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Abstract—Secure data compression in the presence of side
information at both a legitimate receiver and an eavesdropper is
explored. A noise-free, limited rate link between the source and
the receiver, whose output can be perfectly observed by the eaves-
dropper, is assumed. As opposed to the wiretap channel model, in
which secure communication can be established by exploiting the
noise in the channel, here the existence of side information at the
receiver is used. Both coded and uncoded side information are
considered. In the coded side information scenario, inner and
outer bounds on the compression-equivocation rate region are
given. In the uncoded side information scenario, the availability of
the legitimate receiver’s and the eavesdropper’s side information
at the encoder is considered, and the compression-equivocation
rate region is characterized for these cases. It is shown that the
side information at the encoder can increase the equivocation rate
at the eavesdropper. Hence, the side information at the encoder
is shown to be useful in terms of security; this is in contrast with
the pure lossless data compression case where side information
at the encoder would not help.

I. INTRODUCTION

Consider a sensor network in which multiple sensors ob-
serve an underlying phenomenon that needs to be recon-
structed at an access point. While some sensors might have
secure (possibly wired) connections to the access point, others
might be transmitting over the wireless medium, which can
be accessed by an adversary trying to obtain information
about the underlying phenomenon. Furthermore, this adversary
might have its own observation of the main source. Our goal is
to explore the security issues in this sensor network scenario.
Our model is a simplified version of the general problem,
in which we assume a single sensor (Alice) having direct
access to the underlying source that needs to be transmitted
to the access point (Bob) reliably and securely. Furthermore,
we assume an idealized noise-free channel whose output can
also be observed by the eavesdropper (Eve).

If no side information is available to Bob, then we can-
not achieve any level of security. However, if we assume
the existence of a nearby sensor (Charlie) having access to
correlated side information about Alice’s source and a secure
limited-rate link to Bob, this sensor might enable secure
transmission of Alice’s source using its own secure link (see
Fig. 1). Our goal is to characterize the capacities of error-free
communication links from Alice and Charlie to Bob such that
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Fig. 1. Side information of Bob is provided by Charlie who has access to
his own correlated side information.

Alice’s information can be reliably transmitted to Bob, while
keeping Eve’s information about the source limited.

Secure communication over noisy channels in the presence
of a wiretapper has recently attracted considerable interest.
Information theoretic security in this context is defined through
the equivocation rate at the wiretapper, which can be roughly
defined as the uncertainty of the wiretapper about the message
after observing the channel output. In his pioneering work [1],
Wyner introduced the wire-tap channel, and showed that it
is possible to transmit at a positive rate with perfect secrecy,
assuming the wiretapper’s channel is physically degraded with
respect to the receiver. Later, Wyner’s analysis is extended to
more general broadcast channels in [2], which characterizes
the capacity-equivocation rate region. Various extensions of
the wiretap channel model to multiuser scenarios and fading
channels have recently been investigated [3], [4], [5].

In the wiretap channel model, the potential for secure com-
munication arises from the fact that the intended receiver has a
better quality communication channel than the wiretapper [2].
In our model, since the communication channels are not noisy,
the techniques of [2] do not apply; however, it is still possible
to achieve security when Bob has higher quality side informa-
tion than Eve as in [6], [7]. In [6], Merhav proved a source-
channel separation theorem for the wiretap channel assuming
both the channel and the side information of the wiretapper are
physically degraded. Recently, Prabhakaran and Ramchandran
[7] consider the arbitrarily correlated side information case
focusing only on the leakage rate to the eavesdropper. They
find the minimum leakage rate, and through an example, argue



that the availability of Bob’s side information to Alice might
increase Eve’s uncertainty about Alice’s source. Secure com-
pression of two correlated sources is considered in [10], where
the eavesdropper has access to only one of the compressed bit
streams. Our work is also closely related to the secret key
capacity model of [8], [9], where correlated sources are used
for secure key generation. However, our goal here is not to
generate a secret key among Alice and Bob. Instead, we wish
to communicate Alice’s source to Bob securely.

In this paper, we first consider the case in which the side
information of Bob is provided by Charlie over a noise-free
secure channel. After giving inner and outer bounds for the
set of achievable compression-equivocation rates for this setup,
we focus on the case in which Charlie-Bob link has enough
capacity for Bob to obtain Charlie’s side information loss-
lessly. For this scenario, which also corresponds to uncoded
side information, we consider cases in which either or both
Bob’s and Eve’s side information may be available to Alice.
We show that, in the secure compression model, as opposed to
the usual lossless compression where side information at the
encoder does not improve the performance, the availability of
side information to Alice has the potential of improving the
secrecy performance. We generalize the characterization of the
achievable compression and equivocation rates to all the side
information cases and provide illustrative examples.

