Characterisation of a RHVFC using an experimentally validated unit cell model

Catalina A. Pino Muñoz
Department of Earth Science and Engineering, Imperial College London

March 12th, 2019
Outline

1. Introduction
2. Motivation
3. RHVFC modelling
4. Experimental set-up
5. Calibration
6. Cell performance
7. Conclusions
8. Next Steps
Regenerative Hydrogen-Vanadium Fuel Cell (RHVFC)

- Fast hydrogen kinetics
- Absence of cross-mixing
- Precious metal catalyst – HOR/HER
- Expertise on PEMFCs

- Carbon paper electrode SGL 10AA
- Nafion 117
- SGL GDL, 0.5 mg Pt cm2
Motivation

• Unit cell model that can capture the potential dynamics of the cell and allow quick evaluation
• Recognise the dominant processes that affect the cell performance

Motivation

• Unit cell model that can capture the potential dynamics of the cell and allow quick evaluation
• Recognise the dominant processes that affect the cell performance
• Evaluate different operating conditions

Unit cell model for the RHVFC

Cathode:
\[2\text{VO}^{2+} + 4\text{H}_3\text{O}^+ + 2e^- \xrightarrow{\text{charge}} 2\text{VO}^{2+} + 6\text{H}_2\text{O}, \quad E^0_{\text{ca}} = 0.99\text{V} \]

Anode:
\[\text{H}_2 + 2\text{H}_2\text{O} \xrightarrow{\text{charge}} 2\text{H}_3\text{O}^+ + 2e^-, \quad E^0_{\text{an}} = 0\text{V} \]
Model summary

Cell

\[
E_{\text{eq}} = E_{\text{cell}}^0 + \frac{RT}{F} \ln \left(\frac{c_{V(V)}^2 c_{H^+,\text{ca}}^2 P_{H_2}^{0.5} c_{H^+,\text{an}}^{0.5} F}{c_{V(IV)}^2 c_{H^+,\text{an}}^2 c_{H^+,\text{ca}}^2} \right)
\]

Open circuit potential

Charge conservation

Electro-neutrality

Mass balances

Anode

\[
V_{\text{cl}} e_{\text{cl}} (1 - s_{\text{cl}}) \frac{dc_{H_2,\text{cl}}}{dt} = \pm \frac{A_{\text{cl}} j}{2F} - \dot{n}_{H_2,GDL}
\]

Cathode

\[
E_{\text{ca}} V_{\text{ca}} \frac{dc_{V_2^{2+}}}{dt} = Q_{\text{ca}} \left(c_{V_2^{2+},\text{r}} - c_{V_2^{2+},\text{i}} \right) + \frac{A_{\text{ca}} j}{F} - \dot{n}_{V_2^{2+},\text{m}}
\]

Energy balance

Kinetics

Anode

\[
\frac{j^V}{k_{\text{des}}} = FZ \left(\theta_{H_2}^{\text{PV}} \exp(\beta f \eta_{\text{an}}) - B \left(1 - \theta_{H_2}^{\text{PV}} \right) \exp(- (1 - \beta) f \eta_{\text{an}}) \right)
\]

Cathode

\[
j^V = j_{\text{ca}}^{BV} \left[\frac{c_{V_2^{2+}}^{s}}{c_{V_2^{2+}}^{b}} \left(\frac{c_{H^+}^{s}}{c_{H^+}^{b}} \right)^2 \exp(- \alpha f \eta_{ca}) - \frac{c_{V_2^{2+}}^{s}}{c_{V_2^{2+}}^{b}} \exp((1 - \alpha) f \eta_{ca}) \right]
\]

Cell OCP

\[
E_{\text{cell}} = E_{\text{OCP}} \pm |\eta_{\text{ca}}| \pm |\eta_{\text{an}}| \pm |\eta_{\text{ohm}}|
\]

