Imperial Workshop on Intelligent Communications

19 June 2023, Imperial College London

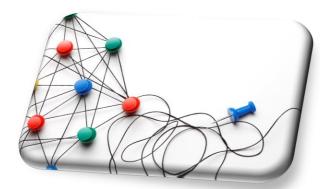
Social Learning

Belief Formation and Diffusion Over Graphs

Vincenzo Matta

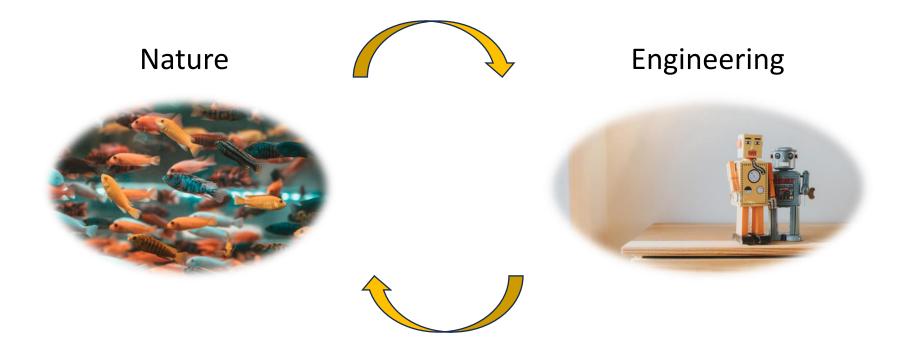
What is Social Learning?

- Humans form their opinions via repeated interactions (even virtually over social networks)
- Nature provides splendid examples of cooperative learning in the form of biological networks
- Useful models across several disciplines: Cognitive Sciences (e.g., Psychology), Social Sciences (e.g., Economics), Statistics,...

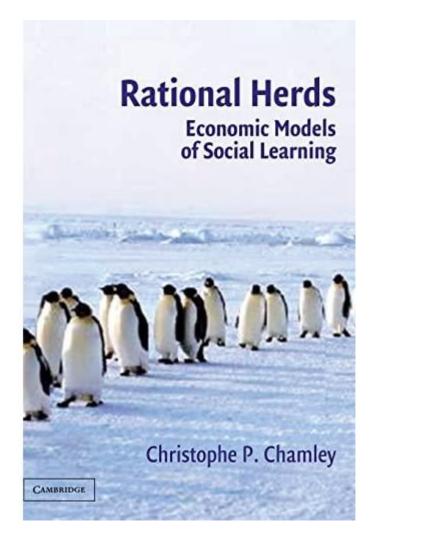


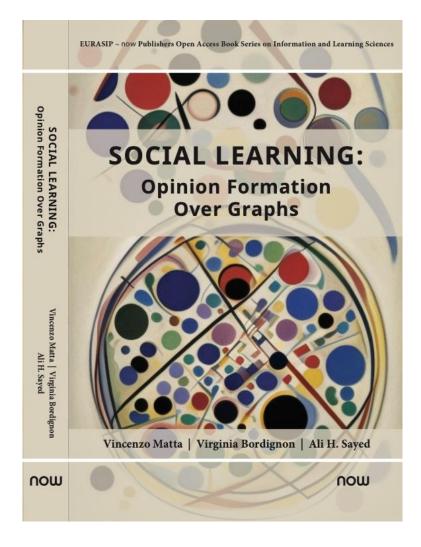
A Virtuous Circle

Man-engineered systems for **multi-agent decision-making** (IoT networks, mobile phones, robotic swarms,...)

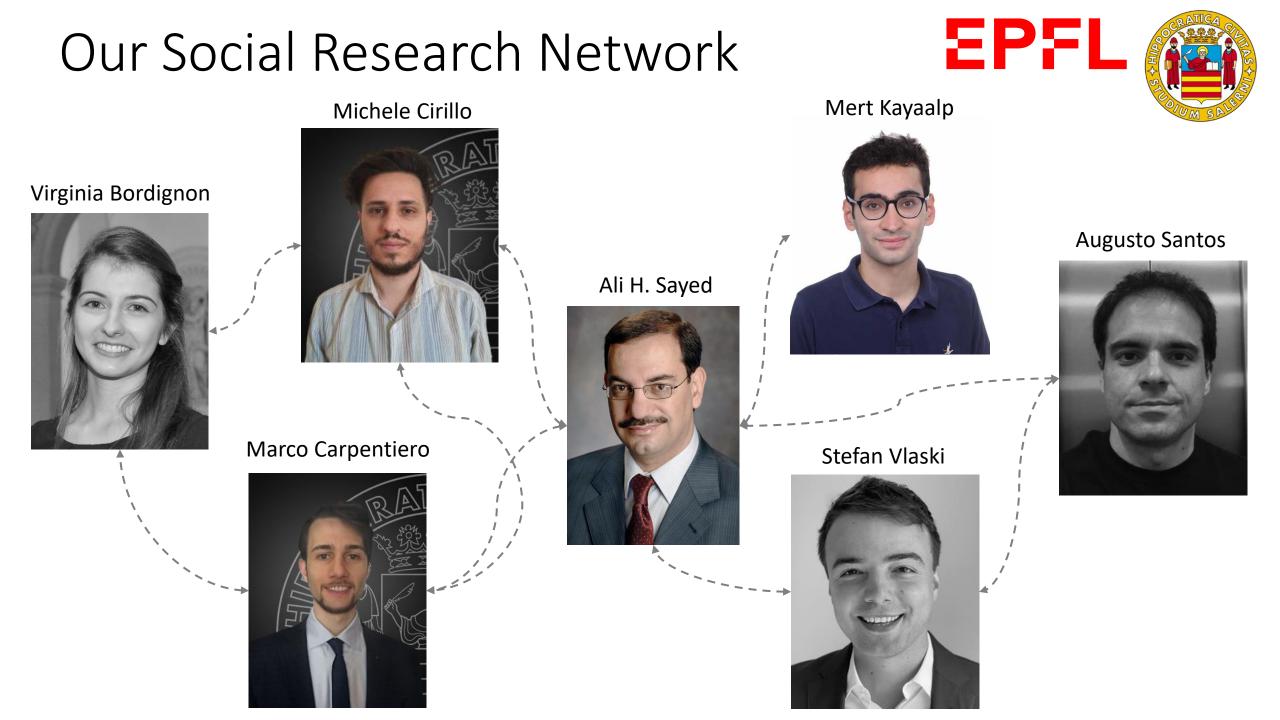


Useful References





Many other references focusing on different perspectives, e.g., psychological, behavioral, or biological aspects



Outline

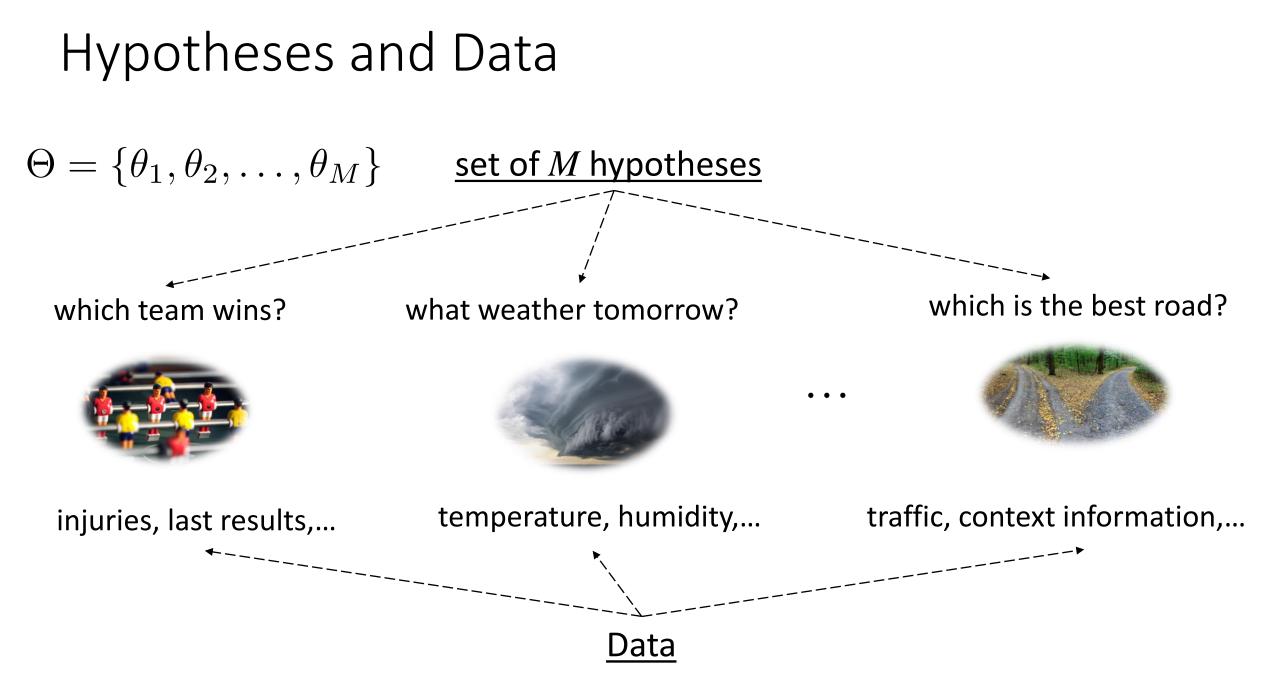
• Part I. Traditional (single-agent) belief formation

