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Monte Carlo simulation and analysis of free-form
surface registration

D Brujic andM Ristic
Mechanical Engineering Department, Imperial College of Science, Technology and Medicine, London

Abstract: Accurate dimensional inspection and error analysis of free-form surfaces requires accurate regis-
tration of the component in hand. Registration of surfaces defined as non-uniform rational B-splines
(NURBS) has been realized through an implementation of the iterative closest point method (ICP). The
paper presents performance analysis of the ICP registration method using Monte Carlo simulation. A large
number of simulations were performed on an example of a precision engineering component, an aero-engine
turbine blade, which was judged to possess a useful combination of geometric characteristics such that the
results of the analysis had generic significance. Data sets were obtained through CAD (computer aided
design)-based inspection. Confidence intervals for estimated transformation parameters, maximum error
between a measured point and the nominal surface (which is extremely important for inspection) mean error
and several other performance criteria are presented. The influence of shape, number of measured points,
measurement noise and some less obvious, but not less important, factors affecting confidence intervals
are identified through statistical analysis.
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NOTATION

F cost function
N number of points
Pi ith measurement point
qi ith corresponding point on the model
R the rotation matrix
s2 unbiased sample variance
ta=2 Studentt-statistic value
T the translation vector
u, v parametric surface parameters
x, y, z Cartesian coordinates, translation parameters
x sample mean value

a, b, g rotation angles
j standard deviation

1 INTRODUCTION

Accurate registration of free-form surfaces is an important
requirement in many branches of the manufacturing indus-
try. The requirement arises at several stages in the product
life cycle such as inspection during product and manufactur-
ing process development, inspection in production, and also
in the repair of broken or worn out parts. A common feature

of these components is the absence of clearly defined refer-
ence points. The prime examples are components produced
using forming processes (casting, forging, pressing), such as
aero-engine compressor and turbine blades, car body panels
and others.

Inspection of free-form surfaces requires measurement of
a large number of points such that the actual surface may be
characterized in full (1). This may be performed using one
of a number of available contact or non-contact measure-
ment sensors (2). In such situations the adoption of CAD
(computer aided design)-oriented inspection is widely
seen as the appropriate inspection methodology (3, 4). In
the cases when the free-form component possesses no clear
reference features, the CAD-oriented inspection is based on
software best-fitting between the CAD model and the mea-
sured points as the required registration technique.

The principal method for best-fitting which is analysed in
this paper is least squares (LS) fitting, which was implemen-
ted as the iterative closest point (ICP) method (3, 4). LS fit-
ting is well recognized and has received considerable
attention in the literature, but relatively little has been pub-
lished in terms of its performance analysis. The published
work tends to be limited to the situation where point corre-
spondences area priori known (6–8), which is not true in
the case of the ICP method. The work by Stoddartet al.
(9) proposes a method to predict the quality of registration
but it is primarily concerned with indicating the cases of
near degeneracy. A large number of factors (such as
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measurement noise, number of measured points, object geo-
metry, etc.) can be identified to affect different aspects of
ICP registration performance (such as accuracy, conver-
gence rate, etc.), but the effects are not necessarily apparent
and straightforward. The influence of the measurement
noise, which is in reality always present, is considered to
be particularly important for inspection, but this too has
received little consideration in the published literature.

Fully analytical evaluation of the performance is extre-
mely difficult, if not impossible, owing to the complexity
of the problem. Under these circumstances, Monte Carlo
simulation (10) was undertaken as an alternative to an ana-
lytical evaluation of the LS fitting performance. This is a
method of statistical trials, based on the principle of simulat-
ing a statistical experiment by computational techniques,
and recording the numerical characteristics obtained from
this experiment. The solution of numerical problems by
this method is closer to physical experiments than to classi-
cal computational methods.

