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Abstract

A frequent requirement in computer aided design and manufacture is to update or refine an existing CAD model using measured data.
Least squares surface fitting is known to suffer from stability problems, caused by an insufficient measurement density in some regions. This
is particularly evident in situations involving local surface updating and when knot insertion is applied for local surface refinement. This
paper presents a new method to update the CAD model consisting of NURBS surfaces, trimmed or untrimmed, based on a set of unorganised
measured points in three-dimensional space. The proposed method overcomes the fundamental problem of singular or ill-conditioned
matrices resulting from incomplete data sets. This was achieved by introducing additional fitting criteria in the minimisation functional,
which constrain the fitted surface in the regions with insufficient number of data points. Two main benefits were realised by this approach.
First, local surface updating can be performed by treating the surface as a whole, without the need to specially identify the regions with
insufficient data, nor to re-measure those regions. Second, the quality of the unmeasured regions may be controlled to suit specific needs. The
results were found to be highly encouraging and the method was found to be especially useful in situations involving knot insertion and large
surface deformations. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In today’s industrial practice many products are designed
using free-form surfaces. The shape of the object is dictated
by numerous considerations relating to the product function,
its aesthetic effect and the ease of manufacture. Examples
can be readily found among the automotive products (exter-
ior body panels, interior car trim), aerospace (airfoil shapes)
and also in a wide range of consumer goods. The design and
development process of such products is often an iterative
one. It involves manufacture of a series of prototypes or
models, which are progressively updated and refined until
the design objective has been finally achieved [14].

In this process, the development of the desired physical
object and the development of its CAD model mostly go
hand-in-hand. In the case of consumer goods, for example, it
is typical that the designer (stylist) creates a clay model of
the product, which is then digitised using a contact or a non-
contact measuring system to produce the data from which
the CAD model can be generated. Design iterations then
involve repeated CNC machining of new clay models
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from CAD, manual model modification, digitising and
CAD model updating. In the case of engineering compo-
nents, such as aeroengine turbine blades, it is important to
correlate the shape of the nominal CAD model and the
performance predicted by simulations with the shape of
the manufactured part and its actual performance evaluated
through experiments. In this situation it is highly desirable
to update the CAD model using measurements, such that it
provides a faithful representation of the realised (manufac-
tured) shape.

The main modelling entity in the modern CAD systems
are NURBS. Trimmed NURBS are also widely used,
because they largely overcome the limitations imposed by
the strictly rectangular domain of tensor product surfaces
and provide additional flexibility for the designer. With
trimmed NURBS however, only the untrimmed portion of
a CAD surface exists in the physical part and is available for
measurement. Thus if the CAD surface is to be updated
using measured data then the updating process is a localised
one. Furthermore, it is usually more practical to digitise only
those regions of the object that are of interest and these may
represent only a portion of a CAD entity. Surface updating
can be seen as an estimation of the shape from an incom-
plete data set and an approximate model [7].

A number of geometric modelling techniques have been
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proposed for modifying shape. At the lowest level, the
designer repositions the control points, adjusts weights
and modifies the knot vectors. More sophisticated methods
for modifying shape are presented in [15], such as warping,
flattening, bending and constraint based modification. It is
also important to remember that knot insertion is an
invaluable tool whenever shape modification is to be
applied. It introduces additional control points in order to
provide the required local flexibility for achieving the
desired shape.

In the case of scattered data fitting, deformable surfaces
may serve as effective fitting tools. Terzopoulos and
Metaxas [24] proposed a computational physics framework
for shape modelling in which globally deformed superquad-
rics model coarse shape and local deformations add fine
detail. Further, Qin and Terzopoulos [17] proposed using
dynamic NURBS swung surfaces, but computational over-
heads mean that this method cannot be easily applied to
problems with many control and data points. Also, blended
deformable models [4,23] and generative modelling of
Ramamoorthi and Arvo [18] might be seen as tools for
surface fitting. They use the measured data cloud with a
user defined class of models which are a generalisation of
swept surfaces. A shortcoming of this approach is that it is
limited in representing local detail.

