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Abstract—We propose a joint feature compression and trans-
mission scheme for efficient inference at the wireless network
edge. Our goal is to enable efficient and reliable inference at the
edge server assuming limited computational resources at the edge
device. Previous work focused mainly on feature compression,
ignoring the computational cost of channel coding. We incor-
porate the recently proposed deep joint source-channel coding
(DeepJSCC) scheme, and combine it with novel filter pruning
strategies aimed at reducing the redundant complexity from
neural networks. We evaluate our approach on a classification
task, and show improved results in both end-to-end reliability
and workload reduction at the edge device. This is the first work
that combines DeepJSCC with network pruning, and applies it
to image classification over the wireless edge.

Index Terms—Joint source-channel coding, image classifica-
tion, IoT, pruning, deep learning

I. INTRODUCTION

Number of Internet of things (IoT) devices has reached 22
billion at the end of 2018, and is expected to grow up to
75 billion by the end of 2025 [1]. Currently, most of these
devices act as wireless sensors that collect data and offload
it to a cloud or edge server for processing. This creates
a major bottleneck in many emerging IoT applications as
communication consumes significant energy and introduces
errors and latency.

In this work, we consider deep neural network (DNN) based
inference at an edge device [2]. Due to limited computational
power and memory, IoT devices typically cannot perform
all the computations required by a complex DNN architec-
ture. For example, a single forward pass of the ResNet-152
[3] architecture requires 11 × 109 floating-point operations
(FLOPs) for a 224 × 224 input image. This would take few
minutes on a simple IoT device, which is usually limited to
a few MFLOPs per second. We assume that an edge server
is available to help the device to perform the inference task.
In most current implementations, the IoT device offloads all
its data to the edge server, where a DNN of any complexity
can be deployed. Note, however, that parts of the data that
the device is sending may not be useful for the underlying
task. An alternative approach is to preprocess the data on
the edge device, within the available computational limits,
and transmit only the resulting features to the edge server.
We therefore encounter two main challenges: minimizing the
number of computations that have to be done locally, and

designing a robust communication scheme within the limited
available transmission power and bandwidth.

To address the first challenge, DNN architectures that op-
erate within the low-complexity constraints of mobile devices
are proposed in [4]. These may still need hundreds of mil-
lions FLOPs to perform a single forward-pass, which may
be unacceptable for certain IoT devices. Some recent works
[5]–[7] suggest splitting DNNs into two parts, where only
the first few layers are implemented on the device within
its computational constraints, while the remaining layers are
deployed on the edge server. However, this approach requires
reliable transmission of the intermediate feature vectors to the
edge server. To reduce the communication requirements, a
typical approach is to quantize and/or compress the feature
vectors before transmitting over the channel [5], [6]. These
methods consider the amount of information (e.g., the number
of bits) that must be conveyed to the edge server, but ignore
the energy and latency cost of communications, and potential
errors that may be introduced. Moreover, reliable transmission
of the feature vectors requires an accurate estimate of the
channel state at the edge device, and separate compression and
channel coding is known to be suboptimal under strict delay
constraints. Recently, a DNN-based DeepJSCC scheme has
been shown to provide improved performance and robustness
in wireless image transmission [8]–[10]. DeepJSCC scheme
has been applied in distributed inference scenarios as well [7],
[11], [12], but they require a significant number of on-device
computations to run a forward pass of the underlying DNN.

In this work, we propose to reduce the on-device computa-
tional load by incorporating a pruning step in the network
training. Network pruning [13] aims at reducing the com-
putational redundancy within DNNs by efficiently removing
certain neurons, convolutional filters, or entire layers based on
a saliency measure or a regularization term. Therefore, given
a certain channel condition and a computational constraint at
the IoT device, our goal is to find the optimal DNN splitting
point and the pruning parameters to ensure the best possible
accuracy as well as efficiency in a given scenario. We consider
image classification as the target application. Network splitting
together with pruning for edge devices has recently been
studied in [14], but similarly to other works, they ignore the
errors that may be introduced over the channel. In contrast,
our work is the first to study a joint device-edge inference
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Fig. 1: An overview of the proposed system. The baseline neural network is split between an IoT device and an edge server.
Given input data (e.g., an image), pruned sub-network performs the first part of the forward pass to generate an intermediate
feature map, which is then compressed by DeepJSCC encoder and sent through a wireless link. At the receiver side, first the
compressed feature map is reconstructed, and the remaining part of the forward pass is completed to obtain the final prediction.

architecture combined with pruning taking into account the
noisy wireless channel. Our contributions can be summarized
as follows:

• We propose a DNN training procedure for joint device-
edge inference systems under extreme power and latency
constraints by combining novel pruning and splitting
techniques with end-to-end feature transmission.