Ionic species crossover

\[
N_{i,m}^m = \frac{D_i^m c_i^m}{l_m} \left(\zeta \left(e^\zeta - \frac{c_i^{CL}}{c_i^{ca}} \right) \right)
\]

\[
\zeta = \left(\frac{z_i F}{\sigma_m RT} + \frac{\xi_{\text{drag}}}{c_w^m D_i^m F} \right) j l_m
\]

\[
N_w^m = c_w^m = \frac{\xi_{\text{drag}} j}{F}, \quad j = -\sigma_m \nabla \phi
\]

\[
N_i^m = -D_i^m \nabla c_i^m - z_i \mu_i^m F \nabla \phi + c_i^m v
\]

Nernst-Planck equation

\[c_{V(IV)}^{ca} = 500 \text{ mol m}^{-3}\]
Equilibrium

\[2 \tilde{\mu}^{ca}_{\text{VO}_2^+} + 4 \tilde{\mu}^{ca}_{\text{H}^+} + 2 \tilde{\mu}^{\text{CP}}_{e^-} = 2 \tilde{\mu}^{ca}_{\text{VO}^{2+}} + 2 \tilde{\mu}^{ca}_{\text{H}_2\text{O}} \]

Cathode reaction

\[\tilde{\mu}^{\text{an}}_{\text{H}_2} = 2 \tilde{\mu}^{\text{an}}_{\text{H}^+} + 2 \tilde{\mu}^{\text{Pt}}_{e^-} \]

Anode reaction

\[F(\phi^M - \phi^{M'}) = \mu^{ca}_{\text{VO}_2^+} + 2 \mu^{ca}_{\text{H}^+} - \mu^{ca}_{\text{VO}^{2+}} - \mu^{ca}_{\text{H}_2\text{O}} - \mu^{\text{an}}_{\text{H}^+} + \frac{1}{2} \mu^{\text{an}}_{\text{H}_2} + F(\phi^{ca} - \phi^{\text{an}}) \]

Cell

\[FE_{\text{Don}}^m = F(\phi^{ca} - \phi^{\text{an}}) = \mu^{\text{an}}_{\text{H}^+} - \mu^{ca}_{\text{H}^+} \]

Donnan potential across both interfaces (dialysis potential)

\[\tilde{\mu}_{i} = \mu_{i} + z_{i}F\phi \]

Electrochemical potential of species \(i \)
Potential difference between electrolytes

\[E_{OCP} = E_{cell}^0 + \frac{RT}{F} \ln \left(\frac{c_{V_{O_2}^+}^{ca} \left(c_{H^+}^{ca} \right)^2 \left(p_{H_2}^g \right)^{0.5}}{c_{V_{O_2}^{2+}}^{ca} c_{H^+}^{an}} \times \frac{c_{H^+}^{an}}{c_{H^+}^{ca}} \times \frac{c_{V_{O_2}^+}^{ca} c_{H^+}^{an}}{c_{V_{O_2}^{2+}}^{ca} c_{H^+}^{an}} \right) \]

Thermodynamic derivation

Chemical potential of species \(i \)

\[\mu_i = \mu_i^0 + RT \ln(a_i) \]

\[a_i = \gamma_i c_i \]
Complete Butler-Volmer equation for cathode

\[j_{BV} = j_{0,ca} \left[\left(\frac{c_{VO^{2+}}^s}{c_{VO^{2+}}^b} \right) \exp \left(\frac{\alpha_a F \eta_{ca}}{RT} \right) - \left(\frac{c_{VO_2^+}^s}{c_{VO_2^+}^b} \right) \left(\frac{c_{H^+}^s}{c_{H^+}^b} \right)^2 \exp \left(\frac{-\alpha_c F \eta_{ca}}{RT} \right) \right] \]

\[j_{0,ca} = Fk_{ca} \left(c_{VO^{2+}}^b \right)^{\alpha_c} \left(c_{VO_2^+}^b \right)^{\alpha_a} \left(c_{H^+}^b \right)^{2\alpha_a} \]

