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Resource Allocation or Sharing

Allocation Criteria:
Capacity/availability
Quality of service
Fairness
Price
…
Optimality = ???
=> Mathematical formulation

Source: Kleinrock (1976) 2



Transport Control Protocol (TCP): 
 Distributed Resource Allocation

Set timeout 
when send 
packet

Sender Receiver

DATA

ACKTrack round trip times
for future timeout 
values

Re-send if timeout

DATA DATADATADynamically adjusted
number of segments
outstanding at a time
(Congestion window);
Timeout reduces 
window size to 1

Bandwidth allocation:
• Control by 

congestion window
• Window size 

depends on delay, 
packet loss, etc.

TCP = 
distributed 
resource 
allocation 
algorithm
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Distributed Bandwidth Allocation: 
Network Utility Maximization (NUM)
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Communication network

§ Allocate resource (bandwidth) as a convex optimization problem

max
x

Ui
i
∑ (x)     subject to   Ax ≤C  and x ≥ 0

where each user i has a fixed communication path and a utility 
function          and is allocated with data rate     . Bandwidth 
allocated to all users must be less than link capacity C.

See Kelly, Maulloo and Tan (1998)

Ui (x) xi



TCP: Distributed Optimization of Resource Allocation
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Communication network

§ TCP allocates resources (bandwidth, buffer, etc.) to optimize

max
x

Ui
i
∑ (x)     subject to   Ax ≤C  and x ≥ 0

See Low et al. (2000, 2002, 2003)

These utility 
functions are 
concave for 
convex 
optimization!

Primal iterations set source rates; dual iterations by active queue 
management (AQM) protocol



Need for non-concave utility functions
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Applications may 
have non-TCP 
utilities, thus TCP 
may not allocate 
resources optimally!



An iterative method for the optimal solution to the dual problem:  

Sufficient Condition for Solving Non-convex Problem
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max
x

 f (x)

subject to   gi (x) ≥ 0,      i =1,...,m

min
λ
D(λ) = sup

x
L(x,λ,µ)

                =sup
x
f (x)+ λigi (x)

i=1

m

∑

x*(λ(t)) = arg max L(x,λ(t)) = arg max{f (x)+ λi (t)gi (x)}
i=1

m

∑

λi (t +1) = λi (t)−δλ (t)gi (x*(λ(t)))

The primal problem:                      The dual problem:

A sufficient condition for zero duality gap and that the iterations 
also yield the optimal solution for the primal problem:
If the price-based function               is continuous around at 
least one of the optimal Lagrange multiplier vectors           

See Tychogiorgos, Gkelias, Leung (2013)

x*(λ *)
λ *



Inadequacy of Conventional Optimization for Resource Allocation
§ Despite much effort, gradient-based iterative solutions may take time to 

converge
§ Conventional approaches require precise system parameters

- Parameter changes require independent re-run of optimization 
process

- Optimization process may not provide robust performance for a 
given range of system parameters
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Desirable to have a new, efficient and robust approach 
to solving constrained optimization problems
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Constrained Optimization Problem and its Dual Problem
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§ Constrained optimization problem

§ By introducing the Lagrange multipliers 𝜆, we form
- Lagrange function

- Dual optimization problem

§ According to the duality theory, P1 and P2 have the same 
optimal solution when the duality gap is zero 

s.t. ℎ 𝑥 ≤ 0

P1 	min
!
𝑓(𝑥)

𝐽 𝑥, λ = 𝑓 𝑥 + λ ℎ(𝑥)

s.t. 𝜆 ≥ 0

P2 max
"

J(arg min
!
𝐽 𝑥, λ , λ)
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P2 	max
!