Before proceeding with the full presentation of this study,
Section 2 summarizes the principle of the best-fitting meth-
ods used in this work. The implementation involved a num-
ber of important improvements in the computational speed
which were mainly realized in relation to the manipulation
of model geometry. These improvements are explained in
Section 3, in order to clarify the implementation of the algo-
rithms. The conduct of the Monte Carlo simulation is
explained in Section 4. The subsequent sections deal with
various aspects of the algorithm performance analysis. Sec-
tion 10 summarizes the most important generic conclusions
drawn from this work.

2 METHODS FOR FREE-FORM SURFACE
REGISTRATION

During inspection, it is assumed that a sufficiently large
number of properly distributed measurements are available.
Further, it is assumed that the component is defined as a
non-uniform rational B-spline (NURBS) surface and is
made available by the original computer aided design
(CAD) system as an initial graphics exchange standard
(IGES) file. Two registration methods are considered to be
of special interest. They are the moment of inertia (MoI)
method (11) and the LS fitting (12).

The principle method of calculating the required transfor-
mation is LS fitting. This was realized through the iterative
closest point (ICP) method, which has been proved (4)
always to converge to a local minimum. However, as the
global convergence of ICP is not guaranteed, the MoI
method is in general available as an alternative first align-
ment step.

2.1 Moment of inertia method

The MoI method does not rely on the correspondence
between the measured and the nominal points. It calculates

the first two moments of the distribution geometry for each
data set and determines the translation that aligns their cen-
tres of mass, and rotation that aligns their principal axes.
The method was found to be effective for most shapes
with distinct principal axes and reasonably distributed mea-
surements. Although less accurate than LS fitting, MoI was
found to provide good results very quickly, even if the mis-
alignment and the number of measured points are very large.

2.2 Least squares fitting

LS fitting can be defined as follows (4):

Given 3D data in a sensor co-ordinate system, which describes a
data shape that may correspond to a model shape, and given a
model shape in a model co-ordinate system in a different geo-
metric representation, estimate the optimal rotation and transla-
tion that aligns the model shape and the data shape minimising
the distance between the shapes and thereby allowing determi-
nation of the equivalence of the shape via a mean-square dis-
tance metric.

Based on the above definition the cost function to be mini-
mized in LS fitting is the model-part distance, which can be
expressed as

F ¼
XN

i¼1

ðqi ¹ Ri ·pi ¹ TÞ2 ð1Þ

where

T ¼ 3 × 1 translation vector

R ¼ 3 × 3 rotation matrix

pi ¼ ith measurement point

qi ¼ corresponding point on the model

The fitting procedure involves exclusion of two distinct
steps in a loop, namely:

(a) evaluation of the corresponding point set {q} on the
model and

(b) calculation of the required translationT and rotationR
and their application on the measured data set.

The critical step in the procedure is to establish the points on
the model that correspond to the measured points. It has
been shown (4) that by using the closest points on the model
as the corresponding points, it is possible to construct an
iterative LS fitting algorithm that would always converge
to a local minimum. This is the basis of the ICP algorithm
as the principal registration method.

3 IMPLEMENTATION OF THE ICP ALGORITHM

The implemented registration algorithm contains a number
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of important improvements on the original ICP method,
aimed at maximizing its computational efficiency and
robustness. The full presentation of its implementation
would be too large to be included in this paper and is pro-
vided in references (13) and (14). In this section, therefore,
only an overview is presented of the most important imple-
mentation aspects as a preamble for the subsequent perfor-
mance analysis.

The first step in ICP, calculation of the closest point, is the
most time consuming and there are considerable computa-
tional advantages to be gained by adopting appropriate
methods for manipulation of the model geometry. The
adopted modelling methodology is described in the next
sections.

3.1 Geometric modelling and manipulation

The principal modelling entity in this work was taken to be
NURBS. In order to overcome the considerable computa-
tional burden of performing modelling operations on
NURBS surfaces, it was decided to allow dual representa-
tions of the model entities. The adopted structure is a poly-
hedral surface approximation.