Curve and surface fitting using least squares is a general
technique and a good introduction is provided in [9]. In
terms of CAD surface updating using least squares, the
main work was done by Ma, Kruth and He [10-12], who
present methods for fitting of B-splines, or NURBS, to unor-
ganised points. It is well known that methods based on least
squares fitting have a potential problem with rank deficient
matrices which is a direct result of an insufficient coverage
of certain regions by the measurements. In addition, the
measurement distribution may be such that the least squares
problem is non-singular, but it is ill-conditioned due to small
parameter values [2]. The main idea proposed by Ma and He
[10] is to avoid the singularity problem by excluding from
fitting those control points for which the position is not
defined by the data. These are identified in a pre-processing
step and the relevant matrices are re-arranged to allow only
a subset of the control points to be affected by the fitting.
After applying this solution it is still possible that the system
is ill-conditioned due to sparsity of data in some regions, so
it was suggested that those regions should be re-measured.
However, this is not very practical for shape refinement
since fitting, knot insertion and measuring may need to be
reiterated a number of times.

The work presented in this paper addresses the
problems with ill-conditioned and singular matrices that
arise during least squares fitting, using NURBS base
surfaces and measured data. The proposed method also
eliminates the need to identify those regions that are unaf-
fected by the measurements in order to exclude them from
fitting. Instead, the surface is always treated as a whole,
irrespective of the measurement distribution, and there is

no explicit distinction made between local and global
modification.

The paper is organised as follows. In order to avoid nota-
tional confusion, the next section will briefly define NURBS
surfaces, while Section 3 describes least squares fitting
applied to NURBS and discusses the problem of rank defi-
ciency. Section 4 describes regularisation as a method to
overcome the rank deficiency problems and presents the
solution proposed in this paper. Section 5 analyses the
performance of the implemented method and provides
some illustrative practical examples.

2. NURBS Definition

A NURBS surface of degree p in the u direction and
degree ¢ in the v direction is a bivariate vector-valued piece-
wise rational function of the form:

Su,v) = (x,(u, v), y,(u,v), z,(u, v))

n m

Z ZNi,p(u)jvj,q(V)wiJPiJ
_ i=0 j=0 OSM,VS] (1)

z ZNi,p(u)IVj,q(V)Wij

i=0 j=0

where the control points {P;;}form a bi-directional control
net with n points in the u direction and m points in the v
direction (nXm = N), while {w;;} are control point
weights. The functions {N;,(u)} and {N,,(v)} are the non-
rational B-spline basis functions defined on the knot vectors

U=10,..,0 ,ttys1seertty 151, 1}
p+1 p+1
2
V= { O,...,O ,Vq+1,...,vsfq,1, 1,...,1 }
g+ 1 g+ 1

where r = (number of knots in the u-direction) — 1 and s =
(number of knots in the v-direction) — 1.
By introducing the piecewise rational basis functions

N (wN: .

Ry, ) = a0 3)
Z ZNk,p(u)Nl,q(v)Wk,l
k=0 =0

the surface Eq. (1) can be written as:

S v) = > Riju,v)P; )

i=0 j=0

Egs. (1)—(4) define the evaluation of a point on a NURBS
surface, the basic implementation of which is outlined in
[15].
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2.1. Greville abscissae
By setting

*

ui = l(ul + o+ uiﬂ,),vf = l(vj + o+ vj+q) 5)
p q

one can associate a point in the surface S(u;, vj*) with each
control point P;; and link the geometry to the parametric
values. This is the generalised association in the Schoenberg
variation diminishing spline. The values u,«*,vj* are called the
nodes of the knot vectors [8] or Greville abscissae [6].
Generally, S(u,-*,vj*) may be regarded as the points on the
surface where their corresponding control points exercise
the most influence [6,13].

