
1

Federated Edge Learning with Misaligned

Over-The-Air Computation

Yulin Shao, Member, IEEE, Deniz Gündüz, Senior Member, IEEE,

Soung Chang Liew, Fellow, IEEE

Abstract

Over-the-air computation (OAC) is a promising technique to realize fast model aggregation in the

uplink of federated edge learning (FEEL). OAC, however, hinges on accurate channel-gain precoding and

strict synchronization among edge devices, which are challenging in practice. As such, how to design the

maximum likelihood (ML) estimator in the presence of residual channel-gain mismatch and asynchronies

is an open problem. To fill this gap, this paper formulates the problem of misaligned OAC for FEEL

and puts forth a whitened matched filtering and sampling scheme to obtain oversampled, but independent

samples from the misaligned and overlapped signals. Given the whitened samples, a sum-product ML

(SP-ML) estimator and an aligned-sample estimator are devised to estimate the arithmetic sum of the

transmitted symbols. In particular, the computational complexity of our SP-ML estimator is linear in the

packet length, and hence is significantly lower than the conventional ML estimator. Extensive simulations

on the test accuracy versus the average received energy per symbol to noise power spectral density ratio

(EsN0) yield two main results: 1) In the low EsN0 regime, the aligned-sample estimator can achieve

superior test accuracy provided that the phase misalignment is not severe. In contrast, the ML estimator

does not work well due to the error propagation and noise enhancement in the estimation process. 2) In the

high EsN0 regime, the ML estimator attains the optimal learning performance regardless of the severity

of phase misalignment. On the other hand, the aligned-sample estimator suffers from a test-accuracy loss

caused by phase misalignment.

Index Terms

Federated edge learning, over-the-air computations, asynchronous, maximum likelihood estimation,

sum product algorithm.

Y. Shao was with the Department of Information Engineering, The Chinese University of Hong Kong, Shatin, New Territories,
Hong Kong. He is now with the Department of Electrical and Electronic Engineering, Imperial College London, London SW7
2AZ, U.K. (e-mail: yshao@ic.ac.uk). D. Gündüz is with the Department of Electrical and Electronic Engineering, Imperial
College London, London SW7 2AZ, U.K. (e-mail: d.gunduz@imperial.ac.uk). S. C. Liew is with the Department of Information
Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (e-mail: soung@ie.cuhk.edu.hk).

2

I. INTRODUCTION

With the increasing adoption of Internet of Things (IoT) devices and services, exponentially

growing amount of data is collected at the wireless network edge. Increasingly complex machine

learning models are trained and deployed to gather intelligence from the data collected by edge

devices [1], [2]. While this is conventionally done at a cloud server [3], offloading huge amounts

of edge data to centralized cloud servers is not sustainable, and will potentially cause significant

network congestion [4]. Moreover, data from edge devices contain user-specific features, and

centralized processing also causes privacy concerns. Federated learning (FL) has been proposed

as an alternative distributed solution to enable collaborative on-device learning without sharing

private training data [5]–[7].

FL is an iterative distributed learning algorithm. In its basic implementation, orchestrated by

a parameter server (PS), each iteration of FL consists of four main steps [6]: 1) Downlink (DL)

broadcast – a PS maintains a global model and periodically broadcasts the latest global model to

the edge devices; 2) Local training – upon receiving the latest global model, each edge device

trains the model locally using its local data set; 3) Uplink (UL) model aggregation – after training,

all, or a subset, of devices transmit their model updates back to the PS; 4) Global model update

– the PS updates the global model using the model updates collected from the edge devices,

typically by taking their average.

In the case of edge devices, often the devices that collaborate to learn a common model are

within physical proximity of each other, and are coordinated by a nearby access point, e.g., a base

station acting as the PS. In this, so-called federated edge learning (FEEL) scenario [4], the UL

model aggregation step is particularly challenging as the wireless medium is shared among all

the participating devices. Traditional radio access network (RAN) technologies distribute channel

resources among the devices by means of orthogonal multiple-access technologies [8] (e.g.,

TDMA, CDMA, OFDMA). However, such orthogonal resource allocation techniques significantly

limit the quality of model updates that can be sent from individual devices due to the limited

channel resource that can be allocated to each device. We note that the number of real values

to be transmitted by each device scales according to the neural network size. For today’s neural

networks, this number can easily run into hundreds of millions or more [9], and hence, is a heavy

burden for the RANs.

Analog over-the-air computation (OAC) is a promising technique to realize uplink model

aggregation in an efficient manner [10]–[18]. The basic idea of OAC is to create and leverage inter-

3

user interferences over the multiple-access channel (MAC) rather than trying to avoid it. When

operated with OAC, devices send their model updates in an uncoded fashion by directly mapping

each model parameter to a channel symbol: each device first precodes the transmitted symbols by

the inverse of the UL channel gain (assumed to be known to the transmitter in advance) and then

transmits the precoded symbols to the receiver in an analog fashion. All the participating devices

transmit simultaneously in the same communication link such that their signals overlap at the PS.

Provided that the channel-gain precoding and transmission timing are accurate, the fading MAC

reduces to a Gaussian MAC and the signal overlapped from the devices to the PS over-the-air

naturally produces the arithmetic sum of the local model-updates [17].

Compared with the traditional digital multiple-access schemes, wherein the communication

and computation constitute separate processes, OAC is a joint computation-and-communication

scheme exploiting the fact that the MAC inherently yields an additive superposed signal.

The successful operation of OAC hinges on accurate channel-gain precoding and strict synchro-

nization among the participating devices [11], [12]. In practice, however, both requirements may

not be perfectly fulfilled. On the one hand, the channel-gain precoding at the edge devices can

be imperfect due to the inaccurate channel estimation and non-ideal hardware. The consequence

is that there can be residual channel-gain mismatch in the overlapped signals. On the other hand,

to meet the synchronization requirement, each device has to carefully calibrate the transmission

timing – based on its distance from the PS and its moving speed – so that their signals overlap

exactly with each other at the PS. This strict synchronization across different devices is very

expensive to realize in practice, and there can be residual asynchronies among the signals from

different devices.

With the residual channel gains and residual asynchronies in the system, which we refer to as

the misaligned OAC, an open problem is how to estimate the arithmetic sum of the transmitted

symbols from different devices. This paper fills this gap and addresses the key problem in the

misaligned OAC on how to devise the maximum likelihood (ML) estimator in the face of the

channel-gain and time misalignments among signals.