The approximation employs an adaptive sampling techni-
que (15), in which the fineness of the subdivision can vary
over the parameter space. This greatly reduces the number
of triangles needed to accurately describe a surface, com-
pared to the uniform grid where the side effect is that the
regions of low curvature are over-sampled. The surface is
approximated by a mesh of straight line segments joining
each pair of adjacent grid points and triangular polyhedra
are obtained by splitting each rectangle into two triangles.
The acceptance criteria for each region in adaptive sampling
require special attention, owing to the requirement that the
triangulation is both accurate to a given tolerance and topo-
logically correct with respect to the nominal geometry. Thus
in the implemented algorithm the subdivision termination
criteria are based on flatness (16), as well as on object thick-
ness (13). The thicknesse of an object, as defined in refer-
ence (17), is the real positive number such that any
maximal ball included either inside or outside the object
has a radius larger than or equal toe. The acceptance criter-
ion based on thickness states that the density of the points on
the surface must be greater than 1=ð2eÞ. The approximation
obtained under this condition is homeomorphic.

3.2 Calculation of the closest point

The most time consuming operation in ICP is the calculation
of the closest point on the NURBS surface. This problem
was overcome by performing the fitting in two phases. In
the first phase, measured points are fitted to the wiremesh
approximation and when a minimum is achieved in the sec-
ond phase the fitting is switched to NURBS. The algorithm
considers the vertex nearest to the given spatial point and
the region which is formed by the facets in the vicinity of
that vertex. It examines whether the projection of the given

point falls on any of the facets surrounding the vertex and, if
not, then the region under consideration is expanded to
include the adjoining facets. The process may then be
repeated until the true nearest point has been found. Admit-
tedly, this algorithm is not guaranteed to succeed and expan-
sion of the search window can sometimes lead to an
exhaustive search. For this reason the algorithm is limited
to only two window expansions; if the orthogonal projection
does not fall on any of the included facets then it is replaced
by the nearest point found on one of the included edges. This
solution produced good results and it is justified in this case,
because this task is performed at early alignment stages
when the nearest point on the polyhedron is only an approx-
imation of the true corresponding point.

Calculation of the true closest point in a NURBS surface
involves iterative methods, which in turn require an initial
guess. With the dual representation of the model, the ver-
tices of the approximate model provide this initial guess.
The method was found to be successful provided that fine-
ness of the approximate model satisfies the above-men-
tioned thickness criterion.

3.3 Calculation of the transformation matrix

The calculation of a rigid body transformation that mini-
mizes the least squared distance between the point pairs,
was solved using singular value decomposition (SVD) as
suggested in references (6) and (18). The main reasons for
this are that the SVD method is computationally very effi-
cient and that it can be easily generalized to more than three
dimensions.

3.4 Improvements of the ICP algorithm

Following the application of the described procedure, the
most time consuming part of the computation was found
to be the search for the nearest vertex in the approximation.
Three major improvements were introduced in order to
increase computational efficiency, namely the adaptive win-
dow search, multiscale search and variable approximation,
and these are documented in reference (13).

Special attention was also given to the ICP termination
criteria. The usual termination criterion is that the change
in mean square error (MSE) must be smaller than some
small pre-specified value, but the difficulty remains how
to choose that value. If the condition is not strict enough,
then it happens that several points, owing to their random
positions, are not fitted as accurately as the others. On the
contrary, if the condition is too strict then the number of
iterations becomes very large.

It has been observed (19) that ICP registration minimizes
the systematic component of the error while retaining the
random component. This means that the MSE after registra-
tion approaches the sample standard deviation of the mea-
surement data set, which in turn (for reasonably large data
sets) approaches the standard deviation of the measurement
noise,j. Furthermore, for dimensional inspection purposes
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it is readily assumed that the measuring instrument is suffi-
ciently well characterized such that the value ofj is known.
This argument allowed that both the ICP termination criter-
ion and detection of convergence to a local minimum be
based on the known value ofj. In this work the ICP proce-
dure was set to terminate when the change in MSE becomes
less than 10¹2j. This value is based on experience and in
several thousand conducted experiments it produced good
results. Of course, this value is applied only at the final
registration stage, while at the first stage, when a subset of
measured points and the approximate model are used, a suit-
ably larger value is preferable.