𝐽( arg min
"
𝐽(𝑥, 𝜆) , 𝜆)

s.t. 𝜆 ≥ 0s.t. ℎ 𝑥 ≤ 0

P1 	min
"
𝑓(𝑥) P3 	max

!
𝐽( 𝑥∗, 𝜓(𝜆))

s.t. 𝑥∗ = arg min
"
𝐽 𝑥, 𝜓 𝜆

Assumption:
The strong duality holds (i.e., the duality gap is zero) for P1 and P2, and thus 
there exists at least a dual optimal λ∗ and a primal optimal x∗

To satisfy λ ≥ 0 and avoid numerical issues:
We define a “smooth” projection function ψ λ ≥ 0 ∀ λ to form P3 as follows

Theorem: Having λ∗ as the optimal solution for P2 is equivalent to having 𝑢∗ =
ψ(λ∗) as the optimal solution for P3.

The proposed CLSTMs aims to solve the optimal λ∗ and x∗	from P3

Projection Function for Lagrange Multipliers to Avoid Numerical Issues

11



Solve the Optimization Problem by Coupled LSTMs

§ During the inference process, the two coupled LSTMs, 𝑚 and <𝑚, are 
used to find the optimal 𝑥∗ and 𝜆∗ by the following iterations:  
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Training of the Coupled LSTMs

§ In each iteration,                 are updated
§ After K iterations (i.e., one frame), the parameters                  of 

the LSTMs                   are updated to minimize the following loss 
functions:

§ At the start of every I frames, the variables and hidden 
states are randomly initialized

13

x and λ

(x and λ)

φi  and φ̂i
m and m̂

(hk  and ĥk )
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§ To avoid numerical issues (e.g., calculating gradients), selection criteria 
for the projection function ψ λ are:
- ψ(λ) ∈ [0,∞)	for all λ ∈ R
- ψ(λ)	is differentiable everywhere
- When λ → ∞	and −∞	, the derivatives of ψ(λ)	become non-zero 

constants, which can be different from 1 (i.e., ψ(λ) increases or 
decreases linearly when λ is large)

- The two constants should not be too small or large to avoid 
numerical issues

§ An example of ψ(λ):

𝜓 𝜆 = >
−𝑎𝜆 − 𝑎 − 1 , 	if	𝜆 < −1
𝜆$ , 	 if	 − 1 ≤ 𝜆 ≤ 1
𝑎𝜆 − 𝑎 − 1 , 	 if	𝜆 > 1

Selection of Projection Function 𝛙 𝝀 for Lagrange Multipliers

14𝜆, 𝑎 = 2

𝜓(𝜆)



§ The resource-allocation problem is to allocate cluster resources to 
competing jobs for maximizing the sum of job utilities
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Numerical Study: Resource Allocation
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§ Consider a cluster of 5 machines to provide CPU resource to 10 
competing jobs

§ In each problem scenario, the amount of available CPU resource and 
the CPU requirements of jobs are randomly selected from the Alibaba 
cluster trace

§ Training process uses 5,120 problem scenarios
§ Each LSTM of the CLSTMs has two layers and each layer has 20 

neural units
§ Proposed algorithm is implemented with Python and Tensorflow 2.1 

and evaluated on an Ubuntu 20.04 LTS server with a NVIDIA TITAN 
XP graphics card

Experimental Setup
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Comparing the CLSTMs to Baseline Approaches

§ Two Baseline Approaches for Comparison
- Gradient descent (GD)
- Gradient descent with momentum (GDM)
- Baseline approach parameters are selected by exhaustively evaluating 

various parameter combinations
§ Inference (evaluation) by the Trained CLSTMs

- 1,000 problem scenarios
- 2,000 iteration steps for each scenario

§ Figure of Merit: Relative Accuracy to the True Optimum

   𝛼 = 1 −
%&'&
&

      A𝑓: the optimal objective function value found by the CLSTMs or baselines 
𝑓: the true optimal value of the objective function by the fmincon (i.e., in the

           Optimization-toolbox in Matlab R2016)

§ Mean relative accuracy is the relative accuracy averaged over 1,000 problem 
scenarios



Significant Improvements by the CLSTMs
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(a) (b)

(c) (d)

