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ABSTRACT

We consider wireless transmission of images in the
presence of channel output feedback, by introducing an
autoencoder-based deep joint source-channel coding (JSCC)
scheme. We achieve impressive results in terms of the end-to-
end reconstruction quality for fixed length transmission, and
in terms of the average delay for variable length transmis-
sion. To the best of our knowledge, this is the first practical
JSCC scheme that can fully exploit channel output feedback,
demonstrating yet another setting in which modern machine
learning techniques can enable the design of new and effi-
cient communication methods that surpass the performance
of traditional structured coding schemes.

Index Terms— Deep neural networks, Feedback, Joint
source-channel coding, Wireless image transmission

1. INTRODUCTION

Most of the existing communication systems today are de-
signed based on a two-step process which first compress
source samples into bits and then transmit these compressed
bits over a channel using a channel code. This is strongly
motivated by Shannon’s separation theorem [1], one of the
fundamental results of information theory, which establishes
that even if those steps are optimized separately, there is
no loss in the system’s general optimality. This principle
allows a modular approach in which an application layer
(responsible for processing the information source) and a
physical layer (responsible for dealing with channel coding
and modulation) can be designed independently and com-
bined, for different sources and channel conditions. In fact,
current systems employ highly specialized source codes for
different types of information sources, e.g., JPEG2000/BPG
for images, MPEG-4/WMA for audio, or H.264 for video,
and highly optimized channel coding and modulation tech-
niques to be used over different communication channels e.g.,
Turbo, LDPC, polar codes. Both the compression codecs and
the channel codes have been optimized over many decades
and gone through many generations of standards.

Despite its huge impact, optimality of separation holds
only under unlimited delay and complexity; and, even un-
der these assumptions, it breaks down in multi-user scenar-
ios [2], or non-ergodic source or channel distributions [3,4].
Still, the lack of powerful and practical joint source-channel
coding (JSCC) schemes with reasonable complexity have pre-
vented the adoption of alternative schemes. Although there
have been many research efforts on JSCC, they mostly fo-
cused either on theoretical analysis under idealistic source
and channel distributions [5-7], or the joint optimization of
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Fig. 1. Communication in the presence of noisy channel
output feedback. Source @ is transmitted over a noisy forward
channel, where after the transmission of each symbol y;, a
noisy version of the received signal z; becomes available to
the encoder through a feedback link.

the components of an inherently separate design [8-10]. An-
other fundamental result in information theory, again due to
Shannon [11], states that feedback does not increase the ca-
pacity of a memoryless communication channel. It can also
be shown that optimality of separation continues to hold in
the presence of feedback; therefore, information theoretically
feedback does not help the end-to-end performance of source-
channel coding either. On the other hand, feedback is known
to improve error exponents for channel coding [12,13], and to
significantly simplify the design of joint source-channel coding
schemes, at least in some ideal scenarios [14-16]. However,
practical schemes have had limited success in converting the
theoretical gains of feedback in practice, and only a handful
of papers have studied the problem of JSCC with feedback
(e.g., [17-19)).

Our goal in this paper is to design practical JSCC scheme
that can directly compete with separation-based strategies,
by exploiting noisy or noiseless channel output feedback. We
build upon the recent success of deep neural networks (DNNs)
both for coding and communication problems, such as chan-
nel decoding [20, 21], or end-to-end code design [22-24], as
well as image compression [25-27]. Most related prior work to
the current paper are [28-31], which consider the JSCC prob-
lem, and propose autoencoder-based solutions for end-to-end
optimization. In [29], we proposed the deepJSCC scheme,
capable of achieving performance par with state-of-the-art
separation-based digital schemes, while also providing grace-
ful degradation with the signal-to-noise ratio (SNR). In [30],
we also demonstrated that deepJSCC can transmit a source
in multiple stages with virtually no losses, being thus almost
successively refinable.

To the best of our knowledge, this is the first practical
implementation of JSCC in the presence of channel output
feedback, able to transmit a large content such as an image.
We show how a pure machine learning approach can perform,
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advancing the state of the art. We present a novel scheme,
called deep-JSCC-f, that: (1) significantly outperforms ideal
separation based schemes (BPG followed by capacity achiev-
ing code); (2) enables variable length transmission, greatly
reducing the average bandwidth required for a target qual-
ity; (3) is robust to noise in the feedback channel and to
variations in channel quality (both forward and feedback),
providing graceful degradation and analog behavior.

