Cost and Carbon Footprint Reduction of EV LIBs Through Efficient Thermal Management

Laura Lander1,2, Evangelos Kallitsis3, Alastair Hales1, Jacqueline S. Edge1,2, Anna Korre1,4, Gregory Offer1,2

1 Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK.
2 The Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot, OX11 0RA, UK.
3 Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK.
4 Energy Futures Lab, Imperial College London, London SW7 2AZ, UK.

INTRODUCTION
- A prolonged battery use phase can reduce life cycle environmental and economic impacts as it compensates for manufacturing impacts (Fig. 1).
- Engineering solutions e.g. thermal management systems (TMS; Fig. 2) can help to extend the battery lifetime and thus the use phase.

BATTERY LIFETIME
- Correlation between TMS, maximum cell temperature and battery lifetime for an NMC/CoCr EV battery is established.
- Maximum cell temperature is derived from coolant inlet temperature \(T_{\text{inlet}} \) and Cell Cooling Coefficient (CCC) (Eq. 1).

\[
T_{\text{max}} = T_{\text{inlet}} + \frac{Q_{\text{gen}}}{\text{CCC}}
\]

Equate, low power demand, zero performance.

Fig. 1. Battery value chain.

Fig. 2. Thermal management systems.

METHODOLOGY
- Development of life cycle cost (LCC) and carbon footprint (CF) models taking into account battery lifetime.
- "Real world" cycle lifetime of EV battery is estimated using capacity fade models at different cell operating temperatures.

LIFE CYCLE COST & CARBON FOOTPRINT
- EV battery LCC and CF include cost and carbon footprint of battery and vehicle production, electricity for charging and maintenance.
- LCC and CF are reduced by 27 % and 25 % for surface/immersion cooling compared to air cooling (Fig. 4).
- Overall contribution of battery and vehicle production costs and footprint are reduced due to extended battery lifetime.

SENSIVITY ANALYSIS
- Battery lifetime as well as cost and carbon footprint of electricity and pack production were varied to understand their impact on LCC and CF (Fig. 5).
- Increasing battery lifetime by 50 % reduces LCC by 33 %.
- Reduced electricity footprint and increased battery lifetime can significantly reduce overall life cycle CF.
- Battery pack production has marginal impact on LCC and CF.

OPTIMISED CELL DESIGN
- Comparison of battery lifetime for two different cell designs.
- Kokam cell with tab cooling has lower degradation rate than A123 cell for surface cooling (Fig. 6).
- Optimised cell design with tab cooling increases battery lifetime by 36 % compared to surface-cooled cell.
- LCC and CF for optimised cell with tab cooling are reduced by 40 % and 35 % compared to air cooling (Fig. 7).

CONCLUSIONS
- It is shown that engineering solutions (e.g. thermal management systems) have the potential to significantly reduce life cycle cost and carbon footprint.
- Accounting for battery lifetime for real-life application conditions is crucial to assess the actual economic and environmental impacts and benefits of EV batteries.

REFERENCES

ACKNOWLEDGEMENTS
This work was carried out with funding from the Faraday Institution (faraday.ac.uk; EPS/1003053/1, grant number FIRG003), Innovate UK THT project (grant number 105287) and the Innovate UK BATMAN project (grant number 104180). E.K. and A.K. were supported by the EPSRC, UK.