• Part II. Social learning: Belief formation over graphs

- Agreement
- Discord, influencers vs. influenced agents, fake news,...
- Part III. Recent trends in social learning
 - Adaptive social learning
 - Social learning with partial information
 - Social machine learning

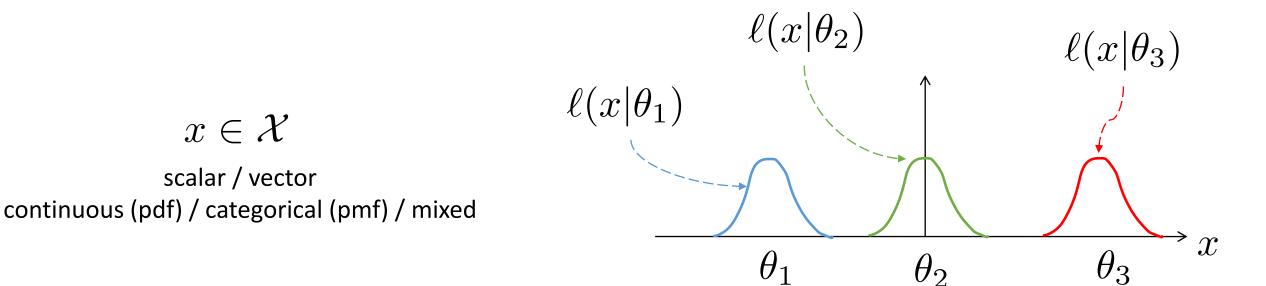
Part I

Traditional (Single-Agent) Belief Formation



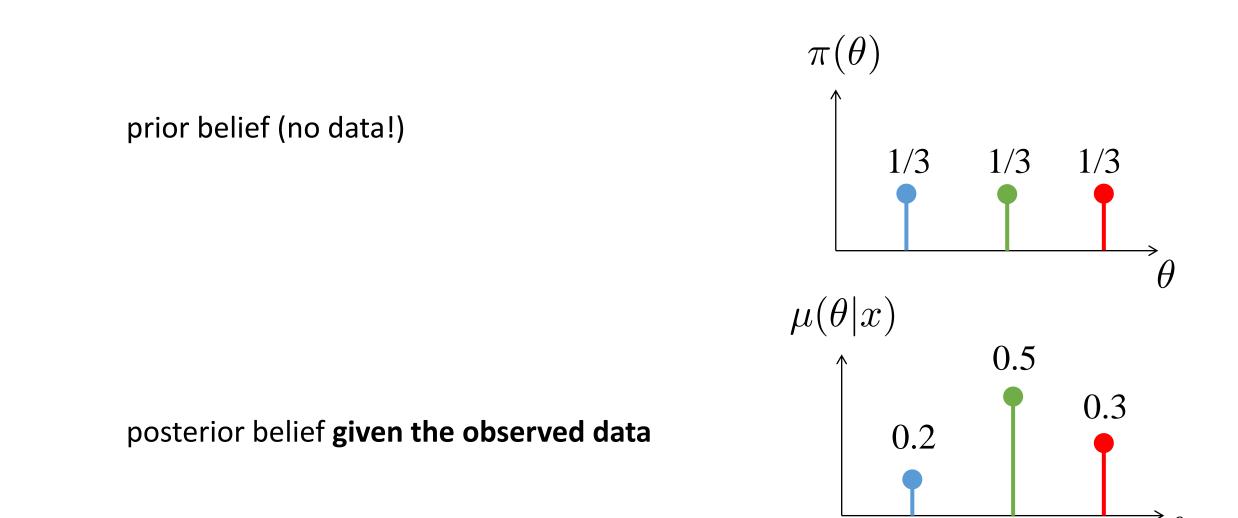
The likelihood encodes the **probabilistic mechanism** connecting the data to the hypothesis *e.g., which are typical values of humidity if it rains?*

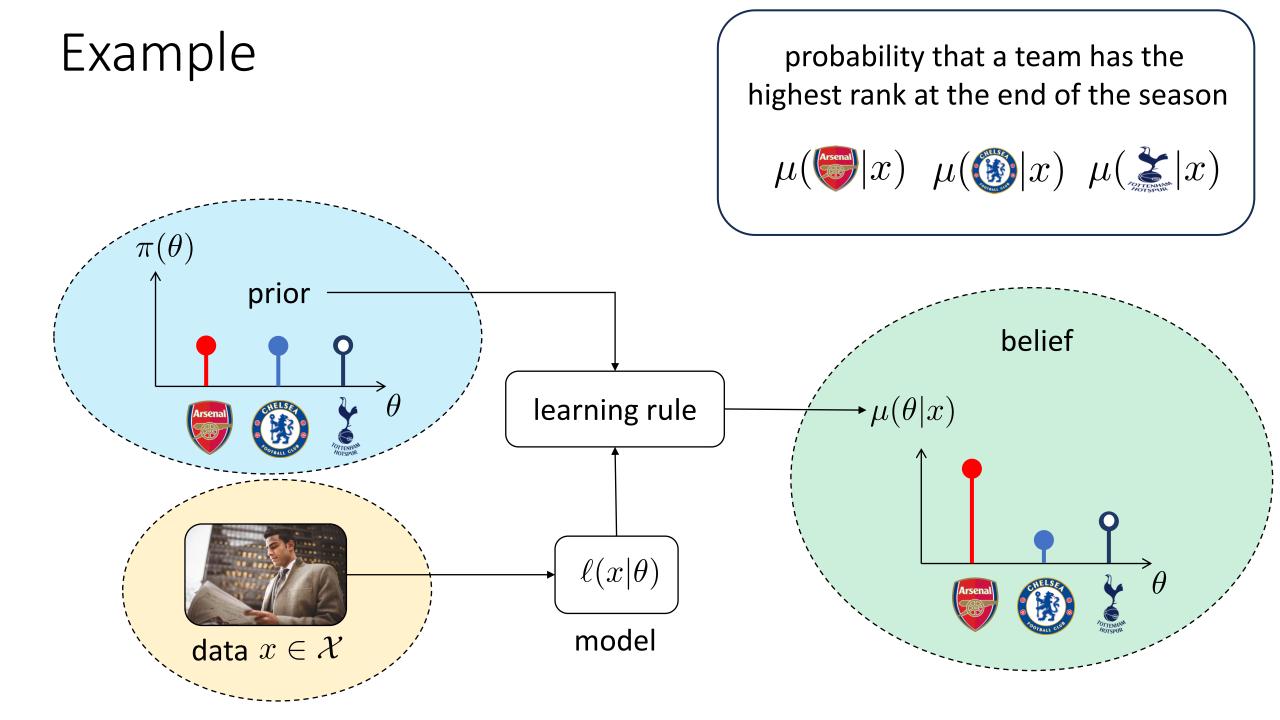
$$\theta \longrightarrow \ell(x|\theta) \longrightarrow x$$



We assign probability scores to the hypotheses

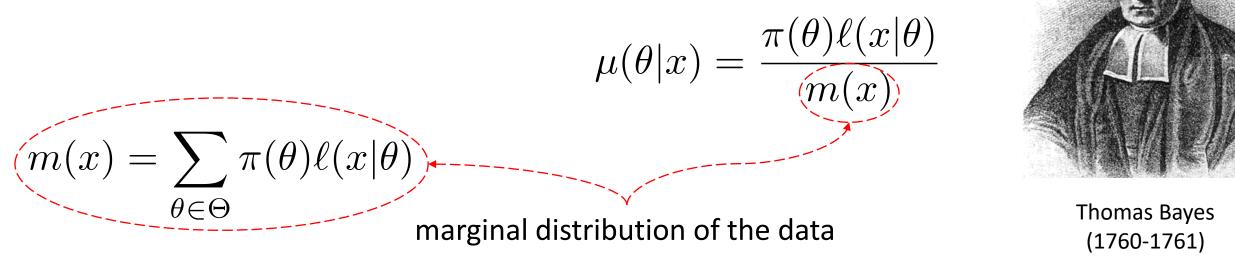
Belief





Bayes' Rule

build the posterior from the data



 $\mu(\theta|x) \propto \pi(\theta)\ell(x|\theta)$

- One pillar of Probability Theory
- Optimal from an epistemological perspective
- Optimal from an information-theoretic perspective (see also the free-energy principle and variational Bayesian inference)
- Model for cognition: Bayesian brain [FristonKilnerHarrison2006]

hiding the normalization factor

Sequential Bayesian Updates $\mu_t(\theta) \triangleq \mu(\theta | x_1, x_2, \dots, x_t)$ streaming data (iid)

All the **necessary knowledge is stored in the last belief** The last belief becomes the **prior for the subsequent step**

$$\mu_t(\theta) \propto \mu_{t-1}(\theta) \ell(x_t|\theta)$$

$$\pi(\theta) \longrightarrow \begin{array}{c} \text{Bayesian} \\ \text{update} \end{array} \rightarrow \mu_1(\theta) \longrightarrow \begin{array}{c} \text{Bayesian} \\ \text{update} \end{array} \rightarrow \mu_2(\theta) \dots \\ & & & \\ x_1 \longrightarrow \ell(x_1 | \theta) \end{array}$$

