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Abstract—The well-known successive refinement scenario is
extended to vector sources where individual distortion constraints

are posed on every vector component. This extension is then
utilized for the derivation of a necessary and sufficient condition

for vector successive refinability. For 2-D vector Gaussian and
binary symmetric sources, it turns out that successive refinability

is not granted everywhere, unlike in the 1-D case for the same
sources. Moreover, the behavior of these sources with respect to

successive refinability exhibit remarkable similarity.

I. INTRODUCTION

We extend the well-known successive refinement scenario

to vector sources where individual distortion constraints are

posed on every vector component. The single-layer counterpart

of this problem was addressed in [7], and it was later argued

in [4] that the single-layer version is in fact a special case of

what is referred to as robust descriptions [1].

In this work, the achievability region of the scalar successive

refinement problem, which was derived independently by

Koshelev [3] and Rimoldi [5], is extended to cover the vector

sources under individual distortion criteria in a straightforward

manner. This extension, in turn, is utilized for the derivation

of a necessary and sufficient condition for “vector successive

refinability.” Not surprisingly, this condition is also a straight-

forward extension of the Markovity condition derived in [2].

We then use the Markovity condition to investigate whether

vector successive refinability holds for two interesting cases:

(i) 2-D Gaussian vectors and square-error criterion on each

vector component, and (ii) 2-D binary symmetric vectors and

Hamming distortion on each component. Unlike in the scalar

case, successive refinability is not granted everywhere (i.e.,

from any distortion vector in the first stage to any distortion

vector in the second stage) for these two examples. Also, the

behavior of these sources with respect to successive refinability

exhibit remarkable similarity.

II. EXTENSION OF THE ACHIEVABILITY REGION FOR

VECTOR SOURCES TO MULTI-STAGE CODING

We first repeat here the single-letter characterization

in [7] for single-stage coding. Denoting the memoryless

source and the auxiliary reconstruction variable by X =
[X1 X2 . . . XN ]T and X̂ = [X̂1 X̂2 . . . X̂N ]T , respectively,

and using the shorthand notation d(X, X̂) for di(Xi, X̂i) with

i = 1, 2, . . . , N , we have

R(D) = min
E{d(X,X̂)}≤D

I(X; X̂)

where we use the convention that a ≤ b means ai ≤ bi for

i = 1, 2, . . . , N . Observe that this result is a special case of

the robust descriptions result in [1]. More specifically, in the

robust descriptions scenario, individual distortion criteria are

allowed to be of the form E{di(X, X̂i)} ≤ Di.

The following lemma extends this result to L stages.

Lemma 1: A distortion vector sequence D
1 ≥ D

2 ≥ · · · ≥
D

L and a cumulative rate sequence R1 ≤ R2 ≤ · · · ≤ RL

are achievable1 if and only if there exist auxiliary vectors

X̂
1, X̂2, . . . , X̂L satisfying

I(X; X̂1, . . . , X̂l) ≤ Rl

E{d(X, X̂l)} ≤ D
l

for all l = 1, 2, . . . , L.

We omit the proof, since it is a straightforward extension of

the proofs in [3], [5].

Corollary 1: The 4-tuple {D1, D2, R(D1), R(D2)} is

achievable if and only if the optimal vectors X̂
l
∗ achieving

{Dl, R(Dl)} for l = 1, 2 satisfy the Markov chain

X − X̂
2
∗ − X̂

1
∗ .

Proof: If (X̂1, X̂2) achieves {D1, D2, R(D1), R(D2)},

we have

R(D1)
(a)

≥ I(X; X̂1)
(b)

≥ R(D1)

and

R(D2)
(c)

≥ I(X; X̂1, X̂2)
(d)

≥ I(X; X̂2)
(e)

≥ R(D2)

where (a) and (c) follow from Lemma 1, (d) from the chain

rule, and (b) and (e) from the definition of R(D). Thus, we

must have X̂
1 = X̂

1
∗, X̂

2 = X̂
2
∗, and X − X̂

2
∗ − X̂

1
∗.