II. SYSTEM MODEL

We assume that Alice has access to an N-length source
sequence A", which she wants to transmit to Bob reliably
over a noise-free, finite capacity channel. Alice’s transmission
will also be perfectly received by an eavesdropper called Eve.
We assume that Eve has her own correlated side information
EN. On the other hand, a helper, called Charlie, has access
to correlated side information CV and a limited rate secure
channel to Bob (see Fig. 1). We model AV, CV, and EV as
being generated independent and identically distributed (i.i.d.)
according to the joint probability distribution pa ¢ g(a,c,e€)
over the finite alphabet A x C x £. While Alice wants to trans-
mit her source reliably to Bob, she also wants to maximize the
equivocation at Eve, which represents the uncertainty of Eve
about AN after receiving Alice’s transmission and combining
with her (Eve’s) own side information EV.

An (Ra, Rc, N) code for secure source compression in this
setup is composed of an encoding function at Alice', f4 :
AN — {1,2,...,2NR4} an encoding function at Charlie,
fo : CN — {1,2,...,2NFc} and a decoding function at
Bob, gV : {1,2,...,2NBa} x {1,2,... 2NRe} AN,

The equivocation rate of this code is defined as

H(AN | f4(4M), BY), m

and the error probability of the code has the usual definition:
P = P(g(fa(AY), fo(CM)) # AY). 0

!'To keep the presentation simple, here we assume deterministic coding, but
similar to [8], randomized coding can be considered by assuming that Alice,

Bob and Charlie initially generate independent random variables and keep the
rest of the coding scheme deterministic. Proofs would follow similarly.

Definition 2.1: We say that (R, Rc,A) is achievable if,
for any € > 0, there exist an (R4, Rc, N) code such that
H(AN|f4(AN), EN) > NA and PN < e.

III. CODED AND UNCODED SIDE INFORMATION AT BOB

In this section, we give inner and outer bounds to the set of
all achievable (R4, Rc, A) triplets. In general, these bounds
do not match.

Theorem 3.1: For the setup above, (R4, Rc, A) is achiev-
able if,

Ra > H(AV), 3)

Re = I(C;V), “4)

A < max{I(A;V|U) —I(A;E|U)}, and (5)
Ra+A > H(AE), (6)

where we maximize over auxiliary random variables V' and
U that come from the joint distribution p(a,c,e,u,v) =
p(a, ¢, e)p(ula)p(vic) with [U| < |A] 4+ 1 and V| < |C| + 2.

Conversely, if (R4, Rc, A) is achievable, then (3)-(6) hold
for some auxiliary random variables V' and U for which V —
C—(AE)and U — A — (C, E) form Markov chains.

Proof: The proof is given in Appendix A. |

We can consider this problem to be a generalization of
source coding with coded side information [11], where we
have the security constraint in addition to lossless compres-
sion. In the achievability of the inner bound given in Appendix
A, Alice’s encoder, instead of directly binning its observation
with respect to the coded side information at Bob, uses an
auxiliary codebook generated by U to send her observation and
creates higher equivocation at Eve. This auxiliary codebook
generation resembles lossy source coding with coded side
information [12] for which the single letter characterization
of the rate region remains to be an open problem. Similar to
the inner and outer bounds for that problem [13], our inner
and outer bounds differ in the joint distribution of the auxiliary
random variables.

A special case of the above theorem is obtained when we
assume that Rc > H(C), that is, the side information CV of
Charlie can be recovered by Bob with an arbitrarily small
probability of error. In this scenario, in order to keep the
presentation simple, we can assume that a side information
sequence BY is available directly to Bob where BY = C'V
with high probability (see Fig. 2 with both switches open). For
this uncoded side information case, the decoding function at
Bob is replaced by ¢V : {1,2,...,2NFa} x BN — AN, The
achievability is now defined similarly, for an (R4, A) pair.

We have the following corollary which follows from The-
orem 3.1. The proof of this special case (assuming no rate
limitations between Alice and Bob) is also given in [7].