3. NURBS surface fitting

Least squares fitting of NURBS through a set of points
would lead to a non-linear optimisation problem if the
unknowns are the control points, parameters (&, v), knots,
and the weights. A method for adjusting the weights was
proposed by Ma and Kruth [12]. However, the non-linear
nature of the problem can be avoided and the optimisation
can be greatly simplified, if the weights and the knot vector
are set a priori. Since the nominal CAD model is already
available as a good approximation of the actual object
shape, we propose using the weights and knot vectors
obtained from the nominal model and then optimising
only the positions of control points.. If required, the
accuracy of the fitted surface can be further increased
using knot insertion. This approach has been shown to
achieve both accuracy and reasonable computational
speed [20]. The following explanation of NURBS surface
fitting is an extension of that presented by [15] for use with
NURBS curves.

By denoting the measured points as Qy,...,Q,;, we set up
and solve the linear least squares problem for the unknown
control points. The functional to be minimised is:

Qs — S, vo)I? (6)

Mz

f=

k=1

where u, and v, are the parametric co-ordinates correspond-
ing to each measured point. The assignment of these coor-
dinates is crucial because parameterisation has a strong
effect on the shape of the fitted surface. A number of meth-
ods to parameterise measured points have been published,
but the majority of this work makes the assumption that the
data is ordered. Since our work aims to deal with both
ordered and unordered data, an alternative method was
found following the suggestion by Ma and Kruth [11],
where the parameterisation can be achieved by projecting
the points onto a base surface, from which the u; and v,
values are obtained. In this work, the required base surface
is readily provided by the entities of the existing CAD

model and the required parameterisation is obtained as a
result of registration.

Registration is the process of establishing point corre-
spondences between the data and the model and it may
also involve alignment of the two entities. The need for
alignment arises from the fact that the data and the model
are usually provided with respect to different co-ordinate
systems. Following our experience with registration of
NURBS models [19,21], we adopted the Iterative Closest
Point (ICP) registration method [1]. As the name suggests,
the ICP method minimises at each iteration step the collec-
tive square distances between the measured points and their
closest points on the surface, defined by the functional:

M
F=>18-RQ —t (7
i=1

where t is the translation matrix, R is the rotation matrix, Q;
is the ith measurement point and S; is the closest point on the
surface. In our implementation the search for the nearest
point is performed using multidimensional simplex method
[21].

Following this, the least squares fitting problem involves
solving the set of normal equations

ATAa=A"p (8)
where A is M X N matrix:
Rn,m(MO’ VO)

Rn,m(ul’ Vl)

Ry o(ug, vo)

RO,O(MI’VI)

RO,O(MM» V) Rn,m(uM» V)

and
a= [PO,O Pn,m ]T
b= [Q] QM ]T

The system of Eq. (8) has to be solved a total of three
times in order to calculate x;;, y;; and z;; for all P;;. Here we
assume that matrix A is full column rank and defer treat-
ment of rank deficient problems to Section 3.1. Eq. (8) can
be solved using a number of methods. Cholesky factorisa-
tion [2] belongs to the group of direct methods and gives
satisfactory results for problems of reasonable size.
However, surface fitting problems can be large, sometimes
involving over a million data points and modelling entities
having over a thousand of control points, making the
memory storage requirements imposed by the direct meth-
ods prohibitive. This is because the matrix ATA is sparse,
but its sparsity is destroyed by the Cholesky factorisation as
it produces the triangular matrix. Iterative methods on the
other hand, start from an initial approximation, which is
successively improved until a sufficiently accurate solution
is obtained. Importantly, basic iterative methods work only
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with the original form of the matrix ATA and can readily
exploit its sparse structure by storing only its non-zero
elements. Furthermore, since ATA is involved only in
terms of matrix by vector products, the rows of this matrix
may be generated when required so the storage requirements
can be reduced even further, but at the expense of additional
computations. Thus for very large problems iterative meth-
ods may be the only feasible ones and they are used most
often for the solution of very large sparse systems. Finally,
we note that Singular Value Decomposition (SVD) may be
an attractive solution method, especially in view of its stabi-
lity in the presence of rank deficiency of A, but SVD cannot
take advantage of the matrix sparsity in order to speed up the
calculations [5].

For the purposes of the work presented in this paper, we
implemented the iterative method of Gauss—Seidel, as well
as Cholesky decomposition.