The final improvement was introduced in order to avoid
convergence to a local minimum. Following the above argu-
ment, local minima are detected as the situations when the
MSE value is considerably larger than the known value of
j. In such situations a small local perturbation in position
is generated and the subsequent convergence is examined.
The conclusion is that the experiments presented in this
paper have always resulted in a convergence to the global
minimum, but there is still no proper guarantee that a global
minimum would be achieved for other misalignments and
other object geometries.

4 ICP PERFORMANCE ANALYSIS USING MONTE
CARLO SIMULATION

The Monte Carlo simulations were conducted with the aim
of investigating ICP performance in terms of several criteria
that are considered to be of importance in inspection related
applications. These criteria are:

(a) mean square error (MSE),
(b) maximum error (important for inspection),
(c) average error,
(d) confidence in the transformation parameter estimates,
(e) number of iterations required to achieve given accuracy.

The simulations analysed the dependence of these perfor-
mance measures with respect to the following factors:

(a) number of random measurements on the object,
(b) measurement noise (assumed to be Gaussian with

known standard deviation,j),
(c) initial misalignment (three-dimensional translation and

rotation),
(d) fineness of approximation of the NURBS model.

4.1 Random number distributions

In order to perform realistic simulations of the measurement
process, special attention was paid to the randomness in the
generation of the measurement noise and the initial compo-
nent misalignment. The measurements were simulated to be
randomly distributed over the object surface as the most
appropriate situation for a generic registration analysis.

This was done by randomly generating in the applicable
ranges theu and v parameters of the points on the model.
Measurement noise was then simulated as a three-
dimensional isotropic Gaussian, by adding Gaussian noise
of knownj to thex, y andz coordinates of each point.

The correctness of this noise model in reality would
clearly depend on the exact type and characteristics of the
measuring equipment used. In conducting this work the
authors primarily had in mind the measuring system with
which they had the most direct experience, namely a con-
ventional coordinate measuring machine (CMM) equipped
with a laser triangulation probe (Matsushita LM200). This
system was used to perform measurements on the actual tur-
bine blade in question, and also on a special calibration
sphere. Application of thex test on these data confirmed
that the sensor noise and the overall measurement noise
are very closely represented as Gaussian. Other experiments
were also performed in order to characterize the measuring
system and they revealed that the portion of the overall mea-
surement error attributed to the CMM itself is very small
(being of the order of a few micrometres) when compared
to that due to the laser sensor, which was found to be of
the order of several tens of micrometres. Strictly speaking
therefore, it may be argued that the measurement noise in
this system would be more accurately modelled by a Gaus-
sian distribution in the direction of the probe orientation,
together with considerably narrower Gaussian distributions
in the directions of the CMM axes. However, considering
the fact that the points themselves are randomly distributed
over the surface, it was concluded that the three-dimen-
sional isotropic distribution does not produce significantly
different results, and that at worst it represents a conserva-
tive noise model.

No suitable data were available to indicate that a particu-
lar distribution should be chosen in generating the random
initial misalignment. Therefore it was decided to adopt a
uniform distribution over a specified range in this case.
This clearly sets the most difficult range of situations for
the ICP algorithm in which its performance is evaluated,
but it was considered necessary in order to provide defini-
tive answers about its operation.

4.2 Description and conduct of the Monte Carlo
simulation

Data sets were obtained by performing simulation of CAD-
based inspection. Because of the large number of data sets
required, it was decided to conduct all trials on the basis
of a single real object, which was carefully chosen to con-
tain various geometric characteristics that would be repre-
sentative of different situations. The object used was an
aero-engine turbine blade airfoil (Fig. 1) with approximate
dimensions of 100 mm× 100 mm× 40 mm. The reasons
for its selection are summarized as follows:

(a) high precision engineering component,
(b) CAD model defined as NURBS,
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(c) poor geometric determinacy along the stacking axis (z-
axis),

(d) contains fine geometric features (small, 0.4 mm, radius
of curvature at the trailing edge).