III. ANALYSIS OF VECTOR SUCCESSIVE REFINABILITY

FOR TWO EXAMPLE SOURCES

We now investigate whether conditions in Corollary 1 are

satisfied for (i) 2-D Gaussian sources under individual square-

error distortion, and (ii) 2-D binary symmetric vectors and

1Achievability can be defined either in a weak sense as in [3] or in a strong
sense as in [5].



individual Hamming distortion. It turns out that for certain

values of D
1 and D

2, these sources are not successively

refinable.

A. 2-D Gaussian Sources

Let the covariance matrix of the source X be given by

CX =

[

1 ρ

ρ 1

]

where 0 < ρ < 1. For simplicity, we will use the notation

δi = 1 − Di and δ
j
i = 1 − D

j
i with proper i, j. Define three

regions in the unit square on the D-plane as

D1 = {D : ρ2 ≤ δ1δ2}

D2 = Dc
1 ∩

{

D : ρ2 ≤ min

(

δ1

δ2
,
δ2

δ1

)}

D3 = Dc
1 ∩ Dc

2 .

Figure 1 depicts the three regions. It was established in [4],

[7] that in the non-degenerate region D1 ∪ D2, the optimal

backward test channel for the single-stage problem is given

by

X = X̂∗ + Z

where both X̂∗ and Z are Gaussian vectors independent of

each other. Also

C
X̂∗

=

[

δ1 ρ

ρ δ2

]

CZ =

[

D1 0
0 D2

]

for D ∈ D1, and

C
X̂∗

=

[

δ1

√
δ1δ2√

δ1δ2 δ2

]

CZ =

[

D1 ρ −
√

δ1δ2

ρ −
√

δ1δ2 D2

]

for D ∈ D2. Note that when D ∈ D2, C
X̂∗

is in fact singular,

and hence X̂∗ degenerates to a distribution on the line

X̂2 =

√

δ2

δ1
X̂1 .

Region D3 is degenerate in the sense that, for example, if

ρ2 > δ2

δ1

, or equivalently D2 > 1 − ρ2(1 − D1), D2 can be

further reduced to 1 − ρ2(1 − D1) without increasing R(D).
Similarly for the case D1 > 1 − ρ2(1 − D2).

We now consider successive refinement for three sub-cases:

(i) from D1 to D1, (ii) from D2 to D2, and (iii) from D2 to D1,

and investigate whether the source is successively refinable in

each case. In all three cases, letting X = X̂
1
∗+Z

1 = X̂
2
∗+Z

2,

the Markovity question boils down to whether or not

Z
1 = Z

2 + N

where N is also a Gaussian vector independent of Z
2. This,

in turn, happens if and only if CZ1 � CZ2 .
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Fig. 1. The three regions D1 , D2, and D3 for ρ = 0.4.

Case i: D
1, D2 ∈ D1. Since

CZ1 −CZ2 =

[

δ2
1 − δ1

1 0
0 δ2

2 − δ1
2

]

(1)

is positive semi-definite for all D
2 ≤ D

1, successive refin-

ability is granted everywhere in this case.

Case ii: D
1, D2 ∈ D2. We now have

CZ1 − CZ2 =

[

δ2
1 − δ1

1

√

δ2
1δ2

2 −
√

δ1
1δ1

2
√

δ2
1δ2

2 −
√

δ1
1δ

1
2 δ2

2 − δ1
2

]

.

Since we assume D
2 ≤ D

1, it suffices to check

0 ≤ det(CZ1 −CZ2 )

= (δ2
1 − δ1

1)(δ2
2 − δ1

2) − δ2
1δ2

2 − δ1
1δ1

2 + 2
√

δ2
1δ

2
2δ1

1δ
1
2

= −δ1
1δ2

2 − δ2
1δ1

2 + 2
√

δ2
1δ2

2δ1
1δ

1
2 .