2. PROBLEM FORMULATION

We consider the wireless transmission of images using feed-
back. An input image with height H, width W and C color
channels, represented as a vector of pixel intensities ® €
R™;, n = HxWxC, is to be transmitted in k uses of a noisy
communication channel, where k/n is defined as the bandwidth
ratio. In this work, we consider a complex additive white
Gaussian noise (AWGN) channel, modeled as z; = y; + n;,
where y; € C denotes the complex channel input at time i,
z; € C the corresponding complex channel output, and n;
is the independent and identically distributed (i.i.d.) circu-
larly symmetric complex Gaussian noise component with zero
mean and variance o2. We consider the presence of channel
output feedback, through which a noisy version of the chan-
nel output at the receiver is made available to the transmit-
ter with a unit delay. Hence, the feedback signal available to
the transmitter at time ¢ is denoted by w; = zi+nif, where
n! denotes the i.i.d. additive complex Gaussian noise on the
feedback link with zero mean and variance o7 (see Fig. 1).

2.1. DeepJSCC-f Architecture
In terms of architecture, a key innovation of this work is the
use of layered autoencoders, which allow us to take advan-

tage of feedback. The proposed design models each layer
3, 5 =1,...,L, as a convolutional autoencoder. Motivated
by the well-known Schalkwijk-Kailath scheme [14,15] for the
transmission of a single Gaussian source sample over several
channel uses in the presence of perfect channel output feed-
back, we divide the transmission of each image « into L layers,
where each layer tries to improve the quality of the receiver’s
estimation by transmitting additional information about the
residual error. Let layer j be allocated k; channel uses, where

Zlekj =k. For the transmission of layer j, a channel input
vector of y; € C¥ is transmitted over the forward channel,
resulting in the channel output vector z;.

Each layer of the proposed deepJSCC-f architecture con-
sists of the following components: (a) an encoder, (b) a de-
coder, and (c) a combiner. Each transmission ¢ contains a
copy of all these components (apart from the combiner, that
is only used for layers j > 2). See Fig. 2a for the deepJSCC-f
architecture for L = 2. The encoder at layer j, fje 7 is mod-
eled as a CNN parametrized by vector 8; and receives as input
both the source image (z) and an estimation of the image re-
constructed by the receiver at the previous layer (Z,-1), i.e.,
y; = ffj (¢, &;—1) (when j = 1, only @ is used as input). The
receiver employs a decoder at each layer, which uses all the
channel outputs received so far. The decoder of the j-th layer,

) Z5)-

is used to combine

gfj, is a CNN parametrized by ¢;, i.e. 4; = gfj (z1,...
i
i
the reconstruction of previous layers: &; = c;?bj (&-1,1;),
where &1 = 4. Finally, we assume that all the trained de-
coder and combiner parameters ¢;, ¥;, are known both at the
receiver and the transmitter, and are used in the estimation
&1 =gy (wy1)) for j > 2, and &1 = g (w1)).
The source image « and the estimate &;_1 are concatenated
on the channel axis when sent as input of the next layer.

We assume that the forward and the feedback chan-
nels are independent of each other, and the y; sequences
are transmitted over independent realizations of the chan-
nel. The specific architecture of each component is given
by Fig. 2b, consisting of CNN layers, followed by normal-
ization obtained by the generalized normalization transfor-
mations (GDN/IGDN) [32], followed by a parametric ReLU
(PReLU) [33] or sigmoid activation. An unit average power
constraint is imposed on the the transmission. The parameter
¢ in the encoder’s last CNN layer is responsible for defining
the dimension of the channel input k;. Both the forward and
feedback channels are modeled as non-trainable layers. The
model is trained gradually, layer by layer; each layer aims
to minimize the average distance between the input image x
and its partial reconstruction &;. Upon convergence, layer
parameters are fixed and additional layers are trained, using
the previous channel output as feedback information.

Then, for j > 2, a combiner network

3. EXPERIMENTAL RESULTS

The performance of deepJSCC-f is evaluated in different
scenarios, and compared with benchmarks. Results from
this section were trained and evaluated on the CIFAR-10
dataset [34] and all plotted results are average values ob-
tained from 10 realizations of the channel for every image
on the evaluation dataset. The model was implemented in
Tensorflow and optimized using the Adam algorithm [35].
We used a learning rate of 10~* and a batch size of 128.
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Fig. 3. PSNR vs channel SNR comparison for k/n = 1/6.

