem” suggested by Asmussen and Glynn [4], shown in
Figure 3.7, is introduced to facilitate further discussion. In this problem, a
bomb is aimed at a target at (0,0) on the xy-plane, and the actual hitting
point is given as a bivariate normally-distributed pdf with the standard
deviation of (1,1). The probability p of the bomb falling in within 1 unit
of a sensitive object A with the southwest and northeast corners located at
(4,-0.5) and (5,0.5) respectively (i.e. Area B in Figure 3.7), is sought.

The probability can be found analytically by solving p in Equation (3.34),
where h (x, y) = 1 in Area B and 0 elsewhere:

p = Ef (h (x, y)) =
∫ ∞
−∞

∫ ∞
−∞

h (x, y) f (x, y) dxdy (3.34)

Target

B
1 2 3 x

y

1

2

-1
-1

-2

-2-3-4
A

Contour lines

Figure 3.7: A “bombing problem” proposed by Asmussen and Glynn [4].

The straightforward method of finding p is to carry out a DMC sim-
ulation: samples are taken randomly around the target with a standard
deviation of (1,1). However, the pdf f (x, y) in Area B is very low (Figure
3.8), such that the majority of samples fall outside Area B. A large amount
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of samples is required in a DMC simulation to ensure a reasonable amount
of samples fall in Area B, and to estimate the integral in Equation (3.34)
accurately.

X-coordinate

Y
-c

oo
rd

in
at

e

0 1 2 3 4 5 6
0

0.5

1

1.5

2

Area B

f(0,0) = 0.1591 f(3,0) = 0.0018

f(5,1.5) = 2e-7

Figure 3.8: Probability density function of being hit.

In the importance sampling method, more samples are taken at regions
which contribute most significantly to the integral (i.e. in the vicinity of Area
B in the bombing problem) according to a sampling distribution g (x, y), and
the samples are reweighted to simulate the original problem. The sampling
distribution is changed by rewriting Equation (3.27) into Equation (3.35):

p = Eg (h ({x})) =
∫ x̂N

x̌N

· · ·
∫ x̂1

x̌1

h ({x}) f ({x})
g ({x})︸ ︷︷ ︸

function

g ({x})︸ ︷︷ ︸
pdf

dx1 · · · dxN (3.35)

By using a similar approximative approach to that transformed Equation
(3.27) into Equation (3.28), the probability p is estimated by calculating pIS

in Equation (3.36), with samples taken according to the sampling distribu-
tion g ({x}):

p ≈ pIS =
1
R

R∑
i=1

h ({xi})
f ({xi})
g ({xi})

=
1
R

R∑
i=1

h ({xi})w ({xi}) (3.36)

The ratio w ({xi}) is called the likelihood ratio. To find the confidence
interval associated with an importance sampling simulation using Equation
(3.31), the sample variance is calculated according to Equation (3.37):

s2
IS =

1
R

R∑
i=1

(h ({xi})w ({xi}))2 −
(
pIS

)2 (3.37)
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The confidence interval can be narrowed significantly by using impor-
tance sampling. Two simulation runs, with 100,000 samples in each run,
were carried out to evaluate the bombing problem. The standard deviation
of sampling distributions is kept at (1,1). By moving the centre of the sam-
pling distribution from (0,0) to (3,0) (the edge of Area B), the half-width of
the 95% confidence interval drops from 0.203pIS to 0.0135pIS . The detailed
results listed in Table 3.1 shows that importance sampling is a practical
method to reduce the variance compared with that encountered in Direct
Monte Carlo simulations.

Centre of Standard Probability Half-width
sampling deviation estimate pIS ∆p

(0,0) (DMC) (1,1) 9.3× 10−4 1.889× 10−4

(3,0) (1,1) 9.584× 10−4 0.129× 10−4

Table 3.1: Dependence of probability estimate on centre of sampling distri-
bution.

An algorithm of finding the best sampling distribution automati-

cally

To exploit the importance sampling method, an algorithm is needed to find
a good sampling distribution automatically. Such an algorithm is crucial in
applying the importance sampling method to the blade mistuning problem,
because the number of samples taken is small compared with the dimen-
sion of the problem. Ideally, if the importance sampling distribution pdf,
g∗ ({x}), is in the form shown in Equation (3.38), the probability found is
exact (Equations (3.39) and (3.40)):

g∗ ({x}) =
|h ({x}) f ({x})|

p
(3.38)

pIS =
1
R

R∑
i=1

h ({xi}) f ({xi})
g∗ ({xi})

=
1
R

R∑
i=1

p = p (3.39)

s2
IS =

1
R

R∑
i=1

(
h ({xi}) f ({xi})

g∗ ({xi})

)2

−
(
pIS

)2 = p2 − p2 = 0 (3.40)

However, it is impossible to obtain random samples with the pdf g∗ ({x})
because the previous knowledge of p is needed to find g∗ ({x}), but p is the
variable we want to find. Also, h ({x}) is often geometrically irregular, thus
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g∗ ({x}) is geometrically irregular as well.

The cross entropy method provides an iterative procedure of choosing the
best practical sampling distribution. The cross entropy method determines
the quality of the distribution by minimising the “distance” D between the
existing sampling distribution and the ideal counterpart (Equation (3.41)):

D (g∗, g) = Eg∗
(

ln
g∗ {x}
g {x}

)
=
∫ x̂N

x̌N

· · ·
∫ x̂1

x̌1

g∗ {x} (ln g∗ {x} − ln g {x}) dx1 · · · dxN

(3.41)

Readers are referred to Reference [106] for a detailed introduction of
the theory related to the cross entropy method. If the sampling and the
probability distributions are both multivariate exponential (e.g. normal),
the Equation (3.41) can be transformed into a simple procedure presented
in Appendix B.

3.4.2 Importance sampling method in the blade mistuning

problem

The bombing problem example shows that the importance sampling method
can reduce the width of the confidence interval significantly. The approach
can be used in the blade mistuning problem to improve probability estimates
of high amplification factors. Provided that the amplification factor func-
tion is continuous, more samples can be taken around the worst mistuning
patterns initially, and the best sampling distribution is found by iterations
using the cross entropy method. It is known to be more complicated to ap-
ply the importance sampling method to the blade mistuning problem than
to the bombing problem due to two major issues, multidimensionality and
multiple optima.

Multidimensionality. In problems with many dimensions like the blade
mistuning problem, the variation of w ({xi}) in Equation (3.36) is sig-
nificant if the sampling distribution g ({x}) is vastly different from the
probability distribution f ({x}). To control the variation of w ({xi}),
(i) the sampling distribution g (x, y) has the same type of distribution
as f (x, y) and (ii) only bottleneck elements, the distribution parame-
ters critical to the variance of the estimate, are different between the
probability and sampling distributions. For example, the sampling
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distribution in the bombing problem is bivariate normally distributed
(same as the probability distribution) and the x-coordinate of the cen-
tre of sampling is the only bottleneck element.

Multiple optima. The cross entropy method does not work with mul-
timodal distributions (i.e. distributions centred at more than one
point), but more than one “worst mistuning pattern” exists in many
bladed disc designs. Finding best-fit normal distribution parameters
of a multi-modal distribution would result in a bad distribution.

There are two sources of multiple worst mistuning patterns, namely
multiple global optima and multiple local optima. Multiple global op-
tima arise from cyclic symmetry. The following mistuning patterns
are physically identical on an N -bladed disc:

{x1} =
{
x11 x21 · · · x(N−1)1 xN1

}T
{x2} =

{
x21 x31 · · · xN1 x11

}T
...

{xN} =
{
xN1 x11 · · · x(N−2)1 x(N−1)1

}T
To facilitate the cross entropy method, all possible mistuning patterns
are partitioned such that only one worst mistuning pattern exists in
a partition. All mistuning patterns are first divided into N identical
partitions to avoid multiple global optima, and each partition is further
cut into qN subpartitions to avoid multiple local optima, if q local
optima exist. Importance sampling is then carried out q times in the q
subpartitions to find the true probability as all partitions are identical.
The boundaries are drawn equidistantly to the neighbouring patterns
according to the Euclidean distances.

3.4.3 Demonstration

The procedure described at the beginning of Section 3.4 is applied to finding
the probabilities of amplification factors exceeding specific thresholds, such
as A0 = 1.85 − 2.15 in 0.05 steps for the 24-sector integral bladed disc,
also known as a blisk, shown in Figure 3.9. The blisk is excited under
7EO excitation. The finite element model of the blisk is reduced by the
Fundamental Mistuning Model (FMM) [35] algorithm using the first family
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of modes, so that mistuning parameters of blades are determined by the
fractional changes of the sector natural frequencies. (The FMM algorithm
is outlined in Appendix F.) The standard deviation of mistuning parameters
and maximum allowable mistune are 0.02 and 0.067 respectively. Structural
damping is present in the model with a loss factor of 0.002.

Figure 3.9: Integral bladed disc (blisk) under investigation.

Steps 1 and 2. A DMC simulation with 30,000 samples was carried out
to provide a reference pdf for later comparison. The amplification fac-
tor pdf is shown in Figure 3.10 and the highest amplification factor
found in the 30,000 samples is 1.952. Each of the 35 worst mistuning
patterns among the Monte Carlo samples was subjected to an opti-
misation analysis. The conjugate gradient method was used with 120
iterations carried out in optimising each sample. The maximum am-
plification factor found in the optimisations (2.630) is also shown in
Figure 3.10. The discrepancy of 26% between the highest amplification
factor found in the DMC simulation and the maximum amplification
factor found in optimisation shows that the DMC simulation performs
poorly in finding the maximum amplification factor. Three local op-
tima identified among the 35 optimised mistuning patterns are plotted
in Figure 3.11.

Steps 3 and 4. Importance sampling was carried out according to the al-
gorithm listed in Appendix B. Because 3 local optima exist, the mis-
tuning domain was divided into 24 × 3 = 72 parts and importance
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Figure 3.10: Amplification factor pdf, with the highest values sought using
various methods.
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Figure 3.11: Local worst mistuning patterns found in optimisation analysis.

sampling was carried out 3 times. A total of 47,000 samples were
used to evaluate each probability around each local optimum: 8,000
samples were used in each cross entropy iteration, and 15,000 samples
were used in evaluating the probabilities. Between 5 and 15 mistun-
ing parameters out of 24 were assigned bottleneck elements, where the
distribution parameters were adjusted in the course of cross entropy
iterations.

The probabilities found were joined to form a curve which resembles
a cumulative distribution function. The probability curves with the
associated 95% confidence intervals are shown in Figure 3.12. The
results from the DMC simulation are provided as a reference.
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Figure 3.12: Probabilities of amplification factors exceeding given thresh-
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The results in Figure 3.12 show that the new procedure extends the pos-
sible range of evaluation well beyond that covered by DMC simulations of a
similar number of samples. The discrepancy between the results found using
the DMC simulations and the procedure is contributed to by two factors: (i)
the results from DMC simulation are easily affected by sampling error. Only
3 and 1 DMC samples out of 30,000 have amplification factors exceeding 1.9
and 1.95, respectively; and (ii) the samples taken in importance sampling
have average mistuning close to zero because the representative patterns
have zero means. However, mistuning patterns with average mistuning be-
low zero (i.e. more flexible blades) have slightly higher amplification factors.
The discrepancy does not come from the inherent failure of the procedure as
the importance sampling method shows that probability of the amplification
factor higher than 0.5 is 1 (i.e. the amplification factor is always higher than
0.5).

The efficiency of the new procedure is measured in terms of the savings
in computational time. By assuming a Direct Monte Carlo simulation with
Reqv samples can achieve the same accuracy as new procedure with RIS

samples, the efficiency is defined as the ratio Reqv/RIS. Figure 3.13 shows
that the new procedure is more efficient compared with a Direct Monte Carlo
simulation if a lower probability (i.e. the probability related to a higher
threshold amplification factor) is estimated. However, the new procedure is
not as efficient as Direct Monte Carlo simulations in estimating probabilities
higher than 10−4. Therefore, the new procedure and Direct Monte Carlo
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simulations are useful in finding the shape of the amplification factor pdf in
different regions.
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Figure 3.13: Dependence of efficiency of the new procedure over DMC sim-
ulations on probability estimate.

3.5 Summary

The terms amplification factor and maximum amplification factor are dis-
cussed in this chapter to facilitate further discussion in the blade mistuning
problem. The various definitions of the amplification factor are introduced,
and the maximum amplification factor is defined as the value obtained by
optimisation. The conjugate gradient method is introduced to find an effi-
cient method of finding the maximum amplification factor and the associated
mistuning patterns.

By treating the amplification factor as a random variable, the tail of the
pdf needs to be described accurately because it is associated with extremely
high amplification factors. To overcome the weakness of Direct Monte Carlo
simulations in evaluating small probabilities (also known as rare events), a
new procedure based on the importance sampling method is presented. It
is shown that the new procedure is more efficient than the Direct Monte
Carlo simulation approach in determining small probabilities in terms of
computational effort. The new procedure also extends the range of our
ability in estimating the probabilities related to extremely high amplification
factors.
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Application of robust design
concepts to the blade
mistuning problem

The blade mistuning problem can be managed by adopting a robust design

concept. Robust design aims to keep the output of a system close to a target

(i.e. robust) under variability at input or of design parameters. Variability refers

to the irreducible scatter of a parameter, usually due to its physical nature.

Variability is different to uncertainty, which is related to the possible level of

error in measurements.

Two major robust design methods - namely, the Taguchi method and the

Robust Optimisation method - exist. The Taguchi method seeks to improve

robustness of a system in three steps in the following order: (i) in system

design, the original system is replaced by a more robust alternative if possible,

(ii) parameter design aims to improve the robustness of a system (or “make

a system more robust”) without reducing the acceptable variability at input or

that of design parameters and (iii) tolerance design determines the maximum

permissible input variability to a system.

To use the Robust Optimisation method, the relationship between the input

and output of a system is represented by a goal function. The method com-

prises two parts. Firstly, by incorporating variability at input or that of design

parameters, the Robust Optimisation method transforms the goal function into

a robustness function. The input and output of the robustness function are

the input variability and robustness of the system function, respectively. Sec-

ondly, the Robust Optimisation method optimises the robustness function by
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either a deterministic or a randomised approach.

By treating the blade mistuning problem as a robust design problem, the

input variability and robustness are defined according to approaches either based

on (i) probabilistics or (ii) interval analysis. If an approach based on probabilis-

tics is adopted, the standard deviation of mistuning parameters and the 99.9th

(or any other) percentile amplification factor are defined as the input variability

and robustness, respectively. Alternatively, in an approach based on interval

analysis, the input variability and robustness refer to the maximum allowable

mistune on any blade on a bladed disc and the maximum amplification factor,

respectively.

4.1 Introduction

The discussion in Chapter 3 has shown that small variations between blades
in a bladed disc can lead to huge variations of forced vibration responses,
and some of these are extremely high. Bladed discs can be described as non-
robust systems, which are systems suffering from high variation at output
due to small variations, also known as heterogeneity, at input and design
parameters. A schematic of a non-robust system is shown in Figure 4.1.
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Figure 4.1: Schematic of a non-robust system.

Traditionally, the output variation of non-robust systems is controlled by
imposing tight tolerances at input and design parameters, which is rather
expensive. A robust design concept explores the possibility of designing
a more robust system, which means a system producing reduced output
variation without changing the variation at input and design parameters.
For example, by using a robust design concept, the non-robust system shown
in Figure 4.1 becomes the system shown in Figure 4.2, which is more robust.

In the current chapter, the two main robust design methods are intro-
duced in Section 4.3. The issues related to casting the blade mistuning
problem as a robust design problem and the approach to carry out robust
design on mistuned bladed discs are presented in Section 4.4.

It should be noted that a more robust design is not always a better design
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Figure 4.2: Schematic of an improved system.

in terms of manufacturing and operational costs. It may cost more to adopt
a robust design than to tighten the tolerances in a non-robust design. For
example, a robust bladed disc design may be too heavy to be applied to aero
gas turbines.

4.2 Terminology

Many terms in the robust design concept mean slightly differently from
usual. This discrepancy is critical if two apparently similar words refer to
completely different meanings in robust design. Therefore, the words having
apparently similar meanings are compared before further discussion.

Uncertainty and Variability. A measured parameter is non-deterministic
on different samples of a product because uncertainty and variability
exist. Uncertainty is the level of possible error in determining a quan-
tity due to lack of knowledge, while variability reflects the stochastic
nature of a parameter. Uncertainty can be reduced by having better
knowledge of the parameter (e.g. by making better measurements),
while variability is irreducible by better measurements.

If the blade-alone natural frequencies measured on a tuned bladed
disc are non-identical, the scatter is due to uncertainty alone (e.g.
measurement error). In contrast, mistuning parameters in a bladed
disc are a source of variability because the scatter exists even if the
parameters are measured accurately and precisely.

Sensitivity and Robustness. Sensitivity means “easily influenced, changed
or damaged, especially by a physical activity or effect” in a non-
technical sense [17]. However, in this thesis, sensitivity only means
the ratio of the change of output to the change of input in a function.
Sensitivity can be described by derivatives. Robustness refers to the
relative output variability to input variability and design parameter
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variability. Sensitivity parameters can be used to find robustness in
some problems.

Robustness and Variability. Robustness refers to the relative output vari-
ability to input variability and design parameter variability. Given the
level of variability at the input and of design parameters is constant,
robustness is increased if the output variability is reduced.

Goal function and robustness function. The one-to-one or many-to-one
relationship between input and output parameters in a system is called
the goal function. If at least one of the input parameters, design pa-
rameters or output parameters in the goal function is scattered, the
robustness function defines the relationship between input variability,
design parameter variability and output variability. The robustness
function is usually derived from the goal function.

Design parameters and noise parameters. In the robust design con-
cept, robustness of a design is improved solely by controlling the de-
sign parameters, also called “control parameters” in some robust de-
sign texts. Noise parameters are not adjusted in robust design because
of the difficulties involved. For example, the dimensions of the tuned
bladed disc can be considered as design parameters, and mistuning
parameters are treated as noise parameters.

Optimal design and robust optimal design. Optimal design is the pa-
rameter vector, {x0}, that minimises the goal function (Section 3.2.2).
If the parameter vector consists of random variables, as in the case of
the blade mistuning problem, the robust optimal design is the design
parameter vector, {z0}, which minimises the output of the robustness
function H ({z} , {x}) 1 under input variability {x}:

min
{z}

H ({z} , {x}) = H ({z0} , {x}) (4.1)

The variants of the robustness function expressions are introduced in
Sections 4.3.1 and 4.3.2.

1To be precise, H ({z} , {x}) is the “non-robustness function”, because these measures
are to be minimised in robust optimisation. However, it is called the robustness function
in robust optimisation texts [11].
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4.3 Introduction to major robust design methods

Two independent robust design methods - namely, the Taguchi method [129]
and the robust optimisation method [11] - are available to implement the
robust design concept, and are outlined in Sections 4.3.1 and 4.3.2, respec-
tively.

It is noted that there is no agreed scheme to classify robust design prob-
lems. Previous research often classifies robust design problems by the source
of variability or uncertainty. Chen et al [24] divided robust design problems
into two types: variability exists in the noise parameters in Type I problems
while that in Type II problems exists in the design parameters. Alterna-
tively, Beyer and Sendhoff [11] classified robust design problems into four
groups, where Groups A and B describe the sources of variability and Groups
C and D describe the sources of uncertainty. In systems belonging to Groups
A and B, variability exists in operating conditions and manufacturing tol-
erances, respectively, while uncertainty exists in output measurements in
Group C systems and in fulfilment of the constraints in Group D systems.
As a result, the blade mistuning problem is a Type II, Group B robust design
problem according to References [24] and [11], respectively.

4.3.1 The Taguchi method

The development of the Taguchi method began in the 1950s [128] and the
method took the current shape in the 1980s [27]. The Taguchi method was
first developed by Genichi Taguchi in testing telecommunication product
designs, but it is now used in many disciplines in engineering. Handbooks
outlining the Taguchi method such as Reference [129] are available, on which
the description below is based.

Robustness is defined by the signal-to-noise ratio (SNR) in the Taguchi
method. The SNR is the ratio of signal output to noise output in terms of
power. Because SNR is to be maximised in the Taguchi method, it is the
reciprocal of the robustness function. The SNR of R pieces of output data Y ,
with the mean and standard deviation of Y being µY and σY respectively,
can be defined by one of the equations listed in Table 4.1, depending on
required output in particular problems:

The Taguchi method comprises three stages:
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Required output Signal-to-noise ratio

Smaller the better −10 log
(

1
R

∑R
j=1 Y

2
j

)
Larger the better −10 log

(
1
R

∑R
j=1

1
Y 2
j

)
Nominal the best −10 log

(
µ2
Y

σ2
Y

)
Table 4.1: Definitions of the signal-to-noise ratio, after Taguchi [129].

1. System design. The robustness of a system is improved by replacing
the original system by a potentially more robust counterpart. For
example, a simple voltage source-and-ammeter circuit can be replaced
by a Wheatstone bridge to measure the resistance of a resistor.

2. Parameter design. Parameter design aims to improve the robustness
of a system by changing the design parameters. Parameter design
involves (i) reducing the variability of the output without considering
the mean of it and (ii) moving the mean of the output to the target
value [85]. This two-step process is shown graphically in Figure 4.3.
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Figure 4.3: Two steps in parameter design, after Park et al [85].

The Taguchi method proposes a “Design of Experiment” scheme to
reduce the variability of the output (Step (i) above). The scheme was
first designed for finding optimal combinations of parameters in carry-
ing out experiments, but this scheme can also determine parameters
to be adopted in simulations. In the Design of Experiment scheme,
every design or noise parameter is discretised into 2 or 3 levels. Then,
a small number of experiments (up to 108 in problems with many
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variables, but usually 36) are carried out [129], with the design and
noise parameters determined by a specially-design array known as an
orthogonal array, in which all combinations of any two design parame-
ters are included. After the experiments, the dependence of robustness
on individual design parameters is found by analysing the variance of
the experimental output. Finally, the robust optimal design can be
determined without considering the mean of the output.

3. Tolerance design. Manufacturing tolerances are specified by consider-
ing three factors: (i) the “quality level”, which is the cost paid by
the customer to repair or replace a single faulty product. This cost is
called the “social cost” in the Taguchi method; (ii) the additional cost
of imposing tighter tolerances in manufacture and (iii) the maximum
deviation allowable before the product fails to perform the required
function, also known as the “function limit”. A safety factor is calcu-
lated in tolerance design based on the ratio of the “quality level” and
the additional cost of imposing tighter tolerances.

The engineering design approach adopted in the Taguchi method is atyp-
ical. Although the Taguchi method is considered user-friendly by some en-
gineers, the parameter design step of the Taguchi method has six shortcom-
ings:

1. The robustness improvements in the first step may be reduced by
moving the output to the target value in the second step.

2. Discretisation of design parameters restricts the scope of investigation.
The robust optimal design may locate between two discrete levels of a
design parameter, as shown in Figure 4.4.

3. Noise parameters are continuously-distributed parameters but the prob-
ability distribution information is removed by discretisation in the De-
sign of Experiment scheme. Without knowing the distribution of the
noise parameters, it is misleading to calculate the variance of the ex-
perimental outputs.

4. The results from the few experiments carried out according to the De-
sign of Experiment scheme can give a false sense of safety in complex
problems like the blade mistuning problem. In comparison, typical
Monte Carlo simulations involve hundreds (if not thousands) of sam-
ples to give reliable output statistics.
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Figure 4.4: Robust optimal design missed in discretisation.

5. The interaction of multiple design parameters cannot be precisely de-
termined in parameter design based on the Design of Experiments
scheme. Although all combinations of any two design parameters are
included in the experiments, those experiments are carried out with-
out fixing other parameters. Therefore, the variance of the output
is due to either the interaction of the two design parameters under
consideration or that of multiple design parameters.

6. Robustness is assumed to be additive in the Taguchi method: the ro-
bustness improvement of changing several design parameters together
can be approximated by the sum of robustness improvement of chang-
ing each design parameter separately. However, this assumption is
not valid in some problems like the blade mistuning problem, or in
the example shown in Figure 4.5. In such an example, the Taguchi
method would give x1A and x2A as the optimal values of the design
parameters x1 and x2, respectively, if the dependence of robustness
on the two parameters are considered separately. However, the de-
sign with parameters (x1A, x2A) is not robust because the robustness
improvements are not additive.