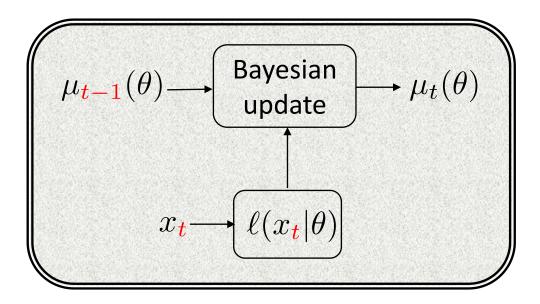
Sequential Bayesian Updates

$$\mu_t(\theta) \triangleq \mu(\theta | x_1, x_2, \dots, x_t)$$

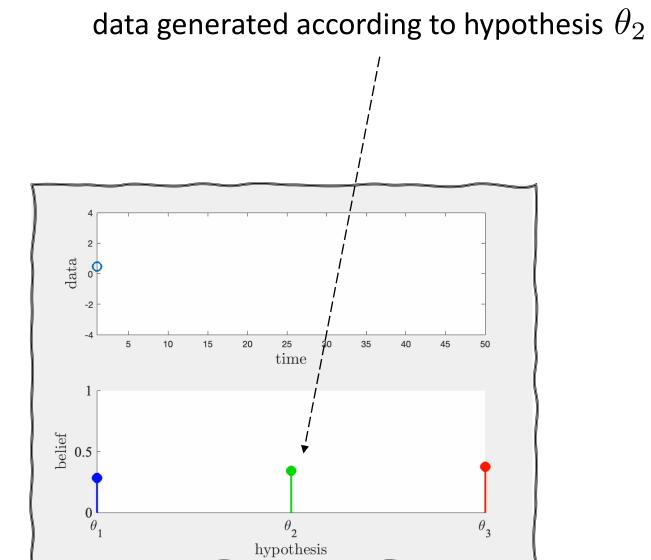
streaming data (iid)

All the necessary knowledge is stored in the last belief The last belief becomes the prior for the subsequent step

 $\mu_t(\theta) \propto \mu_{t-1}(\theta) \ell(x_t|\theta)$



Bayesian Learning at Work



Convergence of Bayesian Learning

$$D(f||\ell_{\theta}) \triangleq \mathbb{E}_f \left[\log \frac{f(\boldsymbol{x})}{\ell(\boldsymbol{x}|\theta)} \right]$$

The Kullback-Leibler divergence quantifies the discrepancy between two probability measures

Andrej Nikolaevič Kolmogorov (1903-1987)

data generated according to distribution \boldsymbol{f}

$$\theta^{\star} = \operatorname*{arg\,min}_{\theta \in \Theta} D(f || \ell_{\theta})$$
 [Berk1966]

Convergence to the likelihood featuring the highest match with the true distribution

 $\boldsymbol{\mu}_t(\theta^{\star}) \xrightarrow{t \to \infty} 1$ almost surely

Part II

Social Learning: Belief Formation Over Graphs

From Single-Agent to Social Learning

data can be heterogeneous

across the agents

private streaming data, agent k at time t

• $\ell_k(x_{k,t}|\theta)$ marginal likelihood, agent k(private model)

• $x_{k,t} \in \mathcal{X}_{k}$

•
$$\mu_{k,t} = [\mu_{k,t}(\theta_1), \mu_{k,t}(\theta_2), \dots, \mu_{k,t}(\theta_M)]$$

belief vector, agent k at time t

[ZhaoSayed2012] [JadbabaieMolaviSandroniTahbaz-Salehi2012] [ShahrampourRakhlinJadbabaie2016] [NedićOlshevskyUribe2017] [MolaviTahbaz-SalehiJadbabaie2018][LalithaJavidiSarwate2018]

Agents can only share beliefs (**not private data**) with their **neighbors**

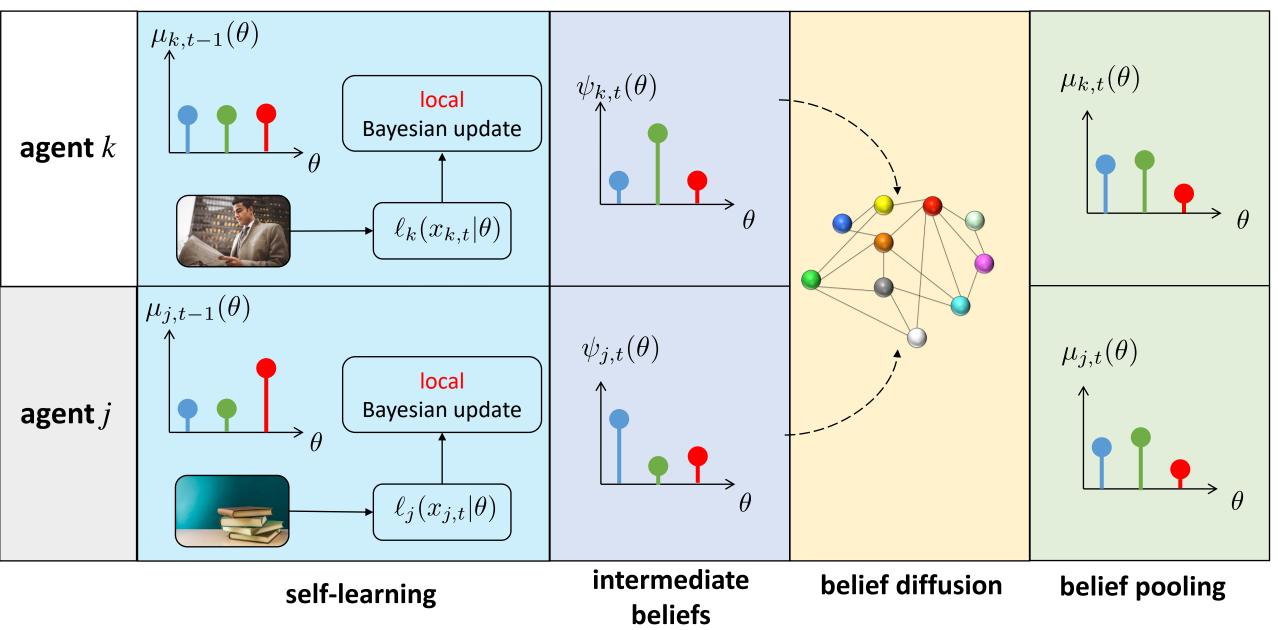
Joint Bayesian model across the agents **not available**

Local Bayesian Updates

Each agent builds an **intermediate belief** (to be shared with its neighbors) by updating its previous belief with **its own private likelihood and data**

$$\psi_{k,t}(\theta) \propto \mu_{k,t-1}(\theta)\ell_k(x_{k,t}|\theta)$$

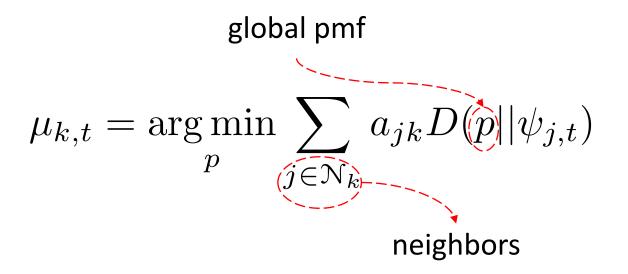
Belief Diffusion Over Graphs



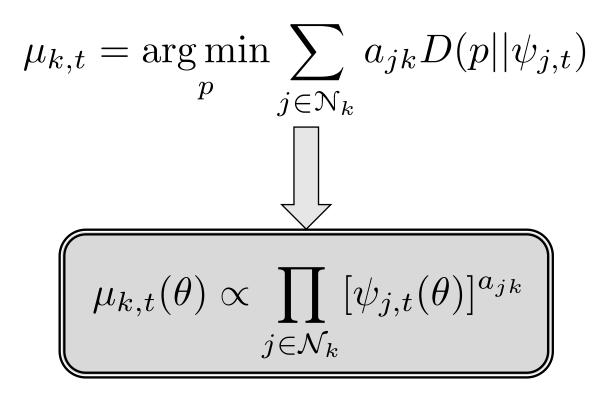
Pooling From Information-Theoretic Viewpoint

[NedićOlshevskyUribe2017] [KolianderEl-LahamDjurićHlawatsch 2022]

- Find a pmf p that **globally** matches the beliefs received from the neighbors
- Minimize a weighted combination of KL divergences



Optimal Pooling Rule



geometric pooling a.k.a. log-linear pooling

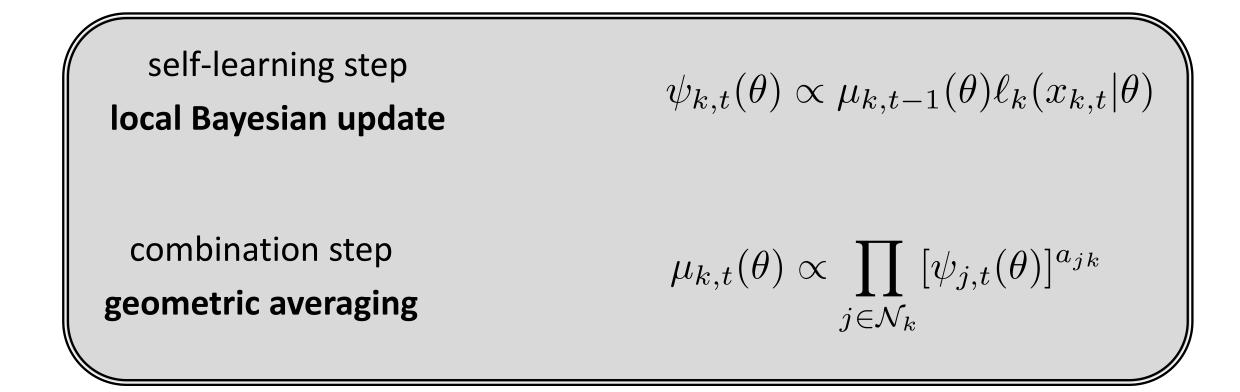
Pooling From Behavioral Viewpoint

[MolaviTahbaz-SalehiJadbabaie2018]