Our main contributions are as follows:

1) We formulate the problem of misaligned OAC for FEEL considering a time-domain realization

of OAC. We put forth a whitened matched filtering and sampling (WMFS) scheme that yields

oversampled, but independent, samples from the overlapped signals. An ML estimator for the

arithmetic sum based on the whitened samples is devised.

4

2) To tackle the inter-symbol and inter-device interferences in the misaligned OAC, ML estima-

tion requires the inversion of a large coefficient matrix, and hence, is computationally intensive.

In view of this, we dissect the inner structure of the whitened samples and put forth a factor-

graph based ML estimator exploiting the sparsity of the coefficient matrix. This factor-graph

estimator, dubbed sum-product ML (SP-ML) estimator, interprets the compositions of samples

by a factor graph and computes the likelihood functions via an analog message passing process

on the graph. With the SP-ML estimator, the computational complexity of ML estimation is

significantly reduced from
(L2 logL) to
(L) for a packet of length L.

3) We identify two main problems of ML estimation in the misaligned OAC: error propagation

and noise enhancement. As a result, ML estimation does not work well in the low average

received energy per symbol to noise power spectral density ratio (EsN0) regime. To tackle this

problem, we further put forth an aligned-sample estimator for the misaligned OAC leveraging

a subsequence of whitened samples, wherein the symbols from different devices are “aligned”,

i.e., the indexes of symbols from different devices are consistent in these samples. This

estimator is shown to be a good alternative to the ML estimator in the low-EsN0 regime.

The complexity of the aligned-sample estimator is also linear in the packet length.

4) With the ML and aligned-sample estimators for the misaligned OAC, we perform extensive

simulations on the CIFAR dataset varying the degrees of time misalignment, phase misalign-

ment, and EsN0. The learning performance is measured by means of test accuracy, i.e., the

achieved accuracy of the learned neural network on the test data set. We find that i) When

there is no phase misalignment, the test accuracies of the ML estimator and the aligned-sample

estimator are on the same footing for various degrees of time misalignment. ii) When there

is phase misalignment, the ML estimator works only in the high-EsN0 regime whereas the

aligned-sample estimator works in both the low and high EsN0 regimes. Nevertheless, the

aligned-sample estimator suffers from a loss in the test accuracy due to phase misalignment.

In particular, the larger the phase misalignment, the greater the test-accuracy loss. In the case

of severe phase misalignment, the aligned-sample estimator leads to learning divergence even

in the noiseless case. The ML estimator, on the other hand, does not incur such test-accuracy

loss even with severe phase misalignment. iii) When there is phase misalignment, the ML

estimator benefits from time asynchronicity while the aligned-sample estimator suffers from

time asynchronicity. iv) Overall, the aligned-sample estimator is preferred in the low-EsN0

regime and the ML estimator is preferred in the high-EsN0 regime.

5

Notations – We use boldface lowercase letters to denote column vectors (e.g., �, s) and

boldface uppercase letters to denote matrices (e.g., V , D). For a vector or matrix, (�)> denotes

the transpose, (�)� denotes the complex conjugate, (�)H denotes the conjugate transpose, and

(�)y denotes the Moore-Penrose pseudoinverse. R and C stand for the sets of real and complex

numbers, respectively. (�)r and (�)i stand for the real and imaginary components of a complex

symbol or vector, respectively. The imaginary unit is represented by j. N and CN stand for the

real and complex Gaussian distributions, respectively. The cardinality of a set V is denoted by

jVj. The sign function is denoted by sgn(�).

II. SYSTEM MODEL

We consider FEEL with the help of a wireless PS where nearby edge devices with distinct

local datasets collaborate over the shared wireless medium to train a common model, as shown

in Fig. 1. The learning process goes through many iterations. Without loss of generality, let us

focus on one of the iterations, wherein M active devices participate in the training. The iteration

proceeds as follows [6]:

1) DL broadcast: at the beginning of the iteration, the PS broadcasts the global model � 2 Rd

to the M edge devices;

2) Local training: each of the M devices trains the global model � on its local dataset Bm of

size Bm and obtains a new model ~�m 2 Rd;

3) UL aggregation: each device scales the local model update ~�m � � by Bm and transmits the

scaled model update �0m = Bm(~�m � �) 2 Rd back to the PS;

4) Arithmetic-sum estimation: the PS estimates the arithmetic sum of the transmitted model-

updates �0m from the edge devices:

�+ =
MX

m=1

�0m; (1)

5) Model update: the PS updates the global model by

�new = � +
1P
mBm

�+: (2)

The updated global model �new is then broadcasted in the next iteration and the cycle continues.

Remark. To compute (2), the sum of the dataset sizes
P

mBm has to be known to the PS a priori.

Thus, we let each device transmit the local dataset size Bm to the PS reliably in advance of data

6

⊕

Device 1 Device 2 ⋯ Device 𝑀

෨ℎ1, 𝜏1

AWGN

෨ℎ𝑀, 𝜏𝑀෨ℎ2, 𝜏2

Parameter server (PS)

Figure 1. In FEEL, edge devices collaboratively train a shared model with the help of a wireless access point acting as a PS.

transmission (in a digital manner over a control channel, with channel coding and automatic

repeat request, for example).

Among the above five steps, the uplink model aggregation poses the greatest challenge to the

RAN. In this step, each device has to transmit d real numbers to the PS, where d can run into

hundreds of millions or more. We consider analog OAC to realize the uplink model aggregation

in this paper.

When operated with OAC, edge devices transmit their raw model updates �0m simultaneously

to the PS in an analog manner (without digital modulation and channel coding). The PS, on the

other hand, estimates the sum of the model updates �+ directly from the received overlapped

signal.

The signal flow is detailed as follows. Each device partitions its sequence of scaled model

update �0m 2 Rd to two subsequences �0m = [(sr
m)>; (si

m)>]>, where sr
m, si

m 2 Rd=2, and

constructs a complex sequence sm 2 Cd=2: sm = sr
m + jsi

m, that is, the raw model update

information �0m is carried on both the real and imaginary parts of sm.