Models were trained until the performance of a validation set
(distinct from the training and test datasets) stops decreas-
ing. As loss function, we considered the mean squared error
between the input (z) and outputs (&;). The performance
is measured with the peak signal to-noise ratio (PSNR),

defined as PSNR = 101log,, Hw Tocar® (dB). To measure the

quality of a channel in which communication is performed,
we consider the average signal-to-noise ratio (SNR) given by
SNR = 10log,, ﬁ(dB).

3.1. deepJSCC-f with Two Layers (L = 2)

We first consider perfect channel output feedback, and as-
sume that the source image x is transmitted in two lay-
ers: first a base layer y; with bandwidth k; is sent over the
channel; then, using the channel output corresponding to yi,
w1 = 21, a second message Y2, of length ko is transmitted.
For simplicity, we set k1 = k2. Fig. 3 shows the results for
compression rate k/n = 1/6, performed in two stages with
ki/n = ka/n = 1/12. The performance of models subject
to different forward channel SNRs is presented in the plot,
where a separate set of encoders, decoders, and combiners is
trained for each SNR.

We first compare our scheme’s performance with the
state of the art JSCC scheme for image transmission, deep-
JSCC [29], which does not exploit the feedback. We consider
an improved version of deepJSCC, by employing the same
architecture presented in Fig. 2b. This model is equivalent
to our scheme with L = 1; that is, a single transmission
with a bandwidth ratio k/n = 1/6. We show that the use
of feedback brings considerable performance improvement,
outperforming the deepJSCC by a wide margin, especially in
the low SNR regime, when the feedback information is more
relevant. We also compare the performance with separation-
based digital schemes, where images are first compressed
using state of the art compression codecs, and then encoded
by a channel code. For the source code, we consider well es-
tablished image compression algorithms: JPEG, JPEG2000
and BPG. For fair comparison, we remove the header infor-
mation from the compressed files, so we only consider the
communication of compressed bits. For the channel code,
we consider a practical scheme — low-density parity-check
code (LDPC) followed by quadrature amplitude modula-
tion (QAM) — and a theoretical bound — channel capacity.
For LDPC4+QAM, we evaluate the performance of different

code rates and modulation combinations, presenting here the
envelope of the best performing configurations. The capac-
ity achieving code would be a hypothetical channel code,
achieving the same rate as the underlying channel capacity,
representing an upper bound.

We note here that, since feedback does not increase the
capacity of the channel, this upper bound is the same with
or without feedback. We see in Fig. 3 that JPEG, currently
the most popular and most widely employed image compres-
sion codec, presents the worst performance, not being able
to compress with enough quality in low SNRs; while BPG is
the best performing algorithm. We note that deepJSCC-f
surpass even the best performing separation-based scheme
highlighting the improvement from JSCC.

3.2. deepJSCC-f with Multiple Layers (L > 2)

Next, we investigate the impact of increasing the number of
channel output feedback uses, by increasing the number of
layers (L). Fig. 4a shows the performance for a fixed band-
width ratio of k/n = 1/2, transmitted in different numbers
of layers L, with regular size k;/n = 1/2L. We also mark the
average PSNR achieved by each intermediate layer.

We see that the use of more layers initially increases the
performance. However, as more layers are introduced, the
performance stabilizes and even declines for L > 6. This
trade-off can be explained by the fact that, the increase of
layers reduces the size of the partial code, hampering the ca-
pacity of the encoder in transmitting relevant information re-
garding the whole image. Also, increasing L directly increases
the complexity of the model, as we need to train a separate
set of neural networks (encoder, decoder and a combiner) for
each layer. Our simulation results suggest that L = 4 lay-
ers typically provides a reasonable performance trade-off. In
Fig. 4b we present L = 4 results for a wider range of compres-
sion ratios and two different channel SNRs. We observe that
deepJSCC outperforms all other benchmarks, even the sepa-
ration based bound (which becomes looser as the bandwidth
ratio gets smaller), at all settings.