The simulations were conducted through a number of
experiments. Each experiment involved 100 simulations
by executing the following loop:

1. ComputeN random points on the surface.
2. Add Gaussian noise with known statisticj to each point.
3. Apply random rotation about lines parallel to the coordi-

nates axes and passing through the object centre of mass.
4. Apply random translation along all axes.
5. Perform registration.
6. Subtract estimated transformation parameters from the

(known) true values and record result, together with
MSE, maximum error and number of steps.

After completing the set of simulations in each experi-
ment, the following values were computed:

(a) transformation parameter confidence intervals,
(b) mean error of parameter values estimation,
(c) maximum value of MSE,
(d) mean value of the number of steps.

Several tens of thousands of simulations were conducted
and the results are summarized in the following sections.
Except where stated otherwise, all simulations involved ran-
dom initial misalignments w.r.t. each axis in the range
63:0 mm translation and63:08 rotation, while the model
was approximated with 5200 vertices corresponding to a tol-
erance of 0.1 mm and thickness of 0.4 mm.

5 CONVERGENCE ANALYSIS OF THE ICP
METHOD

The graphs in Fig. 2 show typical progress of the ICP regis-
tration in terms of MSE reduction against the number of
iterations. The two curves correspond to different measure-
ment noise valuesj ¼ 8mm andj ¼ 60mm. The points A1
and B1 correspond to the switch from fitting to an approxi-
mate model to fitting to a NURBS model, while the points
A2 and B2 correspond to local minima.

Convergence of the ICP method was evaluated
by comparing the MSE and maximum error before the
introduction of initial misalignment and after the
completion of the fitting iterations. This was repeated
for different simulations and the results are shown in
Figs 3 and 4. For clarity, only a small number of
simulation results are shown here, involving 5000
measured points and noise ofj ¼ 8mm. Similar
results were obtained for other noise values and
numbers of measured points. Our conclusion is that the
implemented algorithm resulted in global convergence in
all cases.

Figure 3 shows that in each case the value of MSE after
fitting closely matches the MSE value before initial misa-
lignment was introduced. In other words, since the initial
MSE is given by the standard deviation of the measurement
noise, the MSE value after fitting approaches the standard
deviation of the measurement noise. This supports the claim
that the implemented ICP method achieves global conver-
gence.

Furthermore, the closeness of the graphs in Fig. 4 indi-
cates that the worst measured point (due to a given measure-
ment noise characteristic) results in the maximum error after
ICP fitting, i.e. it remains the worst point. This is extremely
important in inspection, where the accuracy of each mea-
sured point is often an important consideration, and it has
been achieved by the strict iteration termination criteria.

An interesting effect is presented in Fig. 5, showing
that maximum error increases with the number of measured
points. In fact, this is to be expected, because the larger
the number of noisy measurements, the greater the
probability that some points will be measured with large
error.

6 EFFECT OF APPROXIMATION

As explained previously, significant improvements in the
overall computational efficiency may be achieved by using
an approximate polyhedral model of the object in the first
stage of ICP. However, as the search for the nearest vertex
became the time critical task in this case, it was important to
assess the dependence of the fitting accuracy on the fineness
of approximation. In order to study these effects, the
NURBS model was approximated by polygonal meshes
comprising different numbers of vertices. For each case,
1200 simulations with random initial misalignments and
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measurement noise ofj ¼ 8mm were performed and ICP
fitting was applied. The overall results are shown in Fig. 6
in terms of the largest MSE achieved for each number
of approximating vertices. From these results it is
apparent that above a certain limit there is little to be gained
by increasing the fineness of the approximation, while the
computation time would be increased significantly.
The cut-off point corresponds to the fineness that satisfies
the thickness condition and therefore respects the object
topology, assuming that the tolerance criterion is also
satisfied.