Time is divided into slots, and each device transmits a packet of L symbols in each slot where

sm = [sm[1]; sm[2]; :::; sm[L]]>. Therefore, to transmit the total number of d=2 complex symbols,

dd=2Le slots are needed. Without loss of generality, we focus on the signal processing in one

slot.

The time-domain signal transmitted by the m-th device in one slot is given by

xm(t) = �m

LX

‘=1

sm[‘]p(t� ‘T); (3)

where 1) p(t) = 1=2 [sgn(t+ T)� sgn(t)] is a rectangular pulse of duration T ; 2) �m is the

channel precoding factor. Given an estimated channel coefficient �hm at the m-th device, �m is

7

designed to be �m = 1=�hm.1 Each of the M edge devices then calibrates the transmission timing,

based on its distance from the PS and its moving speed, so that the signals from different devices

arrive at the PS simultaneously.

In practice, however, both the channel-gain precoding and transmission-timing calibration can

be imperfect due to the non-ideal hardware and inaccurate estimation of the channel gains and

transmission delays. The received signal r(t) at the PS can be written as

r(t) =
MX

m=1

~hmxm(t� �m) + z(t); (4)

where

1) ~hm is the time-domain complex channel response. We consider flat fading (frequency nonse-

lective) and slow fading (time nonselective) channels [19]. That is, for the channel between

each device and the PS, the maximum delay spread is less than the symbol period T so that

there is only one resolvable path with the channel response ~hm at the receiver, and ~hm remains

constant over one packet.2

2) Without loss of generality, we sort the M devices so that the symbols from the devices with

smaller indexes arrive at the receiver earlier. The delay of the first device is set to �1 = 0,

and the relative delay of the m-th device with respect to the first device is denoted by �m. We

assume the time offsets �m, 8 m, are less than the symbol duration T , as shown in Fig. 2. In

the ideal case where the timing calibrations are perfect, the relative delays among packets are

�m = 0, 8m.

3) z(t) is the zero-mean baseband complex additive white Gaussian noise (AWGN), the double-

sided power spectral densities of each of its real and imaginary parts is N0=2 for an aggregate

of N0.

Substituting (3) into (4) gives us

r(t) =
MX

m=1

~hm�m

LX

‘=1

sm[‘]p(t� �m � ‘T) + z(t)

1In practice, the channel-gain precoding is limited by the maximum transmission power of the edge devices. In the case of
deep fading �m would be very large, and we would have to clip �m to satisfy the peak or average transmission-power constraint.
In our formulation, this may be one cause of the residual channel gains at the receiver.

2To ease exposition and conserve space, this paper considers only the channel-gain misalignment, time misalignment, and slow
fading channel. However, the system model can be easily generalized to OAC with residual carrier frequency offset (CFO) and
fast fading channel. Interested readers may refer to Appendix A of our technical report [20] for more details.

8

𝜏2

𝑠1 1 𝑠1 2 ⋯ 𝑠1 𝐿෨ℎ1 ×

𝑠2 1 𝑠2 2 ⋯ 𝑠2 𝐿෨ℎ2 ×

𝑠𝑀 1 𝑠𝑀 2 ⋯ 𝑠𝑀 𝐿෨ℎ𝑀 ×

⋯⋯

𝜏𝑀

Figure 2. In each slot, the transmitted packets from different devices overlap at the PS with channel misalignments and relative
time offsets.

=
LX

‘=1

MX

m=1

h0msm[‘]p(t� �m � ‘T) + z(t); (5)

where h0m = ~hm=�hm is the residual channel-fading coefficient between the m-th device and PS.

Succinctly speaking, there can be two kinds of misalignments among the signals transmitted

from different devices: 1) channel-gain misalignment h0m caused by inaccurate channel-gain

precoding; and 2) time misalignment �m caused by inaccurate calibration of the transmission

timing.

The objective of the PS is to estimate �+ =
PM

m=1 �
0
m, i.e., the arithmetic sum of the local

model updates. This is equivalent to estimating the arithmetic sum of the transmitted complex

symbols s+, where s+[i] ,
PM

m=1 sm[i], because �0m are carried on the real and imaginary parts of

the sm sequence. In other words, given the estimated sequence ŝ+, the estimated arithmetic sum

of the local model updates is �̂+ =
�
(ŝr

+)>; (ŝi
+)>
�>. Therefore, we shall focus on the estimation

of the complex symbols s+ in the following sections.

Remark. This paper formulates misaligned OAC for FEEL considering a time-domain realization.

OAC can also be realized in the frequency domain via OFDM. The connections and differences

between the two realizations are discussed later in Section VI.

III. ALIGNED AND MISALIGNED OAC

A. Aligned OAC

Prior works on OAC, with the exception of [17], considered only the perfectly aligned case [10],

[11], [13], [14], [21], where there is neither channel-gain misalignment nor time misalignment,

which we refer to as the aligned OAC. In this case, we have �m = 1=~hm and �m = 0, 8m, and

the received signal is given by

r(t) =
LX

‘=1

MX

m=1

sm[‘]p(t� ‘T) + z(t): (6)

9

Matched filtering r(t) by the same rectangular pulse p(t) and sampling at t = iT , i = 1; 2; :::; L,

gives us

r[i]=
1

T

Z iT

(i�1)T

r(t)dt =
MX

m=1

sm[i]+z[i] = s+[i]+z[i]; (7)

where the noise sequence z[i] in the samples is independent and identically distributed (i.i.d.),

z[i] � CN (0; N0

T
).

As can be seen, the target signal s+[i] appears explicitly on the right hand side (RHS) of (7).

In this context, the fading MAC degenerates to a Gaussian MAC and the M devices can be

abstracted as a single device transmitting the arithmetic sum of the local model updates directly

to the PS. In practice, however, the channel-gain precoding and the calibration of transmission

timing can be inaccurate. With either channel-gain or time misalignment, clean samples as in (7)

with s+ explicitly present are no longer available.