3.1. Rank deficiency and ill-conditioning of the least squares
problem

It is quite easy for the matrix ATA in the normal equations
to be rank deficient. As the system increases it is also likely
that the set of equations will become ill-conditioned. The
problem of rank deficiency arises from the local character of
the basis functions and its detailed presentation is provided
in [5]. For the univariate case (curves), rank deficiency
can be readily detected by examining validity of the
Shoenberg—Whitney conditions [5], but such simple test
does not exist for the bivariate case (surfaces). Instead, De
Boor [3] shows that ATA is positive definite and well-
conditioned if there is at least one data point assigned to
every knot span. Since this condition can be readily
examined, it is most often taken as the criterion to set up
a well-posed system. In the context of NURBS surface
updating however, it is difficult to guarantee this condition
and the main reasons for this are:

e incomplete data sets due to inaccessibility (most often
close to the edges);

¢ incomplete data sets due to the use of trimmed NURBS in
modelling;

e knot insertion;

e re-parameterisation.

Some of these problems may be illustrated through the
example in Fig. 1, when a base surface is updated using
unevenly distributed measurements. The measurements,
Fig. 1(a), are considerably more dense in the central region
which involves a large deformation, while they are rela-
tively sparse in the outer regions which are kept flat. The
results of surface fitting in Fig. 1(b) show that the available
number of control points provide insufficient flexibility of
the surface, causing two distinct problems. First, in the
central region, the fitted surface is incapable of following
the prescribed shape with sufficient accuracy. Second, the

strong pull exercised by the dense measurements in the
central region causes waviness of the sparsely measured
outer regions, which appears in order to accommodate the
tight fitting of the central region. This is a clear case for
employing knot insertion which, as Fig. 1(c) shows,
provides additional flexibility and produces considerably
better overall results. Repeated knot insertion provides an
even greater surface flexibility and better corresponding
fitting accuracy in the central region. Unfortunately, this
quickly leads to a situation shown in Figs. 1(d) and (e),
when empty knot segments start to appear in the outer
regions, causing ill-conditioning or rank deficiency of the
ATA matrix, bringing instability into the system.

A difficult problem arises when the system is ill-condi-
tioned, in which case the diagonal elements are small. One
way of dealing with this problem, as suggested by Dierckx
[5], is to compare the diagonal elements to a pre-set thresh-
old value € and if smaller, then to set those elements to zero.
However, this is not an entirely satisfactory solution
because an appropriate threshold value should be deter-
mined by considering the relative magnitudes of the coeffi-
cients in ATA and this is difficult. Also, it is generally too
crude to simply exclude control points from the updating
scheme on this basis.

4. Regularisation

In order to overcome the problems outlined in the
previous section, it is necessary to regularise the linear
system. The principle of regularisation [2] is the prescrip-
tion to expand the functional to be minimised as follows:

f@@) = [|Aa — b|l3+A[|Ca — d|3 )

where ||Ca - d||§ defines some other fitting criterion as a
constraint and the constant A > 0 provides a trade-off
between the two criteria. This is equivalent to the least
squares problem:

(ac)- ()

A necessary condition for a minimum is that the gradient
df/da = 0, which then gives a set of generalised normal
equations

min
a

(10)

2

(ATA + )\ZCTC)a =A"b + AC"d (11)

The dimensions of vectors and matrices in Egs. (8) and (11)
are identical and both are solved using identical methods.
Furthermore, the minimising functional and the generalised
normal equations may be expanded in this fashion to include
additional criteria. Importantly, when a quadratic minimisa-
tion principle is combined with a quadratic constraint, and
both are positive, only one of the two need be non-degenerate
in order to make the overall problem well-posed. It is also
worth noting that the two parts of the minimisation will have
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Fig. 1. Surface fitting and knot insertion. (a) Initial surface and unevenly distributed measurement cloud; (b) fitted surface; (c) fitting results are improved
following knot insertion; (d) repeated knot insertion improves fitting results but instability starts to appear at the sparsely measured outer regions; (e) further

knot insertion causes further deterioration in the regions with sparse data.

