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Abstract—Zero-delay transmission of a Gaussian source over
an additive white Gaussian noise (AWGN) channel with a 1-
bit analog-to-digital converter (ADC) front end is investigated
in the presence of correlated side information at the receiver.
The design of the optimal encoder is considered for the mean
squared error (MSE) distortion criterion under an average power
constraint on the channel input. A necessary condition for the
optimality of the encoder is derived. A numerically optimized
encoder (NOE) is then obtained that aims that enforcing the
necessary condition. It is observed that, due to the availability
of receiver side information, the optimal encoder mapping is
periodic, with its period depending on the correlation coefficient
between the source and the side information. We then propose
two parameterized encoder mappings, referred to as periodic
linear transmission (PLT) and periodic BPSK transmission (PBT),
which trade-off optimality for reduced complexity as compared
to the NOE solution. We observe via numerical results that PBT
performs close to the NOE in the high signal-to-noise ratio (SNR)
regime, while PLT approaches the NOE performance in the low
SNR regime.

Index Terms-Joint source channel coding, zero-delay transmis-
sion, 1-bit ADC, correlated side information.

I. INTRODUCTION

A key component of the front end of any digital receiver
is the analog-to-digital converter (ADC) that is typically con-
nected to each receiving antenna. The energy consumption of
an ADC (in Joules/sample) increases exponentially with its
resolution (in bits/sample) [1]. This leads to a growing concern
regarding the energy consumption of digital receivers, either
due to the increasing number of receiving antennas, e.g., for
massive multiple-input multiple-output (MIMO) transceivers
[2], or due to the limited availability of energy, e.g., in energy
harvesting terminals [3]. An energy-efficient operation of dig-
ital receivers may hence impose constraints on the resolution
of the ADCs that can be employed for each receiving antenna.

Motivated by communication among energy- and
complexity-limited sensor nodes, we study zero-delay
transmission of analog sensor measurements to a receiving
sensor equipped with a 1-bit ADC front end. In keeping with
the scenario of a network of sensors, we further assume that
the receiving sensor nodes has its own correlated measurement
of the transmitted source sample. Focusing on mean squared
error (MSE) distortion criterion, our goal is to gain insights
into the structure and the performance of optimal encoder
and decoder functions when the source sample and the side
information are jointly Gaussian.
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Figure 1. System model for the transmission of a Gaussian source over

an AWGN channel with a 1-bit ADC receiver front end and correlated side
information at the receiver.

This work contributes to a line of research that endeavors
to understand the impact of front end ADC limitations on the
performance limits of communication systems. The capacity
analysis of a real discrete-time AWGN channel with a K-
level ADC front end is studied in [4], proving the sufficiency
of K + 1 constellation points at the encoder. Furthermore, it
is shown in [4] that BPSK modulation achieves the capacity
when the receiver front end is limited to a 1-bit ADC. In
[5], the authors show that, in the low signal-to-noise ratio
(SNR) regime, the symmetric threshold 1-bit ADC is subop-
timal, while asymmetric threshold quantizers and asymmetric
signalling constellations are needed to obtain the optimal per-
formance. Generalization of the analysis from single-antenna
AWGN channels to MIMO fading systems are put forth in
[6], and, more recently, to massive MIMO systems in [2] and
[7]. In [8] some of the authors of this work considered the
set-up analyzed here, but in the absence of correlated side
information at the receiver. It is noted that the zero-delay
constraint prevents the application of the mentioned channel
capacity results to this set-up, and that, as it will be seen,
the presence of correlated side information at the receiver
significantly modifies the optimal design problem.

In this work, we first derive a necessary condition for the
optimality of the encoder mapping using calculus of variations.
We then develop a gradient-based numerically optimized en-
coder (NOE). From numerical section, we observe that, simi-
larly to the case with an infinite resolution receiver front end
studied in [9]-[11], the optimal encoder mapping is periodic.
Furthermore, the period of this function depends solely on
the correlation coefficient between the source and the side
information, and is independent of the input power constraint,
or equivalently the channel SNR. Motivated by the structure of
the NOE, we also propose two simple parameterized mappings,



which, although being suboptimal, approach the performance
of NOE in low and high SNR regimes.

The rest of the paper is organized as follows. In Sec. II, the
system model is explained. In Sec. III we present preliminaries
and review the previous results, while Sec. IV focuses on the
design of encoders and decoders. In Sec. V, numerical results
are provided, and Sec. VI concludes the paper. The proofs of
the propositions in this work are not included due to space
limitations.