Besides the shortcomings of parameter design, there are two issues re-
lated to tolerance design. Firstly, the term “social costs of quality” in the
Taguchi method is overstated because it only refers to the costs related to
the customer and the manufacturer, instead of the costs related to society at
large (e.g. the impact of product quality on the environment). The “social
costs of quality” cover repair and replacement costs of the product, which
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Figure 4.5: Non-additivity of robustness improvements.

are better described as life cycle costs. Also, the cost-based safety factor in
tolerance design is not significantly better than the traditional safety factor.
The traditional, well-documented, reliability-based safety factor is specified
based on the probability of failure, which is related to the cost of failure.

4.3.2 The Robust Optimisation method

By assuming the relationship between input variability and output variabil-
ity to be deterministic, the Robust Optimisation method [11] transforms the
goal function h ({z} , {x}) into a robustness function H ({z} , {x}), and the
minimum value of the robustness function is sought. The input variability
and output variability of the goal function become input and output of the
robustness function, respectively. Robust Optimisation is loosely related to
parameter design in the Taguchi method. There are five different robust-
ness functions available [11]. By writing the design parameter vector, noise
parameter vector and the pdf of the noise parameter vector as {z}, {x}
and f ({x}) respectively, the three robustness functions related to the blade
mistuning problem are listed below:

1. In the robust counterpart measure, the robustness of the system is
quantified by the highest output due to all possible combinations of
input, also known as the “worst case”.
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2. By using the expectancy measures, the expectation and/or the variance
is used to measure robustness:

H2a =
∫ x̂N

x̌N

· · ·
∫ x̂1

x̌1

h ({z} , {x}) f ({x}) dx1 · · · dxN (Expectation)

(4.2)

H2b =
∫ x̂N

x̌N

· · ·
∫ x̂1

x̌1

h2 ({z} , {x}) f ({x}) dx1 · · · dxN (Variance)

(4.3)

A multiple-objective robust design problem is created if both expecta-
tion and variance are to be minimised [76]. In this case, the robustness
function becomes a linear combination of Equations (4.2) and (4.3):

H2c = αH2a + (1− α)H2b (4.4)

3. The probabilistic threshold measure of robustness is the probability of
the output being higher than a certain threshold, y0:

H3 = p (h ({z} , {x}) ≥ y0) (4.5)

This kind of problem can be transformed into one using expectancy
measures by creating a function, h3, in the form of Equation (4.6),
such that H3 can be expressed in the form of Equation (4.7):

h3({z} , {x}) =

1 if h({z} , {x}) ≥ y0

0 if h({z} , {x}) < y0

(4.6)

H3 =
∫ x̂N

x̌N

· · ·
∫ x̂1

x̌1

h3 ({z} , {x}) f ({x}) dx1 · · · dxN (4.7)

If the robustness of a system is known to be entirely dependent on cer-
tain design parameters, robust optimisation is straightforward because the
robustness optimisation problem is then equivalent to a normal optimisa-
tion problem. For example, the robustness of the performance of an MEMS
component investigated in Reference [45] can be controlled by the spacing
of natural frequencies. Otherwise, either a deterministic or a randomised
approach can be adopted to tackle a robust optimisation problem:

• In the deterministic approach, the robustness function is optimised
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using existing optimisation techniques. A deterministic approach is
viable if the robustness function can be expressed analytically. The
robustness function can be constructed either by using sensitivity in-
formation, if the goal function is differentiable, or by using more ad-
vanced methods (e.g. the spectral stochastic finite element method
[42]).

• The randomised approach refers to direct search methods, which in-
clude Monte Carlo simulation, importance sampling and evolutionary
algorithms. In direct search methods, a set of samples is provided
to the original system function to simulate the input variability, and
robustness is evaluated by analysing the output. In some cases, an
approximate robustness function can be created by interpolating the
robustness at certain points in the design space by using either a sur-
rogate model [134] or the response surface methodology [24].

4.4 Casting the blade mistuning problem as a ro-

bust design problem

Following the discussion in Sections 4.1 and 4.3, the blade mistuning prob-
lem can be described as an acute robustness problem, because slightly mis-
tuned bladed discs can generate extremely high amplification factors for
their vibration response levels. The robust design concept can be applied
to the bladed disc design process to reduce the likelihood of encountering
high responses. The dependence of the amplification factor distribution on
design parameters and mistuning distribution can be investigated according
to parameter design and tolerance design concepts, respectively.

4.4.1 Input parameters to the amplification factor function

The system to be investigated in the blade mistuning problem is the ampli-
fication factor function (Equation (3.2)):

A = a ({z} , {x} , {f})

The variables {z}, {x} and {f} represent design parameters, mistuning
pattern and the excitation pattern respectively. While the amplification
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factor, A, has been extensively discussed in Chapter 3, the input parameters
to the amplification factor function are introduced below.

Design parameters. From a designer’s point of view, the design param-
eters of a bladed disc design involve dimensions (and tolerances) of
parts, the material properties of those parts and the properties of
joints. For the sake of generality, the dimensions of a bladed disc de-
sign are often transformed into dimensionless design parameters in the
blade mistuning problem, such that the findings on one bladed disc de-
sign can be used to predict the forced vibration response behaviours
of other bladed discs under mistuning. Design parameters of bladed
discs are often defined according to their modal properties, which are
introduced in Appendix A. After 40 years of research, it is found that
the design of a bladed disc can be condensed into three parameters:
number of blades, interblade coupling, and the level of damping.

Interblade coupling describes the extent of influence of the motion of
one blade on other blades. Generally speaking, a bladed disc design
with a more flexible disc has a higher level of interblade coupling than
that with a more rigid disc: for example, there is virtually no interblade
coupling on a bladed disc with an infinitely heavy and rigid disc. This
term is examined in further detail in Section 6.3.

The level of damping is sometimes treated separately because it can
only be changed by adding dampers. However, it is considered as
a design parameter in this thesis because it can be calculated from
material properties. The variation of damping across blades (mainly
due to joints) is called damping mistuning and is considered as a kind
of mistuning pattern. The issue of damping mistuning is investigated
in Section 5.5.1.

Mistuning parameter, mistune and mistuning pattern. The mistun-
ing parameter of a blade is usually measured by fractional difference
of the cantilever blade natural frequency of a mistuned blade with a
tuned counterpart in previous research, including in the Fundamental
Mistuning Model [35]. In addition, mistune refers to the magnitude
(i.e. absolute value) of the mistuning parameter in this thesis. The
order of mistuning parameters present on a mistuned bladed disc is
called a mistuning pattern. The variation of damping across blades,
also known as damping mistuning, is usually treated separately.
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According to the definition above, any bladed disc with all blades
having the same blade natural frequency is called a tuned bladed disc.
However, the blades on a bladed disc can be physically different from
each other, even if the blade natural frequencies are equal on all blades.
This bladed disc is called an apparently-tuned bladed disc in this thesis.
The distribution of amplification factor of apparently-tuned bladed
discs is investigated in Section 5.5.3.

The forced excitation pattern. In the blade mistuning problem, the forced
vibration responses of blades under Engine order (EO) type of exci-
tation is considered. Bladed discs experience EO excitation because
the pressure distribution around the annulus is not uniform. The exci-
tation of a stationary pressure distribution around the circumference
on a forward-rotating bladed disc can be approximated by putting a
backward-travelling excitation pattern on a stationary bladed disc.

Besides the rotation speed, the frequency of such excitation depends
on the number of cycles of the pressure variation around the annulus.
For example, the existence of n upstream vanes would lead to an nth

EO (nEO) excitation, and the frequency of excitation is nΩr ·
(

2π
60

)
Hz, where Ωr is the rotation speed of the bladed disc in rev/min.
Resonance occurs if the nEO excitation frequency coincide a natural
frequency of a mode with n-nodal-diameter (nND) component. This
relationship can be expressed clearly using an interference diagram,
also known as a Campbell diagram, and an example is shown in Figure
4.6. In a Campbell diagram, the slanting and the (nearly) horizontal
lines represent the frequencies of forced excitation and the natural
frequencies of a bladed disc, respectively. The black dots indicate the
locations where resonance occurs in a tuned bladed disc.

While an nEO excitation excites only one mode in a family (i.e. the
mode with n nodal diameters) on a tuned bladed disc, all mode shapes
in a family in a mistuned bladed disc are excited because every mode
shape in mistuned bladed discs comprises multiple nodal diameter
components (see Appendix A).

4.4.2 Robustness functions to be investigated

Although Equation (3.2) shows that the amplification factor of a mistuned
bladed disc sample is a random variable, the relationship between the dis-
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Figure 4.6: A Campbell diagram, after Sever [117].

tribution of the amplification factor and that of mistuning parameters is
deterministic. This can be shown by calculating the probability of the am-
plification factor higher than some threshold amplification factor A0. The
probability is determined by replacing the function h3 ({z} , {x}) in Equation
(4.7)

H3 = p (a ({z} , {x} , {f}) ≥ A0)

=
∫ x̂N

x̌N

· · ·
∫ x̂1

x̌1

at ({z} , {x} , {f}) f ({x}) dx1 · · · dxN (4.8)

with at ({z} , {x} , {f}) defined in Equation (3.29), which is repeated here:

at({z} , {x} , {f}) =

1 if a ({z} , {x} , {f}) ≥ A0

0 if a ({z} , {x} , {f}) < A0

The function at is deterministic because a bladed disc with a particular
mistuning pattern corresponds to a single amplification factor. Given the
pdf f ({x}) is also a deterministic function, all terms on the right hand
side of Equation (4.8) are deterministic, so is H3, which is the inverted
cumulative distribution function of the amplification factor distribution. In
other words, the amplification factor pdf is defined as the output of the
robustness function (aR) shown in Equation (4.9):
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pdf (A) = aR({z} , pdf (x) , {f}) (4.9)

Because the shortest fatigue life possible on mistuned bladed discs is of
interest, the tail on the right hand side of the amplification factor pdf (with
an example shown in Figure 3.6) is observed. This requirement makes the
signal-to-noise ratio proposed by Taguchi unsuitable for the blade mistuning
problem. The robust optimisation method provides two ways to define input
variability and robustness function (i.e. output variability) in the blade
mistuning problem:

1. The blade mistuning problem is traditionally dealt with an approach
based on probabilistics, where the input variability and robustness are
defined as the standard deviation of the mistuning parameters of all
available blades and the 99.9th (or any other) percentile of the ampli-
fication factor pdf, respectively:

A99.9 = aR1 ({z} , σ (x) , {f}) (4.10)

Robustness of a bladed disc design is defined according to the proba-
bilistic threshold robustness measure in an approach based on proba-
bilistics.

2. The robust counterpart measure of robustness is adopted if the blade
mistuning problem is treated according to an approach based on inter-
val analysis. Interval analysis is a tool to find the bounds of a function
output, given the input parameters to the function are uncertain but
bounded. Interval analysis was applied by Sim et al in 2007 [120] to
find natural frequency and mode shape bounds under uncertain design
parameters.

According to an interval analysis-based approach, the distribution of
mistuning parameter is ignored. The input variability and robustness
are quantified by the maximum allowable mistune on any blade and
the maximum amplification factor, respectively. As a result, the ro-
bustness function can be written in the form of Equation (4.11):

Â = aR2 ({z} ,max (|x|) , {f}) (4.11)

It is discussed in Chapter 3 that the adjusted amplification factor is
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bounded from above by the Whitehead Factor even if the mistun-
ing parameters of blades are practically unbounded. Therefore, the
maximum amplification factor in Equation (4.11) can be treated as a
function of design parameters and the excitation pattern only. Never-
theless, the maximum allowable mistune is kept as an input parame-
ter in Equation (4.11) for two purposes: (i) it prevents non-physical
mistuning parameters (e.g. negative blade-alone natural frequencies)
being considered, and (ii) it allows the maximum amplification factor
under small mistuning to be investigated, as in Section 6.4.

The relationship between input variability and the robustness function
according to approaches based on probabilistics and interval analysis are
shown in Figures 4.7 (a) and (b), respectively. In previous research in the
blade mistuning problem, the curve between input variability and robustness
function has a distinct maximum [127]: this is true only if the robustness
function is written based on probabilistics. The curve has a non-negative
slope if the blade mistuning problem is viewed as an interval analysis prob-
lem.

Generally speaking, the interval analysis-based approach to the blade
mistuning problem suits practical requirements better, because it provides
the worst case scenario under given tolerances, regardless of the distribution
of the scatter. However, the robustness of a bladed disc design is more appro-
priately described using the probabilistics-based approach in some cases. For
example, the high amplification factors are less likely to occur (i.e. bladed
discs become more robust) by imposing intentional mistuning, even if the
worst mistuning pattern remains a possible mistuning pattern.

4.4.3 Outline and approach of investigation

The blade mistuning problem is dealt with as a robust design problem in
Chapters 5, 6 and 7. In Chapter 5, the dependence of the robustness on
bladed disc design parameters is investigated. In Chapter 6, the effect of
controlling the mistuning parameters on robustness is discussed. The issues
related to predicting (thus controlling) the forced vibration responses are
discussed in Chapter 7.

The terms “input variability” and “robustness” are not used in the dis-
cussions in Chapters 5, 6 and 7, because there are two different definitions
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Figure 4.7: Relationship between input variability and output variability in
the blade mistuning problem, according to approaches based on (a) proba-
bilistics and (b) interval analysis.

for both “input variability” and “robustness”. Instead, typical terminology
in the blade mistuning problem is used: input variability is referred to as
“mistuning”, and robustness is referred to as either “maximum amplification
factor” or “99.9th percentile amplification factor”.

Although the contents in Chapters 5 and 6 are similar to parameter
design and tolerance design of the Taguchi method, respectively, the com-
putational methods in the Taguchi method are not adopted in this thesis
because the blade mistuning problem is too complex to be handled using
Design of Experiment scheme and the tolerance design procedures. Besides
this, while the Whitehead Factor was derived by theoretical means, it seems
unlikely to evaluate the robustness function for every combination of design
parameters and excitation pattern using the same method.

The robust optimisation method provides two methods of evaluating the
robustness function (Section 4.3.2), which are the deterministic and ran-
domised approaches. Kaneko et al [55] and Sinha [121] used the determinis-
tic approach to find the distribution parameters (mean, standard deviation
and the pdf approximate) of the peak responses of all blades in mistuned
bladed discs.

However, it is impractical to evaluate the robustness function by the de-
terministic method. According to the probabilistic view of the robustness
function (Equation (4.10)), the 99.9th percentile adjusted amplification fac-
tor is found by an implicit function (Equation (4.7)). Also, from structural
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dynamics principles (Equation (3.1)), the maximum amplification factor is
the highest vibration response level across all blades on a mistuned bladed
disc, under any excitation frequency in a given resonance region, and in any
possible mistuning pattern (Equation (4.12)).

Â = max
{x}

(A) = max
{x}

max
Ω

max
i=1,2,··· ,N

∣∣ui ({z} , {x} , {f} ,Ω)
∣∣ (4.12)

Analytical methods are not available to deal with the three extreme
value searches involved in finding the maximum amplification factor. As a
result, direct search approach, including Direct Monte Carlo simulations and
optimisation, is adopted in the analysis to evaluate the robustness functions
in the blade mistuning problem.

4.5 Summary

The blade mistuning problem is treated as a robustness problem in this
chapter. The robust design approach has been introduced and the two robust
design concept, namely the Taguchi method and the robust optimisation
method, are discussed. The functions determining the robustness of bladed
disc designs and the input parameters to these functions are discussed in
detail. Depending on the given mistuning distribution, the blade mistuning
problem can be dealt with using approaches either based on probabilistics
or interval analysis.
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Chapter 5

Improving robustness of
bladed discs by parameter
design

Blade vibration is an important issue in gas turbine design. Blades suffer from

high cycle fatigue (HCF) failure, and the fatigue life of a blade can be halved if

the alternating stress experienced on a blade is increased by as little as 4%. By

reducing the variation in blade vibration responses related to blade mistuning,

the fatigue lives of blades can be extended and the variation of the fatigue lives

of blades on the same bladed disc can be reduced.

The potential for reducing the maximum adjusted amplification factor solely

by changing the design parameters, but not reducing the maximum allowable

mistune, is investigated using three representative models. A 6-DOF cyclic

lumped parameter model is analysed to create a “robustness map”, which pro-

vides an overview of the dependence of the maximum amplification factor on

the levels of interblade coupling and damping. Simulations are carried out on

four 64-sector, 2-DOF-per-sector models and six 24-sector integral bladed discs

(blisks) to validate the results observed in the 6-DOF models. It is found that

the maximum amplification factor can be reduced by changing design parame-

ters, for example, by adding damping to a design with a low level of interblade

coupling.

By investigating the distribution of amplification factor in (i) damping mis-

tuned bladed discs, (ii) mistuned bladed discs excited in the veering region and

(iii) apparently-tuned bladed discs, the adjusted amplification factor distri-

bution was found to be robust under damping mistuning. The adjusted ampli-
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fication factor distribution under excitation in the veering region is distinctive

because it is bimodal. Also, the scatter of the adjusted amplification factor in

apparently tuned bladed discs is much narrower than that in typically mistuned

bladed discs.

5.1 Introduction

After the blade mistuning problem is modelled as a robust design problem,
potential ways to improve robustness of bladed discs under mistuning are in-
vestigated. To avoid the additional costs related to tightening the tolerances
of blade dimensions and material properties, a bladed disc design having a
low maximum amplification factor under all realistic mistuning patterns is
preferred. In the light of the Whitehead Factor, the maximum amplification
factor can be cut by reducing the number of blades, N , but this quantity
is seldom changed solely due to structural dynamic issues. Previous re-
search [89, 78] reported that only some bladed disc designs are related to
maximum amplification factors close to the Whitehead Factor, which indi-
cates the possibility of reducing the maximum amplification factor without
changing N .

To begin with, the relationship between high cycle fatigue failure and the
extremely high responses due to blade mistuning is explained in Section 5.2.
The dependence of the maximum amplification factor on design parameters
besides N is investigated in Section 5.3 using three representative models,
and the findings are used to explain the variation in the maximum (or the
99th percentile) amplification factor reported in previous research in Section
5.4.

Three less-often-covered topics in previous research are also investigated.
The distribution of amplification factor in (i) damping mistuned bladed
discs, (ii) mistuned bladed discs excited in the veering region and (iii)
apparently-tuned bladed discs are each discussed in Section 5.5.

5.2 Significance of the blade mistuning problem in

high cycle fatigue

Blade vibration is a major problem encountered by designers since the early
days of gas turbine development [26]. Some blades fail earlier than their
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predicted lives due to vibration-induced high cycle fatigue (HCF). Fatigue,
together with creep, are the two most important issues related to the mate-
rial properties of turbine blades [100].

The dynamic stresses of blades due to forced excitation, including that
due to the pressure variation behind upstream vanes, are confined within
the elastic range of blade materials to avoid low cycle fatigue (i.e. fatigue
lives of 105 cycles or less) failure. However, bladed discs suffer from high
cycle fatigue failure because the alternating stresses leading to high cycle
fatigue failure are below the elastic limit of materials. High cycle fatigue
failure incur maintenance costs of US$400 million per year [41], or 30% of
all jet engine maintenance costs [131]. There are two goals in bladed disc
design:

1. extend the fatigue life of blades

2. prevent some blades failing much earlier than others

The fatigue life (i.e. number of loading cycles before failure) of a blade
depends on, inter alia, the alternating and the mean stresses experienced
on that blade. Wright et al [144] have carried out experiments to determine
the relationship between alternating stress ∆σ and the fatigue life Lf in a
particular superalloy. Their results on the relationship between fatigue life
and alternating stress under zero mean stress are shown in Figure 5.1 in
log-log scale. According to Figure 5.1, there is a roughly-linear relationship
between logLf and log (∆σ). By neglecting the single point obtained under
a vibration of 0.6 Hz, the relationship between Lf and ∆σ can be written
down as

Lf = α (∆σ)16.5 (5.1)

which means the fatigue life is halved if the alternating stress is increased by
4%. Trivial ways to prolong the fatigue lives of blades are (i) by reducing the
alternating stress due to pressure variation, (ii) by designing stiffer blades
and (iii) by adding damping elements to bladed discs. However, all three
methods involve major design changes, and these methods only tackle the
first of the two goals of bladed disc design.

The extremely high responses due to blade mistuning are a major con-
tributor to unexpectedly early high cycle fatigue failure of blades. Some
blades in mistuned bladed discs experience twice (or more) the alternating
stresses than a blade on a tuned bladed disc, while other blades on the same
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Figure 5.1: Fatigue life of a coated superalloy, after Wright et al [144].

mistuned bladed disc vibrate less heavily than a blade on a tuned bladed
disc. This leads to one or both of two issues:

1. some blades on a mistuned bladed disc experience much shorter (e.g.
1/10000) fatigue lives than that of a blade on a tuned bladed disc;
and/or

2. many blades on a mistuned bladed disc enjoy very long fatigue lives if
a blade design guarantees a certain minimum fatigue life of the blade
with the highest response.

It can be seen that the research on finding more robust bladed disc
designs is useful in two ways. If a bladed disc design has a lower maximum
amplification factor, (i) the fatigue life of a bladed disc due to high cycle
fatigue can be extended; and (ii) over-conservative blade designs can be
avoided, such that blade designs can be lighter and suit aerodynamic needs
better.

5.3 Dependence of robustness on bladed disc de-

sign parameters

The derivation of the Whitehead Factor has shown that the upper bound
of the maximum amplification factor depends on the number of blades in a
bladed disc design. However, amplification factors near to the Whitehead
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Factor are seldom encountered in bladed discs. The two examples analysed
in Reference [89], listed in Table 5.1, show that the maximum amplification
factors of some bladed disc designs are significantly lower than the White-
head Factor while the others are close to it. If it is possible to reduce the
maximum amplification factor solely by changing the design parameters,
tight tolerances of blade dimensions and material properties, which are very
expensive to implement, can be avoided. The dependence of the maximum
amplification factor on interblade coupling and damping is investigated in
this section.

Location of Number of The Whitehead The max. amp.
the bladed disc blades N Factor ÂWH factor Â

Fan 26 3.05 1.9
High pressure turbine 92 5.30 5.02

(Maximum allowable mistune in both cases = 5%)

Table 5.1: Whitehead Factors and maximum amplification factors of bladed
disc designs investigated by Petrov and Ewins [89].

5.3.1 Models to be used in the analyses

A wide range of bladed disc designs is present in aero engines. For exam-
ple, the number of blades vary between 26 in fans and up to about 100 in
high pressure turbines. The properties of mistuned bladed discs are investi-
gated in Chapters 5, 6 and 7 using three representative bladed disc models
described below. Structural damping is present in all three models in the
analysis.

1. A simple, cyclic lumped parameter model with 6 degrees of freedom
(DOFs), shown in Figure 5.2, is analysed to produce a “robustness
map”. A “robustness map” is a contour plot showing the dependence
of the maximum amplification factor on the level of interblade coupling
and the level of damping loss factor. This map is similar to those
presented by Yoo et al [152], who were the first researchers using a
contour plot to show the dependence of the amplification factor on
the coupling stiffness and the level of damping in a pair of coupled
oscillators. Although the results from a 6-DOF model cannot draw
practical conclusions because the model is too simple, the results are
useful in generalising the findings in more complex bladed disc models.
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The level of interblade coupling in the model is controlled by varying
the interblade stiffness element K. The responses of the model are
measured by the displacement of sector masses u1 to u6.
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Figure 5.2: Layout of a 6-DOF cyclic lumped parameter model.

2. A 64-sector, 2-DOF-per-sector lumped parameter model shown in Fig-
ure 5.3 is used to extend the capability of the results found in the
6-DOF model. The vibration responses are measured by the deforma-
tion of the blade stiffness elements ∆ui. A 2-DOF-per-sector model
was first used to model mistuned bladed discs by Dye and Henry in
1969 [30], and the parameters used in this thesis are improvised on the
36-bladed disc models used by Afolabi [2] and Yiu [151].

Because lumped parameter models are flexible in assigning parame-
ters, the properties of (i) bladed discs with damping mistuning, (ii)
mistuned bladed discs under excitation in the veering region and (iii)
apparently-tuned bladed discs are carried out on this model in Sections
5.5.1, 5.5.2 and 5.5.3 respectively.
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Figure 5.3: Layout of a 64-sector lumped parameter model.

3. The finite element model of a 24-sector blisk is used to demonstrate the
findings on the first two models on a realistic bladed disc. The finite
element model is based on a blisk test piece prepared by Sever [117].
The outline of the test piece is shown in Figure 5.4, and readers are
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referred to Sever [117] for the detailed geometry. The finite element
model is reduced using the Fundamental Mistuning Model (FMM)
algorithm, which is described in Appendix F, such that only 24 pa-
rameters are required to define a mistuning pattern. The responses
are measured by the displacements of a selected point on every blade.

