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Signal Processing and Communications 
Laboratory (SigProC)

5 Academic staff (Simon Godsill, Joan Lasenby, Albert Guillenen-5 Academic staff (Simon Godsill, Joan Lasenby, Albert Guilleen
Fabregas, Ramji Venkataramanan, George Cantwell (Oct 2023))g ,
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g ,
stst-

j ,,,
tt-doctoral research fellowsp

~20 PhD students
Diverse research topics, including:
–

p , g
– Image and 3D data processing, 
–

g p g,
– Computer vision and computer graphics,
–

p p
– Audio and music processing, 
–

p g,
– Statistical methodology (especially Bayesian methods), 
–

gy ( p y y
– Tracking, Sensor Fusion, Intentionality Inference
–

g, , y
– Information Theory and Communications



Motivation and Background
Study of evolving gg spatioio-o-temporal processes with incomplete and S udy o e o gStudy of evolvinggg patipatspsp ioo emporet
ambiguous measurement datag
Wish to infer in the presence of highly nonon-n-Gaussian (heavyvy-y-tailed) Wish to infer 
behaviours.
Use powerful combinations of f continuousus-s-timemee stochastic processes 
models with modern Bayesian computational techniques

stic pr
es.

In collaboration with (at least!):
Yaman Kindap, Lily Li, Patrick Gan, Marina Riabiz, Ioannis Kontoyiannis, 

Marcos Tapia-Costa, Joe Johnston, Pete Bunch, Tohid Ardeshiri, Bashar Ahmad, 
Tatjana Lemke …
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Spatio-temporal 
processes

• Irregular Movement (e.g. 
animal foraging, drones, etc.)
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Modelling with Jumps
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See Christensen, Murphy and Godsill, IEEE J Sel. Top. SP, 2012
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t-3 tt-2 t-1t-4…

The Particle Filter: first step. Time t: many random
draws from the `path’, 



t+1…

The Particle Filter: Prediction step. Extend
each path randomly to time t+1 using 

t



t+1…

The Particle Filter: Update step. Compute an 
importance weight for each path

t



t+1…

The Particle Filter: Final step. Randomly prune out 
low weight paths and boost the number of high
weighted paths. t



VRPF (particle) Example: tracking a manoeuvring 
ship through persistent clutter

Ship trajectory 
provided by QinetiQ 
Winfrith

Single sensor at (0,0)

Mean number of clutter 
points C=100

Mean number of target 
points = 3

Persistent clutter `hot-
spot’ 

Poisson likelihood +  

VRPF

400 Particles [Uses Variable Rate Particle Filter, see Godsill et al. 2006 Proc. IEEE,
P. Bunch and S. Godsill (IEEE tr SP 2013a,2013b)



Filtering and smoothing with the 
stochastic trend jump model

April08 USD-GBR

[See P. Bunch and S. Godsill (IEEE tr SP 2013a,2013b), Christensen, Murphy, Godsill (IEEE Sel. Ar. SP 2012), 
Sarkka, Bunch and Godsill (IFAC 2012), Godsill, Doucet, West (2004)]

Filtering only: Forward filtering/backward sampling:



The Lévy state space model

Previously modelled jumps as a finite activity processy j p y p
Perhaps more realistic to model the jumps as an infinite collection of Perhaps more realistic to model the jumps as an infinite collec
large/ small/tiny jumps occurring in each finite time intervalg / / y j p g
It turns out that much more general classes of nononon-nn-Gaussian processes It turns out that much more
can be obtained this way:

– α-Stable, Student-t, variance-gamma, generalised hyperbolic, … see e.g. Cont and 
Tankov (2002)( )

Recent work has shown that these too can be inferred within an Recent work has shown that these too can be inferred within an 
optimal Bayesian framework using powerful representations based on optimal Bayesian framework u
Poisson processes, see e.g.:

– [Gan and Godsill, 2020] R. Gan and S. Godsill (2020) α-Stable Levy State-space Models for Manoeuvring Object Tracking, in Proc. of 
the International Conf. on Information Fusion, South Africa.