Notations: The standard Gaussian distribution is denoted by
N(0,1) with probability density function ®(-) and comple-
mentary cumulative function Q)(+). Unless stated otherwise, the
integration intervals are (—oo,+00). The conditional density
for standard bivariate Gaussian variables is denoted as

B 1 (v —ru)’

II. SYSTEM MODEL

A single source sample V ~ A(0,02) is transmitted over
a single use of an AWGN channel followed by a 1-bit ADC
(see Fig. 1). The receiver is provided with side information
U ~ N(0,02), which follows a bivariate Gaussian distribution
with the source sample V' with correlation coefficient r.

The channel input is denoted by X = f(V'), where f : R —
R is the encoder mapping function, which must satisfy the
average power constraint E[f(V)?] < P. The received noisy
signal at the ADC is

Z=fV)+W, 2

where the Gaussian noise term W ~ N(0, 02)) is independent
of V. The decoder is fed by the output of the ADC given by
YF(Z){ 1 Z<0

-1 Z>0 )

The SNR is defined as SNR = UL;. Having observed Y and

U, the decoder produces an estimate V = oy (U) of V.

The goal is to find the optimal encoder function f(-) and
the optimal decoder functions ¥, (-), with y € {—1, 1}, which
jointly minimize the MSE distortion defined as

D=E[(V -V). 4)

III. PRELIMINARIES

In this section, we consider for reference the scenario in
which both the encoder and the decoder have access to the
side information U. In this case, without loss of optimality,
the encoder can encode the error

E=V -2,

Oy

&)

where the random variable o,7U /o, is the minimum MSE
(MMSE) estimate of V' from U, which can be computed
at both encoder and decoder. Since the random variable F,
which is distributed as N(0,02), with 02 = o2(1 — r?), is
independent of the side information U, the encoder can directly
encode the error F' via a mapping function f (e) of the error
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Figure 2. TIllustration of the optimal encoder mapping where there is no side
information at the receiver (67 = o, = 1). The application if this mapping to
the error (5) is optimal if the side information U is also known a the encoder.

E by neglecting the presence of the side information U at the
receiver. Therefore, the problem reduces to that studied in [8].

In [8, Proposition. I] it is shown that the optimal zero-delay
encoder mapping in the absence of side information (assuming
the mapping function is odd) is obtained from the implicit

equation
B £(.\2
f(e)exp{f © } . (©)

202 2o\

where A > 0 is chosen such that the power constraint is
satisfied. Examples of the optimal mapping are shown in Fig.
2. It is observed that, in the high SNR regime, that the optimal
mapping tends to digital 2-level antipodal signaling, whereas,
in the low SNR regime it tends to linear mapping.

In Sec. V, we will use the resulting optimal performance in
the presence of side information at both encoder and decoder
as a lower bound on the performance of the set-up under study
in which the side information is solely available at the receiver.

IV. TRANSCEIVER DESIGN

In this section we tackle the design problem introduced in
the previous section. We first observe that, for any encoding
function, the optimal decoder is always the MMSE estimator;
therefore, in this section we focus on the design of the encoder
mapping. Our first design is based on derivation of a neces-
sary optimality condition and by an iterative gradient-based
numerical optimization algorithm. Due to the relatively high
computational complexity of this approach, we also propose
two simple yet suboptimal encoder designs.

A. Optimal Encoder and Decoder

The design goal is to minimize the MSE distortion under an
average power constraint with respect to the encoder mapping
f(v) and the decoding function v, (u). Therefore, we consider
the following optimization problem

mil}ignize D+ XE[f(V)?], 7)
where A > 0 is the Lagrange multiplier. With an MMSE
estimator at the receiver, the optimal reconstruction function
is given by

Oy (u) 2 E[V|Y =y, U = ] (8a)
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Figure 3. Illustration of the PLT encoder mapping for o« = 2, 8 = 2.5.
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The following proposition provides a necessary condition for
the optimal encoder mapping.

(8b)

Proposition IV.1. The optimal encoder mapping f(-) for
problem (7) must satisfy the implicit equation

2
2V 2o o A f (V) exp {J;(LQ)} =20A(v) = B(v), (9)
O-U)
where X is chosen such that the average power constraint P

is satisfied. The functions A(v) and B(v) are defined as

Av) 2 /<I> (% ;) (61 (u) — 1 (u)) du, (10a)
B(v) 2 /<I> (% ;) (61 (u)? — 0y (w)?) du,  (10b)

with 0y (u) as in (8).

