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Abstract—Analog over-the-air computation (OAC) is an ef-
ficient solution to a class of uplink data aggregation tasks
over a multiple-access channel (MAC), wherein the receiver,
dubbed the fusion center, aims to reconstruct a function of
the data distributed at edge devices rather than the individ-
ual data themselves. Existing OAC relies exclusively on the
maximum likelihood (ML) estimation at the fusion center to
recover the arithmetic sum of the transmitted signals from
different devices. ML estimation, however, is much susceptible
to noise. In particular, in the misaligned OAC where there are
channel misalignments among transmitted signals, ML estimation
suffers from severe error propagation and noise enhancement.
To address these challenges, this paper puts forth a Bayesian
approach for OAC by letting each edge device transmit two pieces
of prior information to the fusion center. Three OAC systems
are studied: the aligned OAC with perfectly-aligned signals; the
synchronous OAC with misaligned channel gains among the
received signals; and the asynchronous OAC with both channel-
gain and time misalignments. Using the prior information, we
devise linear minimum mean squared error (LMMSE) estimators
and a sum-product maximum a posteriori (SP-MAP) estimator
for the three OAC systems. Numerical results verify that, 1)
For the aligned and synchronous OAC, our LMMSE estimator
significantly outperforms the ML estimator. In the low signal-
to-noise ratio (SNR) regime, the LMMSE estimator reduces the
mean squared error (MSE) by at least 6 dB; in the high SNR
regime, the LMMSE estimator lowers the error floor on the MSE
by 86.4%; 2) For the asynchronous OAC, our LMMSE and SP-
MAP estimators are on an equal footing in terms of the MSE
performance, and are significantly better than the ML estimator.
On the other hand, in terms of computational complexity, the
SP-MAP estimator is much more efficient than the LMMSE
estimator.

Index Terms—Over-the-air computation, analog communica-
tion, Bayesian estimation, linear minimum mean square error,
sum product algorithm.

I. INTRODUCTION

In multiple-access channels (MACs), the fusion center (i.e.,
the common receiver of the MAC) is often interested in some
function of the data distributed across the edge devices, rather
than their individual values [1]–[16]. In distributed sensing
networks, for example, the fusion center is only interested in
a function of the sensor readings, such as mean humidity or
maximum temperature [4], [7]; in federated learning systems,
the fusion center is only interested in the weighted average of
the local updates transmitted from the edge devices but not
their individual updates [1], [17].

Distributed data aggregation in MAC for function com-
putation can be realized in a digital fashion via traditional
multiple-access technologies [18], [19] (e.g., TDMA, CDMA,
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OFDMA). Specifically, the values to be transmitted from the
edge devices are first digitized and then transmitted over or-
thogonal links to the fusion center. The desired function values
can be computed after decoding all individual values from
the edge devices. However, such a separate communication-
and-computation approach is suboptimal in that the individual
messages are not the desired targets at the fusion center –
transmitting them causes excessive bandwidth and latency
overhead.

Analog over-the-air computation (OAC) is an alternative
technique to realize efficient distributed data aggregation in
MACs [1], [4], [6]–[16], [20], [21]. Compared with the digital
approach, OAC is a joint computation-and-communication
scheme exploiting the fact that the MAC inherently generates
superposition of signals. The underpinnings of OAC are pre-
processing, channel precoding, and post-processing [3], [6].
As shown in Fig. 1, each device first pre-processes the
transmitted symbols by a pre-processing function, and then
precodes the pre-processed symbols by the inversion of the
uplink channel. The precoded symbols are transmitted to the
fusion center in an analog fashion (amplitude modulation).
In particular, different devices transmit simultaneously over
the same communication link and their signals overlap at the
receiver. The fusion center then post-processes the overlapped
signal to reconstruct the desired function values.