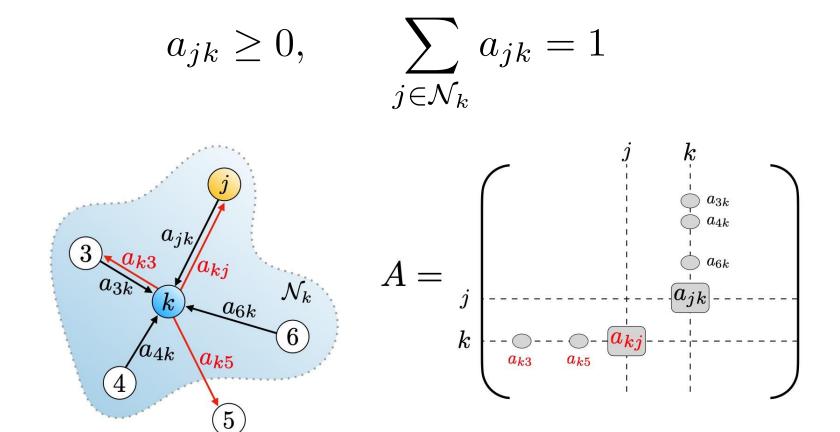
- We can derive the pooling rule from "behavioral" constraints
- Bounded rationality
- Unanimity, monotonicity, independence of irrelevant alternatives,...

The same rule is obtained!!!

Non-Bayesian Social Learning Algorithm



Network Graph and Combination Matrix

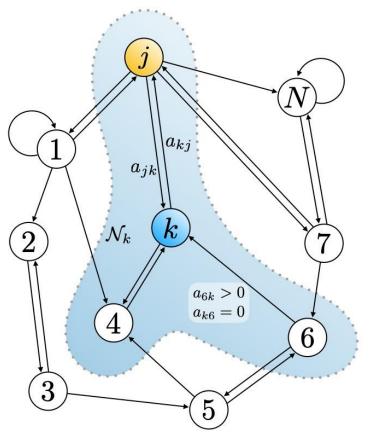


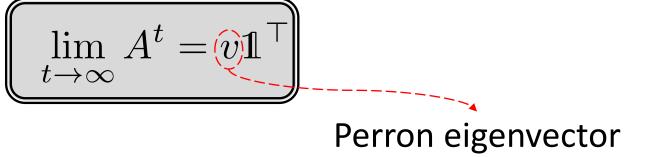
The combination weights and the communication structure involving neighboring agents can be encoded into a **weighted graph**

Strong Graphs

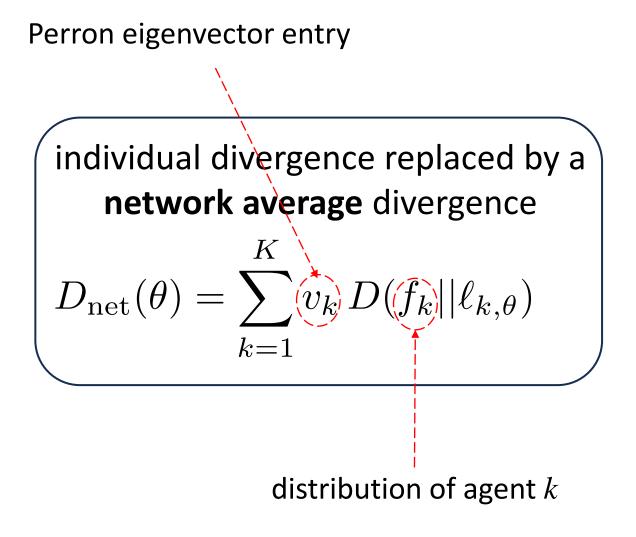
A path between any two nodes (in both directions)

Primitive combination matrix



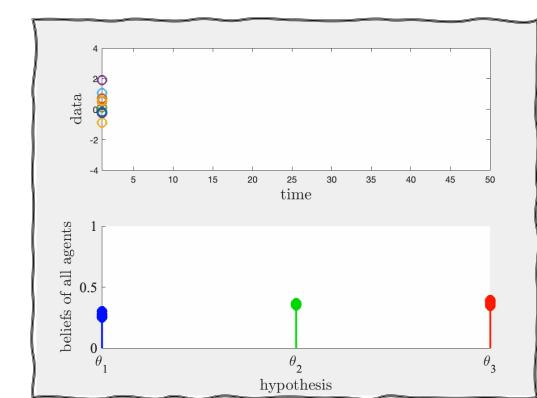


Strong Graphs: Agreement

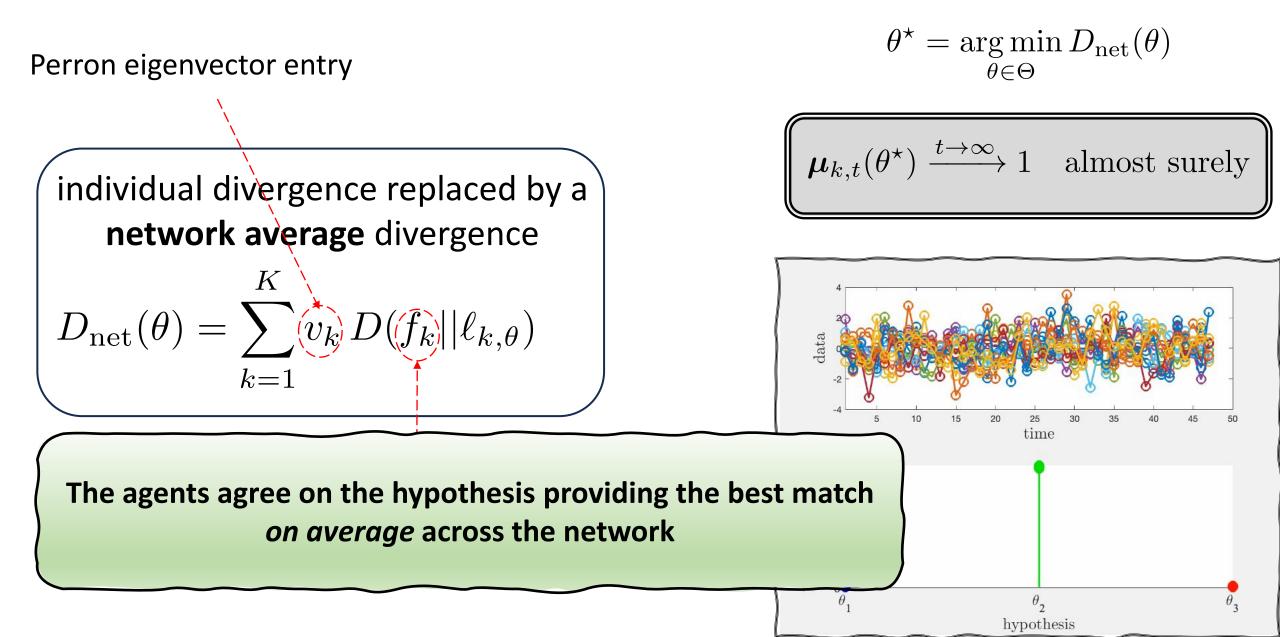


$$\theta^{\star} = \operatorname*{arg\,min}_{\theta \in \Theta} D_{\mathrm{net}}(\theta)$$

$$\mu_{k,t}(\theta^{\star}) \xrightarrow{t \to \infty} 1$$
 almost surely



Strong Graphs: Agreement



Objective Evidence

Under the objective evidence model, the observations of each agent are drawn from the model ℓ_{k,θ_0} corresponding to a **common true** hypothesis θ_0

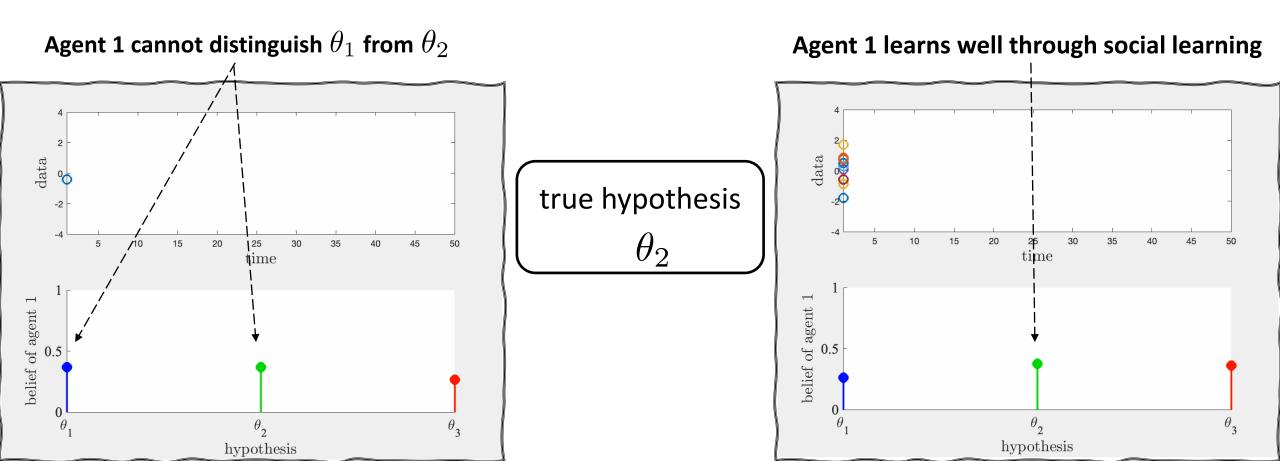
$$D_{\text{net}}(\theta) = \sum_{k=1}^{K} v_k D(\ell_{k,\theta_0} || \ell_{k,\theta}) > 0$$

global identifiability

$$\mu_{k,t}(\theta_0) \xrightarrow{t \to \infty} 1$$
 almost surely

Benefits of Cooperation

- The learning accuracy can be improved by combining information from different agents
- Some agents might not be able to solve the problem on their own (lack of local identifiability)