B. Misaligned OAC

With channel-gain and time misalignments, the received signal r(t) is given in (5) and illustrated

in Fig. 2. Let us first follow the standard signal processing flow in digital communications to

process the received signal. Specifically, we first matched filter r(t) by the rectangular pulse p(t)

and then oversample the matched filtered signal at fiT + �k : i = 1; 2; :::; L; k = 1; 2; :::;Mg
to collect sufficient statistics [22]. In so doing, the samples we get, denoted by frk[i] : k =

1; 2; :::;M ; i = 1; 2; :::; Lg, can be written as

rk[i] =
1

T

Z iT+�k

(i�1)T+�k

r(t) � p(t) dt (8)

=
1

T

MX

m=1

Z (i�1m>k)T+�m

(i�1)T+�k

h0msm[i�1m>k] d� +
1

T

MX

m=1

Z iT+�k

(i�1m>k)T+�m

h0msm[i+1m<k] d�+
1

T

Z iT+�k

(i�1)T+�k

z(�) d�

,
MX

m=1

cm;k[i]sm[i�1m>k]+
MX

m=1

c0m;k[i]sm[i+1m<k]+zk[i];

where 1 is the indicator function and cm;k[i] = h0
m

T
[(1�1m>k)T +�m��k], c0m;k[i] = h0

m

T
[1m>kT +

�k � �m]. When there is residual CFO and the channel is fast fading, the discrete samples can be

written in the same form as (8). The details are presented in Appendix A of our technical report

[20].

1010




r1[1]
...

rM [1]
r1[2]
...

rM [2]
...

r1[L]
...

rM [L]




=




c1,1[1] c′2,1[1] c′3,1[1] ... c′M,1[1]

c1,2[1] c2,2[1] c′3,2[1] ... c′M,2[1] c′1,2[2]
...

c1,M [1] c2,M [1] c3,M [1] ... cM,M [1] c′1,M [2] c′2,M [2] ... c′M−1,M [2]

c2,1[1] c3,1[1] ... cM,1[1] c1,1[2] c′2,1[2] c′3,1[2] ... c′M,1[2]

c3,2[1] ... cM,2[1] c1,2[2] c2,2[2] c′3,2[2] ... c′M,2[2] c′1,2[3]
...

c1,M [2] c2,M [2] c3,M [2] ... cM,M [2] c′1,M [3] c′2,M [3] ... c′M−1,M [3]
...







s1[1]
...

sM [1]
s1[2]
...

sM [2]
...

s1[L]
...

sM [L]




+




z1[1]
...

zM [1]
z1[2]
...

zM [2]
...

z1[L]
...

zM [L]




where the dimensionalities of r, s, and z are ML × 1, and the dimensionality of matrix A is

ML × ML (see the detailed form of (10) at the top of the next page). Denoting by Σz the

covariance matrix of the noise sequence z, each element of Σz can then be computed from (9).

The desired sequence s+, on the other hand, can be written as a linear transformation of the

complex vector s:

s+ = V s, (11)

where the L×ML matrix V is given by

V =




11×M

11×M

...

11×M



,

in which 11×M represents an 1×M all-ones matrix.

Multiplying both sides of (10) by V A−1 gives us

V A−1r = s+ + V A−1z, (12)

based on which an ML estimator can be devised, as in Definition 1.

Definition 1 (ML estimation for misaligned OAC). Given a sequence of samples r ∈ CML in (10),

the ML estimate of sequence s+ ∈ CL is

ŝml
+ = V A−1r. (13)

Eq. (13) follows directly from (12) since the likelihood function of s+ is an L-dimensional

Gaussian distribution. Specifically, given r, the likelihood function of s+ is

f(V A−1r|s+) ∝ CN (V A−1r,V A−1ΣzA
−HV H).

Differentiating f(V A−1r|s+) with respect to s+ gives us the ML estimate ŝml
+ in (13).

The noise sequence fzk[i]g in (8) is colored since

E[zk[i]zk0 [i0]] =
1

T 2

Z iT+�k

(i�1)T+�k

Z i0T+�k0

(i0�1)T+�k0
z(�)z(� 0) d� d� 0

=

8
>>>><
>>>>:

N0

T 2�(i; i0; k; k0) if �(i; i0; k; k0) 2 [0; T);

N0

T 2 [2T��(i; i0; k; k0)] if �(i; i0; k; k0) 2 [T; 2T);

0 otherwise;

(9)

where �(i; i0; k; k0) = (i0�i�1)T+�k0��k.

Given the samples frk[i]g in (8), we now set out to estimate the desired arithmetic sum s+.

First, the sequence of samples yk[i] can be written in a more compact form as

r = As+ z; (10)

where the dimensionalities of r, s, and z are ML � 1, and the dimensionality of matrix A is

ML�ML (see the detailed form of (10) at the top of this page). Denoting by �z the covariance

matrix of the noise sequence z, each element of �z can then be computed from (9).

The desired sequence s+, on the other hand, can be written as a linear transformation of the

complex vector s:

s+ = V s; (11)

where the L�ML matrix V is given by

V =

2
666664

11�M

11�M

:::

11�M

3
777775
;

in which 11�M represents an 1�M all-ones matrix.

11

Multiplying both sides of (10) by V A�1 gives us

V A�1r = s+ + V A�1z; (12)

based on which an ML estimator can be devised, as in Definition 1.

Definition 1 (ML estimation for misaligned OAC). Given a sequence of samples r 2 CML in

(10), the ML estimate of sequence s+ 2 CL is

ŝml
+ = V A�1r: (13)

Eq. (13) follows directly from (12) since the likelihood function of s+ is an L-dimensional

Gaussian distribution. Specifically, given r, the likelihood function of s+ is

f(V A�1rjs+) / CN (V A�1r;V A�1�zA
�HV H):

Differentiating f(V A�1rjs+) with respect to s+ gives us the ML estimate ŝml
+ in (13).

An important implication of (13) is that, the maximum-likelihood s+ can be obtained by

first finding the maximum-likelihood transmitted vector ŝml = A�1r; and then performing the

arithmetic sum ŝml
+ = V ŝml. Said in another way, the ML estimation of s+ boils down to multi-

user estimation/detection (MUE) when we have misaligned channel gains at the receiver.

Remark. The transmitted vector s carries the local weight-updates of a neural network. Therefore,

s is by no means i.i.d. considering the strong correlations among the weights of the neural network.

This also suggests that the prior information of s is hard to obtain and is unlikely to be known

to the PS in advance. As a result, ML estimation is the only choice at the receiver.

Remark. The result that the ML estimation of s+ boils down to MUE is exclusive to the

misaligned OAC system, wherein the transmitted symbols are continuous valued and the channel

gains are misaligned. In digital communications, we do not have such result for ML estimation.