Proof: The optimization objective function in (7) is continu-
ous and coercive over f(-) (see [12, Sec. A.2] for definitions).
This guarantees that (7) is Gateaux differentiable [13, Sec. 7.1].
Using the Theorem I in [13, Sec. 7.4], the gradient of the
Lagrangian, denoted by V¢ L is obtained as

Vil = - (=

- (20A(v) — B(?)))) . (1D

Enforcing that the gradient of the Lagrangian in (11) be zero
yields the necessary condition in (9) [13, Sec. 7.4]. O

Remark IV.1. In Sec. V, it will be seen that the application of
a gradient descent based optimization procedure that uses (11),
vields periodic NOE mappings, whose periods are dependent
on the correlation coefficient r. The periodic behaviour of the
NOE mappings can be explained with reference to the optimal
solution discussed in Sec IIl, for the scenario in which U is
also known at the encoder. In fact, in that case, it was argued
that a mapping f(v) = f(v — oyru/oy) is optimal, where
f(-) is shown in Fig. 2. Therefore, the optimal mapping is
centred on the MMSE estimate o,ru/o,. When the latter is
not available at the encoder, the NOE turns out to consist of
periodic replicas of a basic mapping that behaves in a manner
similar to f(-) in Fig. 2. As further discussed in Sec. V, the
period increases with the variance of the MMSE estimate of
V given U, namely o2(1 —r?).
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Figure 4. Illustration of the PBT encoder mapping for v = 0.2, ¢ = 3.

To elaborate on the necessary condition (9), we consider the
two extreme values of the correlation coefficient 7.

o Uncorrelated sources (r = 0): When the correlation
coefficient is zero, the necessary condition (9) reduces
to

W2, Af (V) exp{%zﬁ} =20 (01 —01) — (82, — 9%), (12)

where 0, for y = 1, —1 is defined as

re(a)o () u
Cr()a(E

It can be shown that, in the absence of side information
at the receiver, the optimal mapping is an odd function.
Therefore, it can be easily verified that we can let o9 =
—11 with no loss of optimality. Hence, the equality (12)
can be further simplified as

f(v)Q} v
202 | \2mou\

which is the result (6) obtained in [8, Proposition IIL.1].
o Identical sources (r = 1): In this case, we have
¢ (u/oylv/o,) = Z+6(u — v), where d(-) is the Dirac
delta function. Theréfore, it can be easily verified from
(9) that the optimal mapping is f(v) = 0, as expected.

by £E[VIY =y

F(w) exp { (14)

Remark IV.2. Due fto the symmetry of the quantizer at the
receiver and the symmetry of the noise distribution, we con-
Jjecture that the optimal encoder is an odd function of v. While
this argument is strengthened by our numerical observations
(see Sec. V), we leave the proof of the validity of this conjecture
as an open problem for future work.

In Sec. V, we will present NOE mappings obtained by
using a gradient descent approach using (11). As mentioned in
Remark IV.1 due to the correlated receiver side information,
the resulting mappings are periodic, with a period that depends
on the correlation coefficient 7. Motivated by this observation,
and related results for the case with an infinite-resolution front
end in [9], we propose two simple parameterized encoder
mappings. Their performance will be compared with that of
NOE in Sec. V.
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Figure 5. MSE encoder mappings f(v) with different average power values
and r = 0.85, (o, = 04 = 1). Increasing the power constraint P has no
impact on the period of the NOE mapping.

B. Periodic Linear Transmission (PLT)

The first proposed encoder mapping is a function, which is
a periodic linear function with period 23 and slope « within
each period. The encoder function is defined as

Fw) = a(-1)lE+4] (ﬁ F " 1J - ) T

where |z] is the largest integer less than or equal to z. In
Fig. 3, an illustration of this mapping for o = 2, 8 = 2.5 is
shown. In (15) we optimize the parameters o and S under a
given average power constraint in order to minimize the MSE
distortion.

C. Periodic BPSK Transmission (PBT)

The second proposed encoder mapping, unlike NOE and
PLT, adopts digital modulation with two levels, namely, ~ and
—~, with a period of §. The mapping is defined as

= (1 20y mon (| 21])).

where mod(-), is the argument in modulo 2. In Fig. 4, an
illustration of this mapping for v = 0.2, and § = 2.5 is shown.
Due to the average power constraint, we set v = VP, and
parameter ¢ is optimized to minimize the MSE.