Ø430

R107
24 Sectors
THK5 Steel Plate
(All dimensions in mm)

Figure 5.4: Layout of a 24-sector blisk.

The level of interblade coupling in the 24-sector blisk model is adjusted
by adding a stiffening ring to the disc part. Six variants of the test
piece are investigated in this chapter, with the cross sections of the
disc parts shown in Figure 5.5. Within the six blisks, Blisk F is not
analysed in Chapter 6 because Blisks E and F behave similarly in
tolerance design.

The natural frequencies of the first mode family of the six blisks are
plotted in Figure 5.6. Although the disc-to-blade mass ratios in Blisks
B, C and D are the same, the levels of interblade coupling are different
due to the disc geometries. According to the natural frequency dis-
tribution, the level of interblade coupling is decreasing in the order of
Blisks A, B, D, E and F, and the level of interblade coupling in Blisk
C is similar to that of Blisk B.
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Ring thickness = 1.72
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Ring thickness = 10
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Ring thickness = 10

R92.4
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Ring thickness = 20

(Not to scale, all dimensions in millimetres)

Figure 5.5: Cross sections of the disc part of 24-sector blisk models.

5.3.2 Maximum adjusted amplification factor of a 6-DOF

model

The maximum adjusted amplification factors of a 6-DOF cyclic lumped pa-
rameter model under 1EO and 3EO excitations are sought by controlling
the interblade coupling stiffness, K, and the damping loss factor, η. Con-
tour plots are created by interpolating the maximum adjusted amplification
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Figure 5.6: Natural frequencies of the first mode family in six blisk models.

factors found under different combinations of K and η. The contour plots
related to the two different excitation patterns are expected to be different
because the peak response level under an 1EO excitation is normally con-
tributed to by the two distorted 1ND modes, while that of a 3EO excitation
is contributed mainly by a single distorted 3ND mode. The nominal values
of k and m in the model are equal to 1 Nm−1 and 1 kg respectively. The
range of interblade coupling stiffnesses and damping loss factors to be tested
are listed in Table 5.2.

Quantity Symbol Range

Interblade coupling stiffness K 0.0002 Nm−1 - 0.02 Nm−1

Damping loss factor η 0.0001 - 0.003

Table 5.2: Ranges of parameters applied to the 6-DOF model.

The systems are mistuned by perturbing the sector masses and the mis-
tuning parameter of a sector is defined by the difference between the natural
frequency of the mistuned sector alone and that of the tuned counterpart.
The maximum allowable mistune is set at 20%, which is much higher than
the maximum mistune of the worst mistuning pattern.

The contour plots of the maximum adjusted amplification factors under
1EO and 3EO excitations (Figures 5.7 and 5.8) are found to have similar
shapes although the exact values are different. The maximum adjusted
amplification factors under both excitation patterns are lower in the bottom
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right hand corners of Figures 5.7 and 5.8, which refer to designs with high
levels of damping and low levels of interblade coupling. The steep slope of
the robustness function in that region shows that the maximum adjusted
amplification factor can be controlled either

1. by decreasing the level of interblade coupling in a bladed disc design
with a high level of damping; or

2. by increasing damping in a bladed disc design with a low level of
interblade coupling.

These two possibilities are going to be examined in other bladed disc
models. In the analysis in the rest of this thesis, the contour plot created
under 1EO excitation (i.e. Figure 5.7) is called the “robustness map” be-
cause double nND modes exist for almost all nEO excitations in practice.
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Figure 5.7: Dependence of the maximum adjusted amplification factor on
interblade coupling and damping under 1EO excitation.

5.3.3 Maximum adjusted amplification factors of four 64-

sector models

The information provided by the robustness map in Section 5.3.2 is validated
by a robustness investigation of four 64-sector, 2-DOF-per sector lumped
parameter models.

The design parameters of the basic 64-sector model (denoted Model 64A
in this thesis) are improvised on the 36-sector model proposed by Afolabi [2],
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Figure 5.8: Dependence of the maximum adjusted amplification factor on
interblade coupling and damping under 3EO excitation.

which is the 2-DOF-per-sector lumped parameter approximation of a bladed
disc specimen. Assuming the same disc is used, four properties between
Model 64A and the model in Reference [2] are set to be equal, namely (i)
the 6ND disc-alone natural frequency, (ii) the total disc mass, (iii) the disc-
to-blade mass ratio and (iv) the blade-alone natural frequency of 182 Hz.

Three additional 64-sector models are created by changing the design
parameters of Model 64A to investigate the dependence of robustness on
design parameters. The two types of design changes considered in this thesis,
proposed by Yiu [151], are called the mass ratio and frequency ratio effects.

• The mass ratio effect simulates the effect of making the disc using
different materials. The disc-to-blade mass ratio of the bladed disc
is adjusted without changing the disc-alone natural frequencies. Two
lumped parameter models, having the disc-to-blade mass ratios 5 and
10 times that of the Model 64A, are created according to the mass
ratio effect and are called Models 64B and 64C, respectively. By in-
creasing the sector mass in the order of Models 64A, 64B and 64C, the
interblade coupling decreases in terms of the difference between the
bladed disc natural frequencies of the 6ND mode in the first family
and the blade alone natural frequency.

• The frequency ratio effect simulates the change of the geometry of the
disc in a bladed disc design without changing the disc-to-blade mass
ratio. According to this effect, Model 64D is created by multiplying
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the intersector stiffness of Model 64A by a factor of 10. Similar to that
in the mass ratio effect, the level interblade coupling is decreased by
stiffening the intersector springs.

The design parameters of the four models employed in this investigation
and the 36-sector lumped parameter model used in Reference [2] are listed in
Table 5.3. The natural frequencies of the models are normalised against the
blade alone natural frequency of 182 Hz and plotted in Figure 5.9, and the
natural frequencies in the vicinity of the blade alone natural frequency are
plotted in Figure 5.10. The damping loss factor in the models vary between
0.001 and 0.004.

Model N K (Nm−1) M (kg) KG (Nm−1) k (Nm−1) m (kg)

64A 64 1673834.7 0.10125
64B 64 8369638 0.50625

36.779 36778.6 0.028125
64C 64 16739500 1.0125
64D 64 16738347 0.10125

Ref. [2] 36 941532.0 0.18 65.384 65384.16 0.05

(N = the number of sectors, other variables are defined in Figure 5.3)

Table 5.3: Design parameters of 64-sector models analysed, and those of the
36-sector model after Afolabi [2].
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Figure 5.9: Normalised natural frequencies of 64-sector models.

Since the blade designs in the 4 models are identical, the maximum
adjusted amplification factor is used to measure robustness. The differences
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Figure 5.10: Magnified plot of Figure 5.9.

between the maximum amplification factors and the maximum adjusted
amplification factors are small in the four models (≈ 2% in Model 64A
and ≈ 0.5% in the other three models). Mistuning is applied to the blades
by perturbing the blade masses.

The dependence of the maximum adjusted amplification factor on damp-
ing in the four 64-sector models are plotted in Figure 5.11. Similar to the
results found in the 6-DOF model, the maximum adjusted amplification
factor associated with a bladed disc design is significantly lower than the
Whitehead Factor if the level of interblade coupling is low and the level of
damping is high.

However, the two proposals to reduce the maximum amplification fac-
tor of bladed discs suggested in Section 5.3.2 may have limited application
in practice. Firstly, major design changes may be needed to reduce the
maximum amplification factor significantly. For example, the maximum ad-
justed amplification factor reduction of 26% (3.01 in Model 64D against 4.06
in Model 64A, see Figure 5.11) is achieved by multiplying the disc stiffness
by a factor of 10.

Also, while adding damping reduces the maximum response level, the
problem of variation of blade fatigue life remains, which means some blades
will still fail much earlier than others, even if the vibration response levels
of all blades are lowered. This is because the maximum vibration response
level possible for a mistuned bladed disc is the product of the peak vibration
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Figure 5.11: Dependence of the adjusted amplification factor on damping
loss factor in 64-sector models.

response level of the cantilever blade and the maximum adjusted amplifica-
tion factor. An example is shown in Figure 5.12: by increasing the damping
loss factor in a bladed disc from 0.001 to 0.004, the reduction in the max-
imum adjusted amplification factor (19% in Model 64D) is not significant
compared with that in the tuned peak vibration response (75%).
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Figure 5.12: Dependence of maximum vibration responses on damping loss
factor in tuned and mistuned models.

5.3.4 Maximum amplification factors of six 24-sector blisks

After the analyses carried out on two lumped parameter models in Sections
5.3.2 and 5.3.3, the maximum amplification factors of the six 24-sector blisks
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under 6EO excitation are sought. The maximum amplification factors are
compared because the responses measured in the FMM reduced order model
are not directly proportional to the peak stress encountered in blades. Al-
though the damping loss factor of the bladed disc test piece is determined by
properties of the blisk material, the factor is varied between 0.001 and 0.005
in the models to simulate the effect of additional damping devices. Because
the blade responses would increase if all blades have negative frequency mis-
tuning, the average of mistuning parameters in a worst mistuning pattern
is set at zero such that the amplification factor shows the genuine variation
of blade responses. The maximum allowable mistune is 20%.

The dependence of the maximum amplification factor on damping and
bladed disc design is shown in Figure 5.13. The biggest difference between
the results on blisks and those on 64-sector lumped parameter models is that
a heavier bladed disc does not always lead to a lower maximum amplification
factor on blisks, especially under a small damping loss factor. Such differ-
ence is due to differences between lumped parameter and real blisks models,
and the breakdown of the approximations related to the FMM algorithm in
flexible bladed discs and bladed discs with large mistuning.

Otherwise, the findings on 24-sector blisks are similar to those on 64-
sector lumped parameter models. The maximum amplification factors of
blisks with more flexible discs are nearly independent of the damping loss
factor. The maximum amplification factor in Blisk D is slightly lower than
those in Blisks B and C under a high level of damping because the interblade
coupling in Blisk D is lower. The maximum amplification factor in Blisk A
is lower than other designs under low damping loss factor as well.

Although the maximum amplification factor in stiff blisks can be reduced
by adding damping, the reduction of the maximum amplification factor in
Blisk F (≈ 13%) is small compared with that of the reduction in the tuned
response (≈ 80%) if the damping loss factor increases from 0.001 to 0.005.
The maximum amplification factor also decreases slightly with increasing
disc stiffness under a relatively high damping loss factor, but it is not always
possible to attach a 20mm-thick stiffening ring to a 5mm-thick blisk to lower
the maximum amplification factor by 10%.
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Figure 5.13: Dependence of the maximum amplification factor on damping
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5.4 Robustness of bladed disc designs in previous

research

There are four findings made in the investigation in Sections 5.3, and these
are summarised below:

1. The maximum amplification factor of a bladed disc design depends on
design parameters other than the number of blades.

2. The maximum amplification factor of a bladed disc design is signifi-
cantly lower than the Whitehead Factor if the level of damping is high
and the level of interblade coupling is low.

3. The maximum vibration response level in a mistuned bladed disc is
reduced by adding damping. However the reduction in the maximum
amplification factor is insignificant (e.g. 15% in a 64-sector model)
compared with the reduction in the tuned peak vibration response
level (e.g. 75% in a 64-sector model).

4. The maximum amplification factor of a bladed disc design can be
reduced by incorporating a stiffer, or heavier, disc in some situations.

It is timely to check if the four findings above explain the variation of
the maximum amplification factors encountered in previous research. Four
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bladed discs from Myhre [78] and Petrov and Ewins [89] are examined be-
cause the design parameters of the specimen bladed discs and the maximum
(or the 99th percentile) amplification factors are explicitly provided in these
references. The results reported in these two studies are summarised below.

Myhre investigated the amplification factor distributions of two 30-sector
blisk models, called NS and PS, under a 3EO excitation and a modal
damping ratio of 1%. Blisk PS is shown in Figure 5.14, and Blisk NS is
created from Blisk PS by removing shrouds. The difference of natural
frequency distributions in Blisks PS and NS, which are shown in Fig-
ures 5.15 and 5.16, respectively, indicate different levels of interblade
coupling. Myhre has found that the 99th percentile amplification fac-
tor of Blisks PS and NS under a rotation speed of 1500 rev/min are
2.3 and 1.3, respectively, against the Whitehead Factor of 3.24.

Shroud
(absent in Blisk NS)

Figure 5.14: Blisk PS, after Myhre [78].

Petrov and Ewins sought the maximum amplification factors on a 26-
bladed fan disc and a 92-bladed high pressure turbine disc. The bladed
discs are illustrated in Figure 5.17, and selected normalised natural fre-
quencies are plotted in Figure 5.18. Both bladed discs are assumed to
have a damping loss factor of 0.003 and under a 6EO excitation. As
shown in Table 5.1, the turbine disc experiences a maximum ampli-
fication factor close to the Whitehead Factor while the fan disc does
not.
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Figure 5.15: Natural frequencies of the first four mode families of Blisk PS,
both stationary and rotating, after Myhre [78].
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Figure 5.16: Natural frequencies of the first four mode families of Blisk NS,
both stationary and rotating, after Myhre [78].

The results in previous research are compared with the robustness anal-
ysis carried out in Section 5.3 by locating the bladed disc specimens on the
robustness map (Figure 5.7), according to the levels of interblade coupling
and damping loss factor of the four bladed disc designs. Although the in-
terblade coupling ratio is defined in Chapter 6, for the moment the level of
interblade coupling of a bladed disc design under nEO excitation is assumed
to be the smallest fractional difference between the squares of natural fre-
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26-bladed fan disc 92-bladed high pressure turbine
disc

Figure 5.17: Models analysed by Petrov and Ewins [89].
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Figure 5.18: Selected normalised natural frequencies of models analysed by
Petrov and Ewins [89].

quencies of nND mode and the neighbouring modes. The level of interblade
coupling in a 6-DOF model under 1EO excitation is equal to the interblade
stiffness K, and those of the bladed disc designs adopted by Myhre and
Petrov and Ewins are listed in Table 5.4.

Figure 5.19 shows that the robustness map can explain the robustness
behaviour of a wide range of bladed disc designs. The maximum (or the 99th

percentile) amplification factors in Blisk NS and the 26-bladed fan bladed
disc are relatively low because the level of interblade coupling in these two
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Model Excitation Level of ÂWH Reported
Order interblade coupling results

Blisk PS 3 0.0576 3.24 A99 = 2.3
Blisk NS 3 0.001 3.24 A99 = 1.3

Fan 6 0.0018 3.05 Â = 1.9
H. Pres. Turbine 6 0.019 5.30 Â = 5.02

Table 5.4: Levels of interblade coupling and maximum (or 99th percentile)
amplification factors of bladed disc designs, after References [78] and [89].

models are lower than those in Blisk PS and the 92-bladed turbine bladed
disc.
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search in the robustness map.
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5.5 Amplification factor distribution in special sit-

uations

5.5.1 Amplification factor distribution in bladed discs with

damping mistuning

Although structural damping alone is applied to simulations in Section 5.3,
damping in bladed discs mainly comes from friction damping and aerody-
namic damping, and both of these can differ across the blades. The variation
of damping across blades on a bladed disc is called damping mistuning. For
example, damping mistuning arises if the properties of friction joints change
due to wear, and the extents of wear at joints on a bladed disc are not
uniform. The variation of vibration response levels in damping-mistuned
bladed discs is investigated below.

The amplification factor has to be defined carefully in dealing with damp-
ing mistuned bladed discs. The traditional amplification factor would in-
crease if the levels of damping at all friction joints on a tuned bladed disc
are reduced by the same amount because the forced vibration responses of
all blades increase, but such an increment does not represent the variation
in the peak responses of blades. Therefore, the adjusted amplification factor
(Section 3.1) is used to measure the blade responses in damping-mistuned
bladed discs, where the vibration response of a mistuned blade is compared
with the peak cantilever vibration response of that mistuned blade, under
the damping ratio of that blade.

The distribution of the adjusted amplification factor is studied by run-
ning three 5000-sample DMC simulations on Model 64B under 6EO exci-
tation. The mistuning parameters of blades are normally distributed with
the standard deviation of 1% in all three simulations. The tails of the nor-
mal distribution are culled such that the maximum allowable mistune is
3.3%. The damping mistuning of maxima 0%, 20% and 40%, uniformly dis-
tributed, are applied to blades, and the adjusted amplification factor pdfs
are plotted in Figure 5.20.

The adjusted amplification factor pdf from the simulation with maximum
20% damping mistuning has a very similar shape to that with no damping
mistuning, despite the upper bound of the adjusted amplification factor be-
ing 5.34 - or 20% higher than the Whitehead Factor - according to Equation
(3.19). The similarity between the three curves in Figure 5.20 shows that the
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Figure 5.20: Adjusted amplification factor pdfs under various levels of damp-
ing mistuning.

vibration responses of bladed discs are more robust to damping mistuning
than to blade frequency mistuning.

5.5.2 Amplification factor distribution with excitation of modes

in veering regions

Veering regions are the frequency regions where the modes from two differ-
ent mode families with the same number of nodal diameters have natural
frequencies close to each other. The sector mode shape of a mode in a veer-
ing region has to be described using more than one blade-alone mode shape,
or the combination of a blade-alone mode and a disc mode. The modal
properties of bladed discs are presented in Appendix A.

The adjusted amplification factor distributions of two 64-sector, 2-DOF-
per-sector lumped parameter models under 4EO excitation are investigated.
Model 64E is created by reducing the intersector stiffness of Model 64C such
that the disc-alone natural frequency of the 4ND mode is equal to 182 Hz,
the blade-alone natural frequency. As a result, the veering region of Model
64E is located at the 4ND mode. The parameters of Models 64C and 64E
are listed in Table 5.5 with the normalised natural frequencies in the vicinity
of the blade-alone natural frequency plotted in Figure 5.21.

The distinction between the amplification factor and adjusted amplifica-
tion factor is important in analyses involving responses contributed by mode
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Model K (Nm−1) M (kg) KG (Nm−1) k (Nm−1) m (kg)

64C 16739500
1.0125 36.779 36778.6 0.028125

64E 8696691

(Variables are defined in Figure 5.3, η = 0.002.)

Table 5.5: Design parameters of Models 64C and 64E.
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Figure 5.21: Selected normalised natural frequencies of Models 64C and
64E.

shapes in the veering regions. This is because the tuned vibration responses
in veering regions are much lower than the responses elsewhere: Figure 5.22
shows that the tuned vibration response of Model 64E under 4EO excitation
is only 54% that of the peak cantilever blade vibration response.

A DMC simulation of 10,000 mistuned bladed disc samples was carried
out on Model 64E, and an optimisation analysis is carried out afterwards
to find the maximum adjusted amplification factor. The blade masses were
perturbed such that the mistuning parameters of the blades are normally
distributed with σ = 0.04. The maximum allowable mistune is 0.133. The
maximum adjusted amplification factor of Model 64E under 4EO excitation
is found to be 3.48, which corresponds to the maximum amplification factor
of 6.42. The maximum adjusted amplification factor is below the Whitehead
Factor of 4.5 while the maximum amplification factor is not. This finding
explains why previous research showed as many as 7% of all bladed discs
investigated have amplification factors higher than the Whitehead Factor in
this situation [58]: amplification factors appear to be very high, because the
tuned peak response level under excitation of modes in the veering region
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Figure 5.22: Tuned vibration response levels of Models 64C and 64E under
various EO excitations.

is lower than that outside the region. By selecting an excitation order-
independent response level as a basis, the current simulation shows that the
Whitehead Factor can sometimes represent the upper bound of the adjusted
amplification factor if the modes in the veering region are excited.
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Figure 5.23: Adjusted amplification factor pdfs of Models 64C and 64E.

The adjusted amplification factor pdf from Model 64E are compared
with those from two similar 2000-sample DMC simulations on Model 64C
in Figure 5.23. One feature of the adjusted amplification factor distribution
with excitation of modes in veering regions is its bimodality, and this is
investigated by considering the resonance frequency, which is the excitation
frequency where the highest response is found. From Figure 5.24, the reso-
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nance frequencies of samples form two distinct groups (denoted V1 and V2)
scatter around the two tuned 4ND natural frequencies of Model 64E (167
Hz and 197 Hz). By plotting the amplification factor pdf of each group in
Figure 5.25, each peak in the amplification factor pdf of all samples is found
to be contributed by one group of samples.

Figure 5.25 also shows another feature of the amplification factor distri-
bution in this situation. The amplification factor pdfs of both Groups V1
and V2 are skewed to the right hand side. This is contrary to an amplifi-
cation factor pdf without excitation of modes in the veering region. Two
examples from Model 64C are plotted in Figure 5.23. It means high adjusted
amplification factors are more likely to be observed in practice if modes in
the veering region are excited.
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Figure 5.24: Correlation between the adjusted amplification factor and the
resonance frequency.

5.5.3 Amplification factor distribution in apparently-tuned

bladed discs

Nikolic [80] pointed out that the mistuning parameter in terms of the blade
natural frequency is not a physical parameter by itself, but a consequence of
the deviation of either the blade stiffness or the blade mass, or both of them,
from their respective design values. An extreme example of illustrating
this argument is an apparently-tuned bladed disc. Apparently-tuned bladed
discs are bladed discs with mistuned blades, but the blade-alone natural
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Figure 5.25: Adjusted amplification factor pdfs of all and selected samples.

frequencies on all blades are equal. For example, Sever [117] created an
apparently-tuned bladed disc by removing masses at blade tips, in order to
reduce the scatter of blade natural frequencies of a mistuned blisk test piece.

A 2000-sample DMC simulation is carried out on Model 64B under 6EO
excitation, with blade stiffnesses and masses proportionally mistuned such
that the blade natural frequencies of all blades are kept at 182 Hz. Fig-
ure 5.26(a) shows the adjusted amplification factor pdf of apparently-tuned
bladed disc samples given the standard deviation and maximum fractional
blade mass (thus stiffness) perturbation are 0.04 and 0.133 respectively. The
scatter in amplification factor (the maximum in 2000 samples being 1.05) is
in the same order as that of the perturbation of the masses. This is much
narrower than scatter of the adjusted amplification factor if the blades are
mistuned in a normal fashion. The adjusted amplification factor pdf in Fig-
ure 5.26(b) is generated by mistuning 1000 bladed discs with the standard
deviation of blade-alone natural frequency being 0.001. It shows that the
commonly-used approach of quantifying mistuning by the blade-alone nat-
ural frequency is valid, but a separation of mass and stiffness mistuning
elements is preferred if accurate results are sought.

5.6 Summary

Fatigue lives of bladed discs based on a robust bladed disc design are gen-
erally longer because a reduction of the alternating stress by 4% can double
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Figure 5.26: Adjusted amplification factor pdfs of (a) apparently tuned
bladed discs and (b) mistuned bladed discs.

the fatigue live of blades. Also, the variation of fatigue lives across blades
on a single bladed disc can be reduced.

The dependence of robustness of a bladed disc design is investigated us-
ing three representative models. It is found that the maximum amplification
factor depends on design parameters other than the number of blades. For
example, it is found that the maximum amplification factor can be lowered
by increasing the level of damping in a bladed disc design, but major design
changes are usually involved. The findings in this chapter are used to ex-
plain the behaviour of the maximum (or the 99th percentile) amplification
factors reported in previous research.

The amplification factor distributions of three special cases are also inves-
tigated: firstly, it is found that the adjusted amplification factor distribution
is robust under damping mistuning; secondly, high adjusted amplification
factors are more likely to be observed in the situation where modes in the
veering region are excited, because the pdf is skewed to the right hand side,
and thirdly, the scatter of the adjusted amplification factor in apparently-
tuned bladed discs is much narrower than that in typically mistuned bladed
discs.
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Chapter 6

Improving robustness of
bladed discs by tolerance
design

It has been shown in the previous chapter that the robustness is not always

enhanced by small changes of bladed disc designs. In the present chapter, the

amplification factor of a mistuned bladed disc is managed by controlling the

mistuning pattern on a bladed disc either by (i) imposing a small maximum

allowable mistune according to the small mistuning approach or (ii) incor-

porating non-identical blades of specific patterns, known as the intentional

mistuning approach, which includes the deterministic large mistuning concept

investigated in previous research. The probabilistic large mistuning concept pro-

posed previously, which means specifying a large maximum allowable mistune,

is not discussed in this thesis.

Because the relationship between robustness and input variability in a bladed

disc design forms a continuous curve, the first-order maximum adjusted amplifi-

cation factor sensitivity in a single-DOF-per-sector system is derived to illustrate

the dependence of the robustness sensitivity on design parameters of a bladed

disc design. Although the derived maximum amplification factor sensitivity does

not estimate the true relationship accurately, the derivation provides a theoret-

ical background for a new definition of the interblade coupling ratio.