Mean relative accuracy over (a) 100 iterations, (b) 1,000 iterations, (c) CPU time in seconds, 
and (d) complementary cumulative distribution (CCDF) for relative accuracy

The number of 
iterations and 
CPU time 
consumed to 
achieve 90% 
mean relative 
accuracy are 
reduced by 86% 
and 56% 
relative to GDM, 
respectively
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§ Consider five projection functions ψ λ

(1) ψ λ = |λ|
(2) ψ λ = $

%
λ% + 0.25 + λ

(3) a=2, (4) a=4, and (5) a=6
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Impact of the projection functions

§ The lower whisker, the bottom of the box, 
the red horizontal line, the top of the box 
and the upper whisker represent the 5th, 
25th, 50th, 75th and 95th percentile of the 
relative accuracy, respectively

𝜓 𝜆 = F
−𝑎𝜆 − 𝑎 − 1 , 𝑖𝑓	𝜆 < −1
𝜆&, 	 𝑖𝑓	 − 1 ≤ 𝜆 ≤ 1
𝑎𝜆 − 𝑎 − 1 , 	 𝑖𝑓	𝜆 > 1
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Concluding Remarks
§ Optimization techniques have been shown to be helpful to resource 

and network management
§ Nonconvex optimization and distributed solutions remain open
§ Proposed a new machine-learning (ML) approach to solving 

constrained optimization problems
§ ML approaches offer near-optimal and robust performance at a faster 

speed relative to conventional solution techniques

Future Research Direction
§ Efficient management of network resources and services by solving 

optimization problems as quickly and accurately as by “distributed 
table lookup”!

Concluding Remarks and Future Direction

20



Acknowledgments
§ Acknowledgments

§ Zheyu Chen, Sepideh Nazemi, Faheem Zafari, George Tychogiorgos (Imperial 
College), Ananthram Swami and Kevin Chan (U.S. Army Research Lab), Shiqiang
Wang (IBM), Leandros Tassiulas (Yale), Don Towsley (UMass) and Patrick Baker 
(UK Dstl/RAF)

§ Research funding: U.S./U.K. ITA Project
§ Publications
Z. Chen, K.K. Leung, S. Wang, L. Tassiulas, K. Chan and D. Towsley, “Use Coupled LSTM Networks to Solve 

Constrained Optimization Problems,” IEEE Trans. on Cognitive Communications and Networking, 2022.
Z. Chen, K.K. Leung, S. Wang, L. Tassiulas and K. Chan, “Robust Solutions to Constrained Optimization Problems by 

LSTM Networks,” IEEE MILCOM 2021, pp. 503-508, Nov. 2021.
S. Nazemi, K.K. Leung and A. Swami, “Distributed Optimisation Framework for In-network Data Processing,” 

IEEE/ACM Transactions on Networking, Vol. 27, No. 6, pp. 2432-2443, Dec. 2019.
F. Zafari, J. Li, K.K. Leung, D. Towsley and A. Swami, “Optimal Energy Consumption for Communication, Computation, 

Caching and Quality Guarantee,” IEEE Trans. on Control of Network Systems, April 2019.
G. Tychogiorgos, A. Gkelias and K.K. Leung, “Distributed Network Resource Allocation for Multi-Tiered Multimedia 

Applications,” IEEE INFOCOM, Hong Kong, China, April 2015.
G. Tychogiorgos and K.K. Leung, “Optimization-based Resource Allocation in Communication networks,” Computer 

Networks, Vol. 66, pp. 32-45, June 2014.
 G. Tychogiorgos, A. Gkelias and K.K. Leung, “A Non-Convex Distributed Optimization Framework and its Application 

to Wireless Ad-hoc Networks,” IEEE Trans. on Wireless Communications, Vol. 12, pp. 4286 – 4296, September 
2013.

Please google “Kin K Leung” for my website to find these and other papers. 21

U.S.
Gov.

Industry

Academia

U.K.
Gov.