Subjective Evidence and Fake News

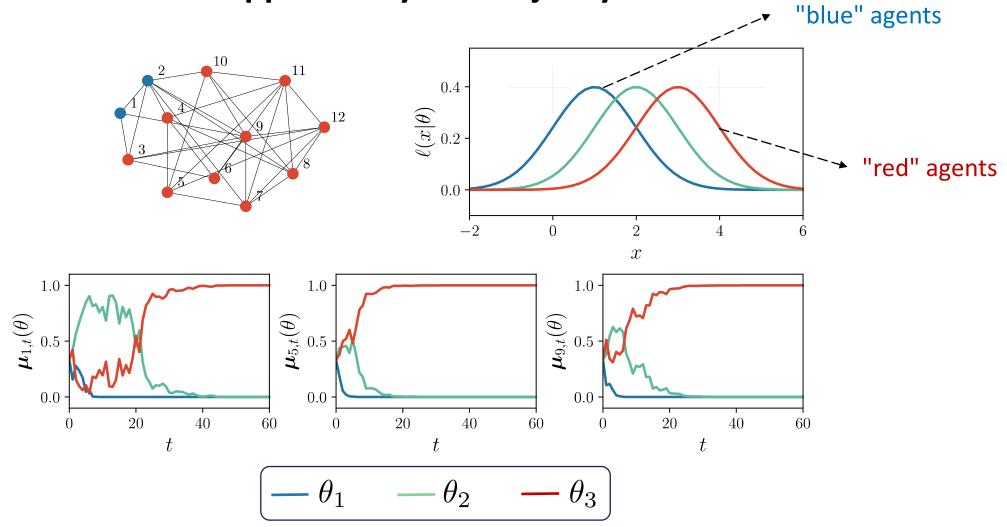
Under the subjective evidence model, different agents can have different underlying hypotheses

$$D_{\text{net}}(\theta) = \sum_{k=1}^{K} v_k D(\ell_{k,\theta_k} || \ell_{k,\theta}) \qquad \theta^{\star} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} D_{\text{net}}(\theta)$$

But in this case...the agents agree on which hypothesis?

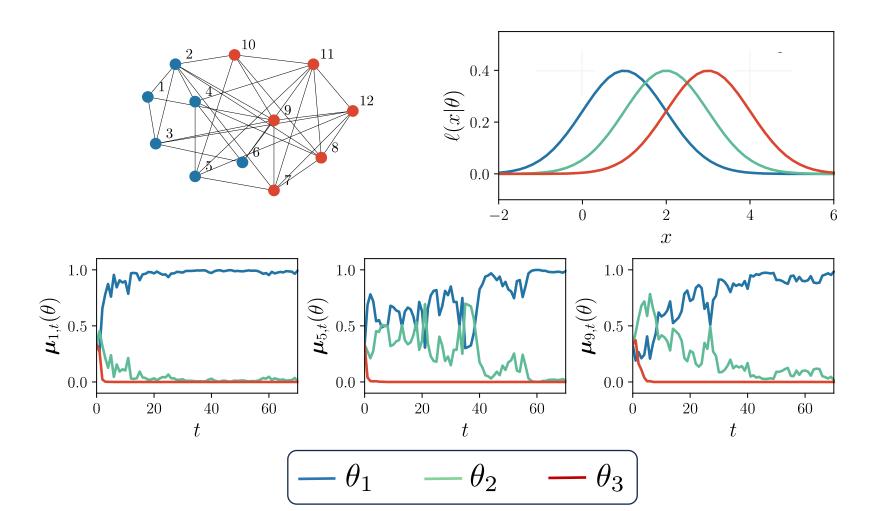
Majority Builds a Common Opinion

Here all agents place full mass on the hypothesis supported by the majority



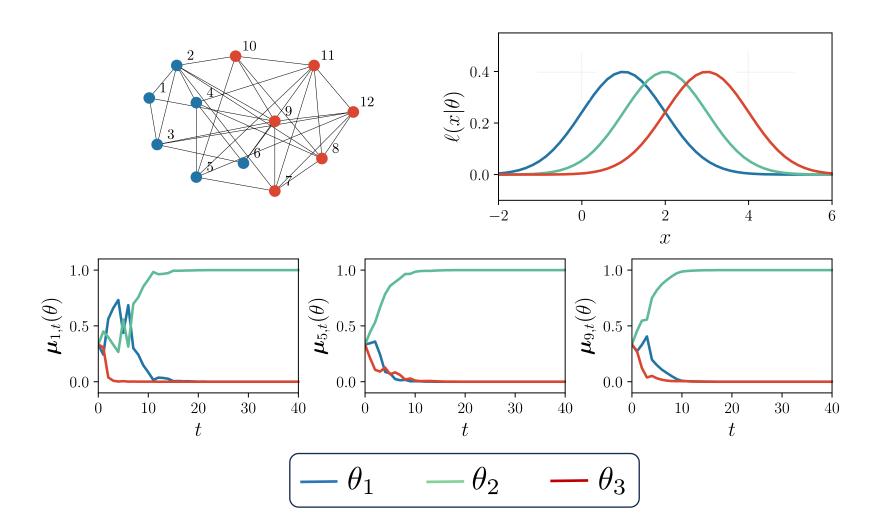
Centrality Builds a Common Opinion

Here all agents place full mass on the hypothesis supported by the agents with more neighbors

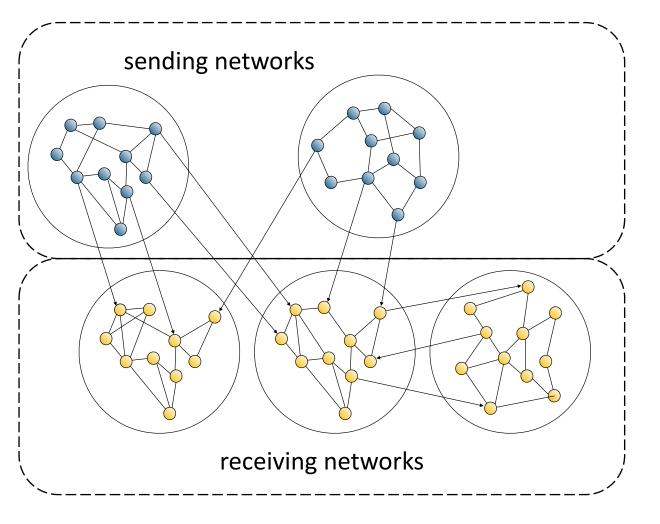


Truth is Somewhere in Between

Here half network says θ_1 , the other half says θ_3 All agents opt for θ_2 !