By carrying out simulations and optimisation analysis, it is found that re-

ducing the maximum allowable mistune and reducing scatter can lower the

maximum amplification factor and the 99.9th percentile amplification factor,

respectively, in flexible bladed discs. The maximum allowable mistune and the
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scatter can be kept at realistic levels to achieve such reductions if the interblade

coupling ratio in a bladed disc design is high.

A tool based on the importance sampling method is used to reduce the

computational effort in determining the magnitude of intentional mistuning.

The potential of a “linear” mistuning pattern to become an effective intentional

mistuning pattern is evaluated by observing the amplification factors of bladed

discs with combined intentional mistuning and additional random mistuning.

It is found that the median and the 99.9th percentile amplification factor can

be reduced, compared with those of the tuned design, by imposing a linear

mistuning pattern.

6.1 Introduction

The discussion in Chapter 5 has shown that the robustness of a bladed disc
design does not always improve significantly solely by small design changes,
and the proposed improvements are effective only in certain bladed disc
designs. As a result, the previously less-preferred method of controlling
the mistuning pattern on individual bladed discs - using either the small
mistuning approach or intentional mistuning approach - is considered in
this chapter.

The small mistuning approach involves reducing the maximum amplifi-
cation factor by controlling the maximum allowable mistune. The investiga-
tion of the small mistuning approach begins in Section 6.2 with deriving the
sensitivity of the maximum amplification factor of a single-DOF-per-sector
lumped parameter system, and verifying the derived sensitivity against the
true counterpart in a 6-DOF cyclic lumped parameter model. Based on
the sensitivity expression, a new interblade coupling ratio, c, is defined in
Section 6.3.

The potential of the small mistuning approach is evaluated in Section 6.4
by using the sensitivity information of the 99.9th amplification factor and
the maximum adjusted amplification factor on 24-sector blisks and 64-sector
lumped parameter models, respectively.

The intentional mistuning approach [21, 52], which reduces the likelihood
of extremely high amplification factors by specifying non-identical blades of
specific patterns at the design stage, is discussed in Section 6.5. An impor-
tance sampling-based tool is adapted from that described by Fonseca et al
[38] (Section 6.5.1) to determine the optimal intentional mistuning strength
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efficiently. The effect of the intentional mistuning approach is demonstrated
on a 24-sector blisk sample in Section 6.5.2.

The available approaches of improving robustness of bladed discs, based
on the findings in Chapters 5 and 6, are presented in the conclusions in
Chapter 8.

6.1.1 Issues related to the “large mistuning concept”

Nikolic et al [82] proposed reducing the likelihood of extremely high ampli-
fication factors occurring by incorporating mistuning patterns with magni-
tudes as high as 40%, and this is called the large mistuning concept. The
concept is motivated by their observation that the highest amplification fac-
tor within 1000 mistuned bladed disc samples with a 40% scatter is 1.35,
which is 33% lower than 2.02, the highest factor of another 1000 samples
with a 0.5% scatter, on the same 26-sector bladed disc design.

Nikolic et al proposed two variants of the large mistuning concept -
namely, the probabilistic and the deterministic variants. The probabilistic
large mistuning concept suggests allowing large (up to 40%) mistune to ex-
ist randomly on a bladed disc. On the other hand, the deterministic large
mistuning concept involves specifying intentional mistuning patterns with
magnitudes up to 40% at design stage. They have found that the high-
est amplification factor of 1000 bladed discs with an intentional mistuning
pattern can be as low as 1.04.

The large mistuning concept is not addressed directly in this thesis. The
deterministic large mistuning concept is discussed in this chapter as a form
of intentional mistuning. The probabilistic large mistuning concept is not
discussed in this thesis because of three reasons: (i) the standard deviation of
mistuning parameters is determined by the manufacturing processes and it
cannot be increased easily; (ii) random large mistune changes the structure
of a bladed disc significantly in a random way, and can lead to secondary
effects (e.g. unbalanced rotors); and (iii) the bladed discs having the worst
mistuning patterns would be considered as “safe” because the maximum
mistune of the worst mistuning pattern are much lower than the maximum
allowable mistune.
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6.2 Maximum amplification factor sensitivity to

mass mistune

It is shown in Figure 4.7 that the change of robustness is smooth with
respect to the change in input variability, regardless of the approach by which
the robustness and input variability are quantified. This means robustness
sensitivities to input variability can be found, and the sensitivities are the
slopes of the curves at zero input variability in Figure 4.7. This property has
been applied (i) to find the sensitivities of the mean and standard deviation
of blade responses in mistuned bladed discs [55], and (ii) to specify the
maximum allowable mistune, given an allowable maximum amplification
factor [114].

In this research, the maximum adjusted amplification factor sensitivity
to maximum mass mistune in a single-DOF-per-sector lumped parameter
model is derived in Section 6.2.1, assuming only structural damping with a
damping loss factor η exists. Only the masses are mistuned in this analysis
because the adjusted amplification factor would be equivalent to the amplifi-
cation factor, and certain terms in mode shape derivatives can be eliminated.
The derivation is similar if the stiffness elements in the model are perturbed.
The derived expression is analysed in Section 6.2.2, and compared with the
actual relationship between the maximum adjusted amplification factor and
maximum allowable mistune of a 6-DOF model in Section 6.2.3.

6.2.1 Derivation

The derivation begins with finding the vibration response derivatives with
respect to maximum mass mistune of a given mistuning pattern. The extent
of mistune is adjusted by a scalar denoted α. Therefore, the mass matrix of
a mistuned system is expressed in the form shown in Equation (6.1).

[M ] =


m 0

m
. . .

0 m

+ α


∆m1 0

∆m2

. . .

0 ∆mN

 (6.1)

In a system with natural frequencies, ωl, and mode shape matrix, [Ψ]
excited under an nEO excitation with the force vector {fn} and frequency
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Ω, the vibration responses of the DOFs, {u}, can be found by calculating
Equation (6.2):

{u} =
N∑
l=1

{ψl}T {f}
ω2
l − Ω2 + jηω2

l

{ψl} (6.2)

The vibration responses of a slightly mistuned system under nEO ex-
citation are mainly contributed by the split n-nodal-diameter (nND) mode
pair called {ψn1} and {ψn2}, such that

{u} ≈
∑

l=n1,n2

{ψl}T {fn}
ω2
l − Ω2 + jηω2

l

{ψl} (6.3)

The response sensitivity vector, written as {u′}, can be found by taking
the derivative of Equation (6.3) with respect to the maximum mistune, α:

∂ {u}
∂α

=
{
u′
}
≈

∑
l=n1,n2

(
{ψl}T {fn}

)′
ω2
l − Ω2 + jηω2

l

{ψl}+
∑

l=n1,n2

{ψl}T {fn}
ω2
l − Ω2 + jηω2

l

{
ψ′nl
}

+
∑

l=n1,n2

{ψl}T {fn}
(

1
ω2
l − Ω2 + jηω2

l

)′
{ψl} (6.4)

The equations finding the mode shape and natural frequency derivatives
are listed in Appendix C. In slightly mistuned systems, Equation (6.4) can be
simplified according to the arguments listed in Appendix D.1 and becomes

∂ {u}
∂α

=
{
u′
}
≈
[
ψ′n1

ψ′n2

] [ψn1 ψn2 ]T {fn}
jηω2

n

+ {ψn2}
{ψn2}

T {fn}
ω2
n

S′

η2
(6.5)

After finding the vibration response sensitivities, the vibration response
level sensitivity of DOF i with respect to maximum mass mistune can be
found using Equation (6.6) (See [89]):

∂ {|u|}i
∂α

=
{
|u|′
}
i

= Re
(
ūi
|ui|

(ui)
′
)

(6.6)

The ratio ūi/ |ui| can, again, be simplified according to Appendix D.1.
By dividing Equation (6.6) by the peak cantilever blade response, the ad-
justed amplification factor sensitivity to the maximum mistune with a par-
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ticular mistuning pattern can be expressed in terms of Equation (6.7):

∂A

∂α
= max

i=1...N

(
Re
(
e−j

2πn(i−1)
N

∂ui
∂α

))
1
jηk

(6.7)

The maximum adjusted amplification factor sensitivity to maximum
mass perturbation can be found by determining the maximum value of ∂A

∂α

using Equation (6.7).

6.2.2 Analysis

While the maximum adjusted amplification factor sensitivity to the maxi-
mum allowable mistune can be sought by calculating Equations (6.7) and
(6.5), the components of Equation (6.5) are examined to analyse the cause
of high amplification factors in slightly mistuned bladed discs.

First, the factors contributing to the response sensitivity are sought.
As it is known that mistuning leads to mode distortion and mode splitting
(see Appendix A), the representation of these two effects is identified in
Equation (6.5). Because the first term in Equation (6.5) includes mode shape
derivatives, and the second term contains the natural frequency derivatives,
the first and second terms of this equation refer to the changes of response
due to mode distortion and mode splitting, respectively. Moreover, the
layout of Equation (6.5) shows that the mode distortion and mode splitting
effects are separable in slightly mistuned systems.

Second, the factors behind the maximum adjusted amplification factor
sensitivity to the maximum mistune of a mistuning pattern are investigated
by evaluating all derivatives appearing in Equation (6.5). It is found in
Appendix D.2 that every derivative in this equation can be written as a
product of design parameters and a quantity related to this particular mis-
tuning pattern. By separating these two types of variable, the adjusted
amplification factor sensitivity with respect to mistuning magnitude under
an nEO excitation can be written in the form shown in Equation (6.8):

∂A

∂α
=

 N∑
l=1,l 6=n1,n2

Re (bl)ω2
n

ω2
l − ω2

n

+
Re (bη)
η

 1
ηk

(6.8)

where n1 and n2 refer to the nND modes of the tuned system, such that
ωn = ωn1 = ωn2 . Among all variables appearing in Equation (6.8), only
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the coefficients bl’s and bη are related to the mistuning pattern. While the
relationship between the bl’s and the mistuning pattern is complicated, the
coefficient bη, which involves to the extent of mode splitting, is proportional
to the cos 2nθ component of the mistuning pattern as investigated by Ewins
[31].

The approach of sensitivity derivation is validated in a 6-DOF model in
Section 6.2.3, and the layout of Equation (6.8) is taken to form a new defini-
tion of the interblade coupling ratio in Section 6.3. Moreover, this approach
is used in Section 6.4.1 to explain the sensitivity of the 99.9th percentile
amplification factor and the maximum adjusted amplification factor in 24-
and 64-sector systems, respectively.

6.2.3 Demonstration

The validity of the derived first-order maximum adjusted amplification fac-
tor sensitivity is examined by calculating the derived sensitivities of three
example 6-DOF models under an 1EO excitation, and comparing the re-
sults with the actual counterpart. The schematic of a 6-DOF model has
been shown in Figure 5.2. As to the analysis carried out in Section 5.3.2,
the nominal values of k and m here are equal to 1 Nm−1 and 1 kg, re-
spectively, and mistuning is applied to the model by perturbing the masses.
Three examples are taken to examine the validity of the derived sensitivity
expression:

1. K = 0.002 and η = 0.003 to simulate a lightly coupled system with a
relatively high damping loss factor

2. K = 0.005 and η = 0.0015 to simulate a lightly coupled and lightly
damped system

3. K = 0.02 and η = 0.0015 to simulate a heavily coupled system

In this demonstration, the maximum adjusted amplification factor sen-
sitivity to maximum allowable mistune in a design refers to the highest
adjusted amplification factor sensitivity found in a DMC simulation with
50,000 samples, using Equations (6.5) and (6.7). Simulations with large
number of samples are possible in finding sensitivities because the resonant
frequency of a slightly mistuned system is assumed to be equal to the natural
frequency of the tuned system, and no frequency sweeps are needed.
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The actual relationship between the maximum adjusted amplification
factor and maximum allowable mistune, the derived sensitivity and the
maximum adjusted amplification factor of the three examples are plotted
in Figure 6.1 and magnified plots are provided in Figure 6.2.
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Figure 6.1: Dependence of the maximum adjusted amplification factor on
maximum allowable mistune in three 6-DOF examples.
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Figure 6.2: A magnified plot of Figure 6.1.

It is found here that the first-order sensitivity and robustness form an
upper bound of the actual maximum allowable mistune-maximum adjusted
amplification factor curve. The derived sensitivity -

1. shows the slope of the actual relationship with low levels of interblade
coupling and high damping. The derived sensitivity does not describe
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the actual relationship well because the latter appears as a curve in
Figure 6.1. Such deviation from the linear behaviour is due to the
contribution to forced vibration responses by mode shapes other than
the pair of split nND modes, and

2. is a good estimate for a model with a high level of interblade coupling
and low level of damping where the maximum adjusted amplification
factor is between 1 and 1.15. In this situation, the vibration responses
of the DOFs are mainly contributed by mode splitting. The results
can be compared with those derived by MacBain and Whaley [69],
who found the maximum amplification factor to be 1.2.

The derived sensitivity is a conservative estimate in the region where
the maximum adjusted amplification factor is higher than 1.2. This
is because an adjusted amplification factor higher than 1.2 in this
situation is contributed by a combination of mode distortion and mode
splitting, which is a second-order effect.

A second-order analysis is not pursued as it does not refine the sensi-
tivity expression. MacBain and Whaley showed [69] that the amplification
factor - maximum mistune relationship is not a polynomial, even if only
mode splitting is considered, such that the Taylor series expansion does not
converge.

The derived maximum adjusted amplification factor sensitivity is used in
subsequent analysis in a qualitative sense because it is only a rough estimate
of the true counterpart. Nevertheless, the first-order sensitivity analysis
provides a useful tool to estimate the contributions of mode splitting and
mode distortion effects to high responses in mistuned bladed discs, which
are more complex than a 6-DOF model.

6.3 A new definition of interblade coupling ratio

Although the derived sensitivity does not give an accurate approximation
of the relationship between the maximum amplification factor and maxi-
mum allowable mistune, the sensitivity approach provides new arguments
in defining a practically-relevant interblade coupling ratio.

Interblade coupling refers to the influence of the vibration of one blade
on all other blades on a bladed disc. For example, a blade disc assembly with
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a rigid disc has no interblade coupling, while another assembly of blades and
a flexible disc creates a bladed disc with a high level of interblade coupling.

Interblade coupling is considered to be an important design parameter
in bladed disc design. It can influence the amplification factor distribution
in mistuned bladed discs, and previous research attempted to quantify the
complex mechanism of interblade coupling by a single parameter called the
interblade coupling ratio, written as c. One of three types of quantity of a
tuned bladed disc design have been adopted to determine interblade coupling
ratio in previous research:

1. off-diagonal terms in stiffness and mass matrices [137, 71]

2. the difference between natural frequencies [78]

3. the difference between squares of natural frequencies [112] (also re-
ported by Srinivasan [127])

It is noted that the interblade coupling ratio can vary in the same bladed
disc design according to the number of nodal diameters under consideration,
and this has been taken into account in some attempts (e.g. in Reference
[78]). As the derivation in Section 6.2 shows that the amplification factor
sensitivity depends on the differences of the squares of the tuned natural
frequencies, the proposed interblade coupling ratio is defined according to
the third quantity above. Precisely speaking, the interblade coupling ratio
of a bladed disc to be considered under an nEO excitation is the minimum
fractional difference of the squares of the tuned natural frequencies of any
mode and the n-ND mode:

c = min
l 6=n

∣∣ω2
l − ω2

n

∣∣
ω2
n

(6.9)

For example, the squares of the distinct natural frequencies of a tuned 6-
DOF model are

{
ω2
}

= {k k +K k + 3K k + 4K}T . If k = 1Nm−1, it
follows that the interblade coupling ratio of a 6-DOF model to be considered
under 1EO excitation is close to the magnitude of the interblade coupling
stiffness:

c = min
l=0,2,3

∣∣ω2
lND − ω2

1ND

∣∣
ω2

1ND

=

∣∣ω2
0ND − ω2

1ND

∣∣
ω2

1ND

=
K

1 +K
≈ K (6.10)

The proposed definition is applied to measure the interblade coupling
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ratios in the four 64-sector lumped parameter models in Section 5.3.3, the
six 24-sector blisk models analysed in Section 5.3.4, and the four bladed
discs investigated in previous research (Section 5.4). The interblade coupling
ratios of the four 64-sector models and the 6 24-sector blisks are listed in
Table 6.1.

Model n Interblade Model n Interblade
coupling ratio, c coupling ratio, c

Blisk A 6 0.050 Blisk F 6 0.012
Blisk B 6 0.034 Blisk 64A 6 0.023
Blisk C 6 0.034 Blisk 64B 6 0.0052
Blisk D 6 0.023 Blisk 64C 6 0.0026
Blisk E 6 0.014 Blisk 64D 6 0.0017

(n = excitation order, examples shown in Figure 6.3 listed in bold)

Table 6.1: Interblade coupling ratios of bladed disc designs analysed in
Sections 5.3.3 and 5.3.4.

According to the proposed interblade coupling ratio, the robustness map
constructed using a 6-DOF model is superimposed with the maximum am-
plification factors of selected bladed disc designs in Figure 6.3. (A similar
comparison of the results from previous research is shown in Figure 5.19.)
It is found that the dependence of the maximum amplification factor on the
level of damping is nearly the same as the contours in the robustness map,
regardless of number of blades.

6.4 Managing blade responses using a small mis-

tuning approach

As the maximum amplification factor increases gradually from unity to the
maximum amplification factor by increasing the maximum allowable mis-
tune (Section 6.2), it is possible to reduce the maximum amplification fac-
tor by limiting the maximum allowable mistune. This is called the small
mistuning approach and its potential as a means of controlling the effects
of mistuning is investigated in the current section. In this approach, “small
mistuning” refers to the region where the slope of the robustness-input vari-
ability curve is positive, as shown in Figure 6.4.

The small mistuning approach is not the most preferred approach to
manage the extremely high responses, because it is costly in manufacture
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Figure 6.3: Locations of selected bladed disc designs in the robustness map.
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and maintenance:
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1. tighter tolerances in blade dimensions lead to a higher rejection rate
in manufacture;

2. it may require new and expensive fabrication techniques;

3. it leaves narrow margins for mistuning parameters change due to wear
and tear; and

4. accurate measurements are required to ensure an identified mistun-
ing pattern within the small mistuning region is related to a slightly
mistuned bladed disc only.

However, the small mistuning approach is investigated because of three
reasons:

1. the discussion in Chapter 5 has shown that a cheaper alternative,
namely changing the design parameters, does not significantly improve
the robustness of a bladed disc design;

2. without considering the cost, a small maximum allowable mistune can
be specified to limit the maximum amplification factor to any given
value as the slope of the robustness-input variability curve is positive;
and

3. the standard deviation of mistuning parameters can currently be con-
trolled to the order of 0.5% at the end of the manufacturing line [60],
while small mistuning can refer to much higher standard deviations in
some designs.

6.4.1 Dependence of robustness on level of input variability

The small mistuning approach is evaluated by carrying out simulations on
five 24-sector blisk designs and three 64-sector, 2-DOF-per-sector lumped
parameter systems.

Firstly, the dependence of the 99.9th percentile amplification factor (A99.9)
on the standard deviation of mistuning parameters under a 6EO excitation
is investigated by carrying out DMC simulations on Blisks A, B, C, D and
E described in Section 5.3.1, under two levels of damping (η = 0.002 and
η = 0.005) and seven levels of standard deviation (σ) between 0.005 and
0.05.

106



Chapter 6. Improving robustness of bladed discs by tolerance design

In each 10,000-sample DMC simulation, mistuned blisks are created by
picking mistuned blades randomly from a collection with a prescribed level
of standard deviation, and the maximum mistune is equal to 3.3σ. There-
fore, the standard deviations of mistuning patterns in a simulation are not
identical. The 99th percentile amplification factors (A99.9) of the 5 blisk
models are shown in Figure 6.5, and A99.9 of Blisks A, B and E under two
levels of damping are compared in Figure 6.6.
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Figure 6.5: Dependence of 99.9th percentile amplification factor on mistun-
ing scatter.
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Secondly, mistuned systems based on Models 64A, 64B and 64D de-
scribed in Section 5.3.1, with a damping loss factor between 0.001 and 0.004,
are excited under a 6EO excitation. The relationship between the maximum
adjusted amplification factor and the maximum allowable mistune of Mod-
els 64A, 64B and 64D under a representative damping loss factor of 0.002
are plotted in Figure 6.7, and the same relationship under various damping
ratios is shown in Figure 6.8.
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Figure 6.7: Maximum adjusted amplification factors of Models 64A, 64B
and 64D under various levels of mistune.

0 0.025 0.05
0

1

2

3

4

5

M
ax

. a
dj

us
te

d 
am

pl
ifi

ca
tio

n 
fa

ct
or

Mistuning tolerances

 

 

0 0.01 0.02
0

1

2

3

4

5

Mistuning tolerances

M
ax

. a
dj

us
te

d 
am

pl
ifi

ca
tio

n 
fa

ct
or

 

 

0 0.01 0.02
0

1

2

3

4

5

Mistuning tolerances

M
ax

. a
dj

us
te

d 
am

pl
ifi

ca
tio

n 
fa

ct
or

 

 

η  = 0.001

η  = 0.002

η  = 0.003

η  = 0.004

η  = 0.001

η  = 0.002

η  = 0.003

η  = 0.004

η  = 0.001

η  = 0.002

η  = 0.003

η  = 0.004

Â
WH

 = 4.5Â
WH

 = 4.5Â
WH

 = 4.5

Max. allowable mistune Max. allowable mistune Max. allowable mistune

Model 64A Model 64B Model 64D

Figure 6.8: Maximum adjusted amplification factors under 6EO excitation,
various levels of mistune and damping loss factors.

Since the simulation on the blisk is carried out on a probabilistics-based
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approach of robust optimisation and those on the 64-sector models are car-
ried out on the interval analysis-based counterpart, the curves between ro-
bustness and the degree of input variability from the two groups of sim-
ulations appear differently in two ways. First, the robustness curves from
blisks have distinct maxima, and the level of scatter where the highest 99.9th

percentile amplification factor is observed is called the critical level of mis-
tune. Also, contrary to the maximum amplification factor (Section 5.3.4),
the 99.9th percentile amplification factor of a blisk design can rise with in-
creasing damping. With σ = 0.03, the 99.9th percentile amplification factor
of Blisk B rises from 1.6 to 1.8 with the damping loss factor increases from
0.002 to 0.005. However, such an increase is insignificant in terms of re-
sponse level as the peak response level of the tuned bladed disc decreases
by 60% at the same time.

Nevertheless, the slopes of the curves are heavily dependent on the in-
terblade coupling ratio in both simulations (Figures 6.5 and 6.7): the sen-
sitivity is generally negatively-correlated with the interblade coupling ratio
of a bladed disc design.

In comparison, the sensitivity is less sensitive to the damping loss factor.
The 99.9th percentile amplification factor sensitivities of 24-sector blisks are
nearly independent of the damping loss factor, so as the maximum amplifi-
cation factor sensitivity in Model 64A, which has a high interblade coupling
ratio. However, the maximum adjusted amplification factor sensitivity in a
lumped parameter model with a low interblade coupling ratio depends on
the damping loss factor. In Model 64D, the maximum amplification factor
sensitivity at η = 0.001 is half of that at η = 0.004. The difference in the
maximum amplification factor sensitivity between Models 64A and 64D can
be explained by recalling the derivation in Section 6.2:

1. In a model with a high interblade coupling ratio (e.g. Model 64A), the
responses of the mistuned system are contributed by the pair of split
nND modes and the maximum adjusted amplification factor sensitivity
is expressed as Equation (6.8). In a 64-sector system, there are 62
terms involving interblade coupling parameters (in terms of the natural
frequencies) and one term involving the damping loss factor. As the
orders of magnitudes of bl’s and bη are similar (see Appendix D.2), the
effect of changing η is small because the expression is dominated by
the terms involving the natural frequencies.
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2. In a model with a low interblade coupling ratio (e.g. Model 64D), the
natural frequencies are very close to each other (57 of them within ±1
Hz of the natural frequency of the 6ND mode) such that the vibration
responses of the blades are contributed by multiple modes, even in
slightly mistuned systems. The high density of natural frequencies
invalidates the assumptions made in the derivation. Because the extent
of modal superposition depends on the width of the resonance peak,
which is proportional to the damping loss factor, the sensitivity of the
maximum amplification factor depends on damping.

