Leverage Vehicles to Build a Multi-D Resource Network for Smart Cities

Yuguang “Michael” Fang (方玉光),
Chair Professor of Internet of Things

Wireless Intelligence & Networked Things Laboratory (WINET)
Department of Computer Science
City University of Hong Kong

Imperial Workshop on Intelligent Communications
London, United Kingdom
June 19, 2023
What is a smart city?

- Wikipedia

 “The smart city concept integrates information and communication technology (ICT) and various physical devices connected to the Internet of Things (IoT) network to optimize the efficiency of city operations and services and connect to citizens.”

- There is no standard terminology, but it does spell out a few things

 ✔ ICT (data, information, communications, networking)
 ✔ IoT (sensing)
 ✔ Efficiency (resource optimization)
 ✔ Operations & services

- Need to be added explicitly

 ✔ Computing (processing and AI/ML)
 ✔ Storage (caching, buffering, memory, storage)
 ✔ Security and privacy (Security by Design & Privacy by Design)
Hong Kong Vision of Smart Cities

• En route to city modernization- Mission of Hong Kong Smart City Blueprint 2.0 (12/2020)
 ➢ To make people happier, healthier, smarter and more prosperous, and the city greener, cleaner, more livable, sustainable, resilient and competitive
 ➢ To provide better care for the elderly and youth and foster a stronger sense of community.
 ➢ To enable the business to capitalize on Hong Kong’s renowned business-friendly environment to foster innovation, transform the city into a living lab and test bed for development
 ➢ To make the business, people, and Government more digitally enabled and technology savvy
 ➢ To consume fewer resources and make Hong Kong more environmentally friendly, while maintaining its vibrancy, efficiency, and livability
Smart Hong Kong Blueprint 2.0

• How to achieve the vision
 ➢ Smart *-feature in multi-dimensional (Multi-D) space
 ➢ Smart Mobility
 ➢ Smart Living/aging
 ➢ Smart Environment
 ➢ Smart People
 ➢ Smart Government
 ➢ Smart Economy
 ➢ (Smart grid)
Wireless Intelligence & Networked Things Laboratory (WINET)

IoT+ICT+AI/ML: Sensing + Communications + Computing + Control

smart city

smart grid

smart transportation

smart public safety

smart community

smart life

smart social

smart health

smart environment
Use case: interactive video surveillance for public safety (edge/cloud)

Anomaly detection (e.g., Amber alerting/criminal tracking)

Analysis at local police station

Inconclusive but suspicious?

Further analysis at city police department
Wireless Intelligence & Networked Things Laboratory (WINET)

Use case: Smart Mobility

- “eSIMs identify individual vehicles, encrypt communications, and ensure secure global car connectivity for intelligent vehicle systems.”
- Autonomous driving regulates traffic
Networked Driving of Non-sensing Vehicles

- Mogo AI Digitalized Roads
Use case: **smart health** in vehicles

- **In-vehicle health monitoring**
 - Fatigue detection
 - Sudden episodal health problems (e.g., heart attack)
 - In-vehicle wellbeing
 - Vital sign monitoring

- **City residents’ health monitoring**
 - Smart aging
Newly emerging applications of smart cities

- **Emerging applications**
 - Augmented reality (AR)/Virtual reality (VR)
 - Navigation/Metaverse
 - Autonomous driving
 - 360°/stereoscopic/6DoF video streaming
 - Online gaming

- **Big sensing** → sense at scale and "scope"
 - Crowdsensing, affective sensing, ...
- **Big data** → storage and communications
- **Big computing** → processing, AI/ML

Question: how can we effectively support all these in a smart city?
What do we need to do?

- Need to know information about the city (**sensing**)
 - “pulse of a city!”
 - Eventful and informational data
 - Personal activities & behaviors (e.g., emotional/community sensing)
 - Consumer data for city operations

- Need to have network support to transport data/information around (**networking** or **ICT**)
 - Transport data of potentially large volume from sources to premises where actions can be taken: to be processed or consumed

- Need to have computing capability in situ and in tempore to process/extract useful information at the spots of actions (**computing** and/or **AI/ML**)

- Need to store-buffer/cache data for optimization (**storage**)

- Need to secure the living ecosystem in both physical space and cyberspace (**security and privacy**)

Wireless Intelligence & Networked Things Laboratory (WINET)
In other words? We do need “resources”!

- **Sensing and communications**
 - Sensing efficiency
 - Spectrum efficiency
 - Energy efficiency

- **Computing & machine learning**
 - In situ and in tempore computing (computing service placement)
 - Low latency guarantee for timely actions
 - Flexible distributed collaborative learning

- **Storage/buffering for scheduling**
 - In situ and in tempore storage (buffering and caching)
 - Effective fragmented/distributed queue management for optimal communications and computing (queueing)

- **Security and privacy**
 - Secure and/privacy mechanisms (hardening of the weakest links)
Wireless Intelligence & Networked Things Laboratory (WINET)

Where do we get resources?