The reason for this divergence is as follows. OAC is an analog communication system wherein

the transmitted symbols s are continuous complex values. In contrast, the transmitted symbols

in digital communications are discrete constellations. Whether the prior probability distribution

of the transmitted symbols is available to the receiver or not, the constellation itself serves as

a kind of prior information as the detection space is naturally narrowed down to the possible

constellation points. As a result, when we perform ML estimation in digital communications, we

12

inherently assume all the constellations are equiprobable. In that case, the likelihood function

f (r js) is a Gaussian mixture instead of Gaussian and the MUE-and-sum estimation is no longer

optimal if we were to estimate the arithmetic sums+ .

On the other hand, when we perform ML estimation in OAC, all the complex space is assumed

to be equiprobable. The only information we have is the noise-contaminated sample and the

likelihood function is a Gaussian centered around the noisy sample. Two implications about the

ML estimation in OAC are thus 1) it faces an in�nitely large estimation space; 2) it can be very

susceptible to noise.

The ML estimator in (13) is not a practical estimator due to the prohibitive computational

complexity of matrix inversion. To invert ann by n matrix, the best proven lower bound of

the computational complexity is
(n2 logn) [23]. Notice that the dimensionality ofA is ML

by ML . Thus, the computational complexity of (13) is
(L2M 2 log(LM)). In practical OAC

systems,M cannot be too large due to the saturation of the receiver (that is, the received signal

power can exceed the dynamic range of the receiver ifM is too large), but the packet lengthL

can be extremely large. Let us �xM as a constant, the computational complexity of (13) is then

(L2 logL).

To address this problem and devise an ML estimator with acceptable computational complexity,

we put forth in Section IV a factor-graph based ML estimator by exploiting the sparsity of the

coef�cient matrix. Compared with the ML estimator in (13), the computational complexity of the

factor-graph based ML estimator is only
(L).

IV. A SUM-PRODUCT ML ESTIMATOR AND THE ALIGNED-SAMPLE ESTIMATOR

Before we dive deeper to dissect the inner structure of the coef�cient matrix, let us �rst introduce

a new matched �ltering and sampling scheme that gives us oversampled but independent samples,

which we refer to as thewhitened matched �ltering and sampling(WMFS). Two bene�ts of the

WMFS scheme are 1) the independent samples obtained from the scheme allows us to construct

a factor graph with a simple structure, based on which a low-complexity SP-ML estimator can

be devised; 2) the whitened scheme yields a subsequence of samples in which the indexes of

symbols from different devices are consistent – in these samples, symbols from different devices

are aligned in time, as shown in (23). This admits an aligned-sample estimator for the misaligned

OAC.

13

Figure 3. Matched �ltering the received signal by a bank ofM �lters of lengths dk = � k +1 � � k .

A. WMFS

The key idea of the WMFS scheme is to use a bank of matched �lters of different lengths to

collect power judiciously fromr (t). Speci�cally, instead of using the rectangular pulsep(t) as

the matched �lter as in (8), we de�neM matched �ltersf p0
k(t) : k = 1; 2; :::; M g as follows:

p0
k(t) =

1
2

�
sgn(t + T) � sgn(t + T � dk)

�
; (14)

where the length of thek-th matched �lter isdk = � k+1 � � k , k = 1; 2; :::; M . For completeness,

we de�ne � M +1 = T.

The matched �ltering and sampling processes are illustrated in Fig. 3. As shown, the signal

�ltered by the k-th matched �lter is given byyk(t) = 1
dk

R1
�1 r (�)p0

k(t � �) d� , and we sample

yk(t) at (i � 1)T + � k+1 : i = 1; 2; :::; L + 1, giving

yk [i] = yk(t = (i � 1)T + � k+1)

=
1
dk

Z (i � 1)T + � k +1

(i � 1)T + � k

MX

m=1

h0
msm [i � 1m>k] d� +

1
dk

Z (i � 1)T + � k +1

(i � 1)T + � k

z(�) d�

,
MX

m=1

h0
msm [i � 1m>k] + ~zk [i]; (15)

where we have de�nedsm [0] = sm [L + 1] = 0 , 8m, for completeness.

An important observation from (15) is that the noise term~zk [i] � CN (0; N0=dk) is independent

for different k and i . This is because

E [~zk [i]~zk0[i 0]] = E

"
1
dk

Z (i � 1)T + � k +1

(i � 1)T + � k

~z(�) d�
1

dk0

Z (i 0� 1)T + � k 0+1

(i 0� 1)T + � k 0

~z(� 0) d� 0

#

=
1

dkdk0

Z (i � 1)T + � k +1

(i � 1)T + � k

Z (i 0� 1)T + � k 0+1

(i 0� 1)T + � k 0

E [~z(�)~z(� 0)] d�d� 0

14

=
1

dkdk0

Z (i � 1)T + � m +1

(i � 1)T + � m

N0� ((i � i 0)(k � k0)) d�

=
N0

dk
� ((i � i 0)(k � k0)) : (16)

Similarly to (10), we can rewrite (15) in a matrix form as

y = Ds + ~z; (17)

where the sequence of transmitted symbolss is the same as that in (10). Unlike (10), the vectors

y and ~z in (17) areM (L + 1) � 1 by 1 dimensional, giving

y =
h
y1[1]; y2[1]; :::; yM [1]; y1[2]; y2[2]; :::; yM [2]; :::; y1[L]; y2[L]; :::; yM [L]; y1[L +1] ; y2[L +1] ; :::; yM � 1[L +1]

i >
;

~z =
h
~z1[1]; ~z2[1]; :::; ~zM [1]; ~z1[2]; ~z2[2]; :::; ~zM [2]; :::; ~z1[L]; ~z2[L]; :::; ~zM [L]; ~z1[L +1] ; ~z2[L +1] ; :::; ~zM � 1[L +1]

i >
;

and the coef�cient matrixD is M (L + 1) � 1 by ML , giving3

D =

2

6
6
6
6
6
6
6
6
6
4

h0
1

h0
1 h0

2
::: h0

2 :::
h0

1 ::: ::: h 0
M

h0
2 ::: h0

M h0
1

::: ::: h 0
1 h0

2
h0

M ::: h0
2 :::

h0
1 ::: ::: h 0

M
h0

2 ::: h0
M :::

::: ::: :::
h0

M :::
:::

3

7
7
7
7
7
7
7
7
7
5

: (18)

The desired sequence at the PS iss+ = V s, as in (11).

