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bstract

Recent direct implementation of asperity theories is reinterpreted here to formulate an improved version of the Greenwood and Williamson
GW) theory with the inclusion of interaction between asperities. This is achieved by treating the contact pressures as uniformly distributed over
he apparent contact area and the resulting deformation as uniform. The correction is equivalent to an increase of the effective separation of the

ean planes by a quantity proportional to the nominal pressure, resulting in a reduction of the “real” area of contact and of total load for a given
eparation. However, the area–load relationship is unchanged. The correction effectively depends on the ratio between the nominal pressure and
he elastic modulus multiplied by the ratio between the size of the nominal contact area and standard deviation of the asperity heights. For contacts

uch larger than the size of roughness, uniform interaction effects would be dominant at relatively modest pressures (particularly for soft materials).
his also means that the effect of interaction is unlimited. However, the only significant change is in the prediction of gas-tightness, it is harder to
eal a large area than a small one. The modification of the theory has a significant effect on stiffness and conductance. Indeed, a parallel is drawn
etween this correction and the “clustering” terms of resistance in the Holm–Greenwood formulae for a cluster of circular spots. Finally, numerical

ontact simulations using Weierstrass–Mandelbrot (WM) surfaces show a general agreement with the improved theory but also significant scatter
or low load levels. Taking into account the effect of asperity interaction, the improved GW theory is now able to predict the numerically obtained
ontact response for intermediate load levels.

2008 Published by Elsevier B.V.
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. Introduction

The Greenwood and Williamson theory [1] of contact
etween rough planes (we denote it as GW in the sequel), is a
tandard theory for predicting the load–displacement behaviour
f rough surfaces in contact given the height distribution of the
ontacting asperities, and is one classical explanation of many
inear or nearly linear laws in tribology. The theory is even used

s an inverse technique to determine the asperity distribution
irectly from topographic measurement and subsequent data
eduction [2], for example to follow how the asperity height
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istribution can evolve with loading. In the GW theory, each
sperity contact is assumed to behave independently. Recently,
iavarella et al. [3] compared a direct calculation of the con-

act of a simulated rough surface against a plane (based on
“discrete” interpretation of the asperity model, using first-

rder interaction terms) with the matching GW calculation, and
ound significant differences between the results at intermedi-
te loads, clearly due to the inclusion of interaction between
sperities in the direct calculation. Specifically, the direct cal-
ulation assumed, as in the GW theory, that a force P1 on
n asperity lowers the height of that asperity by the Hertzian

eformation (((3/4)P1)/E*R1/2)2/3, where E* and R denote the
omposite Young’s modulus and the asperity radius of curva-
ure, respectively, but also that it reduces the height of any other
sperity by an amount P1/�E*r, where r is the distance between
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fail to behave independently. A full analysis of contact must
30 M. Ciavarella et al. /

he two. As a result, their load–separation and area–separation
urves lay well below the corresponding GW curves at inter-
ediate loads, although their area–load relationship agreed

easonably well with GW predictions. The following simplified
heory reproduces this behaviour, but also raises rather deeper
uestions.

. The GW theory and improved version

In the GW theory [1], when the separation between the mean
lane of the rough surface and the contacting rigid plane is d,
n asperity of height z will be compressed by (z − d), and a
orce P1 = (4/3)E*R1/2(z − d)3/2 will be produced. Adding these
ontact forces together by statistical averaging as in the GW
heory, or by direct addition in a numerical simulation, gives the
otal force acting on the surfaces. Dividing this total force by
he nominal area of contact, A, then gives the nominal pressure,
nom.

At light loads, when there are relatively few asperity con-
acts, the inclusion of interaction between asperities has very
ittle effect, and may be ignored. For heavier loads, we assume
hat asperity contacts can be treated as uniformly distributed
ver the apparent contact area and that the resulting defor-
ation can be treated as uniform. According to Timoshenko

nd Goodier [4], the average deformation over a compact area
due to a uniform pressure pnom acting over that area is

pnom
√

A/E∗, where the factor m equals 0.96 for a circular
rea, 0.95 for a square, and decreases gently for rectangles of
ncreasing aspect ratio. Note, incidentally, that, for a Hertzian
ressure distribution, the factor is m = (9/16)

√
π = 0.997.

ere, it will be accurate enough to take m = 1. Thus, the
eight of each asperity is in effect reduced from z to (z −
pnom