• Inspired by the DeepJSCC architecture [8], we propose an
autoencoder-based network for intermediate feature map
transmission to allow bandwidth reduction.

• We present extensive evaluations of the proposed ap-
proach at various DNN splitting points, channel SNRs,
and bandwidth and computational power constraints, and
show its efficacy in a wide range of settings.

II. METHODS

We propose a 4-step training strategy for combining partial
network pruning with an end-to-end autoencoder architecture
for transmitting intermediate feature maps of an arbitrary
hidden layer of a DNN (Fig. 1). Such an approach allows
for a reduction in the computations carried out at the IoT
device, while taking into account the effect of channel noise on
the performance (within the specified bandwidth constraint).
Most popular convolutional neural networks (CNNs), such
as VGG [15] or ResNet [3] perform spatial dimensionality
reduction of intermediate feature maps by applying pooling
operations or convolutional filters with stride greater than 1.
Nevertheless, as spatial dimension is being reduced, number
of channels is usually expanded to extract the most significant
features from the input image. Therefore, in the first few
layers of such networks, the total dimension of the feature
map increases up to a certain point, after which it starts to
decrease due to further downsampling. As a consequence,
there exists a hidden layer within such a network, where the
size of the intermediate feature map is lower than that of the
input; which acts as data compression for the underlying task.
Transmitting such a feature map instead of the original input
can help to reduce the bandwidth, but will impose significant
computational resources on the device as it will have to

preprocess the image through many layers of the network.
This defines a trade-off between on-device computation and
communication bandwidth, which we aim to optimize.

A. Channel model

We consider an additive white Gaussian noise (AWGN)
channel, but any differentiable channel model can be employed
instead. Specifically, given a channel input vector x ∈ RB ,
where B represents the available channel bandwidth, the
channel output y ∈ RB is given by y = x + z, where z is
an independent and identically distributed (i.i.d.) noise vector
with elements z ∼ N

(
0, σ2

)
. An average power constraint

of P = 1 is imposed on the channel input vector, i.e.,
1
B

∑B
i=1 x

2
i ≤ P . We evaluate the accuracy for different chan-

nel signal-to-noise ratios (SNRs) given by P
σ2 . To compare our

JSCC approach to digital methods we use standard Shannon
capacity formula given by C = 1

2 log2
(
1 + P

σ2

)
.

B. Classification baseline

Our framework is flexible, and can be easily adapted to any
system that incorporates DNNs. We focus on image classifica-
tion task as it is the most frequent approach to automatically
analyse image content and generate its metadata. Given an
image and a finite set of possible classes, the classification
task aims at assigning the correct class label to the image.
We experiment with VGG16 [15] with batch normalization
(BN) added after each convolutional layer as it is one of
the most popular networks employed for image classification.
The network consists of 13 convolutional layers with stride
1 divided into 5 blocks, where each block is followed by a
pooling operation. We consider each of the pooling operations
as a potential network splitting point as it provides feature
compression by construction, and does not affect the accuracy.
After the last pooling layer we also employ a fully-connected
classifier consisting of three fully-connected layers, where the
first two have the output size of 512 and the last one maps
512-dimensional vector to 100-dimensional class predictions.
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(b) Decoder

Fig. 2: Proposed encoder and decoder architecture for fea-
ture transmission. At the encoder, dimensionality reduction is
performed by the convolutional layer. Shallow structure of
the encoder reduces the computational load on the power-
constrained device.