7 EFFECT OF INITIAL MISALIGNMENT

Effect of the initial misalignment was investigated in order
to determine how many iterations are on average required to
achieve convergence. The three curves in Fig. 7 present
typical results, which were obtained by fitting 200 measured
points with random initial misalignments in the ranges of
615.0 mm/615.08, 63.0 mm/63:08 and 60.3 mm/60:38.
Each point on each curve represents an average result of
100 simulations. In all these cases the final accuracy of
registration was the same and we conclude that initial mis-
alignment affects only the speed of convergence.

Using the ICP method in these experiments, global
convergence was achieved in all cases but one. In that
one case the MoI method was successfully applied as
the first alignment step, resulting in a better initial guess
and subsequent global convergence.

8 EFFECTS OF THE MEASUREMENT NOISE AND
THE NUMBER OF MEASURED POINTS

In this study it was important to conduct simulations such
that the effects of different noise values and different
numbers of measured points were analysed ‘under the
same circumstances’, since there was only a finite set of
simulation runs and a finite number of randomly generated
measured points in each case. Thus in order to ensure
statistical reliability (10) of the results, the same set of ran-
domly generated initial positions was used in examining
each combination of the measurement noise and the number
of points.

The experiments were conducted using four different
measurement noise values (j ¼ 8mm, 25mm, 40mm and
60mm), eight different numbers of points (in the range of
20–10 000) and 100 different random initial positions.
Thus a total of 3200 simulations were run. The results are
shown in Figs 8 to 10.

With the different measurement noise and the
different number of points in each experiment, the fitting
error of the ICP method was analysed, this being the
difference between the true transformation parameters
(introduced as initial misalignment) and the estimated
transformation. This difference also has its own
probability distribution because of the randomness of
the measurement noise and of the initial misalignment.
It is common practice to summarize such a distribution
in the form of confidence limits. In accordance with
reference (20), the confidence statement for the case
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of the mean value estimatem of a random variablex is
given by

x ¹
sta=2
N

< m < x þ
sta=2
N

where

x ¼
1
N

XN

i¼1

xi is the sample mean

s2 ¼
1

N ¹ 1

XN

i¼1

ðxi ¹ xÞ2is the unbiased sample variance

N ¼ sample size

ta=2 is found from the Studentt-statistic tables

For N ¼ 100, as was the case in the present experiments,
the difference betweenta=2 and the normal critical value is
very small. Nevertheless, the relevant metrology standards
(such as DIN 1319) recommend that the confidence inter-
vals be estimated using the above formulae and this recom-
mendation was followed in this work.

Figure 8 presents examples of the confidence interval
widths for rotationa and translationx, for different numbers
of measured points and different noise values. Confidence,
and therefore the accuracy of parameter estimates, clearly

improves for a large number of points, but the size of the
confidence interval can be seen to increase with larger noise.
In fact, this should be expected, since perfect alignment
would result in the error for each point being given by the
measurement noise itself. Therefore, as explained in Section
5, the standard deviation of the noise sets the minimum
achievable MSE in LS fitting.

The conclusion is that high registration accuracy requires
both highly accurate measurements in order to minimize the
achievable MSE and a large number of measured points
such that this MSE value is achieved. This has important
practical implications, especially when evaluating different
sensors for a particular inspection application. For example,
a touch-trigger probe offers high accuracy but its speed will
generally make it feasible to collect only a small number of
measurements. In contrast, a non-contact laser triangulation
probe provides somewhat inferior accuracy, but it can
rapidly collect a large number of measurements.