(16)

D. Shannon Lower Bound (SLB)

A lower bound on the MSE distortion can be obtained
by relaxing the zero-delay constraint, and using the Shannon
source-channel separation theorem. In [4], it is shown that the
capacity of the AWGN channel with a 1-bit ADC in (3) is
given by

C=1-h (Q (\/SNR)) : 17)
where h(-) is the binary entropy function defined as h(p) =
—plog, p—(1—p) log, (1 — p). Furthermore, the rate-distortion
function of a Gaussian source with correlated Gaussian side
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Figure 6. Encoder mappings that minimize MSE distortion for different
correlation coefficients r and an average power constraint of P = 5
(op = 0y = 1).

information at the receiver is given by the Wyner-Ziv rate-
distortion function [14]

(18)

21 -r)]"
D )

R(D) = 5 108, 05

where [z]t = max(0,2). Combining (17) and (18) a lower
bound on the MSE distortion D is obtained as

Diower = (1 — 7"2)012)272(1*}1@(‘/%)))_ (19)

V. NUMERICAL RESULTS

In this section, we present numerical results with the aim of
assessing the performance of the encoder/ decoder pairs pro-
posed in the previous sections. In order to derive NOE mapping
functions we apply a gradient descent-based algorithm. The
algorithm performs a gradient descent search in the direction
of the derivative of the Lagrangian (11) with respect to the
encoder mapping f(-). The update is done as

fir1(v) = fi(v) — VL,

where ¢ is the iteration index, V ¢ L is defined in (11) and 1 > 0
is the step size. The algorithm is initialized with an arbitrary
mapping, e.g., linear mapping. It is noted that the algorithm is
not guaranteed to converge to a global optimal solution. We
also remark that different power constraints are imposed by
means of a linear search over the Lagrange multiplier \.

In Fig. 5, NOE mappings are plotted for different average
power constraints, for a correlation coefficient of » = 0.85.
We note the periodic structure of the mapping, which is due
to the available side information at the receiver as discussed
in Remark (IV.1). In contrast, the optimal mapping obtained
in [8] for r = 0 is a monotonically increasing function (see
Fig. 2). We also observe that the average power constraint,
does not affect the period of the mapping. In Fig. 6, NOE
mappings for an average power of P = 5 are plotted for
different correlation coefficients. We see that the period of
the mapping indeed depends on 7: the higher the correlation
coefficient r the smaller the period of the mapping.

(20)
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Figure 7. Complementary MSE distortion vs. SNR for r = 0.6 (0 = 0w =
1).

In Fig. 7, we plot the complementary MSE distortion (1—D)
versus SNR for NOE, as well as for the PLT and PBT schemes,
for the correlation coefficients » = 0.6. The SLB and the
MSE distortion for the reference case reviewed in Sec. III
in which both encoder and decoder have access to the side
information U, which is referred to as encoder side lower
bound (ESLB), are also included for comparison. We observe
that the performance of PBT is close to that of NOE at
high SNR values. On the other hand, for low SNRs, PLT
outperforms PBT and approaches the NOE performance. The
results are aligned with the extreme-SNR behaviour of the
mapping in Fig. 2 in the case of no side information (see Sec.
III).

In Fig. 8, the complementary MSE distortion (1 — D) is
plotted versus the correlation coefficient » for a fixed average
power constraint of P = 5. We see that, for this SNR value,
PBT performs very close to NOE for a wide range of r
values. However, as r approaches 1, PLT outperforms PBT, and
approaches the performance of NOE. This can be explained
based on the observation in Fig. 5 that, as average power
constraint decreases, the NOE mapping functions resembles
the PLT mapping.

We finally observe from the comparison of the SLLB and
ESLB bounds in both Fig. 7 and Fig. 8, that the zero-delay
constraint entails a significant loss with respect to the case in
which block processing is allowed.

VI. CONCLUSION

We have studied the problem of zero-delay transmission
of a Gaussian source over an AWGN channel followed by
a 1-bit ADC front end, in the presence of correlated side
information at the receiver. We have adopted the MSE distor-
tion criterion with average power constraint at the transmitter.
We first derived a necessary condition for the optimality of
an encoder function, and then, based on this condition, and
using gradient descent algorithm, we obtained a numerically
optimized encoder mapping. We observed that this encoder
mapping is periodic, with a period that depends on the cor-
relation coefficient of the side information. This motivated us
to propose two new periodic parameterized encoding schemes,
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Figure 8. Complementary MSE distortion versus correlation coefficient under
the average power constraint P = 5 (o, = 0y, = 1).

referred to as PLT and PBT. Finally, we have shown through
numerical simulations that, PLT and PBT perform close to the
NOE in the low and high SNR regimes, respectively.
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