The pre-processing and post-processing functions are cho-
sen so that the desired function values are directly produced
after post-processing. For example, to compute the geometric
mean at the fusion center, we can choose the pre-processing
function to be a logarithm function and the post-processing
function to be an exponential function [3]. In general, the
functions that are computable via OAC are functions that
can be broken into a post-processed summation of multiple
pre-processed functions. This class of functions is named
nomographic functions [6]. On the other hand, the purpose
of channel precoding is to compensate for the channel im-
pairments so that the fading MAC degenerates to a Gaussian
MAC. As a result, when the transmitted signals arrive at the
fusion center simultaneously, the signals overlapped over-the-
air naturally produce the arithmetic sum of the pre-processed
signals.

In practice, however, accurate channel-gain precoding and
prefect synchronization among devices are very challenging
to achieve [1], [2], [9], especially with low-cost Internet-of-
Things (IoT) devices. With either channel-gain mismatches
or time asynchronies, the signals from different devices are
misaligned at the fusion center, which we refer to as the
misaligned OAC [9].

Prior works on the aligned OAC [1], [2], [4], [6], [8], [10],
[11], [13], [14], [22], [23] or the misaligned OAC [9] rely
exclusively on the maximum likelihood (ML) estimator to
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recover the arithmetic sum of the transmitted signals from
different devices. ML estimation, however, is much susceptible
to noise. Our prior work [9] showed that, in the misaligned
OAC, the arithmetic-sum estimation boils down to multi-user
estimation and the estimation space is infinitely large consider-
ing the continuous nature of OAC. As a result, ML estimation
suffers from severe error propagation and noise enhancement
with even mild channel-gain or time misalignment.

This paper puts forth a Bayesian approach for OAC to
address the problems faced by ML estimation. Specifically,
we let each edge device transmit two pieces of statistical
information (i.e., the first and second sample moments) of the
transmitted data and leverage these statistical characteristics
as prior information to construct Bayesian estimators at the
receiver to estimate the arithmetic-sum of the transmitted
signals. Three OAC systems are considered: 1) The aligned
OAC, where the transmitted signals are perfectly aligned at the
fusion center with neither channel-gain nor time misalignment;
2) The synchronous OAC, where there is only channel-gain
misalignment but no time misalignment. The aligned OAC is
a special case of the synchronous OAC when the channel-gain
precoding is perfect and there are no channel-gain mismatches
in the overlapped signal; 3) The asynchronous OAC, where
there are both channel-gain and time misalignments. The
synchronous OAC is a special case of the asynchronous OAC
when the calibrations of transmission timings at the edge
devices are accurate and there are no asynchronies among the
overlapped signals.

The main contributions of this paper are as follows:
1) For the aligned OAC and the synchronous OAC, we devise

a linear minimum mean square error (LMMSE) estimator
using the two pieces of prior information transmitted from
the edge devices. The MSE performances of both ML and
LMMSE estimators are derived. Numerical and simulation
results verify that i) for the aligned OAC, the use of prior
information brings at least 6 dB gains over the ML estima-
tor in the low EsN0 (i.e., the received energy per symbol
to noise power spectral density ratio) regime; ii) for the
synchronous OAC, the MSE performance of OAC exhibits
an error floor due to the misaligned channel coefficients.
Compared with the ML estimator, our LMMSE estimator
lowers the error floor by a large margin. When there is
mild phase misalignment, for example, the error floor is
lowered by 86.4% in the high-EsN0 regime.

2) For the asynchronous OAC, we make use of a whitened
matched-filtering and sampling scheme to produce over-
sampled, but independent samples, whereby an ML esti-
mator, an LMMSE estimator, and a sum-product maximum
a posteriori (SP-MAP) estimator are devised, respectively.
In particular, our SP-MAP estimator exploits both the prior
information transmitted from the edge devices and the spar-
sity of the sample structure, and is verified to be the most
effective estimator in the asynchronous OAC scenario in
terms of both the MSE performance and the computational
complexity. Compared with the ML estimator, the SP-MAP
estimator addresses the problems of error propagation and
noise enhancement and attains significantly lower MSE
under various degrees of time and phase misalignments.
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Figure 1. Distributed data aggregation in the MAC via OAC.