• 5G/6G and beyond?
 ➢ Yes, it is an option
 ➢ But costly
 ✓ Infrastructure investment cost (BSs, land permit, …)
 ✓ Operational, administrative & maintenance (OAM) sustainable cost

• Crowdsourcing? yes, but
 ➢ A lot of research, but not much action
 ➢ Passive mode operations (relying on what has been given)
 ➢ Lack of viable incentives (there is no free lunch!)
 ➢ Not systematically investigated for big effort like smart city
 ➢ Mostly focused on resource of a single dimension!

• But, we do need multi-dimensional resources! Particularly “resources” without excessive cost? Where to find such “jewels”?
Searching for the alternatives

• What are the most popular things on the streets?
 ➢ Vehicles!!!
 ➢ Omnipresent vehicles
 ➢ Mobile vehicles: space/air/ground/sea/under-surface…

• What do we use them for?
 ➢ Transport people or goods!
 ➢ Can we do anything else? …Yes!

• What if vehicles are equipped/carried with powerful SCCSI* capability: powerful set-top devices with SCCSI capability?
 ✓ BS, AP, DAS,…
 ✓ Computing servers
 ✓ Storage
 ✓ AI/ML toolboxes

* SCCSI: Sensing, Communications, Computing, Storage & Intelligence
SCCSI enablers: Point of Connection (PoC)

- **Sensing**: multi-modal sensors or a collection of sensors
- **Communications**: cognitive router with cognitive/agile radios with fast transmission (data blasting) capability
- **Computing**: customized AI-nized (AI-aware) computers with high computing capability
- **Storage/memory/caching**: fast distributed networked storage for data storage, buffering, and prefetching/caching
- **Intelligence**: Customized AI/ML toolboxes!
Wireless Intelligence & Networked Things Laboratory (WINET)

a SCCSI Service Network: Beef up the network edge + Mobile infrastructure

Connecting PoC (c-PoC)

Relaying PoC (r-PoC)

r-PoC can be simplified intelligent reflecting surfaces (RISs)

Connecting PoC (c-PoC)

Mobile PoC (m-PoC)
Our proposed approach

- Leverage vast and omnipresent vehicles (space/air/ground/sea/under-surface): a dynamic web of sensors/monitors/watchdogs, a network of data carriers, a distributed system of storage and buffers, a grid of computing servers, and a...

- A naturally formed web of dynamic resources for sensing, communications, computing, storage & intelligence (SCCSI)!!!

- A SCCSNI Service Network!
Leverage resource opportunities

• Leverage the powerful capability of vehicles in situ and in tempore
 - Tremendous sensing (e.g., lidar, radar, cameras, …)
 - Cognitive vehicular mesh (e.g., OBUs/CR routers/mobile BS/APs)
 - Dynamic vehicular cloud/edge computing (e.g., mobile computers)
 - Large distributed storage network (e.g., self-organized distributed storage)
 - AI/ML toolboxes

• Leverage (controlled) vehicular mobility opportunity
 - Take advantage of shared mobility to opportunistically transport data to the proximity of data consumers (end users/computing sites)
 - Proactively recruit/deploy vehicles to link networked things
 - Satellites/airships/airplanes/balloons/helicopters/drones/…
 - Relieve the burden of existing legacy systems (5G/WiFi/DSRC…)

• Leverage spectrum opportunity
 - Collaborative spectrum sensing (let PoC do the sensing)
 - Temporal and spatial spectrum availability (spectrum map)
Leverage resource opportunities

• Harness **opportunistic** capability in situ and in tempore in a smart city
 - Use roadside **parked vehicles** and/or **platooning** vehicles to form SCCSI facility (roadside fogs or platooning cloudlets)
 - Utilize AI-nized vehicles in **parking lots** to form cloud/edge computing facilities (e.g., parking lot clouds)
 - Design incentivize mechanisms to make vehicles flock

• **Demand a holistic** design approach! (the Chinese medicine approach)

Use case: interactive video surveillance

- **Video data collection**
- **Analysis at local police station**
 - Anomaly detection (e.g., Amber alerting/criminal tracking)
- **Further analysis at city police department**
- **Data transport**
- **Data analytics: ML**
- **Action: control**
- Inconclusive but suspicious?
Vehicle as a Service (VaaS)

- **Edge Communication** resources (e.g., small cells)
 - Push communications services closer to end users

- **Edge Computing** resources (e.g., edge servers)
 - Conduct pre-processing: eliminate redundancy at the edge (e.g., semantic communications)
 - Harness edge/fog computing: reduce latency or backbone traffic

- **Edge Storage/Caching** (e.g., edge servers)
 - Boost resource utilization (spectrum & mobility): use opportunistic scheduling at the edge to smooth out variations
 - Design flexible data transmission schemes (data blasting, store-carry-forward)
 - Take advantage of the nature of delay-tolerant traffic (e.g., video traffic forms over 70% of Internet traffic!): shift delay-tolerant traffic to the “harvested” resources to save licensed bands

- **Edge Intelligence** (e.g., federated learning)

- **Edge Security & Privacy** (e.g., hardening the edge)
A SCCSI Service Network

Wireless Intelligence & Networked Things Laboratory (WINET)