Eq. (16) validates that the noise sequence~z is white, that is, (17) can be viewed as a whitened

model of (10), and hence the name WMFS.

We emphasize that the signal model in (17) is equivalent to that in (10) since they are sampled

from the same received signalr (t) and no information is lost. More speci�cally, (17) can be

transformed back to (10) after some elementary row operations and row deletions. Nevertheless,

the model in (17) is more favorable than (10) thanks to the following factors:

1) The whitened noise. As will be shown later, white noise admits a sample-by-sample factor-

ization of the likelihood function and a much simpler structure of the factor graph.

2) The alleviated inter-symbol and inter-user interferences. A sampleyk [i] is related to onlyM

complex symbols, each of which comes from a different device. In contrast, a sampler k [i]

in (10) is related to2M � 1 symbols.

3When there is residual CFO and the channel is fast fading, matrixD can be written in the same form as (18). See Appendix
A of our technical report [20] for more details.

15

Remark. Since(10) and (17) are equivalent, we can also design the ML estimator from(17).

Denoting the covariance matrix of~z by � ~z (it is a diagonal matrix since~z is white), the ML

estimator is given by

ŝml
+ = V (D H � � 1

~z D)� 1D H � � 1
~z y : (19)

Again, the inversion ofD H � � 1
~z D is computationally demanding, as in(13).

B. A Factor Graph Approach

A possible way to reduce the complexity of the ML estimation is to exploit the sparsity of the

coef�cient matrix D . To this end, let us focus on the ML estimate of a single entry in the desired

sequences+ , i.e., ŝml
+ [i].

Let s[i] =
�
s1[i]; s2[i]; :::; sM [i]

� >
. Given an observed sample sequencey , we have

ŝml
+ [i] = arg max

s+ [i]
f (y js+ [i]) = arg max

s+ [i]

Z

1> s[i]= s+ [i]
f (y js[i]) ds[i]:

In particular,f (y js[i]) is a marginal function off (y js). Thus, to �nd the ML estimatêsml
+ [i], a

�rst step is to analyzef (y js). In the following analysis, we will callf (y js) the global likelihood

function andf (y js[i]) the marginal likelihood function.

In ML estimation, the transmitted symbolss are treated as constants. Randomness is only

introduced by the noise sequence~z. Therefore, in the whitened model (17), the elements ofy

are independent of each other. We can then factorize the likelihood functionf (y js) as

f (y js) /
MY

k=1

L +1Y

i =1

f (yk [i]js)
(a)
=

MY

k=1

L +1Y

i =1

f (yk [i]jV(yk [i])) ; (20)

where (a) follows because a sampleyk [i] is related to onlyM complex symbols ins. As per (15),

we denote these symbols byV(yk [i]) = f s1[i]; s2[i]; :::; sk [i]; sk+1 [i � 1]; sk+2 [i � 1]; :::; sM [i � 1]g

and call them theneighbor symbolsof yk [i]. A sampleyk [i] is then fully determined by the values

of its neighbor symbols. Note that the number of non-zero symbols inV(yk [i]) is the number of

non-zero elements in the corresponding row ofD , giving

jV(yk [i])j =

8
>>>><

>>>>:

k; when i = 1;

M; when1 � i � L ;

M � k; when i = L + 1:

(21)

16

Figure 4. A graphical interpretation of the factorization in (20). To simplify notations, we denoteyk [i], zk [i] andsm [i] by yk;i ,
zk;i andsm;i in the �gure, respectively.

Based on the factorization in (20),f (y js) can be depicted by a graphical model [24]–[26].

As shown in Fig. 4, we use a Forney-style factor graph [25] to represent the factorization. In

particular, each edge in the graph corresponds to a variable in (20), i.e., a complex symbolsm [`],

an observationyk [i], or a noise term~zk [i]. To simplify notations, we denote them bysm;i , yk;i ,

and ~zk;i in Fig. 4, respectively.

As can be seen, each sampleyk [i] is related to a set of symbolsV(yk [i]); each complex symbol

sk [i], on the other hand, is related toM samples. Thus, we duplicate each symbolsm;i for M

times and connect them toM consecutive samples – the equality constraint function “= ” means

that the values of the variables connecting to this function must be equal. The output degree of

each equality constraint function isM , so is the input degree of each plus function “+ ” (except

for the M � 1 samples at both ends of the packet). The target symbolss+ are shown at the top

of Fig. 4.

The marginal likelihood functionf (y js[i]) can be obtained from the global likelihood function

f (y js) by a marginalization process operated on the factor graph, which can be implemented

ef�ciently via the sum-product (SP) algorithm. However, note in Fig. 4 that we have a loopy

graph. Moreover, the girth of the graph (the length of the shortest loop) is4. Such short loops

prevent the sum-product algorithm from converging [27]. Even if they converge, the performance

of the sum-product algorithm often degrades greatly, and the equilibrium posterior distribution

is only an approximation of the true posterior distribution of the variables. Said in another way,

the independence assumption of the extrinsic information passed along the edges no longer holds

because the messages can circulate inde�nitely around the loops.

To circumvent this problem, below we transform the loopy graph in Fig. 4 to a loop-free

graph, at the expense of increasing the dimension of the variables [24]. For each sampleyk [i],

17

Figure 5. An equivalent tree structure to the loopy graph in Fig. 4. The variables connected to the same sample are clustered as
a new high-dimensional variable. Each observation node is connected to a single variable node after clustering.

we cluster all its neighbor symbols (i.e., the edges/variables that connect toyk [i] in Fig. 4) and

construct a new higher-dimensional variable. Let us denote the new high-dimensional variable

by W k;i = V(yk [i]). As illustrated in Fig. 5, each sampleyk [i] is now connected to a single

high-dimensional variableW k;i after clustering and the loops are removed.