The dependence of the sensitivity on the interblade coupling ratio shows
the viability of the small mistuning approach in bladed discs with high in-
terblade coupling ratios. To begin with, the critical degree of mistune is
found to have a positive correlation to the interblade coupling ratio. The
critical degree of mistune is as high as 0.05 in Blisk A, with an interblade
coupling ratio of 0.05, but that of Blisk E, having an interblade coupling
ratio of 0.017, is 0.015. Also, more importantly, the maximum (or the 99.9th

percentile) amplification sensitivity in bladed discs with high interblade cou-
pling ratios are so low, that the amplification factor can be reduced by
specifying tight tolerances to blade dimensions and material properties, or
by reducing the standard deviation of mistuning parameters. For example,
by restricting the maximum allowable mistune on Model 64A to 2%, the
maximum adjusted amplification factor is reduced by 20%, from 4.07 to 3.2.

However, the small mistuning approach is not applicable to bladed disc
designs with small interblade coupling ratios: to achieve a similar reduction
of the maximum adjusted amplification factor in Model 64D, the maximum
allowable mistune has to be controlled to within 0.3%, which is not achiev-
able in practice.

6.4.2 Excitation of mode shapes in the veering region

The situation of exciting mode shapes in veering regions in a small mistuning
context is investigated by exciting Models 64C and 64E (Section 5.5.2) under
4EO excitation with a damping loss factor of 0.002. The maximum allowable
mistune is assumed to be 0.1, and the results are plotted in Figure 6.9.

The difference in the shapes of curves related to Models 64C and 64E can
be explained by the findings made in the previous analysis on other 64-sector
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Figure 6.9: Maximum adjusted amplification factor under various levels of
mistune.

systems. Firstly, the adjusted amplification factor of the tuned Model 64E is
lower than unity as explained in Section 5.5.2. Secondly, the low sensitivity
of the curve in Model 64E boils down to the lower natural frequency density
around the veering region, which refers to a high interblade coupling ratio,
as discussed in Section 6.3.

These two differences lead to a much lower maximum adjusted ampli-
fication factor in Model 64E than that in Model 64C with a small, yet
achievable, maximum allowable mistune. For example, the maximum ad-
justed amplification factor of Model 64E is 1.72 if the maximum allowable
mistune is kept at 5%, contrary to that of Model 64E of 4.3, with the same
tolerances imposed on blade dimensions.

6.5 Feasibility of the intentional mistuning approach

The investigation in Chapter 3 has shown that the extreme amplification fac-
tors are only found in bladed discs with particular “problematic” mistuning
patterns, which are concentrated in several regions. One of the proposals
to manage this problem is the intentional mistuning approach. Under this
approach, a designed mistuning pattern (known as an intentional mistuning
pattern) is incorporated to a bladed disc at design stage, such that the prob-
ability of encountering a “problematic” mistuning pattern would be lower
than that of a bladed disc design with nominally identical blades. It should
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be noted that the maximum amplification factor is not reduced unless the
worst mistuning pattern is excluded from combination of all possible mis-
tuning patterns.

Numerous mistuning patterns have been considered as intentional mis-
tuning patterns [21]. Although most patterns proposed in previous research
are not associated with high amplification factors, not every mistuning pat-
tern is suitable to become an intentional mistuning pattern.

Identical to the issue experienced on tuned blade disc designs, an inten-
tionally mistuned bladed disc design can suffer from additional mistuning
due to variations in manufacture and wear and tear in operation. These are
described as further mistuned bladed discs (with further mistuned patterns)
in this analysis. A mistuning pattern becomes a suitable intentional mis-
tuning pattern only if the amplification factors of further mistuned bladed
discs are generally lower than the mistuned bladed discs based on the tuned
design. In addition to the basic requirement, a good intentional mistuning
pattern should comprise (i) few types of blades and (ii) a simple arrangement
of blades, because significant additional costs are involved in (i) manufactur-
ing every new type of blade, (ii) controlling over the mistuning parameters
of individual blades and (iii) keeping the blade order at installation.

A method is constructed in Section 6.5.1 to determine the consequences
of applying an intentional mistuning pattern with various magnitudes effi-
ciently. Using the method, the potential of the linear mistuning pattern [52]
as an intentional mistuning pattern is evaluated in Section 6.5.2, using Blisk
A as an example.

6.5.1 Determination of the consequences of intentional mis-

tuning using the importance sampling method

Besides the intentional mistuning pattern, the effect of intentional mistuning
also depends on the intentional mistuning strength. To decide the optimal
intentional mistuning strength, the amplification factor pdf (and the 99.9th

percentile amplification factor) can be evaluated by discretising the possible
range of intentional mistuning strength and carry out a DMC simulation
for each level. However, this process is cumbersome and inefficient because
a large amount of samples is needed in each simulation to find a reliable
amplification factor pdf, and the samples generated in one simulation cannot
be reused in other simulations.
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The importance sampling method introduced in Chapter 3 is used again
here to tackle such a problem. By using the importance sampling method,
the range of intentional mistuning strength is determined. After that, sam-
ples are selected randomly from all possible further mistuned patterns under
any possible intentional mistuning strength to create a master, and the am-
plification factor pdf under a particular intentional mistuning strength is
calculated by reweighting the samples. This approach was first proposed
by Fonseca et al [38] to determine the optimal tolerances to be imposed on
dimensions of a beam truss structure.

While the basic principles of the importance sampling method are dis-
cussed in Chapter 3, the discussion in this section focuses on creating the
master. Fonseca et al proposed that each mistuning pattern in the master,
{x}, is the sum of two random mistuning patterns, {d} and {q}. The first
pattern, {d}, refers to an intentional mistuning pattern with the magnitude,
δ, a random variable distributed uniformly between δ1 and δ2. The second
pattern, {q}, represents normally-distributed, unculled random mistuning
with a predetermined level of scatter, σ.

The pdf of the samples in the master needs to be evaluated to apply
the importance sampling method. Provided that the pdf of a normally-
distributed variable is written as fG (x), the pdf of a sample mistuning
pattern, g ({x}), is

g ({x}) =
1

δ2 − δ1

∫ δ2

δ1

N∏
i=1

fG (xi − diδ) dδ (6.11)

Equation (6.11) is solved analytically in Appendix E by examining fG.

6.5.2 Evaluation of a linear intentional mistuning pattern

The method proposed in Section 6.5.1 is demonstrated by evaluating the
optimal magnitude of linear intentional mistuning to be imposed on Blisk
A. A sample linear mistuning pattern is shown in Figure 6.10. Jones [52]
has shown that that the linear mistuning pattern alone can lead to an am-
plification factor lower than unity, if (i) the level of damping in the bladed
disc is very low (η ≈ 0.0002), and (ii) the order of excitation is near to N/4.

However, there are two issues to be resolved before applying the linear
mistuning pattern to a blisk design as an intentional mistuning pattern,
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Figure 6.10: Linear mistuning pattern with a mistuning strength of 2%.

which are (i) the robustness of the linear mistuning pattern, which is the
amplification factor distribution in further mistuned bladed discs and (ii)
the effects of imposing the linear mistuning pattern on bladed discs with
much higher level of damping. Although the level of structural damping
in a typical blisk can be as low as the level investigated by Jones [52] (η =
0.0002) because there are no friction joints, the effects of aeroelastic damping
and friction dampers have to be taken into account.

The two issues mentioned above are analysed in this section by finding
the amplification factor distribution of intentional mistuning strength up
to 5% in the presence of further mistuning. The distributions are sought
using two methods, both by carrying out repeated DMC simulations at 8
selected intentional mistuning strengths and by carrying out the importance
sampling-based algorithm introduced in Section 6.5.1. The additional ran-
dom mistuning has a standard distribution σ = 2% and a maximum of
3.3σ =6.6%. Also, a higher damping loss factor of 0.01 is applied to the
model in the current investigation.

The results are presented in Figures 6.11 to 6.13. Although the inten-
tional mistuning pattern alone leads to an amplification factor greater than
unity, intentional mistuning can reduce the median of amplification factor
compared with the tuned counterpart under a relatively high η. For ex-
ample, the median of the amplification factor is reduced by 11% if a linear
mistuning pattern with the mistuning strength of 5% is imposed. However,
only an intentional mistuning strength higher than 0.04 can reduce the 99th

and the 99.9th percentile amplification factors in this particular case.

114



Chapter 6. Improving robustness of bladed discs by tolerance design

The results show that the linear mistuning pattern can be considered
as an intentional mistuning pattern. However, it is not an ideal intentional
mistuning pattern because it involves many types of blades.
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Figure 6.11: Dependence of the 50th, 99th and 99.9th percentiles amplifica-
tion factor on level of intentional mistuning.

The efficiency of the new method is evaluated next. The cumulative
distribution functions sought from DMC simulations and from the new im-
portance sampling-based method are compared in Figure 6.12. The dis-
tributions sought from the two methods match well except a significant
discrepancy in finding the very small probabilities related to the extremely
high amplification factors (Figure 6.13). The 99.9th percentile amplifica-
tion factors are shown in Figure 6.11 as an example. The results found by
using the importance sampling method are significantly higher than those
found by using the DMC simulations. There are three possible reasons of
the discrepancy:

1. the sample size involved in importance sampling simulation is much
higher than that in the DMC simulation;

2. the half-width of the confidence level, ∆p, of the probability estimate of
0.1% with 5,000 DMC samples is 0.08% according to Equation (3.31),
which means that the DMC estimate is not very reliable; and

3. because the samples taken in the importance sampling method in-
cludes the patterns with high amplification factors (e.g. if the in-
tentional mistuning strength = 3%) regardless of the intentional mis-

115



Chapter 6. Improving robustness of bladed discs by tolerance design

tuning strength investigated, such that the cumulative distribution
function sought from the new method has a longer tail.
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Figure 6.12: Amplification factor cumulative distribution functions under
various levels of intentional mistuning.
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Figure 6.13: A magnified plot of Figure 6.12.

Although the importance sampling method is merely shown as a scheme
to reallocate the computational resources in the example, the master can
be reweighted to show the amplification factor distribution under other in-
tentional mistuning strengths without additional samples, as long as the
magnitude is within the predetermined range. Moreover, the amplification
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factor distribution under slightly different intentional mistuning patterns,
such as a “stairs” pattern shown in Figure 6.14, can be evaluated without
additional simulations.
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Figure 6.14: Stairs and linear mistuning patterns.

However, the importance sampling-based method cannot be used to de-
scribe the dependence of the amplification factor distribution on the max-
imum allowable mistune, as carried out in Reference [38]. This is because
of the number of dimensions involved in the blade mistuning problem. In a
univariate (i.e. single-dimension) normal distribution, 95.44% of all random
variables are located within the range of µ ± 2σ, where µ and σ are the
mean and the standard deviation of the distribution. If a 24-dimensional
problem like a 24-sector blisk is considered, only (0.9544)24 =33% of the
mistuning patterns with normally-distributed mistuning parameters would
satisfy a maximum allowable mistune of 2σ. As a result, a large portion of
blisks samples in the master is excluded from analysis and the quality of the
distribution estimate deteriorates.

6.6 Summary

The potential of the small mistuning and intentional mistuning approaches
to improve the robustness of bladed discs are investigated in this chapter.
The maximum amplification factor sensitivity to the maximum allowable
mistune of a single-DOF-per-sector system is derived. Although the derived
sensitivity only provides a qualitative description to the true relationship, it
gives a theoretical basis on which a new interblade coupling ratio is based,
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and explains why the small mistuning approach is more effective in bladed
disc designs with high interblade coupling ratios.

It is found that the 99th percentile amplification factor of a bladed disc
with a high interblade coupling ratio can be reduced by controlling scatter
within a reasonable amount. Similarly, a smaller maximum allowable mis-
tune can be set on this type of bladed disc to reduce the maximum adjusted
amplification factor.

The likelihood of extremely high amplification factors can be reduced by
the intentional mistuning approach with a linear mistuning pattern. A tool
proposed in previous research has been adapted to determine the optimal
mistuning strength without repeated DMC simulations.
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Chapter 7

Predicting vibration
response levels of integral
bladed discs (blisks)

A current trend in aero engine compressor design is the wider use of integral

bladed discs (blisks) because of the potential weight savings. Because the level

of mechanical damping in a blisk is lower than that in a bladed disc assembly,

there are challenges in controlling the extreme vibration response levels in a

mistuned blisk as both the peak vibration response level in a tuned blisk and

the maximum amplification factor are high.

However, as blisks lack the uncertainty and variability of friction properties

related to joints, the maximum vibration response level of a blisk test piece in

operation can be predicted based on the actual mistuned properties of that blisk

prior to installation, or in regular checks during service life.

A previously-proposed procedure for predicting the highest response levels

of mistuned blisks is outlined in the current chapter. The procedure is demon-

strated experimentally on a test piece with two different mistuning patterns,

and the sources of error are analysed. It is found that the procedure can pre-

dict the maximum vibration response level of a blisk, and recommendations for

improvements to future experiments are presented.

7.1 Introduction

Bladed disc assemblies in aero engine compressors are sometimes replaced by
bladed discs manufactured as single components, either by welding blades
on rotors or by machining entire bladed discs from single pieces of metal.
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As mentioned before, such bladed discs are called integral bladed discs, or
blisks. The weight saving by replacing a bladed disc assembly with a blisk
can reach 30% [16] because the mass supporting the fir-tree joints can be
removed.

The use of blisks in aero engines poses new challenges to managing vi-
bration response levels in mistuned bladed discs. There are fewer joints in a
blisk than in a bladed disc assembly, which means the damping loss factors
in blisks are lower than in bladed disc assemblies and the vibration responses
in tuned blisks are correspondingly higher. Also, the maximum amplifica-
tion factors of blisks with low levels of damping are typically high (Chapter
5). Therefore, the maximum vibration response level in a mistuned blisk is
much higher than that in a mistuned bladed disc assembly. Given the same
maximum allowable dynamic stress, the blade responses in a mistuned blisk
have to be controlled by one or more of the three approaches:

1. adding dampers (e.g. underplatform dampers [92]) to reduce the vi-
bration response levels of a tuned blisk

2. controlling the high vibration response levels related to mistuning,
either by specifying a smaller maximum allowable mistune and/or by
changing the blisk design

3. predicting the amplification factors of individual mistuned blisks by
testing those blisks before installation, such that the uncertainty of
the peak response level is reduced. Moreover, remedial actions can be
taken if the peak response level of a given blisk is found to be unaccept-
able in a test. This way is possible in blisks because no uncertainties
and variabilities related to friction properties at joints exist in blisks.

After studying the second approach in Chapters 5 and 6, the third way is
investigated in this chapter, first by outlining a possible procedure and the
associated tools (Section 7.2), and the proposed procedure is demonstrated
in experimental studies in Section 7.3. The potential sources of error iden-
tified in the experimental work are discussed in Section 7.4 and the possible
improvements to the experimental work are listed in Section 7.5.
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7.2 Outline of a response level prediction proce-

dure

The three major factors leading to changes in a mistuning pattern of a blisk
are creep, wear (e.g. tip rubbing) and crack growth, and the rate of change
of the mistuning pattern due to these effects is likely to be lower than that
due to changes in friction properties at joints. To illustrate this argument, a
DMC simulation with 100 samples is carried out on Blisk E (Section 5.3.1)
to simulate the possible change of the amplification factor upon the changes
of mistuning parameters due to crack growth. It is assumed that the rate of
change of a mistuning parameter on one blade is proportional to the highest
response level of that blade. By perturbing the mistuning parameters of
each of the 100 mistuning patterns by a maximum of 1% in 300 steps, the
amplification factors before and after the perturbation, compared in Figure
7.1, show that the effects of small changes of the mistuning pattern on
the amplification factor of a blisk are likely to be small. As a result, the
vibration response levels of blades on a blisk under an EO-type excitation
in operating conditions is likely to be predictable by the properties of that
particular blisk in a test rig, with a much lower level of uncertainty.
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Figure 7.1: Amplification factors before and after perturbation.

The maximum vibration response level of a blisk test piece can be pre-
dicted by two methods. In the first method, the test piece is installed on a
rotating rig and the responses of a rotating blisk are measured by a scanning
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Laser Doppler Vibrometer (LDV) [28]. This method is expensive and very
time-consuming.

In the second method, the response levels of the blades in a rotating
mistuned blisk test piece are estimated by imposing the mistuning pattern
of the blisk on a rotating blisk model. The second method is more versatile,
but the mistuning pattern of the blisk test piece has to be known. While the
mistuning pattern in a bladed disc assembly can be determined by testing
individual blades, the mistuning parameters of blades on a blisk test piece
cannot be found in this way. The mistuning pattern in a blisk test piece
is estimated using a mistuning identification algorithm based on the exper-
imental data sought from that blisk. The experimental data usually refers
to natural frequencies and mode shapes, but identification algorithms using
FRF information also exist [119].

Griffin and Feiner [43] have proposed a procedure to predict the high-
est response level of a blisk test piece under an EO-type excitation using
a mistuning identification algorithm, called the FMM-ID. The FMM-ID is
roughly the reciprocal of the model reduction algorithm, known as the Fun-
damental Mistuning Model (FMM) [35], and both algorithms are outlined
in Appendix F. Their proposed procedure involves finding the mistuning
pattern correlated to the identified mode shapes and calculating a set of
reconstructed mode shapes using the mistuning pattern. It is arranged as
such because (i) it allows arbitrarily-scaled identified mode shapes and (ii)
the models involved in the FMM-ID and the FMM algorithms are supposed
to be different. If a stationary blisk model is used in the FMM-ID algo-
rithm and a rotating blisk model is used in the FMM algorithm, the peak
response level of a rotating blisk test piece can be predicted by carrying out
experiments on the same blisk when it is stationary. However, the relation-
ship between the mistuning patterns of a blisk test piece at stationary and
rotating states has to be known in advance.

A blisk can be tested either after manufacture or as a part of regular
inspection over its service life. Based on the predicted response level, one
or more of the three actions below can be performed: (i) reduce the amplifi-
cation factor by changing the mistuning pattern; (ii) determine the date of
the next test and (iii) create a “medical history”, containing the predicted
response levels at regular intervals, for every manufactured blisk.

The relationship between the two testing methods and the three possible
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actions are shown in Figure 7.2. The response prediction procedure proposed
by Griffin and Feiner is demonstrated in Section 7.3.
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Figure 7.2: Predicting the amplification factor of a mistuned blisk.

7.3 Experimental demonstration of the proposed

procedure

(This author acknowledges the assistance from Dr. Dario Di Maio on setting
up the experimental equipment.)

Experiments are carried out on the blisk test piece called “Blisk 2” in
Reference [117], which is Blisk A in Section 5.3.1, to demonstrate the proce-
dure outlined by Griffin and Feiner [43]. In this analysis, the blade responses
of a stationary test piece under a 10EO excitation are predicted, such that
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Figure 7.3: Experimental setup.

the blisk models used in the FMM-ID and FMM algorithms are identical.
The test piece is supported by a rig, and the experimental set up is shown
in Figure 7.3.

Various methods of exciting blisks have been proposed as discussed in
Chapter 2. In this analysis, the blisk is excited either by a swept sine
excitation using an AC electromagnet or by a hammer impact. Each method
has its advantage: an electromagnetic excitation ensures the accuracy of
the excitation point, while the level of excitation force can be determined
accurately under an impact excitation using a hammer. The test piece is
excited at one of two specified positions on the disc, called P1 and P2, with
the approximate locations shown in Figure 7.3. The point of electromagnetic
excitation, P2, is determined by the construction of the rig, and the points
of impact excitation (P1 and P2) are located within the disc part of the blisk
to avoid multiple impacts. Multiple impacts (also known as “double-hits”)
mean the hammer and the structure come in contact more than once in an
impact excitation, usually due to high vibration amplitude of lightly-damped
structures, and have to be avoided.

Vibration responses of the blades are measured by using a Laser Doppler
Vibrometer (LDV) in the experiment. The captured time histories are con-
verted into frequency response functions (FRFs) and undergo modal analysis
- using the line-fit method [34] - to find the natural frequencies, modal damp-
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ing ratios and mode shapes of the blisk test piece. Modal analysis is carried
out using MODENT, the in-house modal analysis software [50], which is a
part of the ICATS software package.

The modal properties of two mistuning patterns on the test piece are
measured. Mistuning pattern 1 is the existing mistuning pattern on the test
piece, and Mistuning pattern 2 is created by imposing a mistuning pattern
- called the target pattern - on the blisk test piece by installing screws, nuts
and washers of various sizes at blade tips. A picture of three mistuned
blades is shown in Figure 7.4, and the detailed arrangement of the attached
components are presented in Appendix G.

Blade 
24

Blade 
2

Blade 
3

Blade 
1

Figure 7.4: Selected mistuned blades of the blisk test piece.

Results from two tests carried out on the test piece with Mistuning
pattern 1 and three tests on the test piece with Mistuning pattern 2 are
presented in Sections 7.3.1 and 7.3.2, respectively. The key parameters of
these tests are listed in Table 7.1.

Test Mistuning Method of Point of Frequency Range
pattern excitation excitation / Resolution (Hz)

1A 1 Hammer impact P1 0.078-500 / 0.078
1B 1 Electromagnet P2 275-285 / 0.2
2A 2 Electromagnet P2 235-285 / 0.0625
2B 2 Hammer impact P1 0.078-500 / 0.078
2C 2 Hammer impact P2 0.078-500 / 0.078

Table 7.1: Experimental tests presented in this thesis.
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7.3.1 Mistuning pattern 1

Since the test piece was designed to be tuned and has been properly han-
dled, the test piece is a slightly-mistuned blisk. The maximum mistune of
Mistuning pattern 1 is very small in such a blisk, and pairs of natural fre-
quencies are extremely close to each other. Although 24 natural frequencies
are supposed to be present in a family of modes, only 18 distinct natural fre-
quencies are identified in Test 1A between 100 Hz and 300 Hz. Three pairs
of the natural frequencies, corresponding to the 2ND, 6ND and 7ND modes,
are 0.16 Hz, 0.03 Hz and 0.05 Hz apart, respectively. Because the natural
frequency splits of 6ND and 7ND modes are smaller than the frequency res-
olution of the FRFs (0.08 Hz), only one mode shape can be identified and
the two slightly split natural frequencies are treated as one.

At last, 16 mode shapes are identified in Test 1A between 100 Hz and
300 Hz, and 14 of them belong to the same family. Four mode shapes are
identified in Test 1B between 275 Hz and 285 Hz, and the mode shapes
represent the 9, 10, 11 and 12 ND modes of the test piece. The natural
frequencies from the finite element model and those identified in Test 1A
are compared in Figure 7.5.

The discrepancies between the natural frequencies of the lower nodal
diameter modes are believed to be due to non-identical boundary conditions
(i.e. the clamping mechanism) between the experimental set-up and the
finite element model, and the differences between the natural frequencies of
the higher nodal diameter modes are due to inaccurate material properties
in the finite element model.

The MAC (Modal Assurance Criterion [34]) function between the iden-
tified modes in Test 1A and the tuned system travelling modes is computed
and the results are shown in Figure 7.6. It can be seen that the mode shapes
are only slightly distorted from sinusoidal mode shapes, which are charac-
teristics of the mode shapes in a tuned blisk. The different magnitudes of
the MAC functions for the same identified mode shape to backward and
forward travelling mode shapes with the same number of nodal diameter
mean the identified mode shape is complex, with the 9ND mode identified
in Test 1B (Figure 7.7) being a good example.

The mistuning patterns are identified in each test: the mistuning pattern
corresponding to Test 1A is identified using all mode shapes except mode
shapes 1, 2, 3 and 8 (see Figure 7.6), and that corresponding to Test 1B is
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Figure 7.6: MAC function between identified mode shapes from Test 1A
and travelling modes of the finite element model.

identified using all 4 mode shapes. Although the mistuning pattern on the
actual test piece is not known, the identified mistuning pattern from Test
1A, which is shown in Figure 7.8, is unlikely to be an accurate representation
of such, because a maximum mistune of nearly 4% would lead to a maximum
natural frequency split of much higher than 0.16 Hz, which is about 0.1%
of the natural frequency of the 2ND mode. The error is presumably due to
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Figure 7.8: Identified mistuning patterns in Tests 1A and 1B.

7.3.2 Mistuning pattern 2

The results from three tests are presented in this section. Test 2A is carried
out with a swept sine excitation using an electromagnet and Tests 2B and
2C are carried out with impact excitations at two different excitation points.
All identified mode shapes of the test piece with Mistuning pattern 2 are
real. The mode shapes from the three tests match well with others: a
representative mode shape identified in the three tests is plotted in Figure
7.9, and all mode shapes between Tests 2A, 2B and 2C are compared in
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Figure 7.12 by using the MAC function. It is noted that not every mode in
the family is identified in a test using impact excitation.
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After the natural frequencies and mode shapes are identified in each
test, all identified mode shapes are used to find mistuning patterns with
the FMM-ID algorithm. Although the mode shapes between different tests
match well in the MAC plots, the identified mistuning patterns from the
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three tests are significantly different (Figure 7.11). Only the identified mis-
tuning pattern from Test 2A is reasonably close to the target pattern.
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Figure 7.11: Identified mistuning patterns based on all identified modes.