Corollary 3.2: For uncoded side information BY at Bob,
(Ra,A) is an achievable rate-equivocation pair if and only if,

Ra > H(A|B), and (7
A < max{I(A;B|U) - I(A;E|U)}, ®)
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Fig. 2. Uncoded side information at Bob. The states of switches Sp and
S g model different scenarios in terms of the side information at the encoder.

where we maximize over auxiliary random variables U such
that U — A — (B, F) form a Markov chain and |U| < |A|+ 1.

While Corollary 3.2 requires an auxiliary codebook gen-
erated by U in the general case to conceal the source from
the eavesdropper, it is sometimes possible that the ordinary
Slepian-Wolf binning achieves the highest possible security in
terms of equivocation, i.e., (8) is maximized by a constant U.
Some definitions are in order.

Definition 3.1: We say that the side information B is less
noisy than the side information F if

I(U; E) < I(U; B) 9)

for every probability distribution of the form p(a,b,e,u) =
p(a, b, e)p(ula).

Definition 3.2: Side information FE is said to be physically
degraded with respect to B if, A — B — E form a Markov
chain. We say E is stochastically degraded with respect to B
if, there exists a joint probability distribution p , 5z such that
PAp = DABs Dap = Pap> and A— B — E is a Markov chain.

The less noisy condition is strictly weaker than the stochasti-
cally degraded condition [14]. Furthermore, the compression-
equivocation rate region depends on the joint distribution
papg only via its marginals pap and pag. Hence, physical
degradation and stochastic degradation are equivalent in this
scenario.

Corollary 3.3: For uncoded side information at Bob, if Bob
has less noisy side information than Eve, then an (R4, A) pair
is achievable if and only if

Ry, > H(A|B), and (10)
A < I(A4B)-I(AE). (11)
Proof: Achievability follows simply by letting U be
constant in Corollary 3.2. For the converse, consider any U
with the joint distribution p(u,a,b,e) = p(a,b, e)p(u|a). We
have
[1(A; B) — I(A; E)] - [I(A; BIU) — I(4; E|U))
= [[(A;B) - I(4; E)]

—[[(A,U;B) = I(B;U) — I(A,U; E) + I(E;U)] - (12)
= I(B;U|E) — I(E;U|B) (13)
— I(B;U) — I(E;U) > 0, (14)

where the last inequality is due to the less noisy assumption.
|

Corollary 3.3 for the special case of physically degraded
side information at Eve is given in [6] as well. The following
corollary, which we state without proof, gives a condition
under which no positive equivocation can be achieved.

Corollary 3.4: 1If Bob’s side information is a stochastically
degraded version of Eve’s side information, then no positive
equivocation rate is achievable, and A = 0.

We use the following simple example (suggested in [7]) to
illustrate some of our results. Let the original source sequence
AN = (Ay,...,Apn) available to Alice be an i.i.d. binary
sequence of A; ~ Bernoulli(1/2) random variables. The
observation of Bob BN = (By,...,By) is generated by
independently erasing each element of the A"V sequence with
probability pp, that is, B; = A; with probability 1 — pp,
and B; = e with probability pp. Similarly, the observation
EN = (Ey,...,Ey) of the eavesdropper Eve is an indepen-
dent erased version of AY. We have E; = A; with probability
1 — pg, and F; = e with probability pg.

For pr > pp, the side information of Eve is a stochasti-
cally degraded version of the side information of Bob. Using
Corollary 3.3, we know that a constant U is optimal. Then,
the optimal equivocation is A = I(A;B) — I(A;E) =
(1-pp) — (1 —pE) =pe —PpB-

When pg > pg, then BY is a stochastically degraded
version of E™V. From Corollary 3.4, we get A = 0.

IV. SIDE INFORMATION AVAILABLE TO ALICE

In this section, we consider various cases in which Alice
also has access to the side information available to Bob and/or
Eve. We know from the Slepian-Wolf source coding that,
the availability of Bob’s side information at Alice does not
help in terms of compression rates. However, as shown in [7]
via a simple example, in the secure compression setup, the
availability of B at Alice potentially enables higher equiv-
ocation rates at the eavesdropper. In the following theorem,
we characterize the compression-equivocation rate regions for
various side information scenarios at Alice.