While the MSE performance of the SP-MAP estimator is
on the equal footing with the LMMSE estimator, it reduces
the computational complexity from Ω(L2 logL) to Ω(L)
for a packet of length L.

Notations – We use boldface lowercase letters to denote
column vectors (e.g., θ, s) and boldface uppercase letters to
denote matrices (e.g., V , D). For a vector or matrix, (·)>
denotes the transpose, (·)∗ denotes the complex conjugate,
(·)H denotes the conjugate transpose, and (·)† denotes the
Moore-Penrose pseudoinverse. R and C stand for the sets of
real and complex values, respectively. (·)r and (·)i stand for
the real and imaginary components of a complex symbol or
vector, respectively. The imaginary unit is represented by j. C
and CN stand for the real and complex Gaussian distributions,
respectively. The cardinality of a set V is denoted by |V|. The
sign function is denoted by sgn(·). The indicator function is
denoted by 1.

II. SYSTEM MODEL

We consider a MAC where M edge devices communicate
with a fusion center, as shown in Fig. 1. The message of the
m-th device is a vector of L complex values θm ∈ CL. The
desired message of the fusion center, denoted by θF ∈ CL,
is a function of {θm : m = 1, 2, ...,M} and each element of
θF is θF [`] = F(θ1[`], θ2[`], ..., θM [`]). In particular, F can
be written in a nomographic form as

F(θ1[`], θ2[`], ..., θM [`]) = ψ

(
M∑
m=1

ϕm(θm[`])

)
, (1)

where {ϕm, m = 1, 2, ...,M} are the pre-processing functions
and ψ is a post-processing function. In other words, the
nomographic form is a post-processed summation of multiple
pre-processed functions. It has been shown in [24] that in
general any function can be written into a nomographic form.

A. Distributed data aggregation via OAC

With OAC, distributed data aggregation over a MAC works
in the following manner. First, each of the M devices pre-
processes its message θm by a preprocessing function ϕm
and obtains

sm = ϕm(θm).

The pre-processed message sm is then precoded by a channel-
precoding factor αm (in the ideal case, αm corresponds to
channel inversion).
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Figure 2. The transmitted signals from different devices overlap at the fusion
center with channel-gain and time misalignments.

After pulse shaping, the time-domain signal to be transmit-
ted by the m-th device is given by1

xm(t) = αm

L∑
`=1

sm[`]p(t− `T ), (2)

where p(t) = 1/2 [sgn(t+ T )− sgn(t)] is a rectangular pulse
of duration T . Each edge device then carefully calibrates its
transmission timing based on its distance from the fusion
center and its moving speed, so that the signals from different
devices arrive at the fusion center simultaneously.

In practice, however, both the channel-gain pre-compensa-
tion and the transmission-timing calibration can be imperfect
due to the non-ideal hardware and inaccurate channel-ga-
in/delay estimation. After passing through the fading MAC, the
signals xm(t), ∀m, overlap at the fusion center with relative
time offsets. The received signal r(t) can be written as

r(t) =

M∑
m=1

h̃mxm(t− τm) + z(t), (3)

where h̃m is the time-domain complex channel gain. We
consider flat and slow fading channels, and hence, h̃m remains
constant over one transmission. z(t) is the zero-mean baseband
complex additive white Gaussian noise (AWGN), the double-
sided power spectral densities of which is N0. Without loss
of generality, we sort the M devices so that the devices with
smaller indexes arrive at the receiver earlier. The delay of the
first device is set to τ1 = 0, and the relative delay of the i-
th device with respect to the first device is denoted by τm.
We assume the time offsets τm, ∀m, are less than the symbol
duration T , as shown in Fig. 2. In the ideal case where the
transmission-timing calibrations are prefect, the relative delays
among signals are τm = 0, ∀m.