3.3. Variable Length Transmission

We can reformulate the JSCC problem by setting a certain
quality target for the delivery of each image, and aim at
minimizing the required channel bandwidth. In this case,
the perfect channel output feedback provides the transmitter
with the knowledge of the stopping time. It is shown in [6]
through theoretical analysis that allowing variable rate cod-
ing leads to a significant improvement in the delay-distortion
trade-off. Since, in our model, the receiver reconstructs the
image at each layer, the encoder knows exactly whether it
needs to send further information, or it can stop transmis-
sion when the distortion target is met.

We experiment this setting by considering the transmis-
sion with L = 8 layers, and computing the average band-
width needed for achieving a target PSNR. We compare this
to a digital scheme transmitting headerless BPG with an ideal
capacity-achieving code. For the digital scheme, we compress
each image to the minimum amount of bits that meet the tar-
get PSNR value, and find how many channel uses is needed to
transmit so many bits over the channel, assuming a capacity-
achieving channel code. We should again highlight the fact
that this bound is particularly loose when the image can be
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Fig. 4. (a) Impact of feedback channel uses in the performance. (b) Performance comparison for different bandwidth ratios,
for L = 4. (c) The average bandwidth ratio to achieve a specific target PSNR.

transmitted with only a few layers as this would correspond
to a very short blocklength. In Fig. 4c we plot the average
bandwidth ratio required to meet different target SNR values.
Significant gap between the two curves confirm the theoret-
ical results in this practical setting. We also observe that
the gap increases with the PSNR target. For a PSNR target
of 30 dB, the average bandwidth ratio is almost half that is
required by the bound on the separation-based schemes.

3.4. Noisy Feedback

Lastly, we consider the impact of noisy channel output feed-
back, i.e., (TJ2:>O. This is a particularly challenging setting as
the encoder cannot track the quality of the receiver’s recon-
struction accurately, and hence, cannot steer the decoder to
the right decision as efficiently as possible. Indeed it is known
that the known schemes with theoretical performance guar-
antees [14,15] break down even with a slightly noisy feedback.
Fig. 5 shows the performance for different feedback chan-
nel SNRs and the single layer model (no feedback). The SNR
of the feedback channel, SNR/?, is measured in terms of the
channel input, i.e., 1/0?. We can see that our model is ro-
bust to noise in the feedback channel. When SNR'® = 20 dB,
the performance is only slightly below the noiseless feedback
transmission. As SNR decreases, the performance degrades,
but overall remains quite high and competitive. The net-
work can learn to make good use of the feedback even with
SNRF® = 10 dB. When the feedback channel is very noisy
(SNR'® =0 dB), the transmission of additional layers still
positively contributes to the refinement of the reconstruc-
tion, but the overall performance is below than what can
be achieved by a single transmission, i.e., L = 1. However, a
hybrid approach could be proposed, in which the encoder hav-
ing access to both the original source image and the previous
reconstructions, can decide either to use or not the channel
output feedback information at each transmission. An imple-
mentation of such hybrid solution is left for future work.
Finally, we also highlight that deepJSCC-f is robust to
perturbations in both the feedback and the forward channel.
It was observed that, in situations in which a model is trained
at a specific channel SNR (forward or feedback), but evalu-
ated at a lower SNR, our model can still operate apart from
gradual decline in performance, thus presenting analog be-
havior. This graceful degradation, already demonstrated for
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the forward channel in [29], contrasts with the typical cliff
effect present in separation-based digital schemes.

4. CONCLUSION

In summary, this work presented, to the best of the authors’
knowledge, the first practical implementation of a DNN-aided
JSCC scheme with feedback for images, deepJSCC-f. We
have shown that deepJSCC-f can achieve considerable gains
in performance, compared to (a) JSCC without feedback; (b)
state-of-the-art image compression codecs followed by practi-
cal and high performing channel codes; and (c) ideal capacity
achieving channel codes. Our experiments reveal that the use
of the feedback channel improves the quality of the transmis-
sion, justifying the adoption of a multi-step strategy for image
transmission, in which a source is sent over multiple layers,
exploiting the feedback between transmissions. Moreover, a
flexible variable length coding scheme is also presented, al-
lowing a considerable economy of resources when a target
quality goal is set. Apart from the direct benefits of exploit-
ing the feedback information, we also show that deepJSCC- f
has other advantages, such as exhibiting analog behavior and
graceful degradation in case of variations in the system, being
able to adapt to either forward or feedback channel variations.
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