comparable weights [16] by choosing:
T(A"A)

~ T(CTC) (12

Thus in the knowledge that matrix ATA is possibly
degenerate, a new criterion and a corresponding weight A
may be chosen to set up a well-posed problem. A number of
such regularisation schemes have been proposed. One stan-
dard solution for dealing with singular systems is provided
by the minimum norm criterion, defined by

min||a],, Na=¢ (13)
a

Indeed SVD is a special case of minimum norm
regularisation [16], but it was found that in practice it

does not give satisfactory solution for B-spline surface
fitting, confirming the reports in [5]. As an alternative,
Schmidth [22] proposes to couple neighbouring B-spline
coefficients which are not properly defined by the data.
This kind of regularisation is helpful in cases where the
knot distribution is such that no explicit gap, but less data
than local functions, appear over some subregion. Unfortu-
nately, this regularisation may also change the shape of the
surface in a strange manner.

4.1. Proposed solution

In developing the solution for the regularisation problem,
it was noted that when the system becomes unstable, the
control points associated with the areas with insufficient
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data move in an uncontrollable fashion, away from the
surface. Our main idea is based on the fact that control
points do approximate the surface and it seems natural to
keep them as close to the surface as possible by introducing
an additional criterion. We therefore suggest minimising the
sum of the squared distances between the control points and
their corresponding points on the fitted surface. We expect
this criterion to smooth the surface and to involve an equiva-
lent of energy minimisation.

Mathematically, we expand the functional of Eq. (6) to
include an additional ‘criterion’, as follows:

m

f= Z|Qk S vl +a > Z|P,J Sty vip| (14)

i=0 j=0

where P; ; are the control points and S(u;j,v;;) are their
correspondlng points on the surface, while coefficient
a = 0 provides the required trade-off flexibility

Naturally, the question arises as to how to define the corre-
sponding surface points. We adopted a solution using Greville
abscissae (Section 2.1), because they provide the most regular
matrix, as they are obtained using knot averaging (Eq. (5)).
For example, in the case of a cubic B-spline, no two adjacent
knot segments will be without Greville points.

After implementing this idea, we conducted extensive
experiments with a variety of shapes and concluded that
inclusion of the «-criterion is indeed highly beneficial,
especially in situations involving large deformations of the
original model. The experiments have also shown that the
a-criterion can produce the effect of flattening the fitted
surface, especially in the regions where the data points are
sparse and the control points are relatively far from the base
surface. This effect is in fact often desirable. The regions with
no, or with few, data points are generally re-shaped to accom-
modate the deformation of the regions with dense data, such
that a gentle transition between the two regions is obtained.
Furthermore, the flattening effect may be controlled and
significantly reduced by knot insertion, making the control
polygon approximate the surface more closely.

However, as it will be shown below, the inclusion of the
a-criterion does not guarantee that the overall problem is
well posed. Furthermore, it was also recognised that there
are many situations when it is desired that the shape of the
unmeasured, or sparsely measured, regions is preserved after
updating. For this reason an additional constraint, we call it
‘B-criterion’, was introduced, which attempts to limit the
displacement of the control points relative to their original
positions. The overall minimisation problem still remains
linear and the cost function to be minimised becomes:

f= Z 1Q — St v P+a > Z|P,J S0 vip)|
i=0 j=0
(15)

+BY S |p, - Pif

i=0 j=0

where P, ;1s the original position of the control point P; ;, and
B = 0 is a weighting factor.

Substituting Eq. (4) into Eq. (15) gives:

i, j» &

2

Qi — D D Ry vpPy

i=0 j=0

M—1
)
k=0

nom 2

+BZZ

i=0 j=0

P — Z Z R j(ur g, vi )P

i=0 j=0

+aiz

=0 =0

ij

M-1 nom
= Z [Qk'Qk —2Q¢ Z ZRiJ(Mk,Vk)Pi,j
k=0 i=0 j=0

+ 3> Ry voP - Z ZRlJ(uk,vk)Pw]

i=0 j=0 =0 j=0

+ aZ Z[Pkl Pkl o 2Pk1 Z ZRI,](ukl?vkl)Pl,/

k= 0 i=0 j=0

+ Z ZRIJ(ukl’VkZ)PlJ Z ZRIJ(uk],Vkl)Puil

i=0 j=0 i=0 j=0

S 0 0 p0
i=0 j=

(16)

where f is a scalar-valued function of N=(m + 1)(n + 1)
variables P;;. We now apply the standard technique of linear
least squares fitting, whilst minimising f by setting the deri-
vatives of f with respect to P, equal to zero. The r,s-th
derivative is:

M—1
¥ = z ( — 2Qp R, ((uy, vi)

+ 2R, (v D D Ry, vk>PiJ-)

i=0 j=0

Z Z(R,me v IR+ Ry (v ,,,)Pl,,)

i=0 j=0

+2a(
+ Z Z( rs(uu’ ZJ) Z Zde(uz,/’ z,/)Pkl))
i=0 j=0

k=0 [=0

+2B(P,, — P (17)
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which implies that:

M-1

Z Rr,s(uk’ Vk)' Z ZRi!/'(uk’ Vk)Pi,/' + B'Pr,s + a'Pr,s

k=0 i=0 j=0

—a Z ZR,,WH, v Py — a Z ZR“(u Vi Pyy

i=0 j=0 i=0 j=0
+ o z Z( rs(uz,p ZI)Z ZRIJ(MZI’ IJ)Pk])
i=0 j=0 =0 =0
M-1
= > QuR, (. vi) + BPY (18)
k=0

Interchanging the order of summation gives:

n m

PIJ( Z Rr v(uk’vk)Rt,/(uk?vk)) + BPM + aPrv
0

i=0 j=

- z ZRIJ(UVA’ VJ)PIJ a: Z erS(u1J7 l])Pl]

i=0 j=0 i=0 j=
T a Z Z ( Z ZRr,s(uk,I’vk,Z)RiJ(uk,l7 Vk,[))
i=0 j= k=0 =0
M—1
= > QR (. ve) + BP), (19)
k=0

Eq. (19) represents one linear equation in the unknowns
Pyoy.....P, . Letting r=0,..,n and s=0,...,m yields a
system of (n+ 1)X(m+ 1) equations in (n+ 1)X
(m + 1) unknowns and it can be presented in matrix
notation as:

[ATA + a(I +B™B-BT — B) + ,BI]a = ATb + Ba’ (20)

or:

[ATA +aB-D'B-D+ ,BITI]a =A"b+ 82" (1

Table 1

where A, a and b are as in Eq. (8), while:

Ro,0(u0,0, vo,0) R, (0,05 vo0)

Roo(uo,15v0,1) Ry, it 15 v0,1)
RO,O(un,rm Vn,m) oo [ Rn,m(“n,m’ Vn,m)
and
T
— 0 0
=[P - - PL.]

This represents a set of generalised normal equations
which are then solved using the same methods as those
used for solving Eq. (8).

By examining Eq. (21) it can be seen that all elements of
ATA are positive and that BI is a positive diagonal matrix
for B > 0. This clearly means that any non-negative value
of B will guarantee that the system is stable. However, it can
also be seen that inclusion of the a-criterion does not guar-
antee stability because the matrix (B — I)" (B — I) cannot be
guaranteed to be non-singular.

5. Performance analysis and results

Fitting complex surfaces through large measurement data
sets can be expensive in terms of both computational time
and memory, a significant proportion of which can be attrib-
uted to the matrix multiplication ATA. The time and memory
requirements can be drastically reduced by exploiting the
sparse and banded nature of the matrices A. and ATA, mean-
ing that only the non-zero matrix elements are stored and
directly multiplied. As a result it is possible to reduce both
the number of computations and the memory requirements.