Concentration of protons

Experimental data RHVFC

Experimental set-up 5 cm² area cell

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode</td>
<td>Freudenberg H23, 210 µm, heat treated (500 °C, 6 h)</td>
</tr>
<tr>
<td>Anode</td>
<td>SGL 29BC, 235 µm, 0.3 mg cm⁻² Pt</td>
</tr>
<tr>
<td>Membrane</td>
<td>Nafion 115, 127 µm</td>
</tr>
<tr>
<td>Flow channel</td>
<td>Single-channel serpentine</td>
</tr>
<tr>
<td>Catholyte</td>
<td>0.8M VOSO₄ in 60 mL 5M H₂SO₄</td>
</tr>
<tr>
<td>Current density</td>
<td>500 – 1500 A m⁻²</td>
</tr>
<tr>
<td>Catholyte / hydrogen flow rate</td>
<td>50 & 100 mL min⁻¹ / 100 mL min⁻¹</td>
</tr>
</tbody>
</table>

Tests:
- Open circuit potential (2 sets)
- Single-cycle charge-discharge (14 sets)
- Polarization curves (2 sets)
- Cycling test (1 set)
Experimental data RHVFC

<table>
<thead>
<tr>
<th>Cell</th>
<th>AVIZO</th>
<th>TauFactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>5 cm2</td>
<td></td>
</tr>
<tr>
<td>Cathode</td>
<td>Freudenberg H23, 210 µm, heat treated (500 °C, 6 h)</td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td>0.79</td>
<td>0.79</td>
</tr>
<tr>
<td>Specific surface area</td>
<td>0.429 µm2 µm$^{-3}$</td>
<td>0.144 µm2 µm$^{-3}$</td>
</tr>
<tr>
<td>Mean pore diameter</td>
<td>21.01 µm</td>
<td>---</td>
</tr>
<tr>
<td>Mean fibre diameter</td>
<td>7.92 µm</td>
<td>---</td>
</tr>
</tbody>
</table>
Model calibration: Open Circuit Potential

Thermodynamic derivation of CNE

$$E_{OCP} = E_{cell}^0 + \frac{RT}{F} \ln \left(\frac{c_{VO_2}^{ca} (c_{H^+}^{ca})^{2} (p_{H_2}^g)^{0.5}}{c_{VO_2^2}^{ca} c_{H^+}^{an}} \times \frac{c_{H^+}^{an}}{c_{H^+}^{ca}} \times F \right)$$
EIS data
Model calibration: cell potential

Model implementation
- MATLAB R2017a
- ode15s → solve ODE system
- lsqcurvefit → curve fitting, lb & ub

Fitting parameters
- Cathodic reaction → $K_{ca} = S_{ca} k_{ca}^0$
- Nernst diffusion layer thickness → δ_{ca}
- Anodic reaction → k_{des}^0

$j = 500 \text{ A m}^{-2}$
Charge-discharge: vary current density

\[Q_v = 100 \text{ mL min}^{-1} \]
Cycling and polarization curve

\[j = 700 \text{ A m}^{-2}, Q_v = 50 \text{ mL min}^{-1}, Q_{H_2} = 30 \text{ mL min}^{-1} \]
Cycling performance

\[j = 700 \text{ A m}^{-2}, \quad Q_V = 50 \text{ mL min}^{-1}, \quad Q_{H_2} = 30 \text{ mL min}^{-1} \]
Conclusions

• The unit cell model was able to reasonably describe the cell potential dynamics at different operating conditions.

• The unit cell model reproduced the cell performance for a wide range of experimental data, including power curves and cycling test.

• A complete Nernst equation based on thermodynamic principles was used and fit to the OCP data.

• A complete Butler-Volmer kinetic equation, considering the effect of protons concentration, was used for the cathode.

• This model is a fast mathematical approach to simulate cell performance.

\[
E_{OCP} = E_{cell}^0 + \frac{RT}{F} \ln \left(\frac{C_{H^+}^{ca} \left(C_{H^+}^{ca} \right)^2 \left(P_{H_2}^2 \right)^{0.5}}{C_{V_0}^{ca} C_{H^+}^{ca} C_{H^+}^{an}} \times \frac{C_{H^+}^{an} \times F}{C_{H^+}^{ca}} \right)
\]
Next steps

- Detailed crossover model vanadium and sulphuric acid species and water in a hybrid H₂-based redox flow battery
- Study possible side reaction of vanadium ionic species at anode catalyst layer to correctly simulate the evolution of concentration.
Thank you!

Catalina A. Pino Muñoz
c.pino15@imperial.ac.uk

March 12th, 2019