Re-writing this as

δ1
1δ

2
2 + δ2

1δ
1
2

2
≤

√

δ2
1δ

2
2δ1

1δ1
2

reveals that Markovity is satisfied if and only if the arithmetic

mean of δ1
1δ2

2 and δ2
1δ

1
2 is less than or equal to the geometric

mean of the same. But since the arithmetic mean cannot be

less than the geometric mean, and the two are equal if and

only if the arguments are identical, this implies δ1
1δ2

2 = δ2
1δ1

2 ,

or equivalently, But since the arithmetic mean cannot be less

than the geometric mean, and the two are equal if and only

if the arguments are identical, this implies δ1
1δ2

2 = δ2
1δ

1
2 , or

equivalently,

δ1
2

δ1
1

=
δ2
2

δ2
1

. (2)

That is, (δ1
1 , δ1

2) and (δ2
1 , δ2

2) must lie on a line passing through

the origin.
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Fig. 2. The successive refinability region in the (δ2

1
, δ2

2
)-plane for several (δ1

1
, δ1

2
) pairs (indicated using ◦) satisfying δ1

2
= νδ1

1
and ν = 0.8. We set

ρ = 0.4. The particular choices of δ1

1
for (a)-(d) are 0.05, 0.3, ρ

√

ν
= 0.4472, and 0.5, respectively. When D

1 ∈ D2 as in (a) and (b), the region of D
2

for which successive refinability holds constitutes a line in D2 (indicated in bold) and everywhere above the bold curve that lies in D1 .

Case iii: D
1 ∈ D2 and D

2 ∈ D1. In this case, we assume

without loss of generality that δ1
2 = νδ1

1 with ρ2 ≤ ν ≤ 1
ρ2

and ρ ≥ √
νδ1

1 . Then

CZ1 − CZ2 =

[

δ2
1 − δ1

1 ρ −
√

δ1
1δ

1
2

ρ−
√

δ1
1δ1

2 δ2
2 − δ1

2

]

=

[

δ2
1 − δ1

1 ρ−√
νδ1

1

ρ−√
νδ1

1 δ2
2 − νδ1

1

]

.

The Markovity condition then reduces to

(δ2
1 − δ1

1)(δ2
2 − νδ1

1) ≥
(

ρ −
√

νδ1
1

)2
. (3)

As a sanity check, this region should include all (δ2
1 , δ2

2)
such that δ2

1 ≥ ρ√
ν

and δ2
2 ≥ ρ

√
ν. This follows from

analyses of the previous cases and the observation that the

point ( ρ√
ν
, ρ
√

ν) is simultaneously on the line δ2
2 = νδ2

1 and

on the common boundary of D1 and D2. More specifically,

according to (2) one can first successively refine without rate

loss from D
1 to any intermediate point D

0 ∈ D2 on the line

δ0
2 = νδ0

1 , including ( ρ√
ν
, ρ
√

ν). It then follows from (1) that

one can do the same from D
0 to any D

2 ≤ D
0. Indeed, the

point δ2
1 = ρ√

ν
and δ2

2 = ρ
√

ν satisfies (3) with equality, and

the above claim is corroborated. However, it is also clear from

(3) that the successive refinability region is not limited to that

rectangular region.

Figure 2 shows the successive refinability region for several

choices of (δ1
1 , δ1

2).

B. 2-D Binary Symmetric Sources

Let the pmf of the source be given by

PX =

[

p 1
2
− p

1
2
− p p

]

where 1
4 ≤ p ≤ 1

2 . If p < 1
4 , then one could switch the roles

of 0 and 1 in X1 (or X2) and obtain the current form. For this

family of sources, we define δi = 1− 2Di and δ
j
i = 1− 2D

j
i

with proper i, j. Note that since one can achieve Di = 1
2

for

i = 1, 2 even with zero rate, we need only consider the unit

square {(δ1, δ2) : 0 < δ1 ≤ 1, 0 < δ2 ≤ 1, }.



We first compute the rate-distortion function and the optimal

test channels for the single-stage problem.

Theorem 1: The rate-distortion function for 2-D binary

symmetric sources is given by

R(D) =























H(X) −H(D1) −H(D2) D ∈ E1

H(X) −H(2p) − 2pH
(

D1+D2+2p−1
4p

)

−(1 − 2p)H
(

D1−D2+1−2p
2(1−2p)

)

D ∈ E2

1 −H(min{D1, D2}) D ∈ E3

where H(α) = −α logα − (1 − α) log(1 − α), and

E1 = {D : 4p − 1 ≤ δ1δ2}

E2 = Ec
1 ∩

{

D : 4p − 1 ≤ min

(

δ1

δ2
,
δ2

δ1

)}

E3 = Ec
1 ∩ Ec

2 .