It is suspected that the identified mistuning patterns in Tests 2B and
2C deviate from the target pattern because of errors in modal components.
While the impact of such error is investigated in greater detail in Section
7.4.2, a method is developed in this section (i) to check whether the identi-
fied mistuning pattern is close to the actual counterpart, and (ii) to remove
the mode shapes which contribute significant error to the identified mis-
tuning pattern. The quality the identified mistuning pattern is checked by
calculating the reconstructed mode shapes using the identified mistuning
pattern and the FMM algorithm, and compute the MAC between the re-
constructed and identified mode shapes. If the error in the identified mode
shapes is small, the mistuning pattern identified by the FMM-ID algorithm
is accurate, and the MAC between the reconstructed mode shapes and the
identified counterpart should form a nearly-diagonal matrix as the two sets
of mode shapes are nearly identical.

The qualities of the identified mistuning patterns from Tests 2B and 2C
are improved by excluding some mode shapes from the FMM-ID algorithm.
The results based on Test 2C are shown in Figure 7.12, in which each white
dot in the MAC function indicates that an identified mode shape has been
included in the FMM-ID algorithm. After trial and error, it can be seen in
Figure 7.12 that all identified mode shapes and the reconstructed counter-
parts match better if the first four identified modes are not considered in
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mistuning identification.

It is shown in Figure 7.13 that the identified mistuning patterns based
on selected modes are close to the target pattern. The average of mistuning
parameters in identified mistuning patterns found in the tests are more neg-
ative than that of the target pattern mainly because the screw holes in the
blisk are not as deep as indicated in the engineering drawing in Reference
[117]. The masses are located further from the blisk centre in the experi-
ment than planned and thus the effective vibrating masses of the blades are
higher. In addition to this, the set-up in this experiment is different from
the assumption of the FMM-ID algorithm, where only the stiffness matrix
is perturbed.
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Figure 7.12: MAC function between identified modes and selected recon-
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After the mistuning patterns are identified, the maximum response of
the stationary blisk test piece under 10EO excitation is estimated. Since
the software MODENT does not provide a reliable estimate of the modal
damping loss factor, η, if η is smaller than 0.01%, η is estimated to be 7.5×
10−5 according to Sever [117]. The performance of the response prediction
is determined by (i) the maximum vibration response level experienced on
any blade and (ii) the blade experiencing the maximum vibration level. The
parameters are compared in Table 7.2.

The predicted maximum response levels are within 9% of the target
pattern, and the blade with the highest response is correctly predicted in
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Figure 7.13: Identified mistuning patterns based on selected modes.

Tuned Target Test 2A Test 2B Test 2C

Maximum response level 246.6 356.8 374.1 387.3 381.7
Blade 1 1 1 21 10

Table 7.2: Comparison of key identified response parameters.

one test. Every maximum response level in the three tests is higher than
that in the target pattern because the mistuning parameters in the identified
patterns are more negative than the target pattern on average, which implies
the blades are less stiff according to the FMM algorithm (Appendix F). As a
result, both the maximum blade alone vibration response, which is inversely
proportional to the blade stiffness, and the highest vibration response level
of the mistuned blisk increase.

7.4 Robustness of the proposed procedure

The experimental demonstration in Section 7.3 has shown that the proposed
procedure can predict the maximum forced vibration response level in a
blisk. To improve the quality of response prediction in future experiments,
selected sources of error related to carrying out modal testing in blisks are
analysed in Section 7.4.1, and their impacts on the identified mistuning
pattern with real and complex modes are discussed in Section 7.4.2 and
7.4.3 respectively.
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7.4.1 Major sources of error in modal testing

Two major sources of error in the experiments encountered in Section 7.3 -
namely (i) inaccurate location of impact and (ii) insufficient frequency res-
olution in the FRFs - are discussed in this section. Although other sources
of error, such as the error related to imperfect swept-sine electromagnetic
excitation due to harmonics and the sampling window, are not discussed
individually, the impact of noise in experimental data on the predicted re-
sponse is discussed in Section 7.4.2.

Inaccurate location of impact

An advantage of exciting the blisk with a hammer over an electromagnet
is that the accurate level of excitation can be known. This is essential for
getting mass-normalised mode shapes, which is required in some mistuning
identification algorithms to identify both stiffness and mass mistuning pat-
terns [119], although the identified mode shapes for the FMM-ID algorithm
can be arbitrary scaled.

The major issues involved in impact excitation on blisks are (a) multiple
impacts, which are considered in Section 7.3, and (b) the sensitivity of the
measured FRF to the location of the point of excitation. These two issues
cannot be avoided at the same time solely by shifting the point of excitation.
On the one hand, if the blisk test piece is excited at one of the blades,
multiple impacts are likely to occur because the blades in blisks vibrate at
high amplitudes due to a low level of damping. On the other hand, the
measured FRFs are very sensitive to the location of the point of excitation
if the excitation point is located at the disc part, because nodal lines are
very dense there. A perturbed FRF would lead to distorted mode shapes at
a particular DOF, and will introduce error to the whole identified mistuning
pattern.

Multiple impacts can usually be detected during the test by observing
the time history and the power spectrum of the excitation signal. However,
the error due to inaccurate point of excitation is more difficult to detect at
the same stage. An example showing the sensitivity of a transfer FRF to the
location of the excitation point on a tuned finite element model of the test
piece is shown in Figures 7.14 and 7.15. Assuming the point of measurement
is fixed, the transfer FRF can appear very differently by moving the point
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of excitation away from the intended location by as little as 4mm, and the
different amplitudes at the resonant peaks (and the formation of new peaks)
would result in distorted identified mode shapes.
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Insufficient frequency resolution in the FRFs

Some of the identified mode shapes of the test piece with Mistuning pattern
1 are complex. Complex modes are unexpected because mode shapes in non-

134



Chapter 7. Predicting vibration response levels of integral bladed discs
(blisks)

rotating structures with proportional damping are supposed to be real. A
suspected cause of complex modes being observed is that two closely-spaced
modes - with a natural frequency split as small as 0.03 Hz - are treated as
one mode. Close natural frequencies are typical in bladed disc test pieces
because tuned bladed discs have repeated natural frequencies.

By estimating the damping loss factor in the test piece, η, and the natural
frequency of a mode, ω, to be 7.5×10−5 and 240 Hz, respectively, the width
across the half-power points [34] of a single resonance peak in an FRF, ∆ω,
is approximately

∆ω = ωη ≈ 240× 7.5× 10−5 ≈ 0.018 Hz (7.1)

Equation (7.1) means that two neighbouring resonance peaks of similar
modal constants can be identified if (i) the difference between two neigh-
bouring natural frequencies is more than 0.02 Hz, and (ii) the frequency
resolution of the FRF is fine enough. Since the estimated natural frequency
split is 0.03 Hz in Test 1A, two resonance peaks in Test 1A appear as one
peak because the frequency resolutions of the FRFs in Test 1A are too
coarse.

To demonstrate the importance of the frequency resolution, the tuned
finite element model of the test piece is perturbed by point masses as much
as 0.1 g. The natural frequency split of the 4ND modes of this mistuned
blisk model is about 0.045 Hz. By assuming the damping loss factor η =
7.5 × 10−5, two point FRFs - with frequency resolutions 0.02 Hz and 0.05
Hz - are measured at Blade 1 and shown in Figure 7.16. It can be seen
that the two resonance peaks appear to be a single peak if the frequency
resolution of the FRF is 0.05 Hz, which is comparable to 0.08 Hz used in
Test 1A. Although two natural frequencies can be distinguished with the aid
of a modal analysis code like MODENT, the errors in modal constants are
significant (Figure 7.17). With the existence of additional error from other
sources, slight but genuine natural frequency splits can be obscured.

7.4.2 Robustness of the predicted response

The impact of measurement error on the predicted response is investigated
by carrying out eleven 5000-sample DMC simulation runs on the FMM-
reduced order model of the test piece finite element model. A pattern cor-
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responds to an amplification factor of 1.529 is selected as the unperturbed
pattern. Based on observations in the experiment, the sources of error are
modelled by the following four ways:

Perturbed natural frequencies. The natural frequencies are perturbed
in two ways. Firstly, all natural frequencies are uniformly shifted with
a maximum of 0.1 Hz to simulate the effect of temperature change and
inaccurate global material properties. Secondly, natural frequencies
are perturbed randomly by up to±0.03 Hz to simulate the error related
to modal analysis.

Distorted mode shapes. Except for simulation run 1, uniformly-distributed
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random distortion with the maximum amplitude of either 5% or 10%
of an individual modal component is added to each modal component.

Missing modes. Some mode shapes are missing from a set of identified
mode shapes because (a) localised mode shapes, which are modes with
energy concentrated in few blades, can only be excited from specific
points and (b) the qualities of distorted 0ND and 1ND mode shapes
are poor due to the interaction between the blisk and the supporting
shaft. This effect is modelled in three levels, called L0, L1 and L2,
in the simulations. All modes are present in level L0. In level L1, 2
localised modes on average, which are the highest modes in a family,
are not considered in the FMM-ID algorithm. In level L2, the 0ND
and 1ND mode shapes, plus 4 localised modes on average, are not
considered in the FMM-ID algorithm.

Inverted signs. Some modal components with low amplitudes have their
phases perpendicular to other components of the same mode because
of noise, and wrong signs can be assigned to these components in
converting complex modes into real modes. The signs of half of the
modal components with the amplitudes smaller than 10% of the largest
amplitude in that mode shape are inverted to address this type of error.

While the natural frequencies are perturbed in all eleven simulation runs,
these runs include different combinations of the four types of error. The com-
binations of error types and the quality of response prediction in all eleven
simulations are listed in Table 7.3. The quality of the response prediction is
measured by using four parameters:

Parameter 1. The 1st percentile of the predicted amplification factor dis-
tribution

Parameter 2. The 99th percentile of the predicted amplification factor dis-
tribution

Parameter 3. The portion of samples having predicted amplification fac-
tors within 5% of that predicted using noiseless natural frequencies
and mode shapes

Parameter 4. The portion of samples where the highest response is pre-
dicted at the same blade as using noiseless natural frequencies and
mode shapes
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Run Noise Missing Inverted Parameter
modes signs 1 2 3 4

1 0% L1 × 1.524 1.530 1.00 1.00

2 L0 × 1.246 1.540 0.79 0.98
3 L1 × 1.218 1.536 0.71 0.95
4 5% L2 × 1.210 1.538 0.70 0.94
5 L0

√
1.186 1.533 0.57 0.87

6 L1
√

1.117 1.527 0.43 0.74

7 L0 × 1.133 1.538 0.46 0.83
8 L1 × 1.102 1.530 0.38 0.75
9 10% L2 × 1.089 1.532 0.38 0.76
10 L0

√
1.108 1.535 0.41 0.75

11 L1
√

1.084 1.531 0.32 0.67

Table 7.3: Impact of mode identification error on the predicted peak re-
sponse level.

The results show that the quality of the response prediction depends
strongly on the accuracy of the modal components, including those in lo-
calised modes. By introducing 5% error to modal components, only 80% of
all samples have predicted amplification factors within 5% of 1.529. Also,
efforts should be made to identify all localised modes, as Parameter 3 can
drop by as much as 8% if two less mode shapes are identified. If these modes
are identified, (i) the scatter of the predicted amplification factor, and (ii)
the mistuning identification error, which is the error related to the violation
of assumptions in constructing mistuning identification algorithms, can be
reduced. Madden et al [70] proposed to reweight the identified mode shapes
to minimise the mistuning identification error in a mistuning identification
algorithm. They have shown that mode shapes with natural frequencies
closest to the blade-alone counterpart should be given high weighting fac-
tors because the mistuning identification error with those modes is small.

While it is important to assign correct signs to all modal components,
this requirement can be met easily in proportionally-damped blisks if the
distortion of modal components is controlled to within 5%.

7.4.3 Identification of the damping mistuning pattern

Besides blisks with frequency mistuning, the procedure proposed by Griffin
and Feiner [43] is designed to predict the maximum response levels of blisks

138



Chapter 7. Predicting vibration response levels of integral bladed discs
(blisks)

with damping mistuning (Section 5.5.1) as well. According to their proposal,
the damping mistuning pattern is identified using the extended FMM-ID
algorithm. As complex mode shapes are required to identify damping mis-
tuning patterns, the robustness of the extended FMM-ID algorithm to error
in complex mode shapes is analysed below.

Mode shapes of non-proportionally damped systems can be complex,
and the complexity is significant if the natural frequencies of a structure are
close to each other [34], which is a characteristic of slightly-mistuned blisks.
The complexity of a mode can be measured by the MCF2 factor [34].

Although non-proportionality of damping is the only source leading to
complexity in true mode shapes, identified mode shapes can be complex due
to unidentified mode splits (Section 7.4.1) and measurement error. For ex-
ample, the natural frequencies of a mode in different FRFs can be slightly dif-
ferent if a mode shape is identified from FRFs generated with non-identical
impact excitations.

The robustness of the extended FMM-ID algorithm is checked by per-
turbing the mode shapes of a damping-mistuned blisk. The finite element
model of the test piece is mistuned by attaching two damping tapes of dif-
ferent sizes to Blades 1 and 13. The blisk is otherwise tuned. The first 24
complex modes of such a blisk are found, with the MCF2 factors of these
modes vary between 0 and 0.45. The phases of all modal components of all
24 modes are perturbed randomly with a standard deviation of 5 degrees,
but the magnitudes of the modal components are unperturbed. This range
of perturbation is similar to the scatter found in identified complex modes.
A DMC simulation with 5000 samples was carried out, and the distribution
of the mistuning parameters and damping mistuning parameters are plotted
in Figures 7.18 and 7.19, respectively.

While phase perturbation has a minor impact on the identified damp-
ing mistuning pattern, the identified frequency mistuning pattern is not
robust to perturbation of phases in modal components, especially on the
2 blades with dampers attached. As a result, extremely accurate complex
mode shapes is needed in order to generate reliable mistuning and damping
mistuning patterns from the extended FMM-ID algorithm.

139



Chapter 7. Predicting vibration response levels of integral bladed discs
(blisks)

0 5 10 15 20 25
-2

0

2

4

6
x 10

-3

Blade number

Id
en

tif
ie

d 
m

ist
un

in
g 

pa
ra

m
et

er

 

 

1st percentile of the identified pattern

99th percentile of the identified pattern

Identified pattern with noiseless modes

Figure 7.18: Distribution parameters of identified frequency mistuning pat-
terns using noisy modes.
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Figure 7.19: Distribution parameters of identified damping mistuning pat-
terns using noisy modes.

7.5 Recommendations for future experimental work

The response prediction method outlined in Section 7.2 can predict the
maximum response level of a blisk test piece if the procedure is planned and
carried out carefully. After the experimental demonstration and discussion
in Sections 7.3 and 7.4, respectively, it is found that good experimental data
is of critical importance in the whole procedure. To improve the quality of
experimental data, the following four recommendations should be observed:
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1. The experimental setup should be capable to fix the point of excitation
to avoid mode shapes being distorted

2. The point of excitation is preferred to be away from the centre

3. The frequency resolution of the FRF should be in the order of (or finer
than) ∆ω, the width of the half-power points of a resonance peak. The
frequency resolution should be even higher in testing slightly mistuned
blisks.

4. More than one excitation point is needed to capture all localised modes,
which are needed in the mistuning identification algorithm.

All localised modes should be identified at the modal analysis stage, and
the error in amplitudes of modal components should be kept under 5%. On
top of this, real modes should be sought if only the frequency mistuning
pattern needs to be identified. If the damping mistuning pattern is to be
identified, the phases of the components of complex mode shapes need to
be accurate to within 5 degrees.

The MAC function between the identified and reconstructed mode shapes,
which are mode shapes constructed by the FMM algorithm (or similar) using
the identified mistuning pattern, should be calculated. It is recommended
that the mode shapes should first be reconstructed assuming the blisk is un-
der the same condition as it is tested, e.g. stationary, such that the quality
of the identified mistuning pattern can be controlled. More accurate mode
shapes and responses of the test piece under a different condition, such as
under rotation, can be determined using a validated mistuning pattern. The
flow chart of validation, which forms a part of Figure 7.2, is shown in Figure
7.20.

7.6 Summary

The application of blisk to aero engine compressors has provided the op-
portunity of predicting the maximum vibration response level of any blisk
test piece in a test rig. A procedure for such purpose is demonstrated ex-
perimentally and the effects of potential sources of error are analysed. All
mode shapes in a family, including the localised ones, need to be identified in
modal testing and the error in each modal component needs to be controlled
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Figure 7.20: Improved response-prediction procedure.

to within 5% for reliable mistuning identification. Also, the error in phase
in each modal component should be kept to within 5 degrees if the damping
mistuning pattern is to be identified as well.
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Conclusions

The viability of the Mistuning Management Strategy has been shown in the pre-

vious chapters of this thesis. More robust bladed disc designs can be produced

by the various tools developed. Also, the requirements of predicting peak re-

sponses of mistuned bladed discs reliably are specified. In the foreseeable future,

the potential of high cycle fatigue failure of mistuned blisks can be determined

by regular checks.

The thesis contributes to knowledge in (i) understanding of the amplification

factor and the maximum amplification factor, (ii) provision of a new and more

efficient algorithm to estimate small probabilities, (iii) description of the blade

mistuning problem using a robust design concept, (iv) investigation of robust-

ness of bladed discs, (v) use of the maximum amplification factor sensitivity to

construct a new interblade coupling ratio and (vi) the reliability of the forced

vibration response prediction approach.

Recommendations are made for future research to refine the Mistuning Man-

agement Strategy. These include refinements to the algorithms used in the

Strategy, better understanding of the forced vibration response behaviour of

mistuned bladed discs, and the experimental techniques.

8.1 Conclusions

The viability of a Mistuning Management Strategy has been evaluated in
this thesis by reviewing the previous research and by developing new tools
to address existing limitations. The three steps in the strategy are repeated
below:
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1. Evaluation of the range of response level

2. Achieving a better bladed disc design

3. Monitoring the status of actual hardware

A new procedure has been proposed to carry out Step 1 more efficiently,
and a robustness map to help designers to facilitate Step 2. Also, the
response-prediction procedure related to Step 3 of the strategy will become
practical following the improvements in experimental techniques anticipated
in the foreseeable future. The conclusions on the three particular points
raised in the Objectives section are listed below.

8.1.1 Efficient estimation of small probabilities

The term “amplification factor” has been clearly defined in Section 3.1 as

the ratio of the highest forced vibration response level found in
any blade in the mistuned bladed disc concerned to the peak re-
sponse level found in every blade on a tuned bladed disc.

New names have been given to the alternative definitions proposed in
previous research, including (i) the “partial amplification factor”, where the
forced response level is only measured on some of the blades on a mistuned
bladed disc, and (ii) the “adjusted amplification factor”, where the response
level in a blade on a mistuned bladed disc is normalised with the peak
cantilever vibration response level of that blade.

In previous research, the Whitehead Factor (
(

1 +
√
N
)
/2) has been

shown to be an upper bound of the adjusted amplification factor if an iso-
lated mode family is excited. However, this research has shown that the
Whitehead Factor also represents, in some bladed disc designs, an upper
bound of the adjusted amplification factor if modes in the veering region are
excited. Furthermore, the upper bound of the adjusted amplification factor
of damping mistuned bladed discs has been derived.

It has been shown how the maximum amplification factor can be cal-
culated efficiently by an optimisation analysis using the conjugate gradient
method. The maximum amplification factor has been defined solely as the
value sought from an optimisation analysis. With the knowledge of the worst
mistuning patterns, simulations can be carried out by taking more samples
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around the worst mistuning patterns according to the importance sampling
and cross entropy methods.

A new procedure, based on optimisation analysis and the importance
sampling method, has been proposed to estimate the small but significant
probabilities of extreme amplification factors. This procedure is up to 1,000
times more efficient than a Direct Monte Carlo simulation, and is capable
to find the very small probabilities which are impossible to estimate using
Direct Monte Carlo simulations. In the example shown in this thesis, the
probability estimates of amplification factors up to 2.15 for a 24-sector blisk
can be evaluated, compared with 1.95 from a Direct Monte Carlo simulation.
In addition to the advantages listed above, the new procedure can also show
the mistuning patterns related to high amplification factors.

8.1.2 Reduction of the variability of responses in blades

By casting the blade mistuning problem as a robustness problem, mistuning
and the associated extremely high amplification factors have been defined
as input variability and robustness respectively. Two approaches, which
are based on probabilistics and interval analysis, have been developed to
quantify input variability and robustness. The blade mistuning problem
has been dealt with by using the outline of the Taguchi method and the
formulations of the robust optimisation method.

To help compare the robustness of different bladed disc designs, each
bladed disc design has been characterised by non-dimensional parameters
including: number of sectors, level of damping and interblade coupling ratio.
Through deriving the first-order maximum amplification factor sensitivity,
the most suitable interblade coupling ratio in studying robustness of bladed
disc has been found to be the minimum difference between the squares of
neighbouring natural frequencies.

Two outstanding questions raised by Nikolic [80], regarding the varia-
tions of the maximum amplification factor and the critical degree of mistune
in bladed disc designs, respectively, have been answered. The maximum am-
plification factors of bladed disc designs vary because this factor depends on
the interblade coupling ratio and damping, besides the number of sectors.
For example, a bladed disc design with a low interblade coupling ratio and a
high level of damping is likely to experience a maximum amplification factor
much lower than the Whitehead Factor. Also, the critical level of mistune
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varies between bladed disc designs because the maximum amplification fac-
tor sensitivity depends on the interblade coupling ratio and, to a certain
extent, damping of a bladed disc design.

The relationship between the maximum amplification factor and the de-
sign parameters (besides number of blades) has been used to create a “ro-
bustness map”, and the results from the 64-sector models and 24-sector
blisks are consistent with the trend shown in the map. The robustness of a
bladed disc design can be improved by any of the four options listed below:

Reducing maximum allowable mistune or mistuning scatter. The max-
imum and the 99.9th percentile amplification factors can be reduced
by imposing small maximum allowable mistune and small mistuning
scatter, respectively, in a bladed disc design with a high interblade
coupling ratio (e.g. c ≈ 0.02). For example, the maximum adjusted
amplification factor of a 64-sector model is reduced by 20% by lower-
ing the maximum allowable mistune from 4% to 2%, which is realistic
in manufacture.

Adjusting the interblade coupling ratio. The interblade coupling ra-
tio can be adjusted by changing the flexibility of discs and shroud
geometry. For example, bladed disc designs with more flexible discs
usually have higher interblade coupling ratios. Moreover, as Myhre
[78] showed, removing shrouds can reduce the interblade coupling ra-
tio significantly.

The interblade coupling ratio of a lightly-coupled bladed disc design
(e.g. c ≈ 0.002) can be lowered further to reduce the maximum ampli-
fication factor under a relatively high level of damping. For example,
with η = 0.004, the maximum adjusted amplification factor of Model
64D is 25% lower than that of Model 64A. In contrast, the interblade
coupling ratio of a heavily-coupled bladed disc design (e.g. c ≈ 0.02)
can be increased to lower the maximum amplification factor by as much
as 17% if the maximum allowable mistune is controlled to within, say,
2%.

However, major design changes may be required to adjust the in-
terblade coupling ratio, such as the increase of disc stiffness by an
order from Model 64A to Model 64D.

Imposing an intentional mistuning pattern. The intentional mistun-
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ing approach can reduce the likelihood of extremely high amplification
factors. In a typical case studied, the 99.9th percentile amplification
factor in a 24-sector blisk is reduced by 11% if an linear intentional
mistuning pattern of 5% is imposed. The magnitude of intentional mis-
tuning can be determined with the help of the importance sampling-
based method shown in Section 6.5.1.

Increasing the level of damping. The vibration response levels of blades
are reduced if the level of damping in an bladed disc assembly is in-
creased. A detailed investigation of the relationship between the am-
plification factor distribution and the level of damping has been carried
out. Although the amplification factor distribution changes with ad-
ditional damping, the magnitude of such is much smaller than the
reduction of the tuned response level. As a result, the magnitudes
of stresses in blades are lowered by adding dampers, but the varia-
tion of dynamic stresses between blades remain. Also, adding friction
dampers to bladed discs leads to complex effects in bladed discs and
is potentially expensive.

With these conclusions in mind, possible methods to improve robust-
ness for particular bladed disc designs, besides the intentional mistuning
approach, are presented below:

Bladed disc designs with high interblade coupling ratios (c ≈ 0.02).