√
A/E∗)), and the corresponding force becomes P1 =

4/3)E∗R1/2(z − pnom
√

A/E∗ − d)
3/2

.
Greenwood and Williamson [1] introduced the functions

n(h) ≡ (1/
√

2π)
∫∞
h

(s − h)nexp(−0.5s2)ds, where n = 0, 1/2,
, 3/2. Then for a Gaussian distribution of asperity heights,
he load when the mean planes are separated by d becomes

= (4/3)NE*R1/2σ3/2F3/2(d/σ), where N is the number of asper-
ties – not the number of contacts, which is n = NF0(d/σ) – and

is the standard deviation of the asperity heights. If the asperity
ensity is η = N/A, then the nominal pressure is

nom = 4

3
ηE∗R1/2σ3/2F3/2

(
d

σ

)
. (1)

ccordingly, the effect of asperity interaction is to modify (1)
o

nom = 4

3
ηE∗R1/2σ3/2F3/2

(
d

σ
+ pnom

√
A

E∗σ

)
(2)
ntroducing the non-dimensional nominal pressure

ˆ nom = pnom

ηE∗R1/2σ3/2 , (3)

his becomes

a
m

o

Fig. 1. The load vs. separation curve with and without interaction.

ˆ nom = 4

3
F3/2

(
d

σ
+ p̂nomη

√
ARσ

)

≡ 4

3
F3/2

(
d

σ
+ Cp̂nom

)
(4)

here the parameter C = η
√

ARσ = √
N

√
ηRσ is independent

f load and separation.
In this form, the solution must be found iteratively.1 It is more

onvenient, however, to regard the effect of asperity interaction
s an increase in the effective separation of the mean planes to
1 = d + pnom

√
A/E∗. The load and hence the nominal pres-

ure (and area, conductance and number of contacts) are found as
unctions of d1: only then the true mean plane separation is cal-
ulated from d/σ = d1/σ − Cp̂nom and the true load–separation
urve plotted. Many researchers have found that values of the
roduct ηRσ are generally close to 0.05; so the constant C can
e taken as

√
N/20. Fig. 1 shows the result of including asper-

ty interaction in this way, assuming a compact area of contact
ontaining 500 asperities (C = 5).

However, it will be clear that the effect of interaction in this
odel is when the variation with respect to separation is con-

idered. A study of real contact area against load will produce
dentical curves whether the individual quantities are found as
unctions of d or d1. The only practically significant change will
e when the effectiveness as a seal for gas-tightness matters.
ere it is clear that it is the effective separation d1 which is a
easure of the leakage, while the nominal separation d measures

he load. In short, the effect of interaction is to make sealing very
uch more difficult to accomplish.
The above theory covers only the way in which asperities
lso take into account the fact that individual contact areas can
erge as the load increases, so that the number of contact areas

1 However, a very good approximation could be found by the first iteration
nly, i.e. using the original GW theory to estimate the mean pressure.
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Fig. 2. Same as Fig. 1 but with 50,000 asperities rather than 500.

ay rise to a maximum but may then fall. Certainly this occurs
hen contacts deform plastically, where the ultimate state may
e a single contact area. The elastic behaviour is still an open
uestion.

A worrying implication of the above theory is what happens
hen the nominal area of contact becomes large, and the number
f asperities correspondingly large. Suppose there were 50,000
sperities rather than 500? The inclusion of interaction is now
o longer a small correction but makes an enormous difference
see Fig. 2).

Certainly this makes clear that there can be no universal
raph showing the effect of interaction: the effect is unlimited.
ortunately, as we have seen, the only significant change is in

he prediction of gas-tightness, and here the result, that it is
arder to seal a large area than a small one, is hardly revolution-
ry!

Ciavarella et al. [3,5,6] also calculated the conductance (per
nit area) between the surfaces, by using the theorem due to
arber [7], that the conductance may be found from the stiff-
ess by replacing the contact modulus, E*, by the electrical or
hermal conductance, ρ−1 or K. We note that GW did not believe
his to be the actual electrical conductance, since it ignored the
ffect of oxide films, preferring to believe that only plastically
eforming contacts would conduct. It is clear that it would not
ive the thermal conductance either, neglecting oxide films but
lso the contribution of thermal radiation. The GW stiffness is
W/∂d1, while the correct value accounting for interaction will
e ∂W/∂d. The two predictions are shown in Fig. 3, and it is seen
hat the effect of differentiating is to increase considerably the
mportance of interaction.