Also, in the non-degenerate region D ∈ E1 ∪ E2, the optimal

backward channel is always of the form X = X̂∗ + Z where

P
X̂∗

and PZ are given as

P
X̂∗

=

[

q 1
2
− q

1
2
− q q

]

(4)

with

q =
1

4

[

1 +
4p − 1

δ1δ2

]

(5)

and

PZ =

[

(1 − D1)(1 − D2) (1 − D1)D2

D1(1 − D2) D1D2

]

(6)

for D ∈ E1, and

P
X̂∗

=

[

1
2

0
0 1

2

]

(7)

and

PZ =
1

2

[

2 − D1 − D2 − (1 − 2p) D2 − D1 + (1 − 2p)
D1 − D2 + (1 − 2p) D1 + D2 − (1 − 2p)

]

(8)

for D ∈ E2.

The proof is given in the Appendix.

The partitioning of the unit square with respect to different

rate-distortion behaviors is exactly as shown in Figure 1 where

D1, D2, D3, and ρ2 play the roles of E1, E2, E3, and 4p− 1,

respectively. Similar to the Gaussian case, E3 is degenerate in

the sense that if, for example, 4p − 1 > δ2

δ1

, or equivalently

D2 > 1 − 2p + (4p − 1)D1, D2 can be further reduced to

D2 = 1−2p+(4p−1)D1 without increasing R(D). Similarly

for the case D1 > 1 − 2p + (4p − 1)D2.

As in the Gaussian problem, we now consider successive

refinement for three sub-cases: (i) from E1 to E1, (ii) from

E2 to E2, and (iii) from E2 to E1, and investigate whether

the source is successively refinable in each case. Since X =
X̂

1
∗ ⊕ Z

1 = X̂
2
∗ ⊕ Z

2, the Markovity condition reduces to

Z
1 = Z

2 ⊕N

where N is independent of Z
2. To check this condition,

we employ a powerful technique well-known in 2-D signal

processing, namely, 2-D discrete Fourier transform (DFT). The

main observation here is that Z
1 = Z

2 ⊕N with independent

(Z2, N) implies that the pmfs of these random variables satisfy

PZ1 = PZ2 ◦ PN

where ◦ denotes 2-D circular convolution. This, in turn,

implies

F (PZ1) = F (PZ2) · F (PN)

where F and · denote 2-D DFT and element-by-element

product, respectively.

Case i: D
1, D2 ∈ E1. It can be shown using (6) that

F (PZi) =

[

1 δi
2

δi
1 δi

1δ
i
2

]

(9)

for i = 1, 2. Thus, we need

PN = F−1









1
δ1

2

δ2

2

δ1

1

δ2

1

δ1

1
δ1

2

δ2

1
δ2

2









=
1

4





1 +
δ1

1

δ2

1

1 − δ1

1

δ2

1





[

1 +
δ1

2

δ2

2

1 − δ1

2

δ2

2

]

to be a valid pmf. But this is always granted since we only

focus on D2 ≤ D1.

Case ii: D
1, D2 ∈ E2. We have from (8) that

F (PZi) =

[

1 δi
2

δi
1 4p − 1

]

(10)

for i = 1, 2. This, in turn, implies that we need

PN = F−1









1
δ1

2

δ2

2

δ1

1

δ2

1

1









=
1

4





2 +
δ1

1

δ2

1

+
δ1

2

δ2

2

δ1

1

δ2

1

− δ1

2

δ2

2

δ1

2

δ2

2

− δ1

1

δ2

1

2 − δ1

1

δ2

1

− δ1

2

δ2

2





to be valid. It can easily be seen that this requires

δ1
1

δ2
1

=
δ1
2

δ2
2

≤ 1

which is granted only when (δ1
1 , δ

1
2) and (δ2

1 , δ2
2) is on the

same line passing through the origin.