After clustering, the new high-dimensional variablesW k;i are correlated with each other because

they contain common symbols. For example,W 1;1 = f s1[1]g, W 2;1 = f s1[1]; s2[1]g, and W 3;1

= f s1[1]; s2[1]; s3[1]g, the common symbol betweenW 1;1 and W 2;1 is s1[1], that betweenW 1;1

and W 3;1 is s1[1], and that betweenW 2;1 and W 3;1 are s1[1], s2[1]. Therefore, we have to add

constraints among the new high-dimensional variables to ensure that the values of the common

symbols are consistent across different variables.

In Fig. 5, the compatibility function� is added on the adjacent variables to represent the above

constraints. Speci�cally, for the two adjacent variablesW and W 0 connected to the same delta

function, the compatibility function� (W ; W 0) is de�ned as

� (W ; W 0) =

8
><

>:

1; if the values of all common symbols betweenW andW 0 are equal;

0; otherwise.

That is, function� is an on-off function that ensures that the messages passed fromW to W 0

and fromW 0 to W satisfy the constraint that the values of the common symbols betweenW

andW 0 are equal.

Remark. It is worth noting that adding compatibility functions between two adjacent variables is

enough to depict all the constraints. For example, let us considerW 1;1, W 2;1 andW 3;1. In Fig. 5,

we only add compatibility functions� (W 1;1; W 2;1) and� (W 2;1; W 3;1). There is no need to add an

18

extra compatibility function� (W 1;1; W 3;1) betweenW 1;1, W 3;1 although they do have a common

symbols1[1]. This is becauseW 1;1 and W 3;1 are independent conditioned on the compatibility

functions� (W 1;1; W 2;1) and� (W 2;1; W 3;1). More speci�cally,� (W 1;1; W 2;1) has ensured that the

value ofs1[1] in W 1;1 equals that inW 2;1 and � (W 2;1; W 3;1) has ensured that the values ofs1[1]

in W 2;1 equals that inW 3;1. Thus, the values ofs1[1] in W 1;1 and W 3;1 must be equal.

Overall, the factor graph in Fig. 5 presents a tree structure. Compared with Fig. 4, although

the dimensions of the variables areM times larger, the marginal likelihood functionf (y js[i])

can now be computed exactly via the sum-product algorithm thanks to the tree structure.

C. Analog Message Passing and the SP-ML Estimator

In standard sum-product algorithms, the messages passed on the edges are the probability mass

function (PMF) of the variables associated with the edges, i.e., a probability vector of �nite

length [24], [26]. This is because the transmitted symbols in digital communications are chosen

from �nite-size constellations. However, in the case of OAC, the transmitted symbolssm are

continuous complex numbers. Hence, the messages passed on the edges should be the probability

density functions (PDFs) of the associated variables, which is a continuous function rather than

a �nite-length vector.

To enable message passing, a straightforward idea is to quantize the PDFs so that we can

employ the digital message passing. The output of the SP algorithm is then the marginal PDF

in a quantized form. However, quantization suffers from the “curse of dimensionality” – when

the dimension of the variables increases, the volume of the space increases exponentially fast. In

order to get a sound result, a signi�cantly larger number of quantization levels is required in each

dimension compared with the low-dimensional case [28]. In our problem, we have deliberately

increased the dimensionality of the variables to remove the loops in Fig. 4. Thus, the standard

sum-product algorithm with quantization cannot be used considering its prohibitive complexity.

Now that quantization is not an option, the problem is how to pass continuous PDFs along

the edges of Fig. 5. A natural idea is then to parameterize the PDFs and pass their parameters

[25], [29]. In actuality, the main effort of this section is to show that:given an observed sample

sequence, all the messages passed on the tree are multivariate Gaussian distributions. A multi-

variate Gaussian PDF can be parameterized by its mean vector and covariance matrix – passing

these parameters is equivalent to passing the continuous PDF.

19

To ease reading and conserve space, we present the proof and detailed derivations of analog

message passing in Appendix B of our technical report [20] and summarize the main results

below.

1) The marginal likelihood functionf (y js[i]) is a multivariate complex Gaussian distribution

of dimensionM . The likelihood functionf (y js+ [i]) is a single-variate complex Gaussian

distribution.

2) A complex random variable can be viewed as a pair of real random variables (i.e., the real

part and the imaginary part of the complex random variable). Thus, we can denote theM -

dimensional complex Gaussianf (y js[i]) by a 2M -dimensional real Gaussian

f (y js[i]) � N

0

@s[i]; � s[i] =

2

4� r
s[i]

� i
s[i]

3

5 ; � s[i] =

2

4� rr
s[i] � ri

s[i]

� ir
s[i] � ii

s[i]

3

5

1

A ;

where � s[i] is a 2M by 1 real vector consisting of the real and imaginary parts of the

mean ofs[i]. That is, � r
s[i] and � i

s[i] are the real and imaginary parts of sequenceE[s[i]]> .

The covariance matrix� s[i] is a 2M by 2M covariance matrix. The moment parameters

(� s[i]; � s[i]) can be computed by a sum-product process presented in Appendix B of [20].

3) Given the marginal likelihood functionf (y js[i]) in (22), f (y js+ [i]) can be constructed by

f (y js+ [i]) � N

0

@s+ [i]; � s+ [i] =

2

4� r
s+ [i]

� i
s+ [i]

3

5 ; � s+ [i] =

2

4� rr
s+ [i] � ri

s+ [i]

� ir
s+ [i] � ii

s+ [i]

3

5

1

A ;

where � r
s+ [i] = 1> � r

s[i], � i
s+ [i] = 1> � i

s[i], � rr
s+ [i] = 1> � rr

s[i]1, � ri
s+ [i] = 1> � ri

s[i]1, � ir
s+ [i] =

1> � ir
s[i]1, � ii

s+ [i] = 1> � ii
s[i]1.

4) Following (22), an SP-ML estimator can be designed, as given in De�nition 2.

De�nition 2 (SP-ML estimation). The WMFS scheme gives us the whitened samplesy in (17). To

estimate the designed sequences+ , an SP-ML estimator �rst computes the moment parameters

of the multivariate Gaussianf (y js[i]), 8i , by an analog sum-product process, and then estimates

each element ofs+ by

ŝml
+ [i] = 1> � r

s[i] + j 1> � i
s[i]; (22)

where� s[i] = [� r
s[i]; � i

s[i]]
> is the mean off (y js[i]).

The reason behind (22) is as follows. It has been shown thatf (y js+ [i]) is conditionally

20

Gaussian. As per the ML rule, we should choose the mean off (y js+ [i]) as the estimate of

s+ [i] as it maximizes the likelihood function. This gives us (22).