. Further results on conductance

Holm [8] and Greenwood [9] developed analytical expres-
ions for the constriction resistance (inverse of conductance)

ue to a cluster of nearly uniformly distributed circular con-
act areas of mean radius ā. The specific constriction resistance,
/ρ, is given by the parallel resistance of the spots, incremented
y an interaction term, which is equivalent to the resistance

l

R
p

ig. 3. The GW stiffness ∂W/∂d1 and the correct value allowing for the effect
f interaction, ∂W/∂d.

f a single spot of radius α of the cluster, the Holm radius
:

R

ρ
= 1

2nā
+ 1

2α
(5)

aturally, in a real contact, both the size and the distribution of
he spots vary with load. Also, the spot sizes are not constant
or spacing is uniform. A more general and correct solution is
hen Greenwood’s original formula

R

ρ
= 1

2
∑

a
+ 1

π

(∑∑
i,j,i�=j(aiaj)/sij(∑

ai

)2

)
(6)

hen using the statistical GW theory, only an estimate can be
ade on the average radius, and hence we find no advantage in

sing this formula. On the other hand, from a numerical point
f view, already with 500 asperities we found prohibitive com-
utational costs in using Eq. (6) with respect to a more trivial
ifferentiation of the load–displacement relationship.

It is interesting to show that the modification of the orig-
nal GW theory, in terms of conductance, corresponds to the
ntroduction of the interaction term in the Holm–Greenwood
ormulae. This is immediate in the case of an exponential dis-
ribution of asperity heights (1/σ)exp(−z/σ) (where σ is the
nalogue of the RMS height in the exponential case), in which
q. (2) becomes

nom = ηπ1/2E∗R1/2σ3/2 exp

[
−d

σ
+ pnom

√
A

E∗σ

]
, (7)

hen

pnom
√

A 1/2 ∗ 1/2 3/2 d

n(pnom) +

E∗σ
= ln(ηπ E R σ ) −

σ
(8)

ecalling that the stiffness is S ≡ ∂(Apnom)/∂d, then the com-
liance 1/S can be derived by determining d from Eq. (8) and
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ifferentiating it with respect to the load:

1

S
= σ

pnomA
+ 1

E∗√A
(9)

ccording to Barber’s theorem [7], we obtain the conductance
rom the stiffness by replacing E* by the conductivity K. Here,
oting that the first term does not contain E*, we use the theorem
n the form ‘multiply (1/S) by E*/K ≡ E*ρ to get the constriction
esistance’:

R

ρ
= E∗σ

pnomA
+ 1√

A
(10)

he first term here is exactly the first term of the
reenwood–Holm formula, while the second term,
(

1/
√

A
)

,

losely resembles the ‘Holm radius’ term 1/2α in Eq. (5). Hence,
q. (5) is obtained rather closely by this completely different

oute.

w

B

Fig. 4. Area, load and conductance as functions of the separation for WM su
265 (2008) 729–734

. Comparison with numerical simulations

In order to test the results of the “improved” GW model and
o show further aspects of the interaction concerning scatter,
ealistic 3D fractal surfaces are generated using a modified two-
ariable Weierstrass–Mandelbrot (WM) function [10,11], which
an be written as

(x, y) = B

M∑
m=1

nmax∑
n=0

γ (D−3)n

{
cos φm,n−cos

[
2πγn(x2+y2)

1/2

L

× cos
(

tan−1 y

x
− πm

M

)
+ φm,n

]}
(11)
here

= L

(
G

L

)D−2( ln γ

M

)1/2

(12)

rfaces with γ = 1.5, nmax = 8 and M = 10. (a) D = 2.05 and (b) D = 2.95.
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nd L is the sample length, G some measure of amplitude rough-
ess, D the fractal dimension (2 < D < 3), γ a scaling parameter,

the number of superposed ridges used to construct the surface
rofile, n is a frequency index (with nmax representing the upper
imit of n), and φ is the random phase among the sinusoids. The
arameter γ controls the density of frequencies in the surface.
n the numerical examples we shall use γ = 1.5, nmax = 8, M = 10
nd D = 2.05, or 2.95, these being limit values close to the limits
and 3.
For the direct simulation, we shall use the “discrete” numer-