A full discussion of the algorithm implementation is
beyond the scope of this paper, and it will be reported in a
separate publication. Nevertheless, the results in Table 1
were included in order to provide an indication of the
realised performance, obtained using a Pentium III
400 MHz personal computer with 128 Mb RAM. The
storage requirements of the algorithm to compute A'A is
O(N(2p + 1)(2¢g + 1)), while the computational complexity
is O(M((p + 1)(g + 1))?). For solving the system using

Computational performance of the implemented least squares fitting algorithms on a Pentium personal computer. Time in seconds and required memory in
kilobytes are given for different numbers of data points and the control points of the fitted surface

Number of data points Number of control points

10 100 1000 10,000
100 0.031s 42.6 Kb 0.094 s 145.9 Kb
1000 0.078 s 42.6 Kb 0.141's 145.9 Kb 0.781's 1054 Kb
10,000 0.625 s 42.6 Kb 0.688 s 145.9 Kb 1.391s 1054 Kb 7.281s 9126 Kb
100,000 6.172s 42.6 Kb 6.203 s 145.9 Kb 6.968 s 1054 Kb 12.969 s 9126 Kb
1,000,000 61.781s 42.6 Kb 61.515s 145.9 Kb 63.062 s 1054 Kb 69.250 s 9126 Kb
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Fig. 2. Base surface and data points.

Gauss—Seidel method, the computational complexity in has
dropped significantly, from O(N*) to O(N). Thus for a
problem involving, say, M=10° measured points,
N =10’ control points and surface degree p =¢q =3, the
storage requirement is O(49 X 10*) doubles. Computational
complexity for this case is O(256 X 10°) operations (multi-
plications and additions) for matrix multiplication and
0(10%) operations for the solution phase. This shows that
fitting surfaces with many control points to large data sets is
achievable at nearly interactive speeds and with only
modest memory requirements by today’s standards. The
achieved computational efficiency is particularly important
in view of the suggestions by a number of authors that
optimal fitting results may be obtained by repeated knot
insertion, re-parameterisation and fitting.

The choice of parameter values o and [ deserves
attention. As explained previously, both criteria were, in
principle, included in order to stabilise the system, but
only the [-criterion can guarantee the stability (for
B =0). On the other hand, from the point of view of the
resulting surface shape, the two criteria have very different
effects and surface quality may be controlled as a trade-off,
by the choice of the weights « and .

The influence of the «-criterion is that it flattens the
surface by bringing the control points and the surface closer
together, and this effect is stronger in the sparsely measured
and/or highly curved regions, where the distance between the
control points and the surface is larger. It is also worth noting
that the flattening effect of the a-criterion may be reduced in
any region through knot insertion, because a finer control
mesh is a better approximation of the surface. The overall
effect of the «-criterion is that it realises a gentle transition
between the measured and unmeasured regions, which may
be especially desirable in the case of large deformations.

In contrast, the effect of the B-criterion on the resulting
shape is quite different, since it acts to preserve the shape of
the unmeasured regions. Therefore it may produce a sharp
transition in order to accommodate a large deformation. The
shape preserving effect of the S-criterion may also be
reduced, through iterative fitting.

In order to obtain a better insight into the effects produced
by the choice of « and 3, we analysed the fitting results for
different values of these parameters. Fig. 2 shows the base
surface and the data points used for the analysis. The data
set is relatively dense, but it corresponds only to the central
region of the surface. The number and distribution of the
control points were chosen to be compatible with the desire
to accurately represent the deformation prescribed by the data.

Fig. 3(a—p) shows the fitting results arranged in a tabular
form, with ascending values of « and . It should be noted
that the indicated parameter values have been set according
to Eq. (12), meaning that they are relative weights
(for example a = 0.5 means that the total effect of the
a-criterion is half that of the measured points).

From these results it may be concluded both o and 8 may
be chosen to be sufficiently small such that their effect on the
measured regions is negligible, while their relative values
may be set by the user to simultaneously produce desirable
results in the unmeasured regions. In our work, we experi-
mented with many different shapes and concluded that the
effect produced by the a-criterion is generally more
desirable than simple preservation of the shape of the
unmeasured regions. We found that optimal setting for the
parameter « is 0.1, meaning that its overall effect should be
about 10 times smaller than that of the measured points. We
also found that it is sufficient if the parameter 3 is set to a
small positive value, such that the stability of the system is
guaranteed. Thus we found that setting 8 = 10~ produced
perfectly adequate results. The results presented in Figs. 4
and 5 were obtained using these settings for « and 3.