Case iii: D
1 ∈ E2 and D

2 ∈ E1. We assume without loss

of generality that δ1
2 = νδ1

1 with 4p − 1 ≤ ν ≤ 1
4p−1 and

δ1
1 ≤

√

4p−1
ν

. It follows from (9) and (10) that we need

PN = F−1









1
νδ1

1

δ2

2

δ1

1

δ2

1

4p−1
δ2

1
δ2

2









4
=

1

4δ2
1δ

2
2

[

r11 r12

r21 r22

]

to be valid, where

r11 = δ2
1δ

2
2 + νδ2

1δ
1
1 + δ2

2δ1
1 + 4p − 1

r12 = δ2
1δ

2
2 − νδ2

1δ
1
1 + δ2

2δ1
1 − 4p + 1

r21 = δ2
1δ

2
2 + νδ2

1δ
1
1 − δ2

2δ1
1 − 4p + 1

r22 = δ2
1δ

2
2 − νδ2

1δ
1
1 − δ2

2δ1
1 + 4p − 1 .
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Fig. 3. The successive refinability region in the (δ2

1
, δ2

2
)-plane for several (δ1

1
, δ1

2
) pairs (indicated using ◦) satisfying δ1

2
= νδ1

1
and ν = 0.8. To

emphasize the similarity to the Guassian case, we set p = 0.29 so that 4p − 1 = ρ2 with ρ = 0.4. The particular choices of δ1

1
for (a)-(d) are 0.05, 0.3,

q

4p−1

ν
= 0.4472, and 0.5, respectively. When D1 ∈ E2 as in (a) and (b), the region of D2 for which successive refinability holds constitutes a line in E2

(indicated in bold) and everywhere above the bold curve that lies in E1.

Observe that the entries of PN always sum up to 1 and r11 ≥ 0
is always granted. Thus, it suffices to check r12 ≥ 0, r21 ≥ 0,

and r22 ≥ 0, which can be re-written as

(δ2
1 + δ1

1)(δ2
2 − νδ1

1) ≥ 4p − 1 − ν
(

δ1
1

)2
(11)

(δ2
1 − δ1

1)(δ2
2 + νδ1

1) ≥ 4p − 1 − ν
(

δ1
1

)2
(12)

(δ2
1 − δ1

1)(δ2
2 − νδ1

1) ≥ −
[

4p− 1 − ν
(

δ1
1

)2
]

. (13)

Since D
2 ≤ D

1 translates to δ2
1 ≥ δ1

1 and δ2
2 ≥ νδ1

1 , and

because 4p − 1 ≥ ν
(

δ1
1

)2
, (13) becomes vacuous.

Similar to the sanity check we had in Case iii for 2-D

Gaussian vectors, we observe from (11) and (12) that this

region includes all (δ2
1 , δ2

2) such that δ2
1 ≥

√

4p−1
ν

and δ2
2 ≥

√

ν(4p− 1). Inclusion of this rectangular region intuitively

follows from analyses of the previous cases and the observa-

tion that the point

(

√

4p−1
ν

,
√

ν(4p− 1)

)

is simultaneously

on the line δ2
2 = νδ2

1 and on the common boundary of E1 and

E2.

Figure 3 shows the successive refinability region for several

choices of (δ1
1 , δ1

2).

APPENDIX: PROOF OF THEOREM 1

One can tackle the computation problem by solving the

Lagrangian minimization

L(β1 , β2)

= min
p
X̂

[

I(X; X̂) + β1E{X1 ⊕ X̂1} + β2E{X2 ⊕ X̂2}
]

for all β1, β2 ≥ 0. We first observe that coding of vectors

with individual distortion criteria corresponds to a special case

of the successive refinement problem where the objective is

to minimize the total rate only. Thus, we can specialize the

Kuhn-Tucker conditions derived in [6]2 to

∑

x

pX(x)e−β1(x1⊕x̂1)e−β2(x2⊕x̂2)

∑

x̂′ p
X̂

(x̂′)e−β1(x1⊕x̂′

1
)e−β2(x2⊕x̂′

2
)
≤ 1 (14)

2Specifically, we use α = 0 in the formulation of [6].



for all x̂. The corresponding backward channel is characterized

by

p
X|X̂(x|x̂) =

pX(x)e−β1(x1⊕x̂1)e−β2(x2⊕x̂2)

∑

x̂′ p
X̂

(x̂′)e−β1(x1⊕x̂′

1
)e−β2(x2⊕x̂′

2
)

. (15)

for all x̂ with p
X̂

(x̂) > 0. We henceforth use the simplified

notation s = e−β1 and t = e−β2 .