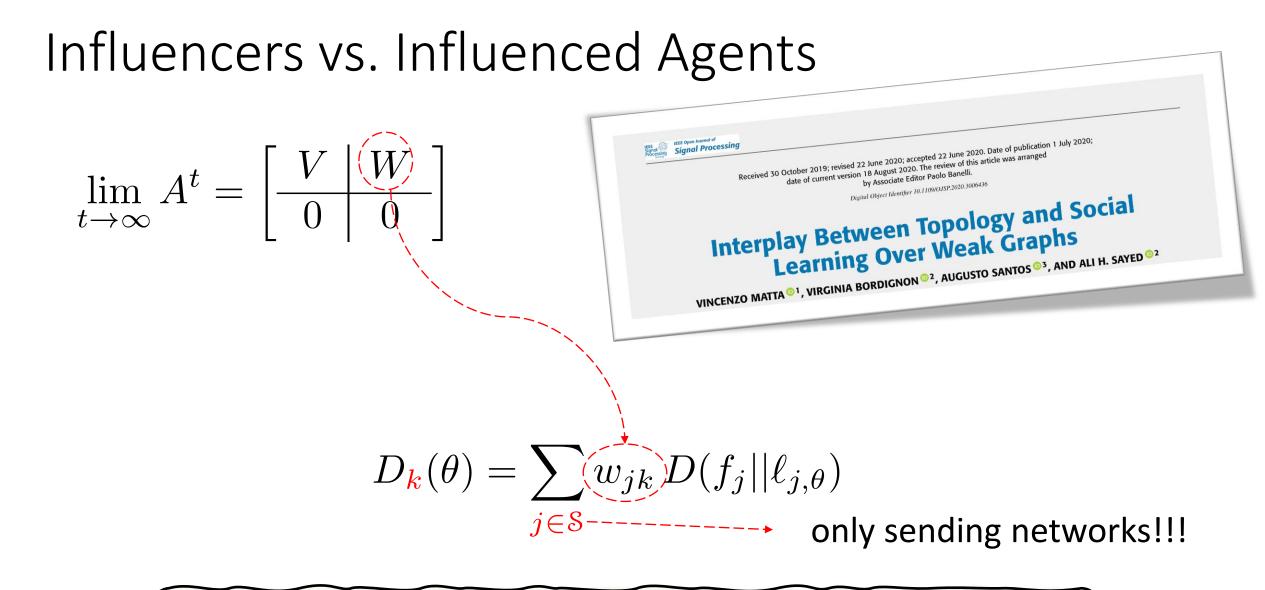


Weak Graphs



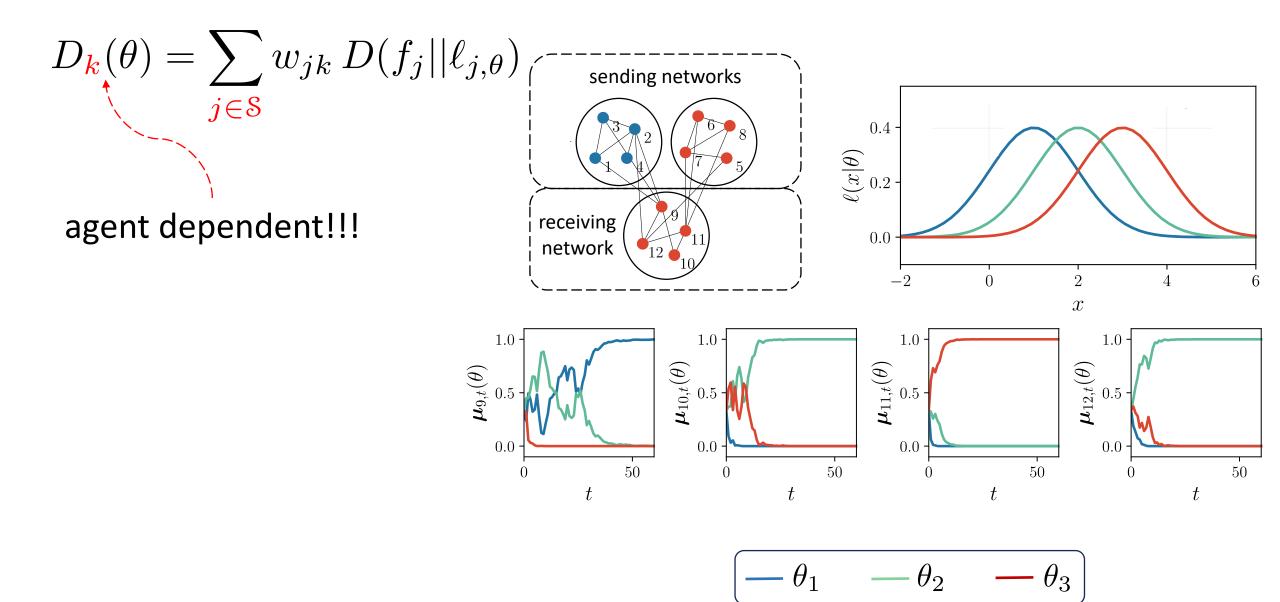
- Any graph that is not strong can be represented in a canonical form where it is partitioned into sending and receiving networks
- Useful real-world examples:
 - celebrities over social networks
 - media networks

$$A = \begin{bmatrix} A_{\mathcal{S}} & A_{\mathcal{S}\mathcal{R}} \\ \hline 0 & A_{\mathcal{R}} \end{bmatrix}$$



The sending networks exert a domineering role (influencers) over the receiving networks (influenced)