The maximum amplification factor related to these bladed disc designs
can be reduced by specifying a lower maximum allowable mistune (e.g.
2% instead of 4%). Also, the interblade coupling ratio of a bladed disc
design can be increased by incorporating a more flexible disc. Al-
though the increase in level of damping does not affect the amplifica-
tion factor distribution significantly, the maximum stress experienced
on a blade is reduced because the tuned vibration response level is
lowered.

Bladed disc designs with low interblade coupling ratios (c ≈ 0.002).

The interblade coupling ratio can be further lowered in some situations
to reduce the maximum amplification factor, if the level of damping
is high. The level of stresses experienced in blades can be lowered by
adding damping because both the tuned vibration response level and
the maximum amplification factor are reduced.
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The amplification factor distributions under three specific situations have
also been discussed. Firstly, although the upper bound of the adjusted am-
plification factor increases by introducing damping mistuning, the adjusted
amplification factor distribution is robust to the magnitude of damping mis-
tuning. The pdf does not change significantly even if the damping mistuning
on a bladed disc reach as much as 20%.

Secondly, it is beneficial to excite modes in the veering region if the
maximum allowable mistune is small. The response level of a tuned bladed
disc excited in the veering region is significantly lower than that of the can-
tilever blade, and the maximum adjusted amplification factor sensitivity is
relatively low. By changing the intersector coupling stiffness, the maximum
adjusted amplification factor of a 64-sector model reduces from 4.3 to 1.72
if the maximum allowable mistune is kept at 5%. However, if mistuning
scatter is significant (e.g. σ = 4%), high response levels are more likely to
be encountered if modes in the veering region are excited. The adjusted am-
plification factor pdf is skewed to the right hand side under such a situation
(Figure 5.23).

At last, the current approach of using the deviation of the blade natural
frequency as the mistuning parameter is valid because the apparently-tuned
bladed discs are robust, but the forced vibration response estimates can
become more accurate if mass and stiffness mistuning on a bladed disc are
considered separately.

8.1.3 Validation of a response-prediction procedure

The potential of predicting the responses of individual mistuned blisks by
testing prior to installation has been investigated experimentally. While the
results from the experimental demonstration are within 9% of that given
by simulations, the experimental procedure has to be improved to capture
the FRFs more accurately, such that the predicted response becomes more
reliable.

The consequences of common sources or error on the predicted response
have been demonstrated in numerical simulations. The quality of exper-
imental data required for identifying the mistuning pattern, such as (i)
identification of all localised modes, (ii) accurate description of the natu-
ral frequencies and mode shapes of slightly split pairs of modes and (iii)
errors of 5% or smaller in all modal components, are at the limit of the cur-
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rent modal testing capabilities. In addition, the error in the phase in every
modal component has to be controlled to within 5 degrees of the true value
if both the frequency and damping mistuning pattern are to be identified
accurately.

8.2 Major contributions to knowledge

The thesis contributes to knowledge in the following areas:

1. A proper discussion and rationalisation of the variants of the ampli-
fication factor and the maximum amplification factor created in the
past 40 years is carried out. Also, the concepts of the amplification
factor and the maximum amplification factor are extended to damping
mistuned bladed discs.

2. A novel procedure to calculate the small but significant probabilities
of high amplification factors under a given mistuning distribution is
presented. This procedure is much more efficient than the commonly-
used Direct Monte Carlo simulation in estimating small probabilities,
such that the probabilities related to extreme amplification factors can
now be evaluated.

3. An attempt of casting the blade mistuning problem as a robust design
problem is presented. A novel and unprecedented example of using a
mixture of the Taguchi method and the robust optimisation method
in a single robust design problem is given.

4. The robustness of bladed disc designs under mistuning is studied, such
that (i) a new concept of “robustness map” is created for realistic
bladed discs to guide engineers to design more robust bladed discs,
(ii) potential methods of improving robustness of bladed discs are
presented and (iii) the effect on the robustness of imposing a linear
mistuning pattern is evaluated for the first time.

5. A first-order maximum amplification factor sensitivity is derived and
its relationship with design parameters of a bladed disc is analysed.
For the first time, an interblade coupling ratio applicable to all bladed
disc models is developed based on a theoretical analysis.

149



Chapter 8. Conclusions

6. An original experimental demonstration of the reliability of an am-
plification factor prediction procedure using an impact excitation has
been presented. The requirements on experimental data quality are
also specified.

The blade mistuning problem may be soon the most critical problem
faced by gas turbine designers after other major issues at the moment are
solved. This research can contribute to more efficient gas turbine designs in
the future.

8.3 Recommendations for future research

Although the Mistuning Management Strategy is proposed and shown to
be workable, further refinements can be carried out by solving the following
issues:

1. It has to be explained why the highest response level under an nEO
excitation is usually observed on blades with blade-alone natural fre-
quencies close to the natural frequency of the nND mode of the bladed
disc, and an apparent upper boundary exists among the random data
points in Figure 3.3.

2. The new procedure to find the small probabilities related to high am-
plification factor can be refined by sampling techniques, such as line
sampling [116], recently proposed in other disciplines.

3. The effects of imposing intentional mistuning patterns on bladed discs
on other than the forced vibration response behaviour should be in-
vestigated.

4. The mechanism of mistuning parameter evolution, such as crack growth
and tip wear, should be investigated further to facilitate better pre-
dictions of the evolution of the amplification factor in service life.

5. Further research is needed in experimental equipments and procedure
to achieve the data quality specified in Chapter 7. Also, the correlation
between the mistuning parameters of a test piece in stationary and
rotating states need to be validated experimentally.
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Appendix A

Modal properties of bladed
discs

Because a tuned bladed disc is a cyclic symmetric structure, there are
some special modal properties related to bladed discs. Every mode shape of
a tuned bladed disc vary n times sinusoidally around the annulus, where n
is the number of nodal diameters and can be equal to any integer between
0 and N/2. Also, the mode shapes can be grouped into families of modes
according to the mode shape on a single blade. The number of modes in a
family is equal to the number of blades on a bladed disc, N .

There are two nND modes in each family on a tuned bladed disc. These
two double modes are independent of each other because the mode shapes
are circumferentially separated by a 90◦ phase shift. These two modes have
the same natural frequencies, such that the natural frequencies are repeated
and as a result, there are less than N distinct natural frequencies in a mode
family. A typical plot of natural frequencies of a bladed disc is shown in
Figure A.1, where the natural frequencies are grouped according to mode
families and the number of nodal diameters in the mode shapes.

If a mode family is isolated (e.g. Mode family 1 in Figure A.1), the
magnitude of the mode shape in the disc part is very small to that in the
blades, and the mode shape of a single blade is similar to a mode shape
of a clamped blade. In other words, the modes of a bladed disc in an
isolated mode family are called blade-dominated modes. In this situation,
the vibration energy (both kinetic and potential) is concentrated in the
blades.

151



Appendix A. Modal properties of bladed discs

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

Nodal diameters

N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

 

 

Mode family 1

Mode family 2

Mode family 3

Veering region

Figure A.1: Natural frequencies of a 24-sector blisk.

The extreme in the contrary to an isolated mode family occurs at the
veering region, where mode shapes with the same number of nodal diameters
but of different mode families having close natural frequencies. An example
of a veering region is marked in Figure A.1. It is called as such because the
lines of mode families converge and veer away in a natural frequency plot.
A significant portion of modal energy of a mode in the veering region is
contained in the disc part of a bladed disc, so it is sometimes called a disc-
dominated mode. The difference between a blade- and a disc-dominated
mode is illustrated in Figure A.2.

DiscBlade

DiscBlade

A blade-dominated mode.

DiscBlade

DiscBlade

A disc-dominated mode.

Figure A.2: Two types of modes found on a bladed disc.

Cyclic symmetry is destroyed with the introduction of mistuning. The
mode shapes in a mistuned bladed disc are not circumferentially sinusoidal,
and a pair of distorted “nND” modes in a slightly mistuned bladed disc
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have close but distinct natural frequencies. These phenomena are called
mode distortion and mode splitting, respectively. In a mistuned bladed disc,
all modes in a mode family are excited under an nEO excitation because all
modes contain nND components due to mode distortion. The effects of mode
splitting and mode distortion under a particular mistuning pattern in Model
64B (Section 5.3.1) are shown in Figures A.3(a) and (b), respectively. If the
maximum mistune in a bladed disc is high, mode localisation can occur: the
mode shapes can be distorted significantly, such that the modal amplitudes
are significant in few blades and nearly zero in others.
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Figure A.3: Effect of mistune on (a) natural frequencies of the bladed disc
and (b) nodal diameter components of modes in a family.
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Implementation of the cross
entropy method

(The algorithm listed below is similar to that provided in Reference [106].)

The sampling distribution in (k + 1)th iteration, gk+1 ({x}), is found by
minimising the distance D between the sampling distribution, g ({x}), and
the ideal distribution defined in Section 3.4.1, g∗ ({x}):

D (g∗, g) = Eg∗
(

ln
g∗ ({x})
g ({x})

)
=
∫ x̂n

x̌n

· · ·
∫ x̂1

x̌1

g∗ ({x}) (ln g∗ ({x})− ln g ({x})) dx1 · · · dxn (B.1)

min
g

(D) = min
g

(∫ x̂n

x̌n

· · ·
∫ x̂1

x̌1

g∗ ({x}) (ln g∗ ({x})− ln g ({x})) dx1 · · · dxn
)

= max
g

(∫ x̂n

x̌n

· · ·
∫ x̂1

x̌1

g∗ ({x}) ln g ({x}) dx1 · · · dxn
)

(B.2)

As mentioned in Section 3.4.2, the sampling distribution is assumed to be
multivariate normal. If the distributions of mistuning parameters of different
blades are independent of each other, the pdf of the sampling distribution,
g ({x}), is defined by µm and σm (where m = 1, . . . , N), which are the
mean and the standard deviation of the mistuning parameter in blade m,
respectively:

g ({x}) =
N∏
m=1

1
σm
√

2π
exp

(
−(x− µm)2

2σ2
m

)
(B.3)
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The sampling distribution can be found by examining Equation (B.2)
because the gradient of the integral in Equation (B.2) equals to zero at that
distribution:

∇
∫ x̂n

x̌n

· · ·
∫ x̂1

x̌1

g∗ ({x}) ln gj+1 ({x}) dx1 · · · dxn = 0 (B.4)

Because the sampling distribution is multivariate normal, the gradient
operator, ∇g ({x}), refers to a vector with entries being the partial deriva-
tives of the pdf to all 2N defining variables:

∇g ({x}) =
{
∂g

∂µ1

∂g

∂σ1

∂g

∂µ2
. . .

∂g

∂µN

∂g

∂σN

}T
(B.5)

Equation (3.38), which is g∗ ({x}) = |h ({x}) f ({x})| /p, is substituted
into Equation (B.4) to form

∇
∫ x̂n

x̌n

· · ·
∫ x̂1

x̌1

h ({x}) f ({x}) ln gj+1 ({x}) dx1 · · · dxn = 0 (B.6)

According to the importance sampling method (Section 3.4.1), the sam-
pling distribution pdf in jth iteration, gj ({x}), can be incorporated:

∇
∫ x̂n

x̌n

· · ·
∫ x̂1

x̌1

h ({x}) f ({x})
gj ({x})

ln gj+1 ({x}) gj ({x}) dx1 · · · dxn = 0 (B.7)

The fraction f ({x}) /gj ({x}) in Equation (B.7) can be replaced by a
likelihood ratio, wj ({x}). Equation (B.6) can be approximated by

∇

(
1
N

R∑
i=1

h ({x})wj ({x}) ln gj+1 ({x})

)
= 0 (B.8)

where

ln g ({x}) = −
N∑
m=1

ln
(
σm
√

2π
)

+
(x− µm)2

2σ2
m

(B.9)

As h ({x})wj ({x}) in Equation (B.8) is independent of the sampling
distribution in (j + 1)th iteration, the only unknowns in Equation (B.8)
are the derivatives of ln g ({x}) with respect to the mean and the standard
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deviation the mistuning parameter of each sector:

∂ ln (g ({x}))
∂µm

=
x− µm
σ2
m

(B.10)

∂ ln (g ({x}))
∂σm

=
1
σm

(
1 +

(x− µm)2

σ2
m

)
(B.11)

By substituting Equations (B.10) and (B.11) into Equation (B.8), the
entries of the mean vector, {µj+1}, and the variance vector,

{
σ2
j+1

}
, in

(j + 1)th iteration can be found by Equations (B.12) and (B.13) respectively:

{µj+1}m =
∑R

i=1 h ({xi})wj ({xi})xmi∑R
i=1 h ({xi})wj ({xi})

(B.12)

{
σ2
j+1

}
m

=
∑R

i=1 h ({xi})wj ({xi})x2
mi∑R

i=1 h ({xi})wj ({xi})
− {µj+1}m (B.13)

B.1 Outline of the algorithm

An algorithm to find small probabilities using the importance sampling
method is outlined below. The algorithm is based on the derivation made
in the previous section, and is similar to that provided in Reference [106].
It is assumed that the initial sampling distribution g1 - with the mean vec-
tor {µ1} and the variance vector

{
σ2

1

}
- is known. The mean vector of the

initial sampling distribution comprises the worst mistuning patterns, and
the initial covariance matrix of the distribution is usually a diagonal matrix
with entries smaller than the variance of the probability distribution.

The algorithm comprises two stages. At the first stage, iterative simu-
lations with R1 samples are run to find a good sampling distribution using
the cross entropy method. A pass ratio, γ, is set to estimate the quality
of the sampling distribution found using the cross entropy method in an
iteration. A high pass ratio (e.g. γ = 0.2− 0.5) ensures the sampling distri-
bution is close to the best possible counterpart, but lower pass ratios (e.g.
γ = 0.01−0.1) can be set if a high pass ratio is not reached in simulations in
particular problems. The iteration ends if the mean of the function h ({εi})
in the samples of Iteration k is higher than γ, and the sampling distribution
calculated based on Iteration k becomes the sampling distribution at the
second stage, the importance sampling simulation.

At the second stage, an importance sampling simulation with R2 samples
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is run. The size of the second simulation, R2, is usually higher than R1 such
that a more accurate probability estimate can be found.

1. Set the counter j = 1.

2. (The cross entropy method) the following loop is executed:

(a) Generate R1 sets of random variables according to probability
distribution gj ({x}), which the mean and variance vectors are
{µ1} and

{
σ2

1

}
respectively.

(b) Evaluate each Ai = a ({xi}).

(c) Evaluate at ({xi}) for each sample as described in Equation (3.29).

(d) Evaluate the weighting ratio wi = gj ({xi}) /f ({xi}).

(e) Find the distribution parameters for gj+1 by Equations (B.12)
and (B.13).

(f) If
∑R1

i=1 hi < γR1, set the counter j = j + 1 and the loop is
repeated, otherwise the loop is terminated.

3. (Importance sampling with the best distribution) importance sampling
is carried out with R2 samples, chosen according to the distribution
gj+1. The functions a ({xi}), h ({xi}) and w ({xi}) are evaluated for
each sample, in a same way as in Steps 2(b) to 2(d).

4. The probability and variance of a ({x}) > A0 are found using equations
below:

p =
∑

i h ({xi})w ({xi})
R2

(B.14)

s2 =
∑

i h ({xi})w ({xi})2

R2
− p2 (B.15)

∆p = 1.960

√
s2

R2
(B.16)

The source of the value 1.960 in Equation (B.16) is explained in Section
3.3 and Reference [61].
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First-order derivatives of
natural frequencies and
mode shapes

The derivation in this section is a simplified form of that provided by
Ewins [34] and Friswell [39] by taking account of ∂[K]

∂α = 0, ∂2[K]
∂α2 = 0 and

∂2[M ]
∂α2 = 0.

C.1 Derivatives of non-repeated natural frequen-

cies

The derivation begins with the equation that finds the natural frequencies
of a vibration system:

(
[K]− ω2

l [M ]
)
{φl} = {0} (C.1)

By differentiating Equation (C.1),

(
[K]− ω2

l [M ]
) ∂ {φl}

∂α
+


�
�
��

0
∂ [K]
∂α

−
∂ω2

l

∂α
[M ]− ω2

l

∂ [M ]
∂α

 {φl} = {0} (C.2)
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Pre-multiply (C.2) with {φl}T ,

���
���

���
���

��:0

{φl}T
(
[K]− ω2

l [M ]
) ∂ {φl}

∂α
+ {φl}T

(
−
∂ω2

l

∂α
[M ]− ω2

l

∂ [M ]
∂α

)
{φl} = 0

0−
∂ω2

l

∂α
− ω2

l {φl}
T ∂ [M ]

∂α
{φl} = 0

Therefore
∂ω2

l

∂α
= −ω2

l {φl}
T ∂ [M ]

∂α
{φl} (C.3)

C.2 Derivative of a mode shape

The derivative of a mode shape can be written as a weighed combination of
all mode shapes:

∂ {ψl}
∂α

=
N∑
r=1

{ψr}βlr (C.4)

Collectively, the mode shape derivative matrix is the product of the mode
shape matrix and a weighting matrix, as shown in Equation (C.5).

∂ [Ψ]
∂α

= [Ψ]′ = [Ψ] [β] (C.5)

If r 6= l and ωr 6= ωl, the weighting factors βrl are found by differentiating
Equation (C.1) with respect to α [34]:

βlr = −{ψl}T


�
�
��

0
∂ [K]
∂α

− ω2
r

∂ [M ]
∂α

 {ψr} 1
ω2
l − ω2

r

(C.6)

If r = l, the denominator of the fraction in Equation (C.6) equals to
zero. βll is found by differentiating the equation {ψl}T [M ] {ψl} = 1 with
respect to α, such that

βll = −1
2
{ψl}T

∂ [M ]
∂α

{ψl} (C.7)

In bladed discs, pairs of distinct mode shapes are found having the same
natural frequency. The derivatives of natural frequencies and mode shapes
of this case, where r 6= l but ωr = ωl, is discussed in the Section C.3.
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Appendix C. First-order derivatives of natural frequencies and mode shapes

C.3 Natural frequency and mode shape deriva-

tives of double modes

By the definition of eigenvalues and eigenvectors, any linear combination of
a pair of mode shapes associated with an identical natural frequency is also
a mode shape. Although a mode shape in a tuned bladed disc can be any
weighted combination of the two sinusoidal and spatially orthogonal mode
shapes, mode shapes are unique in mistuned bladed discs. Therefore, we
need to find the “correct” mode shapes such that the derivatives of natural
frequencies and mode shapes can be calculated accordingly [39].

A pair of correct double modes {ψn1} and {ψn2} can be calculated by
post-multiplying a pair of arbitrary double modes, denoted {φn1} and {φn2}
by a weighting matrix [H], as shown in Equation (C.8):[

ψn1 ψn2

]
=
[
φn1 φn2

]
[H] (C.8)

The derivatives of natural frequencies and the entries of matrix [H] can
be found by solving the eigenvalue-eigenvector problem in Equation (C.9):

[ψn1 ψn2 ]T


�
�
��

0
∂ [K]
∂α

− ω2
n

∂ [M ]
∂α

 [ψn1 ψn2 ] [H] =

 ∂(ω2
l )

∂α 0

0
∂(ω2

r)
∂α

 [H]

(C.9)

The same summation-of-weighted-modes approach is used to find the
derivative of the mode shape. While βll can be found using Equation (C.7),
βrl has to be found using the second-order derivative of Equation (C.1). By
assuming the stiffness matrix being constant and the second-order derivative
of mass being zero,

−2

(
∂
(
ω2
l

)
∂α

[M ] + ω2
l

∂ [M ]
∂α

){
φ′l
}
−

(
2
∂
(
ω2
l

)
∂α

∂ [M ]
∂α

+
∂2
(
ω2
l

)
∂α2

[M ]

)
{φl} = 0

(C.10)
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Appendix C. First-order derivatives of natural frequencies and mode shapes

Pre-multiplying Equation (C.10) with {φr}T ,

2 {φr}T
∂
(
ω2
l

)
∂α

[M ]
{
φ′l
}

+ 2 {φr}T ω2
l

∂ [M ]
∂α

{
φ′l
}

+ 2 {φr}T
∂
(
ω2
l

)
∂α

∂ [M ]
∂α

{φl} · · ·

+
���

���
���

���:
0

{φr}T
∂2
(
ω2
l

)
∂α2

[M ] {φl} = 0 (C.11)

By decomposing all mode shape derivatives and applying (C.14),

βrl
∂
(
ω2
l

)
∂α

− βrl
∂
(
ω2
r

)
∂α

+ {φr}T
∂
(
ω2
l

)
∂α

∂ [M ]
∂α

{φl} = 0 (C.12)

As a result,

βrl =
∂
(
ω2
l

)
∂α

(
{φr}T

∂ [M ]
∂α

{ψl}
)

1
∂(ω2

r)
∂α −

∂(ω2
l )

∂α

(C.13)

C.4 Summary

Three equations are used to find βrl depending on the relationship between
s and r:

1. If r 6= l, ωr 6= ωl: βrl is calculated using Equation (C.6).

2. If r = l, βll is calculated using Equation (C.7).

3. If r 6= l, ωr = ωl (i.e. r = n1, l = n2), βrl is calculated using Equation
(C.13). However, βrl = 0 if only the mass matrix is perturbed. By
replacing

[
φr φl

]
in Equation (C.9) with

[
ψr ψl

]
, [H] = [I]

such that

[ψl ψr]
T

(
−ω2

l

∂ [M ]
∂α

)
[ψl ψr] =

 ∂(ω2
l )

∂α 0

0
∂(ω2

r)
∂α

 (C.14)

By matrix algebra, the bracketed term in Equation (C.13) corresponds
to off-diagonal terms on the right hand side of Equation (C.14), which
is zero.
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Sensitivity of the maximum
adjusted amplification factor

D.1 Simplifying the vibration responses derivatives

vector

The full equation of finding the response derivative vector ∂{u}
∂α is shown in

Equation (6.4), and is repeated below:

∂ {u}
∂α

=
{
u′
}
≈

∑
l=n1,n2

(
{ψl}T {fn}

)′
ω2
l − Ω2 + jηω2

l

{ψl}+
∑

l=n1,n2

{ψl}T {fn}
ω2
l − Ω2 + jηω2

l

{
ψ′nl
}

+
∑

l=n1,n2

{ψl}T {fn}
(

1
ω2
l − Ω2 + jηω2

l

)′
{ψl} (D.1)

Equation (D.1) is simplified by considering each term separately.

The first term is simplified by using Equation (C.4), where the mode
shape derivative can be written as the weighed sum of mode shapes:

∂ {ψr}
∂α

=
N∑
l=1

{ψl}βlr

It is noted that βlr is proportional to ω2
r/
(
ω2
r − ω2

l

)
if r 6= l (Equation

(C.6)), and βll is proportional to unity (Equation (C.7)), if we assume the
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expression

{φr}T
∂ [M ]
∂α

{φl} (D.2)

for different pairs of r and l are in the same order of magnitude. Because
the natural frequencies in bladed discs are generally close to each other, βll
is negligible. Also, {ψl}T {f} = 0 if {ψl} corresponds to an mND mode and
m 6= n. As a result, the first term in Equation (D.1) can be approximated
to zero.