C. Autoencoder architecture

In this work, we explicitly model and evaluate the impact
of the noisy wireless channel on the performance. Therefore,
we design the communication scheme in conjunction with the
DNN architecture employed for the underlying classification
task. As opposed to most of the literature on device-edge co-
inference, we do not employ digital codes to transmit the
feature maps, which are known to be suboptimal in finite
blocklengths. Instead, we employ the autoencoder architecture
shown in Fig. 2. Its asymmetrical structure is designed to
reduce on-device computations; therefore, the encoder’s ar-
chitecture (Fig. 2a) consists of a single convolutional layer of
stride 2×2 and 3×3 kernels, which perform both spatial and
channel-wise compression of the feature map in a single step.
The convolutional layer is followed by the generalized divisive
normalization (GDN) layer [16], which is commonly used in
most successful deep compression schemes such as [17] as a
replacement of BN. GDN operation is defined as:

u
(k+1)
i (m,n) =

w
(k)
i (m,n)(

βk,i +
∑
j γk,ij

(
w

(k)
j (m,n)

)2) 1
2

, (1)

where u
(k)
i (m,n) denotes the ith output channel of the

kth stage of the encoder at the spatial location (m,n) and
w

(k)
i (m,n) denotes the corresponding input value. The ap-

proximate inverse operation, called IGDN is given by:

ŵ
(k+1)
i (m,n) = û

(k)
i (m,n)

β̂k,i +∑
j

γ̂k,ij

(
û
(k)
j (m,n)

)2 1
2

,

(2)
where ŵ and û are the output and input of IGDN, respectively.
Finally, we employ parametric rectified linear unit (PReLU)
[18] as an activation function to further increase the learning
capacity of our model. The output of the encoder network is
directly transmitted over the channel (after normalization - to
meet the power constraint).

At the decoder (Fig. 2b) we first perform a single con-
volution with stride 1 × 1 and 3 × 3 kernel size on the
compressed feature map. This is followed by the IGDN
operation, PReLU activation, and upsampling to restore the

original spatial dimension of the intermediate feature map.
Finally, another convolutional layer with the same stride and
kernel size is applied to increase the feature map’s depth to
its original value, followed by BN and PReLU. Note that
the number of channels effectively controls the size of the
transmitted vector as our encoder always reduces the spatial
dimensionality by a factor of 4. The only exception is the last
block of VGG16 network (after pooling 5), where the feature
map of size 1× 1× 512 cannot be downsampled so we only
control the number of channels.

D. Training strategy

Our training strategy consists of 4 steps. Firstly, we pretrain
the VGG16 network with cross-entropy loss for 60 epochs,
using SGD [19] optimizer with a learning rate of 0.01,
momentum of 0.9, and L2 penalty on network parameters
weighted by 5 · 10−4 to avoid overfitting. We reduce the
learning rate by a factor of 0.1 after 20th and 40th epochs.

Next, we select the splitting point after one of the pooling
layers of the network and employ network pruning. We use
the pruning algorithm in [20], which uses Taylor expansion
to approximate the change in the loss function induced by
pruning. In principle, the algorithm evaluates the importance of
each convolutional filter up to the splitting point, and removes
the least significant ones. In our setup, the algorithm removes
512 convolutional filters at a single pruning iteration, followed
by additional 10 training epochs with a learning rate of 0.0001
to recover the accuracy lost by the filter removal.

Afterwards, we run a forward pass through the pruned
network with each image in the training set to extract all
the possible feature maps at the splitting point. We use the
feature maps as a new training set for our autoencoder,
which we pretrain for 40 epochs with a learning rate of 0.1,
momentum of 0.9, and L2 penalty weighted by 5 · 10−4.
We use L1-loss to recover the feature maps as close to their
original versions as possible. This step is crucial to speed-up
the convergence of the end-to-end training; since the feature
maps are low-dimensional and autoencoder architecture is very
simple, its execution is relatively fast. Starting from this step,
we incorporate an AWGN channel model between the encoder
and decoder to gain robustness against channel noise.

In the last step, we perform end-to-end training of the entire
network. Specifically, we combine both parts of the VGG16
network and place pretrained autoencoder at the splitting point.
Similarly to the first step, we train the network with cross-
entropy loss, SGD optimizer with learning rate of 0.0001 and
the other parameters unchanged.

III. RESULTS

In this section we evaluate the performance of the proposed
approach and compare it with other schemes in the literature.