Weak Graphs: Discord



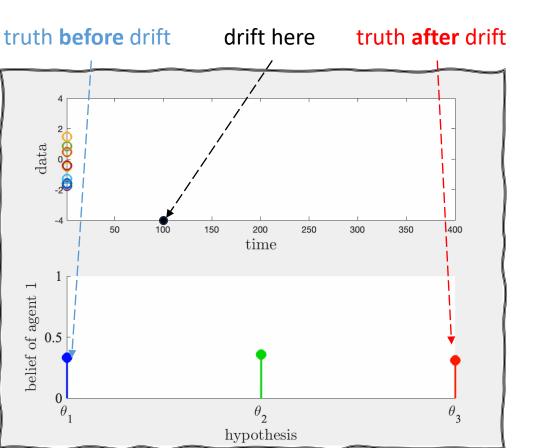
Part III

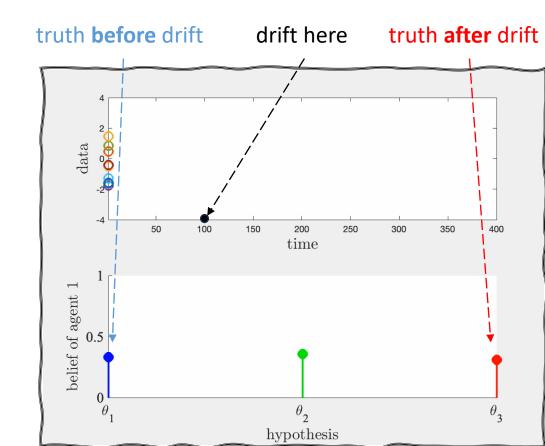
Recent Trends in Social Learning

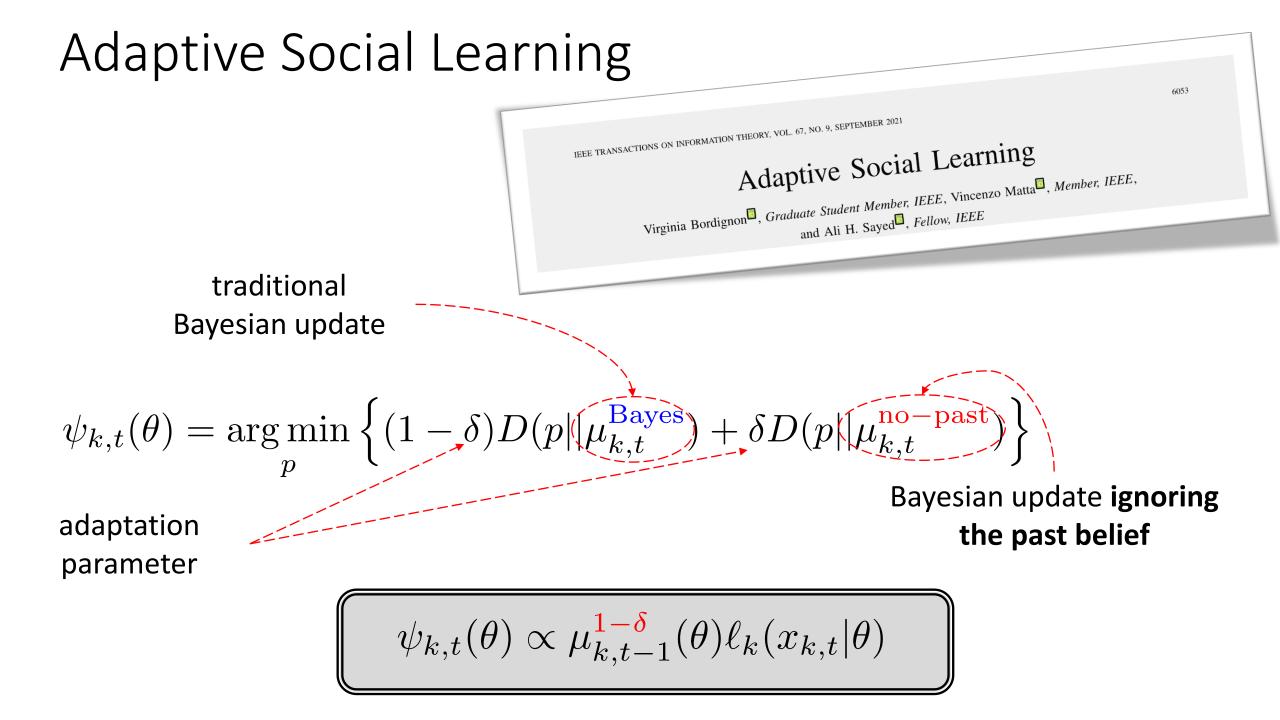
Adaptive Social Learning

Stubbornness vs. Adaptation

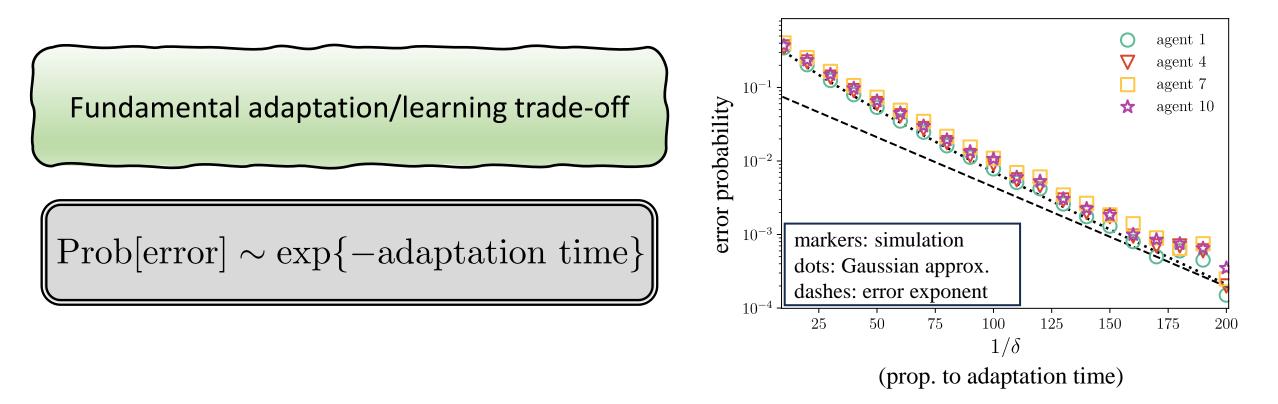
Traditional Social Learning







Adaptation and Learning

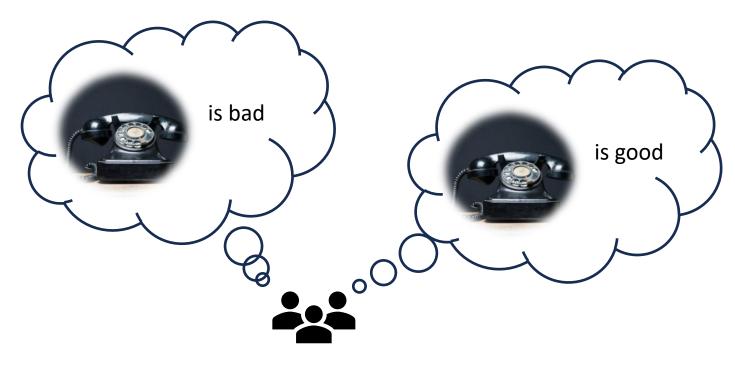


theoretical analysis: weak law of slow adaptation, asymptotic normality, large deviations,...

Social Learning With Partial Information

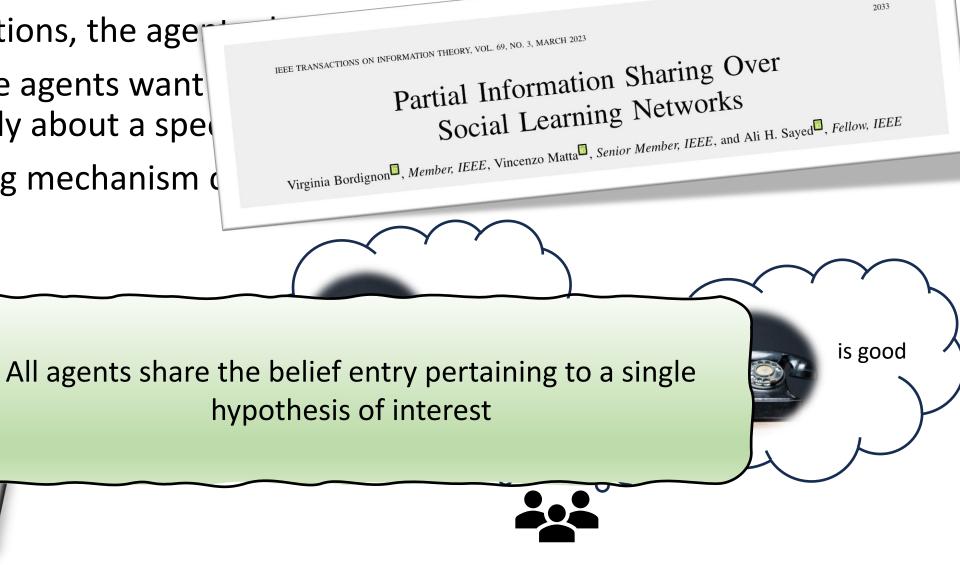
Social Learning With Partial Information

- In many applications, the agents share **partial opinions**
- For example, the agents want to form their opinions on some product brands, but they talk only about a specific one
- How the learning mechanism changes?



Social Learning With Partial Information

- In many applications, the age
- For example, the agents want but they talk only about a spec
- How the learning mechanism of the second seco



Filling Strategy

- Agent k receives from its neighbors only the belief pertaining to θ^{\bullet}
- Fill in the belief entries for the complementary set $\mathcal{T} \triangleq \left\{ \theta \in \Theta : \theta \neq \theta^{\bullet} \right\}$

• Bayesian filling strategy
$$\hat{\psi}_{j,t}^{(k)}(\theta) = p_k(\theta|\mathcal{T}) \Big[1 - \psi_{j,t}(\theta^{\bullet}) \Big]$$

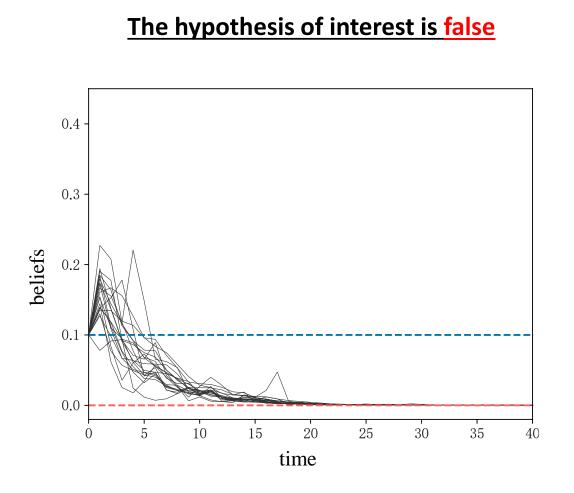
• agent k uses its **most updated knowledge** stored in its belief $\psi_{k,t}(\theta)$

conditional belief given that the hypothesis is not θ^{\bullet}

$$p_k(\theta|\mathcal{T}) = \frac{\psi_{k,t}(\theta)}{1 - \psi_{k,t}(\theta^{\bullet})}$$

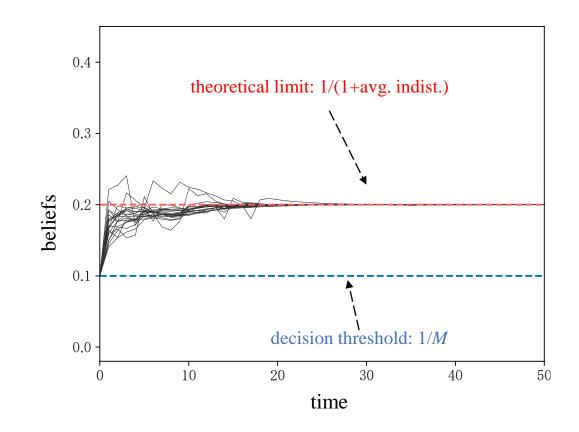
hypothesis of interest

Learning With Partial Information



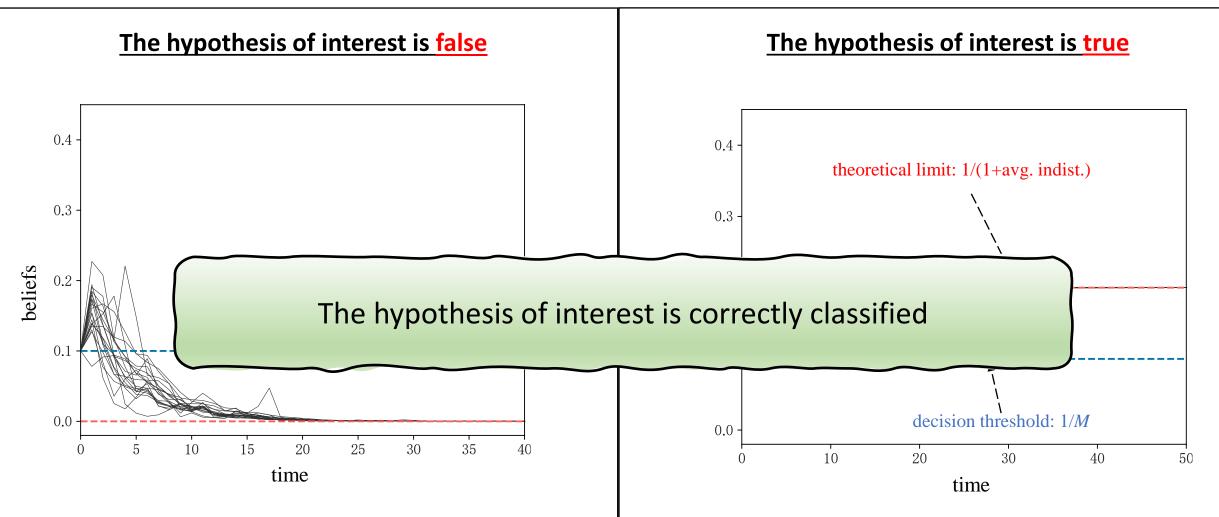
The hypothesis of interest is correctly rejected

The hypothesis of interest is true



The beliefs of the true hypothesis converge to a positive value. There exists a **decision threshold that implies truth learning**

Learning With Partial Information



The hypothesis of interest is **correctly rejected**

The beliefs of the true hypothesis converge to a positive value. There exists a **decision threshold that implies truth learning**