At the same time, however, the graphs in Figs 8 and 9
show that acceptable accuracy can be achieved with only
200–300 points. This is an important result which allows
the conclusion to be made that in the initial stages of fitting,
a smaller number of measured points may be used, thus
improving the computational speed. When a minimum is
reached, the full measurement set can then be continued.
In the several hundred conducted experiments, this final
stage required only one or two further iterations.
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9 EFFECTS OF GEOMETRY

The graphs in Figs 9a and b show the dependence of confi-
dence in translation and rotation parameter estimates
respectively, on the number of measured points (on a loga-
rithmic scale), for a given noise value. They clearly show
that the confidence is never equal for all parameters, which

is a direct consequence of the object geometry. The position
of the airfoil shape used in these experiments is relatively
poorly defined with respect to thez axis position and rota-
tion about they axis (Fig. 1), and this is also evident from
the confidence plots.

The graph in Fig. 10 further illustrates this situation. It
shows that the mean error in transformation parameter
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estimates tends to zero as the number of measured points
increases, as expected on the basis of the global conver-
gence of the ICP algorithm. However, the difference
between the curves clearly indicates that it is the poor deter-
minacy of the position in thez direction that demands the
use of a larger number of points.

These results show that for a given complex geometry
there are no easy answers about how many measurements
are required to achieve registration to a given accuracy.
The conclusion drawn from this work is that the optimal
solution to the problem should be sought through extensive
simulation of the measurements for the given object, from
which the acceptable lower limit for the point density can
be derived.

10 CONCLUSIONS

This paper is concerned with accurate registration as
demanded by the purposes of dimensional inspection of
free-form surfaces. Registration of surfaces defined as
NURBS was implemented using the ICP method, as a
realization of LS fitting. The influence of a number of
important factors was analysed, one of the most important
ones for inspection purposes being the measurement noise.

Quality of fit was measured using confidence in the trans-

formation parameter estimates. The results clearly show that
in the presence of measurement noise, as is always the case
in practice, confidence improves with an increased number
of measured points. This is an important result for inspec-
tion, which confirms the intuitive reasoning that measuring
a very large number of points with lower accuracy can pro-
vide better results than measuring a very small number of
points with higher accuracy. This has important implica-
tions when evaluating different measurement technologies
for a given application.

At the same time it was concluded that precision of regis-
tration does depend on the precision of measurement. This is
because the MSE after fitting was found to approach the
MSE of the measurements and because the confidence inter-
val for transformation parameter estimates becomes nar-
rower for lower noise.

The amount of initial misalignment was found to affect
the number of required ICP iterations, as would be expected.
However, the highly encouraging result was that global con-
vergence of ICP was achieved in almost all of theseveral
thousandexperiments, while the problems encountered in
a few cases with large initial misalignment were readily
overcome by applying the MoI method as the first alignment
step.

One of the most important factors affecting registration
performance was confirmed to be the shape of the object,
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in particular the degree of symmetry about any axes and the
definition of the object position by the measured points. Ill-
conditioning of a given geometry in terms of LS fitting is
reflected in the slower convergence rate with respect to
the particular degrees of freedom. For the object used in
this study it was the translation along thez axis that was
most pronounced in this respect, followed by rotationa

about thex axis. However, in all of the conducted experi-
ments it was still possible to achieve global convergence
to within the prescribed tolerance.

Iteration termination criteria have been found to be the
key for achieving high registration accuracy. The criterion
based on the known noise variance,j, as presented, was
found to produce the required results.

The investigation has also confirmed that accurate regis-
tration requires a large number of iteration steps. This was
the main incentive for maximizing the computational effi-
ciency of each iteration and the adoption of dual representa-
tion of the NURBS model has significantly improved the
overall computing time. Importantly, the results have also
shown that beyond a certain point, increased fineness of
approximation brings diminishing benefits, while the com-
putation time increases linearly with the number of approx-
imating points. The cut-off point was found to correspond to
the fineness that adheres to the object thickness criterion,
which must be satisfied.

Finally, in the absence of readily available analytical
techniques, Monte Carlo simulation was shown to be a
good tool for assessing the registration performance in a
given situation. The simulation process described in the
paper can be readily performed, in full or in part, to produce
definitive results about registration of any given object using
any given measurement sensor.
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