cal implementation of the GW theory [3], also taking into
ccount of interaction effects, at least to the first-order, as
xplained in the following. In fact, we start by detecting asper-
ties in the GW sense, so that the entire surface is described by
ew asperities which in turn can be described by their location
eight and radius of curvature. We use then the Hertz theory for
ach individual asperity, adding the elastic displacements caused
y the other asperities to their self-displacements. We simplify
on-circular asperities according to the Greenwood suggestion
12] of using the geometric mean of the principal radii instead
f the arithmetic mean. A non-linear system of equations is put
ogether by writing the condition of displacement compatibility
t each asperity centre. Hence, starting from half of the “bear-
ng area” overlap contact radius between each asperity and the
ndeformed half-plane, for each iteration and for each asper-

ty a correction in the contact radius is made, proportional to the
ifference between the height of the summit and the correspond-
ng elastic displacement of the half-plane. No matrix inversion is
equired in the iterative scheme. Once the distribution of contact

a
b
g
d

Fig. 5. Area–load and conductance–load relationships for WM surfaces
265 (2008) 729–734 733

adii has been determined, the discrete distribution of pressure
an be obtained. This numerical approach is very efficient and,
rom the computational point of view, is less expensive than
EM simulations [13] or numerical methods based on the active
et strategy [14,15], since only a limited number of variables for
ach asperity in contact is required.

As a summary, in this section we present a comparison among
he following predictions:

1) “Numerical”, for the results obtained using the algorithm so
far described as the theory, keeping in mind that this includes
interaction effects to the first-order. Here, the scatter in the
results is due to the actual discrete distribution of asperities.

2) “Original GW”, as the original GW theory, i.e. each surface
asperity set is fitted to a Gaussian distribution of heights, and
we take the mean values for the asperity radius as needed in
the GW theory—here the scatter in the results is only due to
the fact that RMS asperity heights and mean radius varies
from one realization to another.

3) “Improved GW”, as the improved GW theory proposed in
this paper.

We repeat the simulations for 25 realizations of nominally
dentical surfaces, and this permits also to assess the repeatability

nd the expected scatter in the results. The contact results will
e presented in non-dimensional form. Hence, the results in the
raphs can be read as Area, Load, Separation and Conductance,
efined as follows:

with γ = 1.5, nmax = 8 and M = 10. (a) D = 2.05 and (b) D = 2.95.
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1) The Area is the ratio between the real contact area and the
nominal one, i.e. Area = A/L2, where L denotes the lateral
size of the sample.

2) The Load corresponds to the applied normal force divided
by the nominal contact area and the composite Young’s
modulus, i.e. Load = W/(E*L2).

3) The Separation is computed as the ratio between the mean
plane separation, d, and the standard deviation of the asperity
heights, σ, i.e. Separation = d/σ.

4) The Conductance is defined as: Conductance = Cρσ/L2 =
−2(∂Load/∂Separation).

he comparisons are shown in Fig. 4 for D = 2.05 (Fig. 4a) and
= 2.95 (Fig. 4b), where it is evident that the improved theory

orrectly captures the deviation from the original GW predic-
ions at low separations (high loads), where the scatter is also

uch smaller than at high separations. This can be expected
ecause the interaction effect is independent of the exact location
f asperities and hence of the random aspect of the realized sur-
aces. Moreover, in good agreement with the numerical results,
he effect of interaction is emphasized in the conductance ver-
us separation diagram due to the differentiation of the load with
espect to d instead of d1.

The same contact results are plotted in terms of load in Fig. 5,
here it is confirmed that the area–load relationship is almost
erfectly linear (except for the scatter at low loads). Similarly, the
onductance is not too far from linear at low loads. However, the
ffect of interaction is to reduce the conductance at intermediate
oad levels with respect to the original GW predictions.

Obviously, these results are obtained with a significant dis-
ance from the full load limit (where asperity theories and models
o not work properly) and a correct theory would show at larger
oads that the area–load would deviate from the linearity. Notice
owever that the deviation from linearity for the conductance
ccurs already with relatively modest loads, this being the effect
f the differentiation.

. Conclusion
An improved version of the original GW theory has been
roposed, permitting to include the effect of interaction in the
implest manner, by considering the effect of the mean pressure
s a uniform displacement of the surface. This has been shown to

[

265 (2008) 729–734

t relatively well the numerical results obtained using a discrete
ersion of the GW theory recently proposed by Ciavarella et
l. [3]. In particular, interaction effects are important for the
rediction of gas-tightness, and to some extent of elastic stiffness
nd conductance of the interface. Finally, they tend to reduce the
ffect of scatter at low separations.
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