Guess 1: Our first guess for p
X̂

is given in matrix form as

P
X̂

=

[

q 1
2
− q

1
2
− q q

]

(16)

for some 0 ≤ q ≤ 1
2 . It can be shown that the choice

q =
p(1 + s)(1 + t) − 1

2
(s + t)

(1 − s)(1 − t)
(17)

satisfies (14) with equality for all x̂. Translating 0 ≤ q ≤ 1
2

then yields
s + t

(1 + s)(1 + t)
≤ 1 − 2p . (18)

Also, (15) becomes

p
X|X̂(x|x̂) =

1

(1 + s)(1 + t)
sx1⊕x̂1tx2⊕x̂2

implying that the optimal backward channel is of the form

X = X̂⊕Z where Z is independent of X̂ and pZ is given in

matrix form as

PZ =

[ 1
1+s

s
1+s

]

[

1
1+t

t
1+t

]

. (19)

Thus

s =
D1

1 − D1
(20)

t =
D2

1 − D2
. (21)

Using (20) and (21) in (17)-(19) yields D ∈ E1 and (4)-(6).

Finally, the value of R(D) for D ∈ E1 can be computed as

R(D) = I(X; X̂)

= H(X) − H(X|X̂)

= H(X) − H(X⊕ X̂|X̂)

= H(X) − H(Z)

= H(X) −H(D1) −H(D2) .

Guess 2: Since the value of q in (16) becomes 1
2 at the

boundary of E1, our second guess is of the form

P
X̂

=

[

1
2

0
0 1

2

]

. (22)

It can be shown that this guess satisfies (14) if and only if

s + t

(1 + s)(1 + t)
≥ 1 − 2p (23)

and (15) becomes

p
X|X̂(x|x̂) =

(

1 − 2p

s + t

)x1⊕x2
(

2p

1 + st

)1⊕x1⊕x2

sx1⊕x̂tx2⊕x̂

(24)

for x̂1 = x̂2 = x̂. Observing

x1 ⊕ x2 = x1 ⊕ x2 ⊕ x̂ ⊕ x̂

= (x1 ⊕ x̂) ⊕ (x2 ⊕ x̂)

we conclude from (24) that the optimal backward channel

satisfies X = X̂ ⊕ Z where Z is independent of X̂ also in

this case. However, Z1 and Z2 are not independent as in the

previous case since

PZ =

[

2p
1+st

(1−2p)t
s+t

(1−2p)s
s+t

2pst
1+st

]

. (25)

It then follows form (25) that

st

1 + st
=

D1 + D2 + 2p − 1

4p
(26)

s

s + t
=

D1 − D2 + 1 − 2p

2(1 − 2p)
(27)

yielding (8). Finally, using R(D) = H(X) − H(Z) as above

yields

R(D) = H(X) −H(2p) − 2pH
(

D1 + D2 + 2p − 1

4p

)

−(1 − 2p)H
(

D1 − D2 + 1 − 2p

2(1 − 2p)

)

It follows from (18) and (23) that we need not make any

other guesses. However, not all D ∈ Ec
1 can be spanned using

some s, t ≤ 1. In fact, by careful inspection, we observe that

only D ∈ E2 can be attained using the current solution. The

boundaries of E2 correspond to the extreme cases s = 1 and

t = 1 for which R(D) becomes 1 −H(D2) and 1 −H(D1),
respectively. Thus, the expression for R(D) for D ∈ E3 can

be compactly written as

R(D) = 1 −H(min{D1, D2}) .
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