A. Experimental setup

In order to evaluate the accuracy of the proposed method, we
employ popular CIFAR100 dataset, which consists of 60000
RGB images divided into 100 different classes (e.g., bicycle,
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Fig. 3: Required channel bandwidth as a function of the
number of on-device computations to guarantee an accuracy
level within 2% of the classification baseline.

fox, oranges, etc.) [21]. Each class is represented evenly by
600 images of size 32 × 32 pixels, 500 for training and 100
for testing. During training, we first perform common data
augmentation steps, namely we apply 4 pixel zero-padding
at each side of an image and randomly crop 32 × 32 pixel
tiles. Moreover, we randomly flip images horizontally with a
probability of 50% and normalize them to have zero mean and
unit variance. After such preprocessing, we perform multiple
training runs of the proposed system, according to the strategy
in Section II-D for different values of channel SNR, pruning
ratios, network splits, and channel bandwidths, and evaluate
the corresponding classification accuracy and required num-
ber of computations. In order to calculate the computational
complexity of our approach, we count the number of FLOPs
necessary to perform a single forward pass of the layers
executed at the edge device (pruned shallow sub-network and
the encoder).

B. Channel bandwidth and on-device computation

In this section we select the models that minimize the
channel bandwidth, which we define as the number of real
symbols transmitted per image, and maximize the pruning
ratio (which results in the minimal on-device computation),
under a channel SNR of 14.5dB, allowing for a maximum
drop of 2% in the classification accuracy compared to the
baseline. Results in Fig. 3 clearly show that our proposed
approach beats both the JSCC-based BottleNet++ [7] and the
digital communication based BottleNet [6] schemes by a large
margin. The proposed scheme requires only 4 × 106 FLOPs
to achieve approximately 3× bandwidth reduction compared
to the baseline, which we define as transmitting the original
PNG image and performing classification on the edge server
without any processing at the edge device.

Another superiority of our approach is that achieving 64×
bandwidth reduction (from 512 symbols to 8 symbols) after the
last pooling in VGG16 network is possible with only 156×106
FLOPs, which is only half of the operations necessary to
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Fig. 4: Classification accuracy as a function of the channel
SNR for different pruning ratios and channel bandwidths.

run a single forward pass of the unpruned network. More
importantly, given 156 × 106 FLOPs limitation, which is the
number of operations that can be performed on a single Apple
Watch device within 0.05s, we achieve 1024× bandwidth
reduction compared to [7].

C. Comparison between different pruning ratios

In this section we evaluate the influence of different prun-
ing ratios on classification accuracy under different channel
SNRs for fixed splitting points and channel bandwidths. It is
clear from Fig. 4 that pruning leads to a drop in accuracy;
nevertheless, given reasonable pruning ratios of up to 50%,
accuracy drop decreases as we approach very low values of
channel SNR. This behaviour may stem from the fact that
feature distortion caused by network pruning becomes less
significant when the channel is very noisy. Another important
observation is that very high pruning ratios do not seem
to reduce nor improve the robustness of the communication
scheme - the accuracy drop caused by reducing the channel
SNR follows a similar trend for every pruning ratio considered
in this experiment.
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SNR for different channel bandwidths. Splitting after pooling
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D. Comparison between different channel bandwidths

In our last experiment, we fix the pruning ratio and the
splitting point and examine the influence of the available band-
width on the classification accuracy under different channel
SNR values (Fig. 5). One can clearly see that the available
bandwidth is a crucial factor in the performance. In our
experiments, reducing the bandwidth produced similar results
for high SNR values. Nevertheless, the more limited the
available bandwidth is, the sharper the drop in the accuracy
with channel SNR.

E. Selecting the optimal splitting point

As demonstrated by the results, the selection of the optimal
splitting point is a challenging and multi-dimensional problem.
It is necessary to consider factors such as desired classification
performance, the channel quality, available bandwidth, as well
as the computational power of the edge device. For example,
given the strict performance bounds in Fig. 3, where each
point of the JSCC + Pruning curve corresponds to pruning
layers up to pooling 1, 2, 3, 3 (higher pruning rate), 4,
and 5, respectively, it is shown that changing the splitting
point towards the end of the network decreases the bandwidth
needed to send the information, but increases the required
on-device computations, as more layers have to be processed
by the edge device. Moreover, lowering the accuracy of the
classification task allows to further reduce the computational
requirements, or gain more robustness against channel noise.

IV. CONCLUSIONS

We studied joint device-edge inference considering an IoT
device with limited computational resources, and a wireless
channel to the network edge. In particular, we considered
image classification over a power and bandwidth limited
edge device. We proposed pruning of the baseline taking
into account the noise introduced over the channel, under a
constraint on the available bandwidth. Our approach achieves

superior results in classification accuracy even with extremely
limited computational and communication resources.
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