Remark (maximum likelihood sequence estimation (MLSE) versus Bahl-Cocke-Jelinek-Raviv

(BCJR)). The ML estimators in(13) and (19) aim to �nd the ML sequences+ in the spaceCL .

In the language of digital communications, they are ML optimal in the sense of MLSE [30]. On

the other hand, the ML estimator in(22) aims to maximize the likelihood function of each element

of s+ . Thus, it is ML optimal in the BCJR [31] sense.

When we perform ML estimation in digital communications, MLSE-optimal and BCJR-optimal

are different criteria because the former minimizes the block error rate (BLER) while the latter

minimizes the bit error rate (BER). For the ML estimation in OAC, however, the two criteria are

equivalent. The reason for this discrepancy is again that the discrete constellations used in digital

communications serve as a kind of prior information to the receiver while an OAC receiver has

no prior information at all.

More speci�cally, let us consider the message passing in Fig. 5. For the ML estimation in OAC,

we have shown that all the messages passed on the graph, includingf (y js+) and f (y js+ [i]), are

Gaussian. Thus, the ML sequences+ also gives us the MLs+ [i], 8i , after marginalization. As

a result, MLSE-optimal and BCJR-optimal are equivalent, and the ML estimators in(13), (19),

and (22) are identical. In contrast, when we perform ML estimation in digital communications,

the prior information imposes each transmitted symbol to belong to a �nite constellation. As a

consequence, the messages passed on the graph are Gaussian mixtures, and neitherf (y js+) nor

f (y js+ [i]) is Gaussian distributed. As a result, MLSE-optimal and BCJR-optimal are different

criteria.

Computational complexity – Finally, we evaluate the computational complexity of the SP-

ML estimator. With analog/parametric message passing, messages passed on the graph are simply

the parameters of the Gaussian distributions instead of continuous Gaussian PDFs. Computations

involved in analog message passing are simply 1) the sum of 2M-dimensional vectors/matrices,

and 2) 2M-dimensional matrix inversion. Therefore, the computational complexity of the SP-ML

estimator is
(LM 2 logM). If we �x M as a constant, the SP-ML estimator signi�cantly reduces

the computational complexity of ML estimation from
(L2 logL) to
(L).

21

D. Aligned-Sample Estimator

As stated in the beginning of this section, another bene�t of the WMFS scheme is that it yields

a sequence of samples wherein the indexes of symbols from different devices are consistent.

Speci�cally, let us consider the outputs of theM -th matched �lter.

Let k = M in (15), we haveV(yM [i]) = f s1[i]; s2[i]; :::; sM [i]g, and

yM [i] =
MX

m=1

h0
M [i]sm [i] + zM [i]; (23)

wherezM [i] � CN (0; N0=dM) anddM is the duration of theM -th matched �lter. As can be seen,

unlike the outputs of other matched �lters, the neighbor symbols ofyM [i] have the same index

(that is, the symbol indexes are aligned within the integral interval of theM -th matched �lter).

Therefore, we can utilize the outputs of theM -th matched �lter to devise an aligned-sample

estimator.

De�nition 3 (Aligned-sample estimator for misaligned OAC). Given the outputs of the WMFS

f yk [i]g, aligned-sample estimator estimates the desired sequences+ 2 CL symbol-by-symbol by

ŝ+ [i] = yM [i]: (24)

Eq. (23) is an underdetermined equation since we have one equation forM unknowns, and

the estimator in (24) is our best prediction aboutŝ+ [i]. When there is no or mild channel-gain

misalignment (i.e.,h0
M ! 1), the estimator (24) is supposed to perform very well.

V. SIMULATION RESULTS

This section evaluates the system performance of FEEL with misaligned OAC considering

two estimators at the receiver: the ML estimator and the aligned-sample estimator. In particular,

for ML estimation, we use our SP-ML estimator since the ML estimators in (13) and (19) are

computationally prohibitive.4 We implement a FEEL system wherein40 devices collaboratively

train a convolution neural network (CNN) to solve the CIFAR-10 classi�cation task [32]. The

CIFAR-10 dataset has a training set of50; 000examples and a test set of10; 000examples in 10

classes. Each example is a32� 32 colour image. The non-i.i.d. training examples are assigned

to the 40 devices in the following manner: 1) we �rst let each device randomly sample1; 000

4We have performed additional simulations to validate that the three estimators in (13), (19), and (22) are equivalent (using a
much shorter packet lengthL). The simulation results are omitted here to conserve space.

22

Figure 6. Test accuracy of the learned model over the course of training, with and without noise. There is no time or channel-gain
misalignment. We use the ML estimator at the PS.

samples from the dataset; 2) for the remaining10; 000 examples, we sort them by their labels

and group into40 shards of size250 [6]. Each device is then assigned one shard.

The implemented CNN is a Shuf�eNet V2 network [33] withd = 1:26� 106 parameters (this

corresponds to6:32� 105 complex values). In each iteration, we assumeM = 4 devices are active

and participate in the training. Each device will train the global model locally for5 epochs and

then transmit the model-update to the PS in44 packets (the packet length isL = 1:44� 104) in

each iteration. The packets from different transmitters overlap at the PS with time and channel-

gain misalignments, and the PS employs the ML and aligned-sample estimators to estimate the

arithmetic sum of transmitted symbols, i.e.,s+ (and hence,� +). The estimated arithmetic sum

� + is then used to update the global model, as per (2). All the source codes are available online

[34].

The metric we use to assess the performance of an estimator is thetest accuracy. Speci�cally,

when operated with a given estimator, we will train the global model for100 iterations and take

the prediction accuracy of the learned model on the test set as the performance indicator of the

estimator. An example is given in Fig. 6.

As shown in Fig. 6, we run the FEEL system for100 iterations with and without noise, and

plot the test accuracy over the course of training. There are no misalignments in this simulation

and ML estimator is used at the PS. First, the dark curve corresponds to the noiseless case and

the test accuracy after100 iterations is73:43%. We point out that this is the global optimal test

accuracy since the MAC is ideal, i.e., there is no time misalignment, channel-gain misalignment,

or noise in the MAC. The other two curves in Fig. 6 correspond to the learning performance