Social Machine Learning

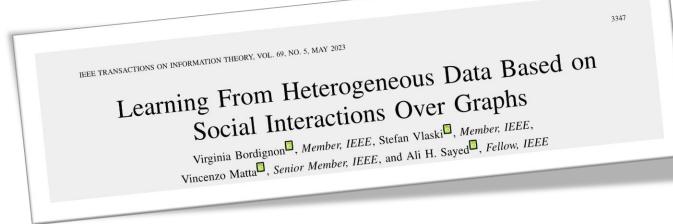
Social Machine Learning

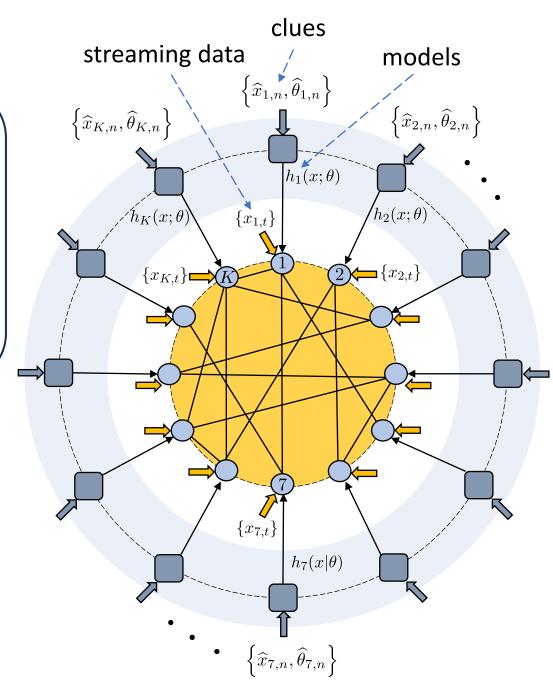
Outer layer: Training phase

Each agent builds its own models from some clues

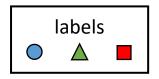
Inner layer: Prediction phase

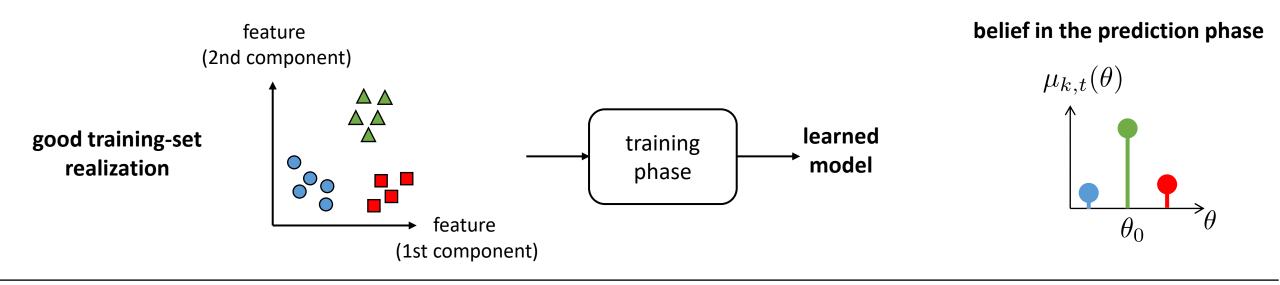
All agents run social learning algorithms with the learned models



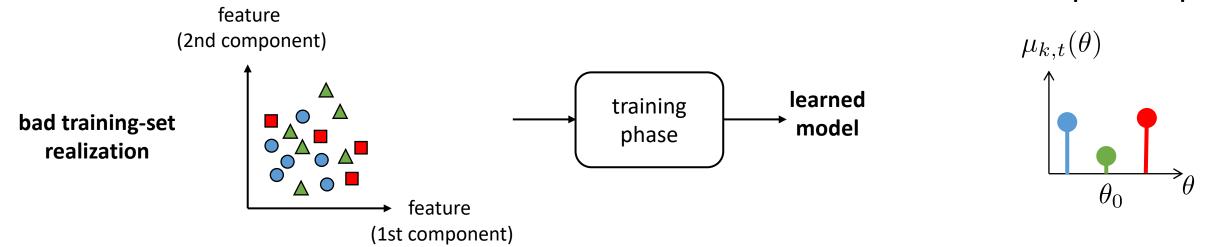


Training sets



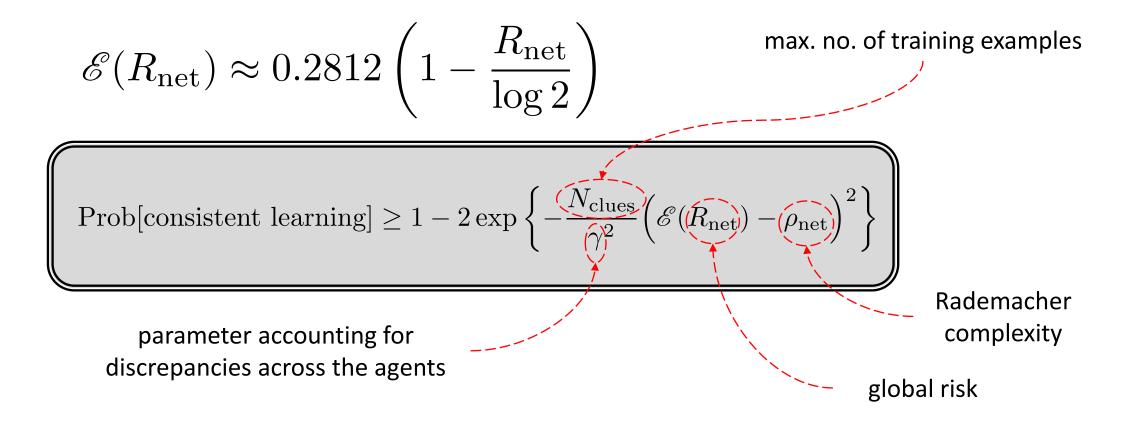


belief in the prediction phase



Consistent Learning

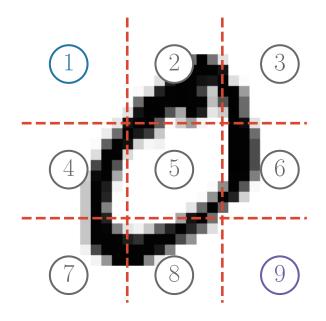
What is the probability that the training set yields good decision models?

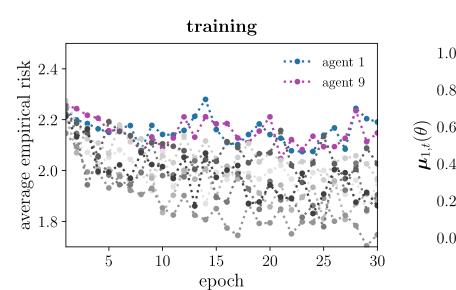


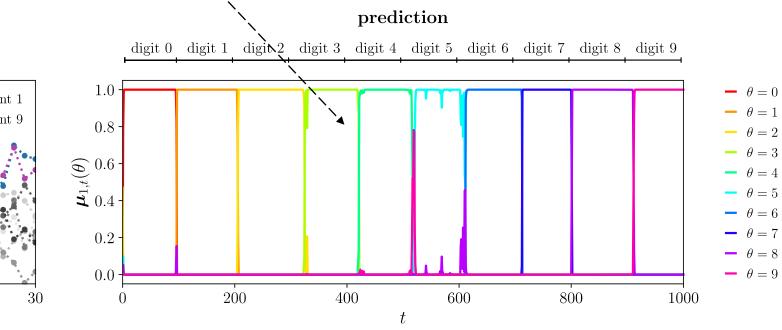
Social Machine Learning Example

different agents observe different portions of a "digit" image

Digits are correctly predicted with social machine learning







References

- R. H. Berk. *Limiting behavior of posterior distributions when the model is incorrect*. The Annals of Mathematical Statistics, 1966.
- K. Friston, J. Kilner, and L. Harrison. *A free energy principle for the brain*. Journal of physiology-Paris, 2006.
- X. Zhao and A. H. Sayed. *Learning over social networks via diffusion adaptation*. Proc. Asilomar 2012.
- A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi. *Non-Bayesian social learning*. Games and Economic Behavior, 76(1), 2012.
- S. Shahrampour, A. Rakhlin and A. Jadbabaie. Distributed Detection: Finite-Time analysis and impact of network topology. IEEE Trans. Automatic Control, 2016.
- A. Nedić, A. Olshevsky, and C. A. Uribe. Fast convergence rates for distributed non-Bayesian learning. IEEE Trans. Automatic Control, 2017.
- P. Molavi, A. Tahbaz-Salehi, and A. Jadbabaie. *A theory of non-Bayesian social learning*. Econometrica, 2018.
- A. Lalitha, T. Javidi, and A. D. Sarwate. *Social learning and distributed hypothesis testing*. IEEE Trans. Information Theory, 2018.
- V. Matta, V. Bordignon, A. Santos and A. H. Sayed. Interplay between topology and social learning over weak graphs. IEEE Open Journal of Signal Processing, 2020.
- V. Bordignon, V. Matta and A. H. Sayed. Adaptive social learning. IEEE Trans. Information Theory, 2021.
- G. Koliander, Y. El-Laham, P. M. Djurić, and F. Hlawatsch. *Fusion of probability density functions*. Proceedings of the IEEE, 2022.
- V. Bordignon, V. Matta and A. H. Sayed. Partial information sharing over social learning networks. IEEE Trans. Information Theory, 2023.
- V. Bordignon, S. Vlaski, V. Matta and A. H. Sayed. Learning from heterogeneous data based on social interactions over graphs. IEEE Trans. Information Theory, 2023.

Concluding Remarks

There are several open questions and problems:

- New update/pooling rules
- Tracing the route of information (topology inference), privacy issues
- Optimality and performance guarantees
- Experimental analysis, proposing and testing new cognition models
- And much more...

If you are interested in further details, please send me an e-mail <u>vmatta@unisa.it</u>

Thank you for attending!