Towards a formal x86 ISA specification

Alastair Reid / @alastair_d_reid

Imperial College, 6th September 2022
About me

https://alastairreid.github.io/papers/

@ Arm Research: 15 years
- Creating formal Arm ISA specification
- Formal verification of CPUs

@ Google Research: 2 years
- Software verification (Rust)

@ Intel Labs: 9 months
- Creating formal x86 ISA specification

Most projects I work on take 3-5 years to produce results
Our industry needs better ISA specs

For humans
- Clear, trustworthy, authoritative human readable specifications

For tools
- To verify hardware
 https://alastairreid.github.io/papers/CAV_16/
- To verify (critical) software
- To check that (critical) software is secure?
- To verify compiler backends
- To build binary analysis tools (e.g., malware analysis)
Existing formal ISA specifications

Arm formal ISA spec
- Arm’s official specification
- Can boot Linux
- Publicly available in machine readable form
- Passes Arm’s architectural conformance test suite
- Used to formally verify parts of Arm processors
- Used in Arm’s documentation

RISC-V formal ISA spec
- RISC-V’s official formal spec
- Can boot Linux
- Publicly available in machine readable form
- Thoroughly tested
Arm specification (ASL language)

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datanize = if sf == '1' then 64 else 32;

bits(datanize) result;
bits(datanize) operand1 = X[n];
bits(datanize) operand2 = X[m];

(result, -) = AddWithCarry(operand1, operand2, PSTATE.C);

X[d] = result;
RISC-V specification (SAIL language)

```plaintext
mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_ADD) <-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011

function clause execute (RTYPE(rs2, rs1, rd, op)) = {
  let rs1_val = X(rs1);
  let rs2_val = X(rs2);
  let result : xlenbits = match op {
    RISCV_ADD => rs1_val + rs2_val,
    RISCV_SLT => EXTZ(bool_to_bits(rs1_val <s rs2_val)),
    ...
  }
  X(rd) = result;
  RETIRE_SUCCESS
}
```
IA specification (WIP)

Current

Operation
DEST := DEST + SRC + CF;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Proposed

let (result, CF, OF, AF) = AddWithCarry(src1, src2, FLAGS.CF);
FLAGS.OF = OF;
FLAGS.SF = result[operand_size-1];
FLAGS.ZF = if IsZero(result) then '1' else '0';
FLAGS.AF = AF;
FLAGS.PF = if ParityEven(result[0 +: 8]) then '1' else '0';
FLAGS.CF = CF;
Creating a formal ISA spec

What makes it easy?
What makes it hard?
Where is the research?
Helping you use the specification
How to write an ISA spec

Choose a language
- Goal: industry standard for ISA specification
- Arm's Architecture Specification Language

Write a specification
- Based on existing documentation, simulators, etc.

Write lots of tools
- Generate documentation from spec
- Support development, migration, checking, …

https://oktop.tumblr.com/post/15352780846
What makes it easy?

Done it before: experience + examples

Lots of testing collateral inside company

Recognized need and benefits

- Multiple internal attempts
- Successful external attempts (other architectures)
Motivating a company

Formally verify hardware
Validate simulators, firmware, microcode, ...
Support development of new architecture extensions
Move faster
Improve coherence across the company

https://alastairreid.github.io/mrs-at-scale/
What makes it hard?

Lots of testing collateral inside company
- Need for extremely high quality
- Need efficient bug triage tools

Must not accidentally change the architecture
- But need to fix gaps, bugs, accidental ambiguities

Underspecification
- Instructions allow a range of behaviors
Where are the research challenges? Part 1

Security

- Can we detect security issues in new architecture extensions?
- Can we say anything useful about side channels?
 - e.g., Formally specify things that can be observed and what can/cannot influence them?
- Can we say anything useful about speculation, etc.?
- Can we verify security of hardware against the spec?
Many, many security-related questions

Q: Is my software secure?
Q: Is my architecture secure? (See https://www.lightbluetouchpaper.org/2022/07/22/formal-cheri/)
Q: What security properties does my architecture satisfy?
Q: Can we verify security of hardware wrt the spec?
Q: Are those properties useful to software developers?
Q: Does change X to the architecture break existing security properties?
Q: What to do about side channels?
Q: What to say about transient execution?
Q: What about the rest of the chip?
Where are the research challenges? Part 2

Enabling novel tools

- Compilers: verify peephole optimizations?
- Synthesis: generate peephole optimizations?
- Analysis: malware analysis of binaries
- Security: detect security vulnerabilities in binaries

https://alastairreid.github.io/uses-for-isa-specs/
How best to develop new uses?

Open source our specification
Open source our tools?
Collaborate with academia, etc.?
Blog posts?
Example code?
Tutorials?

Please talk to me about how I can help your research
Summary

Starting to build an official formal spec of the Intel Architecture Industry standard around how we write ISA specs?
Still early days (which makes this a great time to start talking to us about your needs!)
Please talk to me about how I can help your research

(Obvious omissions from this talk: formally verifying x86 processors; weak memory model)