Theorem 4.1: Consider secure source compression for un-
coded side information at Bob as illustrated in Fig. 2. An
(Ra,A) pair is achievable if and only if

Ra

> H(A|B), and
A <

max{I(A; B|U) — I(A; E|U)},

15)
(16)

where we maximize over auxiliary random variables U such
that the joint distribution p(u, a, b, €) is given in the following
table depending on which switches are closed:

Closed Switches p(u,a,b,e)
SB p(a, b, e)p(u|a,b)
SE p (L,b,e)p u|a7€)
Sp and Sg p(a, b, e)p(ula,b, e)




In the case when only the switch Sg is closed, the rate
region can be explicitly given as follows.

Ra > H(A|B) and A < I(A; B|E). (17)

Proof: The proof resembles Theorem 3.1, and will not be
included due to space limitations. |
Note that the availability of either or both of the side
information sequences at the transmitter enlarges the space
of the auxiliary random variables U and potentially results in
a higher equivocation rate at the eavesdropper. To illustrate
this, consider the random erasure side information example
in Section III. Suppose that the observation of Bob B is
available to Alice as well. Alice can transmit only the erased
bits of Bob, hence leaking the least amount of information to
Eve. As stated in [7], it is possible to show that the optimal
auxiliary random variable U satisfies U = A when there is
an erasure at Bob, and U is constant otherwise. The optimal
equivocation rate in this case? is A = pg(1 — pp). Note that
this equivocation is strictly larger than the one without side
information. Furthermore, even if Bob’s side information is a
stochastically degraded version of Eve’s, i.e., pgp > pg, we
are still able to achieve a non-zero equivocation rate if this
side information can be provided to Alice as well.

When only the observation of Eve, EXN is available to Alice,
from (17) the optimal equivocation rate is given by I(A; B|E).
In the erasure example, the optimal equivocation rate is found
to be A = pr(1—pp), which is the same as in the case when
only switch Sp is closed. We observe that, for this specific
example of erased observations at Bob and Eve, the benefit of
having either Bob’s or Eve’s side information to Alice is the
same. For this example, it is also possible to show that, even
when both observation sequences are available to Alice, the
optimal equivocation rate is still A = pg(1 —pp).

While there is no difference between physically or stochas-
tically degraded observations when both switches are open,
this is no longer true when we consider side information
at Alice. In the following corollary, we show that for a
physically degraded observation at Eve, the availability of £V
to Alice does not help. This is in contrast to stochastically
degraded side information E”V whose availability at Alice
would potentially increase the equivocation rate as seen in
the example above.

Corollary 4.2: If the observation of Eve is a physically
degraded version of Bob’s side information, i.e., A— B — E
form a Markov chain, then providing this observation to Alice
would not improve the equivocation rate.

V. CONCLUSION

We have considered secure lossless compression in the
presence of an eavesdropper with correlated side information.
We have shown that secure communication can be enabled by
another agent who has its own correlated side information and
a secure link to the legitimate receiver. We have studied scenar-
ios under which secure compression codebooks are identical

There is a typo in the leakage rate of 1 — py pz reported in [7]. Tt should
have been 1 — pz — pypz.

to Slepian-Wolf codebooks. We have also characterized the
compression-equivocation rate regions considering availability
of side information at the encoder. We have shown that,
while it is useless in the pure lossless compression setup,
side information at the encoder may help to increase the
equivocation rate in secure compression model.

APPENDIX A
PROOF OF THEOREM 3.1

Inner bound: We fix p(ula) and p(v|c) satisfying the
conditions in the theorem. Then we generate 2V(/(AiU)+e1)
independent codewords of length N, U N (w1), wy €
{1,...,2NUA&D+e)} with distribution [T, p(u;). We ran-
domly bin all UV (w;) sequences into 2VU(AUIV)+e2) ping,
calling them the auxiliary bins. For each codeword U™ (w,),
we denote the corresponding auxiliary bin index as a(wy).
On the other hand, we randomly bin all AV sequences into
oN(H(AIV.U)+es) ping, calling them the source bins, and denote
the corresponding bin index as s(AY). We also generate
2NU(CV)+ea) independent codewords VN (ws) of length N,
wy € {1,...,2NU(EVI+e)) with distribution Hfil p(v;).

For each typical outcome of A", Alice finds a jointly
typical U™ (w1). Then she reveals a(w,), the auxiliary bin
index of U (wy), and s(AY), the source bin index of A%,
to both Bob and Eve, that is, the encoding function f4 of
Alice is composed of the pair (a(w; ), s(A")). Using standard
techniques, it is possible to show that we have such a unique
index pair with high probability.