– [Riabiz et al., 2020] M. Riabiz, T. Ardeshiri, I. Kontoyiannis and S. Godsill (2020) Nonasymptotic Gaussian Approximation for Inference 
with Stable Noise,. 2018,arXiv 1802.10065. IEEE Trans. on Information Theory, 2020

– [Godsill et al., 2019] S . Godsill and M. Riabiz and I. Kontoyiannis (2019), The Lévy State Space Model, Arxiv 1912.12524.
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Lévy process models of 
non-Gaussianity

• Wish to model broad classes of heavy-tailed driving noise to suit application
• Adopt a generic Lévy process approach in which driving noise is modelled as pure jump processes in continuous time 

(and observed at random discrete times). 
• Elegant and (fairly!) simple alternative to the standard Gaussian (Brownian motion)
• Many possible distributions: alpha-stable, Generalised Hyperbolic (inc. Student-t, normal-Gamma and normal-

inverse Gaussian), normal tempered-stable, … see e.g. Cont and Tankov 2002
• These methods are ideal for irregularly sampled heterogeneous data sources as they construct the path of the process 

at arbitrary time points – in contrast with other non-Gaussian discrete-time models

Gaussian Non-Gaussian (heavy-tailed) 



Brownian vs non-Gaussian 
state space models
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See Also:

       
The Lévy State Space Model (1919) Godsill, Riabiz, Kontoyiannis https://arxiv.org/abs/1912.12524

Gaussian

Non-Gaussian
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Lévy process models of non-Gausianity

• The Jumps    are characterised by a Poisson process with non-uniform intensity 
function Q(x), the `Lévy Density’:

• This is a Poisson process where the average number of points in interval   
              is  

Jump size (x)

Q(x)

Large number of 
smaller jumps Small number 

of large jumps

y=x
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• Jumps are then uniformly randomly scattered across the time axis [0,T]:

t0 T



How to sample from Q(x)?
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Jump size (x)

Unit rate 
Poisson 
process

Jump sizes from Q(x) – ordered Large 
to Small
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Study pdf at t=1:



Inference Procedures



Application to High Frequency 
EuroDollar data (tick Data)

Marginal Monte 
Carlo filter. 
alpha=1.5, 100 
particles



Alpha=0.8, 4000 particles:



Example: Intentionality analysis for perturbed 
pointing task in-vehicle

24

Result for perturbed pointing data
from automobile UI systems:

Gan, R., Ahmad, B. I., & Godsill, S. J. (2021). Levy State-Space Models for Tracking 
and Intent Prediction of Highly Maneuverable Objects. IEEE TRANSACTIONS ON 
AEROSPACE AND ELECTRONIC SYSTEMS, 57 (4), 2021-2038.
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Black lines are ground truth; crosses are measurements;
colored lines are estimates plus 95% confidence ellipse

`Langevin’ dynamics:



Conclusion
A general framework for inference in heavyvy-y-tailed nonon-n-Gaussian A general framework f
stochastic processesp
Straight forward computations using conditionally Gaussian models and Straight forward
particle filtersp
Nononon-nn-parametric estimation of Q()? ? ––– nonon-n-parametric Bayes/ ML Q()pp y /pp
Applications in tracking models, multiple objects, vector Levy Applications in tracking models, multiple 
processes, bounds on convergence etc.p ,
Some recent results on 

g
n n Arxiv

g
iviv:

Generalised shot noise representations of stochastic systems driven by non-Gaussian Lévy processes Marcos Tapia 
Costa, Ioannis Kontoyiannis, Simon Godsill

Point process simulation of generalised hyperbolic Lévy processes. Yaman Kindap, Simon Godsill

Non-Gaussian Process Regression Yaman Kındap, Simon Godsill



A new idea – the non-
Gaussian Process (NGP) model

Here we apply the same Levy process principles to a Gaussian process Here we apply
(GP) model. ( )
We take a standard GP {W(t)} with covariance function

We use the same class of `subordinator’ jump process {X(t)} to We use the same class of subordinator  jump pr
modulate locally the covariance function (`time

p pr
meme-

ocess {X(t)} to ropr
ee--change’ operation):

This allows for nonon-n-Gaussian perturbations to the process, but retains This allows for noonn aussian perturbations to the process, but retaGaG
once again the structure of a bank of standard GPs, each with a once again the structure of a bank of standard GPs, eac
differently modulated covariance function. Examples…
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Kindap, Godsill (2022),  Non-Gaussian Process Regression, arXiv:2209.03117



Preliminary examples

28Spatial Tracking models using the NGP are currently under development

X(t) W(t)

X2(t)X1(t)