The second term in Equation (D.1) can be simplified because the two
slightly split modes form a single resonant peak in slightly mistuned sys-
tems because natural frequencies are close to each other. In this case, the
resonant frequency, Ω, can be taken as either ωn1 or ωn2 , and both can be
approximated to ωn, the natural frequency of the tuned nND mode. For
example, if Ω = ωn1 , the denominator of the second term in (6.4) can be
simplified:

ω2
n1
− ω2

n1
+ jηω2

n1
= jηω2

n1
≈ jηω2

n

ω2
n2
− ω2

n1
+ jηω2

n2
≈ jηω2

n2
≈ jηω2

n

The third term of Equation (D.1) is simplified by introducing a dimen-
sionless mode split parameter S. The parameter S and its derivative with
respect to α are defined in Equations (D.3) and (D.4):

S =
ω2
n2
− ω2

n1

ω2
n

(D.3)

∂S

∂α
= S′ ≈ 1

ω2
n

(
∂
(
ω2
n2

)
∂α

−
∂
(
ω2
n1

)
∂α

)
(D.4)

In addition, four assumptions are made:

1. ω2
n1

and ω2
n2

diverge with similar magnitudes but in opposite directions,
such that ω2

n1
≈ (1− S/2)ω2

n and ω2
n2
≈ (1 + S/2)ω2

n

2. Ω = ωn1

3. the damping loss factor η is small

4. the mode splitting parameter S is smaller than η in magnitude

Given the mode split parameter and the four assumptions, the two
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derivatives appearing in the third term of Equation (D.1) are simplified
in Equations (D.5) and (D.6):

∂

∂α

(
1

ω2
n1
− Ω2 + jηω2

n1

)
=

1
jηω2

n

∂

∂α

(
1

1− S
2

)
≈ 1
jηω2

n

S′

2
(D.5)

∂

∂α

(
1

ω2
n2
− Ω2 + jηω2

n2

)
=

1
ω2
n

∂

∂α

(
1

S + jη
(
1 + S

2

))

=
1
ω2
n

−1(
S + jη

(
1 + S

2

))2 (S′ + jηS′

2

)
≈ S′

η2ω2
n

(
1 +

jη

2

)
≈ S′

η2ω2
n

(D.6)

Equation (D.5) is approximated to zero because the magnitude of the
result in Equation (D.6) is much higher than that in Equation (D.5) un-
der small η. By combining the simplification efforts above, Equation (6.4)
becomes Equation (D.7) (which is Equation (6.5)):

∂ {u}
∂α

=
{
u′
}

=
[
ψ′n1

ψ′n2

] [ψn1 ψn2 ]T {fn}
jηω2

n

+ {ψn2}
{ψn2}

T {fn}
ω2
n

S′

η2
(D.7)

Given the response derivative vector to the maximum mass mistune is
known, the response level derivative vector can be found by using Equation
(6.6). The ratio ūi/ |ui| in this equation can be simplified by assuming DOF
1 has a zero phase. This can be achieved by shifting the phase of the force
vector.

The phase difference between neighbouring DOFs is 2πn
N , and is denoted

θ. By writing ejθ as ∠θ, the response vector can be written down as

{u} = |u|
{

1 ∠θ · · · ∠ (N − 1) θ
}T

(D.8)

The conjugate of the response vector, {ū}, equals to

{u} = |u|
{

1 ∠− θ · · · ∠− (N − 1) θ
}T

(D.9)
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As a result, ūi/ |ui| = e−j
2πn(i−1)

N .

D.2 Analysing the adjusted amplification factor

sensitivity

Although the amplification factor sensitivity and design parameters do not
form a straightforward relationship, the dependence of the amplification fac-
tor sensitivity on design parameters can be analysed qualitatively by consid-
ering the response sensitivities. By substituting the weighted sum of mode
shapes for the mode shape derivatives in Equation (D.7),

{
u′
}

= [Ψ]


β1n1 β1n2

...
...

βNn1 βNn2

 [ψn1 ψn2 ]T {fn}
jηω2

n

+ {ψn2}
{ψn2}

T {fn}
ω2
n

S′

η2

=
N∑
l=1

{ψl} {βln1 β1n2}
[ψn1 ψn2 ]T {fn}

jηω2
n

+ {ψn2}
{ψn2}

T {fn}
ω2
n

S′

η2

(D.10)

All variables present in Equation (D.10) are design parameters of the
tuned bladed disc design, except the matrix [β] and the mode splitting pa-
rameter derivative S′. Actually, [β] and S′ are dependent on design param-
eters as well:

• each βln, except if ωl = ωn, is calculated using Equation (C.6):

βln =
ω2
n

ω2
l − ω2

n

{ψl}T
(
∂ [M ]
∂α

)
{ψn} (D.11)

The terms βln if ωl = ωn are negligible as discussed in Section 6.2.1.
By expanding the coefficient βln for other values of l,

{ψl} {βln1 βln2} =
ω2
n

ω2
l − ω2

n

{ψl} {ψl}T
(
∂ [M ]
∂α

)
[ψln1 ψ1n2 ] (D.12)

• The derivative of the mode splitting parameter S′ is proportional to
ω2
n (Equation (D.4)).
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Suppose the highest response level in a slightly mistuned model is ob-
served at DOF 1, the response sensitivity of DOF 1 to maximum mistune
can be written as

∂u1

∂α
=

N∑
l=1,l 6=n1,n2

blω
2
n

ω2
l − ω2

n

+
bη
η

(D.13)

where

bl = −jψ1l {ψl}
T ∂ [M ]

∂α
[ψln1 ψ1n2 ] [ψn1 ψn2 ]T {fn} (D.14)

bη = ψ1n2

(
∂ω2

n2

∂α
−
∂ω2

n1

∂α

)
{ψn2}

T {fn}

= ψ1n2

(
{ψn2}

T ∂ [M ]
∂α

{ψn2} − {ψn1}
T ∂ [M ]

∂α
{ψn1}

)
{ψn2}

T {fn}

(D.15)

It can be seen that the coefficients bl and bη are dependent on the exact
mistuning pattern, and the maxima of both of them have the same order
of magnitude. Finally, the adjusted amplification factor sensitivity can be
written in a similar form:

∂A

∂α
=

 N∑
l=1,l 6=n1,n2

Re (bl)ω2
n

ω2
l − ω2

n

+
Re (bη)
η

 1
ηk

(D.16)

For the mistuning pattern corresponding to the sensitivity of the max-
imum adjusted amplification factor, bl is probably negative if ωl < ωn and
positive otherwise.
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Appendix E

Pdf of the sum of random
numbers of different
distributions

(The derivation below is carried out with the kind help of Dr. Roy
Jacobs.)

If a mistuning pattern {x}, with N elements, is the sum of random
vectors {d} and {q} as described in Section 6.5.1, the pdf of {x} is expressed
in Equation (6.11):

g ({x}) =
1

δ2 − δ1

∫ δ2

δ1

N∏
i=1

fG (xi − diδ) dδ

where δ is the magnitude of intentional mistuning, and fG refers to the
pdf of a normally-distributed variable with zero mean:

fG (x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
(E.1)

The sampling distribution pdf (Equation (6.11)) can be evaluated by
substituting Equation (E.1) into the integrand of (6.11):

N∏
i=1

fG (xi − diδ) =
(

1
σ
√

2π

)N
︸ ︷︷ ︸

AN

exp

(
− 1

2σ2

N∑
i=1

(xi − diδ)

)
(E.2)
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Equation (E.2) can be derived further:

(E.2) = AN exp

(
− 1

2σ2

N∑
i=1

(
x2
i − 2xidiδ + d2

i δ
2
))

= AN exp

(
−
∑N

i=1 x
2
i

2σ2

)
︸ ︷︷ ︸

B

exp

(
−
−2δ

∑N
i=1 (xidi) + δ2

∑N
i=1 d

2
i

2σ2

)
︸ ︷︷ ︸

C

(E.3)

As A and B are independent of δ, the terms can be taken out of the
integral in Equation (6.11). The variable C is evaluated by completion of
squares, such that it becomes a form similar to that of the normal distribu-
tion pdf.

C = exp

− 1
2σ2


(∑N

i=1 xidi

)2

∑N
i=1 d

2
i

− 2δ
N∑
i=1

(xivi) + δ2
N∑
i=1

d2
i −

(∑N
i=1 xidi

)2

∑N
i=1 d

2
i




= exp


(∑N

i=1 xidi

)2

2σ2
∑N

i=1 d
2
i

 exp

−
√∑N

i=1 d
2
i

2σ2

(∑N
i=1 xidi∑N
i=1 d

2
i

− δ

)2


=
1
A

exp


(∑N

i=1 xidi

)2

2σ2
∑N

i=1 d
2
i

 fG

(√
1∑N
i=1 d

2
i

(
N∑
i=1

xivi −
N∑
i=1

d2
i

))
(E.4)

By substituting Equations (E.3) and (E.4) into Equation (6.11),

g ({x}) =
1

δ2 − δ1

(
1

σ
√

2π

)N−1

exp

−∑N
j=1 x

2
i

2σ2
+

(∑N
i=1 xidi

)2

2σ2
∑N

i=1 d
2
i

 · · ·
∫ δ2

δ1

fG

∑N
i=1 (xivi)−

∑N
i=1 d

2
i√∑N

i=1 d
2
i

 dδ (E.5)

The integrand in Equation E.5 can be calculated using the values of the
cumulative distribution function of the normal distribution at δ = δ1 and
δ2.
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Appendix F

The Fundamental Mistuning
Model (FMM) and FMM-ID
algorithms

(The derivation in this section is based on Reference [35].)

F.1 The Fundamental Mistuning Model (FMM)

algorithm

The Fundamental Mistuning Model (FMM) algorithm was first developed
to find the natural frequencies and mode shapes of an isolated mode family
of a mistuned blisk, denoted ωM and {βM}, respectively, using three pieces
of information:

1. A diagonal matrix with the entries being the tuned natural frequencies
of the mode family considered in the tuned blisk design, [ω]

2. The tuned mode shapes of the mode family considered in the tuned
blisk design, [Ψ]. Travelling modes are required in the FMM algorithm,
which means [Ψ] is complex:

[Ψ] = [{ψ0} {ψ1F} {ψ2F} · · · {ψ2B} {ψ1B}] (F.1)

{ψnF} and {ψnB} refer to nND forward- and backward-travelling modes,
respectively.

3. The mistuning pattern of the mistuned blisk, in terms of the natural
frequency deviation of a sector, {x}
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A good example of an isolated mode family is the first mode family
shown in Figure A.1, as the natural frequencies of an isolated mode family
are well separated from those of other mode families. The FMM algorithm
can represent the properties of a mistuned blisk by using a system of N
equations. There exists a second, but implicit, assumption, that mistuning
in a blisk perturbs the stiffness matrix only.

The derivation begins with dividing both stiffness and mass matrices
in a mistuned blisk into the tuned and the mistuned parts. The natural
frequencies and mode shapes of a mistuned blisk can be found by evaluating
Equation (F.2):

(
[K] + [∆K]− ω2

M ([M ] + [∆M ])
) {
ψM

}
= {0} (F.2)

Because the family of modes is isolated, the behaviour of a mistuned
blisk within the natural frequency range of that family of modes can be ap-
proximated by the properties related to these N modes in a family, denoted
[Ψ]. As a result, a mistuned mode is approximated by the weighted sum of
the N modes: {

ψM

}
= [Ψ] {βM} (F.3)

Equation (F.2) is pre-multiplied by the Hermitian transpose of [Ψ], de-
noted [Ψ]H, to become

[Ψ]H
(
[K] + [∆K]− ω2

M ([M ] + [∆M ])
)

[Ψ] {βM} = {0} (F.4)

Because [Ψ]H [K] [Ψ] =
[
ω2
]
, which is a diagonal matrix with squares

of natural frequencies of the tuned blisk, and [Ψ]H [M ] [Ψ] = [I], Equation
(F.1) becomes([

ω2
]

+ [Ψ]H [∆K] [Ψ]− ω2
M [I]− ω2

M [Ψ]H [∆M ] [Ψ]
)
{βM} = {0}([

ω2
]

+ [Ψ]H [∆K] [Ψ]− ω2
M [Ψ]H [∆M ] [Ψ]

)
{βM} = ω2

M {βM}

(F.5)

The FMM algorithm treats Equation (F.5) as an eigenvalue-eigenvector
problem, with natural frequencies of the mistuned blisk, ω2

M, and weighting
factors, {βM}, being the eigenvalues and eigenvectors of the matrix in the
parentheses. Such an eigenvalue-eigenvector analysis implicitly assumes that
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only the stiffness matrix is perturbed. In a normal eigenvalue-eigenvector
analysis, every eigenvector is normalised such that {βM}H {βM} = 1. Also,
the modal mass of the mistuned blisk related to any particular mode deliv-
ered by the FMM algorithm,

{
ψM

}
, is

{
ψM

}H [MM]
{
ψM

}
= {βM}H [Ψ]H ([M ] + [∆M ]) [Ψ] {βM}

= {βM}H [Ψ]H [M ] [Ψ] {βM}+ {βM}H [Ψ]H [∆M ] [Ψ] {βM}

= {βM}H {βM}︸ ︷︷ ︸
=1

+ {βM}H [Ψ]H [∆M ] [Ψ] {βM} (F.6)

As a result, the mode shapes delivered by the FMM algorithm are true
mode shapes of the blisk only if [∆M ] = [0], i.e. mistuning perturbs the
entries in the stiffness matrix only.

If the matrix product [Ψ]H [∆K] [Ψ] in Equation (F.6) is denoted [A],
Equation (F.6) becomes

([
ω2
]

+ [A]
)
{βM} = ω2

M {βM} (F.7)

The remainder of the derivation is dedicated to finding the structure of
the matrix [A]. If the perturbation of the stiffness matrix is confined within
individual sectors (e.g. within blades), [∆K] is a block diagonal matrix.
The mth-row, nth-column entry in matrix [A] can be written as

Amn = {ψm}H


∆K0 0

∆K1

. . .

0 ∆K(N−1)

 {ψn} (F.8)

It is assumed that i, m and n are counted from 0 to (N − 1) in this
analysis. To simplify Equation (F.8), the entries in each tuned mode shape
{ψ} can be divided into N groups according to the location of the DOF:

{ψ}H =
{{
ψ(0)

}H
,
{
ψ(1)

}H
, · · · ,

{
ψ(N−1)

}H
}

(F.9)
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By substituting Equation (F.9) into Equation (F.8), and considering only
the perturbation in one sector (e.g. Sector 0) only,

{ψm}H


∆K0 0

0
. . .

0 0

 {ψn} =
{
ψm(0)

}H [∆K0]
{
ψn(0)

}
(F.10)

By repeating the approach in Equation (F.10) in every sector,

Amn =
N−1∑
i=0

{
ψm(i)

}H [∆Ki]
{
ψn(i)

}
(F.11)

Because travelling modes are used in the FMM algorithm, the mode
shape over Sector i,

{
ψ(i)

}
, is the phase shift of the mode shape over Sector

0,
{
ψ(0)

}
. Equation (F.11) can be simplified to become Equation (F.12):

Amn =
N−1∑
i=0

exp
(
j2π (m− n) i

N

){
ψm(0)

}H [∆K]
{
ψn(0)

}
(F.12)

The existence of two different modal quantities - {ψm} and {ψn} - in
Equation (F.12) can be eliminated because any sector mode shape in an
isolated mode family can be replaced by a blade-alone mode, denoted {ψb},
as they are of similar shapes. The difference between the magnitudes of a
blade-alone mode and a sector mode of the whole blisk is the product of
1/
√
N and a scaling factor, which is determined as the ratio of the tuned

natural frequency for Mode m (or n) to the sector-alone natural frequency,
ωb. After the replacement, Equation (F.12) becomes

Amn =
N−1∑
i=0

exp
(
j2π (m− n) i

N

)
ωmωn
Nω2

b

{ψb}H [∆Ki] {ψb} (F.13)

The relationship between the sector frequency deviation of Sector i, xi,
and the stiffness perturbation of that sector, [∆Ki], is found by calculating
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the Rayleigh quotient of Sector i:

(ωb (1 + xi))
2 =
{ψb}H ([Kb] + [∆Ki]) {ψb}

{ψb}H [Mb] {ψb}
2ω2

bxi ≈ {ψb}
H [∆Ki] {ψb} (F.14)

Matrices [Kb] and [Mb] in Equation (F.14) are the sector-alone stiffness
and mass matrices respectively. Substituting Equation (F.14) into Equation
(F.13) gives

Amn =
2ωmωn
N

N−1∑
i=0

exp
(
j2π (m− n) i

N

)
xi (F.15)

It can be seen that the summation in Equation (F.15) is identical over
a diagonal of [A] and is the discrete Fourier transform of the mistuning
pattern. By writing

x̃n =
1
N

N−1∑
i=0

exp
(
−j2πni
N

)
xi (F.16)

The matrix [A] can be written as

[A] = 2 [ω]


x̃0 x̃1 . . . x̃(N−1)

x̃(N−1) x̃0 x̃(N−2)
...

. . .
...

x̃1 x̃2 . . . x̃0

 [ω] = 2 [ω] [x̃] [ω] (F.17)

As a result, Equation (F.7) becomes

([
ω2
]

+ 2 [ω] [x̃] [ω]
)
{βM} = ω2

M {βM} (F.18)

F.2 The FMM-ID algorithm

Feiner and Griffin [35] created an mistuning identification algorithm on top
of the FMM algorithm and called it the FMM-ID algorithm. The fundamen-
tal FMM-ID algorithm, called the basic FMM-ID, identifies the mistuning
pattern of a blisk, {x}, using
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1. all N ′ identified natural frequencies of a mode family in the mistuned
blisk,

[
ωM

]
;

2. all N ′ identified mode shapes of a mode family in the mistuned blisk,[
ΨM

]
;

3. the natural frequencies of a mode family in the tuned blisk design, [ω];
and

4. the mode shapes of a mode family in the tuned blisk design, [Ψ]. This
is not required in the original derivation shown in Reference [36], but
inclusion of mode shape information can improve the quality of the
identification.

On top of the basic FMM-ID, they have created three additional vari-
ants of the algorithm: basic-extended FMM-ID, advanced FMM-ID and
advanced-extended FMM-ID. In the FMM-ID-related terminology, “extended”
means the capability of identifying the variation of the level of damping on
blades, and “advanced” refers to the capability of identifying the mistuning
pattern without the use of the tuned natural frequencies. All variants of the
FMM-ID algorithms can identify the mistuning pattern if not all N modes
in a family are identified.

To conform to the context of this thesis, only the basic and the basic-
extended FMM-ID algorithms are discussed in the current section. The
derivations of the two algorithms are largely identical except at the final
stage.

The derivation begins with finding the relationship between one identi-
fied mode shape (with the corresponding natural frequency) and the mistun-
ing pattern. The terms in Equation (F.18) are rearranged into the following
form:

2 [ω] [x̃] [ω] {βM} =
(
ω2

M [I]−
[
ω2
])
{βM} (F.19)

where the vector {βM} is evaluated by carrying out Equation (F.3) in
an opposite direction:

{βM} = [Ψ]−1 {ψM

}
(F.20)

The unknown in Equation (F.19) is the Fourier transform of the mistun-
ing pattern, [x̃]. The left hand side of Equation (F.19) is rewritten in two
steps:
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1. A new vector,
{
γM

}
, is created:

{
γM

}
= [ω]

{
βM

}
(F.21)

such that the left hand side of Equation (F.19) becomes

2 [ω] [x̃]
{
γM

}
(F.22)

2. The product between a circulant matrix, [x̃], and a vector,
{
γM

}
,

in Equation (F.22) is transformed into a product between a Hankel
matrix, [ΓM], and a vector, {x̃}, where

[ΓM] =


γM0 γM1 . . . γM(N−1)

γM1 γM2 . . . γM0
...

...
...

γM(N−1) γM0 . . . γM(N−2)

 {x̃} =


x̃0

x̃1

. . .

x̃(N−1)


After the two-step rearrangement, Equation (F.19) becomes

2 [ω] [ΓM] {x̃} =
(
ω2 [I]−

[
ω2
])
{βM} (F.23)

Equation (F.23) gives the relationship between the mistuning pattern of
a blisk to one identified mode on a blisk test piece. Usually, more than one
measured mode is available, and those modes are also needed to reduce the
error. Equation (F.23) is constructed using every identified mode, and all
equations are assembled to form Equation (F.24):


2 [Ω] [Γ1]
2 [Ω] [Γ2]

...
2 [Ω] [ΓN ′ ]

 {x̃} =



(
ω2

1 [I]−
[
Ω2
])
{βM1}(

ω2
2 [I]−

[
Ω2
])
{βM2}

...(
ω2
N ′ [I]−

[
Ω2
])
{βMN ′}

 (F.24)

The number of Equations in Equation (F.24), which is (NN ′), exceeds
the number of variables in {x̃}, N . As a result, a least-squares fit of {x̃}
can be found. The identified mistuning parameter of Sector i, xIi, is found
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by calculating the inverse discrete Fourier transform of {x̃}:

xIi =
N−1∑
n=0

exp
(
j2πni
N

)
x̃n (F.25)

In the basic FMM-ID algorithm, all identified mistuning parameters xIi

represent the natural frequency deviations of blades. The identified mistun-
ing parameters are supposed to be real, and the imaginary part of each xIi

is removed. However, the basic extended FMM-ID algorithm makes use of
the imaginary part of mistuning parameters to find the damping on a blade.
The nominal sector-alone natural frequency, ωb, the natural frequency devi-
ation of Blade i, xi, and the damping ratio of Blade i, ηi, are related to the
identified mistuning parameter in the following way:

ωb (1 + xi) (1 + jηi) = ωb (1 + Re (xIi) + jIm (xIi)) (F.26)

Rearranging the terms gives

xi = Re (xIi) (F.27)

ηi =
Im (xIi)

1 + Re (xIi)
(F.28)
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Parameters of an
intentionally-mistuned blisk
test piece

Mistuning pattern 2 is imposed on a blisk test piece by installing screws,
nuts and washers at blade tips. This is possible as one M3 threaded hole was
drilled at each blade tip as part of the original specifications [117]. Before
listing the target pattern and the component installed on the blades, it is
appropriate to explain the process of finding the components to be installed
at blade tips from a mistuning pattern.

Representative components used in the experiment and the masses of
those components are listed in Table G.1, where “L” stands for the length
of the screw thread in a cap screw, or the full length of a countersunk screw.

Component Mass (g) Component Mass (g)

M3 screws: M3 washer 0.067
- Countersunk, L12 0.80 M4 washer 0.14
- Cap, L8 0.74 M3 nut 0.33
- Cap, L16 1.07 M6 thin brass nut 1.5

Table G.1: Masses of representative components installed at blade tips.

The relationship between a particular assembly of components and the
frequency deviation (i.e. the mistuning parameter) of a blade is found by
observing the natural frequency changes of a blisk finite element model with
such an assembly added to every blade. It is noted that the exact mass to
be installed at a blade tip depends on the assembly.
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Illustrations of two representative mistuning assemblies are shown in Fig-
ure G.1. Countersunk screws are used on the blade with lightest mistuning
mass (Blade 10) and every blade with mistuning mass more than 1.9 g, and
cap screws are used in other blades. Threads in all M6 nuts are removed,
such that every M6 nut can be attached to an M3 nut by a press fit.

Countersunk screw Cap screw

M6 Nut
M3 Nut(s)

(Fitted with M3 
nut in the middle)

(a) (b)

Washers

Figure G.1: Mistuning assemblies with (a) countersunk and (b) cap screws.

The combination of components to be installed on a blade tip is chosen
such that the total masses of the components is slightly higher than the
designed added mass. Extra mass is removed either by filing the M6 screw
or by slightly shortening the screw, such that the actual mass is within 0.15g
of the designed counterpart.

The details of the components installed at blade tips are listed in Table
G.2, and “L” and “C/s” stand for “length of screw” and “countersunk”
respectively.
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Table G.2: Masses and components installed in Mistuning
pattern 2.

Blade Frequency Added mass (g) Components
deviation Designed Actual Screw Nuts Washers

1 -0.0320 1.178 1.180 Cap, L10 M3 1×M3
2 -0.0488 1.785 1.790 Cap, L16 2×M3 1×M3
3 -0.0650 2.601 2.587 C/s, L16 M3+M6 1×M4
4 -0.0214 0.763 0.775 Cap, L8 - 1×M3
5 -0.0346 1.287 1.296 Cap, L12 M3 1×M3
6 -0.0585 2.305 2.289 C/s, L12 M3+M6 1×M3
7 -0.0503 1.940 1.944 C/s, L10 M3+M6 1×M3
8 -0.0422 1.511 1.520 Cap, L16 M3 2×M3
9 -0.0362 1.359 1.367 Cap, L12 M3 1×M3
10 -0.0165 0.582 0.597 C/s, L8 - 2×M3
11 -0.0375 1.407 1.396 Cap, L12 M3 2×M3
12 -0.0586 2.306 2.306 C/s, L12 M3+M6 1×M3
13 -0.0436 1.661 1.663 Cap, L12 2×M3 1×M3
14 -0.0236 0.848 0.865 Cap, L8 - 2×M3
15 -0.0460 1.673 1.674 Cap, L16 2×M3 1×M3
16 -0.0511 1.982 1.976 C/s, L10 M3+M6 1×M3
17 -0.0293 1.070 1.079 Cap, L12 - 2×M3
18 -0.0496 1.913 1.922 C/s, L10 M3+M6 1×M3
19 -0.0561 2.191 2.199 C/s, L12 M3+M6 1×M3
20 -0.0606 2.400 2.393 C/s, L12 M3+M6 1×M3
21 -0.0274 0.990 1.001 Cap, L12 - 1×M3
22 -0.0529 2.054 2.056 C/s, L8 M3+M6 1×M3
23 -0.0672 2.696 2.685 C/s, L16 M3+M6 2×M3
24 -0.0519 2.009 2.014 C/s, L8 M3+M6 1×M3
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