The helper, Charlie, observes the outcome of its source C' N,
finds a jointly typical V¥ with C, and sends the index wy
of VN over the private channel to Bob. With high probability
CN will be a typical outcome, and there will be a unique
VN (wy) that is jointly typical with CV. Bob, having access to
V¥ (w3) and the auxiliary bin index a(w; ), can find the jointly
typical U (wy) correctly with high probability. Then using
VN (wsy), UN (w;) and the source bin index s(A), Bob can
reliably decode the source sequence AY. Letting ¢; — 0 for
1 =1,2,3 and 4, we can make the total communication rate of
Alice arbitrarily close to I(A; U|V)+H(A|U,V) = H(A|V),
while having an error probability less than e for sufficiently
large N.

The equivocation rate for this scheme can be found as

L H(AN|a(wy), s(A), EY)

N
= - [H(AY) - 1(4:a(w,), s(A%), £V)]
= [H(AY) - 1(A:aw,). BY)
— (AN S(AY) Y, afuw))]
= % [H(A™Y) = I(AN; U™, BY) = H(s(AY))] - (18)
— H(AIU. B) ~ H(AIV.U) - & 19)

(A V|U) = I(A; EJU) — e,

where (18) follows form the data processing inequality; and
(19) follows form the fact that s(A") is a random variable



over a set of size 2NV H(AIV.U)+es)

Finally, we also have

L H(A™|a(wy), s(AY), EY)

N

_ % [H(AN|EN) — I(AY; a(w,), s(AV) | EY)]

> H(A|E) — - H(a(wn), 5(AV) 0)
> H(A|E) — Ra. 2D

Outer bound: Let J £ f4(AN) and K £ fo(CV). From
Fano’s inequality, we have H(AN|J, K) < N§(PYN), where
d(z) is a non-negative function with lim,_,o d(z) = 0.

Define U; £ (J,A""', E"~1) and V; & (K,C""'). Note
that both U;— A; — (B, E;) and V;—C;—(4;, E;) form Markov
chains. Then, we have the following chain of inequalities:

N
NRc >H(K) > I(CN;K) =Y I(C; K,.C'7)  (22)

1=1
N
=> I(C; V),
i=1

where (22) follows from the chain rule of mutual information
and the memoryless assumption on C;. We also have

NRj >H(J) > H(J|K)
—H(AN,J|K) — H(AN|J,K)

>H(AN|K) — Ne (23)
N

=3 H(A]|K,A"™") — Ne
i=1
N

> H(Ai|K,A"",C"7!) — Ne (24)
=1
N

=3 H(A]|K,C'™") — Ne (25)

~
Il
—

H(A;|V;) — Ne,

-

N
Il
—

where (23) follows from Fano’s inequality and nonnegativity
of entropy; (24) follows as A; — (K, A*"!) — C*~! form a
Markov chain; and (25) follows as A; — (K,C* 1) — A1
form a Markov chain.

Finally, we can also obtain

H(AN|J,ENY = H(AN|J) — I(AN; EN|J)
= H(AN|J, K) + I(AN; K|J) — I(AN; EN|)

= i[(Ai;KL], ATYH — H(E|J,E™Y)
- + H(EN|AN | J) + Ne (26)
< iI(Ai;KU, ATYETY — H(E)|J, B AT
- + H(EN|AN) + Ne (27)

<D A K, C YL AL ETY

-

1
— H(E;|J,E""" A" + H(E;|A;)] + Ne

(2

(28)

Il
KMZ

<
Il
—

[1(Ai; Vi|Us) — I(As; E45|Us)] + Ne (30)

|
.MZ

I
-

(3

where (26) follows from the Fano’s inequality and the chain
rule of mutual information; (27) follows from the memoryless
property of the source and the side information sequences, and
the fact that conditioning reduces entropy; (28) follows from
the chain rule and non-negativity of mutual information; (29)
follows from the definitions of V; and U, given above and
the fact that conditioning reduces entropy; (30) follows since
U, — A, — E,.

We define an independent random variable ) uniformly
distributed over the set {1,2,..., N}, and A = Ag, E = Eq,
V = (Vg,Q), and U = (Ug, Q). Then from the usual tech-
niques, (3)-(5) follow while V—C'—(A, E) and U—A—(C, E)
are Markov chains. Finally, we also have

1 N N 1 N N
- < =

%[H(J\EN) + H(AN|EN, J)]

H
<HU) LA <pyta
N
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