- **backbone**
- **SDN**
- **flexible edge networks**

Telecommunications Infrastructure
- RSU+PoC
- AP+PoC
- Internet
- BS+PoC

Control Plane
- SSP
- Spectrum Sharing

Data Plane
- PoC

Access Plane
- Smart Grid
- Video Surveillance
- Mobile Health
- AR
- VR
Incentive Mechanism Design: Service Auction

Single-round and sealed-bid double auction

Buyer i’s profile: QoS
- **e2e service requirement:** \(s_{i,k} = \{ r_{i,k}, \theta_{i,k}, \delta_{i,k} \} \)
 - **e2e data rate:** \(r_{i,k} \)
 - **Computing requirement:** \(\theta_{i,k} \)
 - **Storage requirement:** \(\delta_{i,k} \)
 - **Bid price:** \(b_{i,k} \)

Seller j’s profile:
- **Computing capability:** \(\Theta_j \)
- **Storage space:** \(\Delta_j \)
- **Ask price:** \(a_{i,j,k} \)

Incentive: monetary or redeemable points

- **References:**
Service Network Optimization

Construct a network flow optimization problem for MEC systems.

Decision variables
\(\mathbf{d}: \) service assignment, \(\mathbf{x}: \) network resource allocation, \(\mathbf{f}: \) data flow

Data flow conservation

\[
\max_{\mathbf{d}, \mathbf{x}, \mathbf{f}} \sum_{i \in \mathcal{I}} \sum_{1 \leq k \leq K_i} \sum_{j \in \mathcal{J}} M_{i,k} d^j_{i,k},
\]

\[\text{s.t.} \sum_{j \in \mathcal{J}} d^j_{i,k} \leq 1, \quad \forall i \in \mathcal{I}, 1 \leq k \leq K_i, \quad (1)\]

\[
A_{i,k}^T = \sum_{j \in \mathcal{J}} d^j_{i,k} r_{i,k}^T (s_{i,k} - h_j)^T, \quad \forall i \in \mathcal{I}, 1 \leq k \leq K_i,
\]

Link capacity

\[\sum_{i \in \mathcal{I}} \sum_{1 \leq k \leq K_i} f^i_{l,k} \leq C_l(\mathbf{x}), \quad \forall l \in \mathcal{L}, \quad (2)\]

Networking constraints:
- Configure network resource allocation and routing path. (3) and (4) are application specific

Constraints on \(\mathbf{x} \),

\[\sum_{i \in \mathcal{I}} \sum_{1 \leq k \leq K_i} d^j_{i,k} \theta_{i,k} \leq \Theta_j, \quad \forall j \in \mathcal{J}, \quad (3)\]

Computing constraints

\[\sum_{i \in \mathcal{I}} \sum_{1 \leq k \leq K_i} d^j_{i,k} \delta_{i,k} \leq \Delta_j, \quad \forall j \in \mathcal{J}, \quad (4)\]

Storage constraints

\[f^i_{l,k} \geq 0, \quad \forall i \in \mathcal{I}, 1 \leq k \leq K_i, l \in \mathcal{L}, \quad (5)\]

\[d^j_{i,k} \in \{0, 1\}, \quad \forall i \in \mathcal{I}, 1 \leq k \leq K_i, j \in \mathcal{J}. \quad (6)\]
Federated Learning (Privacy by Design)

Wireless FL: max U(C,C,S,I)

- Must handle uncertainty on service demands and resource supply: stochastic optimization

Hierarchical FL

Split FL

(J. Zhang, J. Wang, Y. Zhao and B. Chen, "An efficient federated learning scheme with differential privacy in mobile edge computing," MLICOM'2019)

(http://splitlearning.github.io)
Managing Security at Edge

- IoT devices/edge devices/VaaS vehicles, belonging to the same organization, typically join together to manage the community for the same mission.
 - Powerful devices can join together to manage the ecosystem and harden the edge for resource-constrained devices.
- Blockchain can be leveraged to establish trusted ecosystem in an untrusted environment.
- Location-based cryptographic schemes can be utilized to localize the impact of attacks.
 - Info data can only be accessed with location-based keys.
- Design for Resilience is the norm rather than after-thought.
Recap

• Offer an envisioned design of a multi-dimensional resource network of SCCSI: via VaaS

• Provide city authority with a cost-effective and sustainable solution to building a smart city

 ➢ City authority acts as an SSP, building the partial infrastructure
 ✓ Customized PoCs are deployed at strategic locations in the city
 ➢ Mobile SCCSI-empowered vehicles over the space/air/ground/sea are deployed/outsourced/leveraged in situ and in tempore
 ✓ e.g., UAVs or drones, CAVs, cars, trucks, buses, dispatchable vehicles
 ➢ Networked vehicles serve as sensing fabrics, a communication network, a distributed computing system, a distributed storage network, and an Internet of Intelligence (IoI) or AI-based IoT (AIoT)
 ➢ leverages vehicles to push sensing, communications, computing, storage, and intelligence to the EDGE!
 ➢ Utilizes a SCCSI network to manage and secure the ecosystem of a smart city
 ➢ Potentially provides a viable solution to the digital divide problem
Related publications