In order to demonstrate the quality of the results that have
been produced using the described approach, we present the
example in Fig. 4(a—f), involving physical measurement
and reconstruction of a face mask, measuring approximately
250 X 150 mm. The physical mask, Fig. 4(a), was measured
using a coordinate measuring machine to produce a rela-
tively sparse cloud of 3000 data points, Fig. 4(b), and this
was then used to fit a pre-defined surface of degree
p = g =3, with 43 X 18 control points, Fig. 4(c) The fitting
results are shown in Fig. 4(d). Subsequently, the regions
around the eyes, nose and mouth were re-measured to
produce a more detailed local data set consisting of
87,500 points, shown in Fig. 4(e). Knot insertion was
applied to the previously generated surface, in order to
provide the required flexibility in those areas, giving a
total of 84 X 83 =6972 control points. The final fitting
results are shown in Fig. 4(f). The performance in terms
of the computational speed and fitting error statistics are
provided in Table 2.

Finally, Fig. 5 presents an example of a car windscreen,
measuring approximately 1500 X 700 mm and involving
trimmed NURBS with 20 X 30 control points. Fig. 5(a)
shows the initial shape, where the grey area represents the
untrimmed region which was digitised using 20,000 data
points. The modified shape after fitting is shown in Fig.
5(b). This example demonstrates the situation where the
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Fig. 3. Effect of varying weights « and 8 on the fitting results

(b) (c)

(d)

Fig. 4. Surface fitting to measured data. (a) Plaster mask digitised using a coordinate measuring machine; (b) initial measured data cloud; (c) base surface for
initial fitting generated by the user; (d) fitted surface; (e) dense point cloud corresponding to the eyes, nose and mouth regions; (f) final result after knot
insertion and surface updating using the dense data set only.
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(2)

(b)

Fig. 5. Trimmed NURBS model of a car windscreen, where the grey area denotes the untrimmed region which was measured. (a) Initial model. (b) Model

updated using measured data.

requirement is to minimise the energy of the unmeasured
(trimmed) regions.

6. Conclusion

The paper has presented a new method for linear least
squares surface updating, which overcomes the frequently
encountered problems of rank deficient and ill-conditioned
matrices, while also producing desirable results in the data
deficient regions. This was achieved by regularisation of the
least-squares problem, through the adoption of additional
criteria in the minimisation functional. By setting the rele-
vant weights, the user can control the quality of the result
according to specific requirements. The proposed method
works for unorganised measured points, possibly with
highly non-uniform density and not covering all of the
surface. The method assumes that an initial approximation
of the object shape is available. In industrial applications
this will be provided by a CAD model of the part, while in
other cases a base surface generated by the user may be

Table 2
Performance of the proposed method for the example in Fig. 4(f), using
400 MHz Pentium III Personal Computer, 128 Mb RAM

Computational performance

Number of control points, N 6972
Number of measured points, M 87,500
Time for registration/ 159
parameterisation

Time for multiplication ATA 54s
Time for final fitting stage 4.2
Total computing time 255s

Surface fitting error statistics

Standard deviation 0.0573 mm
Mean 0.0003 mm
Maximum 0.591 mm
Minimum —0.313 mm

employed. The implemented algorithms utilise the sparse
structure of the matrices and achieve a considerable
improvement in computational speed and memory require-
ments and the details will be presented in a separate paper.

7. Notation

P;; control points

Q; measured points

N number of control points

M number of measured points

x, ¥, z Cartesian coordinates

u, v parametric coordinate values

N;,(u) non-rational B-spline basis functions

R; j(u,v) piecewise rational basis function
S(uy, vi) Cartesian coordinates a point on a parametric
surface

I identity matrix

A design matrix

a vector of unknown parameters

b vector of observed values

a, B, A constants

[p|,  Euclidean norm of vector p

[p|>  sum of squares of the elements of vector p
Pq dot product of vectors p and q
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