Substituting (2) into (3) gives us

r(t) =

M∑
m=1

h̃mαm

L∑
`=1

sm[`]p(t− τm − `T ) + z(t)

=

L∑
`=1

M∑
m=1

hmsm[`]p(t− τm − `T ) + z(t), (4)

where hm = h̃mαm is the residual channel gain. To sum-
marize, there can be two kinds of misalignments among
the signals transmitted from different devices: channel-gain
misalignment {hm : m = 1, 2, ...,M} caused by inaccu-
rate channel-gain compensation at the transmitter, and time

1In this paper, we formulate the channel-misaligned OAC considering the
time-domain realization of OAC. OAC can also be realized in the frequency
domain via OFDM. Interested readers may refer to Section VI of our
companion paper [9] for a more detailed discussion.

misalignment {τm : m = 1, 2, ...,M} caused by imperfect
calibration of the transmission timing.

As per (1), the objective of the fusion center is to estimate

θF = ψ

(
M∑
m=1

ϕm(θm)

)
, ψ(s+),

where each element of sequence s+ is defined as

s+[`] =

M∑
m=1

ϕm(θm[`]) =

M∑
m=1

sm[`].

For general pre-processing and post-processing functions,
we shall focus exclusively on the estimation of s+ from the
received signal r(t). In particular, our goal is to minimize
the mean squared error (MSE) between the true s+ and the
estimated ŝ+:

MSE(s+, ŝ+) =
1

L

L∑
`=1

∣∣∣∣∣ŝ+[`]−
M∑
m=1

sm[`]

∣∣∣∣∣
2

.

Remark. It is worth noting that, for a specific pair of pre-
processing and post-processing functions ϕm and ψ, mini-
mizing the MSE between s+ and ŝ+ does not necessarily
minimize the MSE between θF and the estimated θ̂F :

MSE(θF , θ̂F ) =
1

L

L∑
`=1

∣∣∣∣∣θ̂F [`]− ψ

(
M∑
m=1

ϕm(θm[`])

)∣∣∣∣∣
2

.

If the fusion center aims to compute the arithmetic mean of
{θm : m = 1, 2, ..,M}, for example, we choose ϕm(x) = x,
ψ(x) = x/M , and

MSE(θF , θ̂F ) =
1

M2
MSE(s+, ŝ+).

Therefore, minimizing MSE(θF , θ̂F ) is equivalent to minimiz-
ing MSE(s+, ŝ+) in this case.

On the other hand, if the fusion center aims to compute
the geometric mean of {θm : m = 1, 2, ..,M}, we choose
ϕm(x) = lnx, ψ(x) = exp(x/M), and

MSE(θF , θ̂F )=
1

L

L∑
`=1

∣∣∣∣∣exp

(
ŝ+[`]

M

)
−exp

(∑M
m=1sm[`]

M

)∣∣∣∣∣
2

.

In this case, MSE(θF , θ̂F ) ≈ 1
M2 MSE(s+, ŝ+) only when

both 1
M ŝ+[`]→ 0 and 1

M

∑M
m=1 sm[`]→ 0.

In this paper, we consider general pre-processing and post-
processing functions and focus on the MSE between ŝ+ and
ŝ+) (i.e., the part inside the dashed box in Fig. 1).

B. The Aligned OAC

Most prior works on OAC considered only the perfectly
aligned case, where there is neither channel-gain misalignment
nor time misalignment, which we refer to as the aligned OAC.
The received signal in the aligned OAC is given by

r(t) =

L∑
`=1

M∑
m=1

sm[`]p(t− `T ) + z(t). (5)
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Matched filtering r(t) by the same rectangular pulse p(t) and
sampling at t = iT , i = 1, 2, ..., L, gives us

r[i]=
1

T

∫ iT

(i−1)T
r(t)dt =

M∑
m=1

sm[i]+z[i] = s+[i]+z[i], (6)

where the noise sequence z[i] in the samples is independent
and identically distributed (i.i.d.), z[i] ∼ CN (0, N0

T ). As can
be seen, the target signal s+[i] appears explicitly on the RHS
of (6). A simple estimator can then be used to estimate the
sequence s+.

Definition 1 (ML estimation for the aligned OAC). Given a
sequence of samples r ∈ CL in (6), an ML estimator estimates
the target sequence s+ ∈ CL symbol-by-symbol by

ŝ+[i] = r[i]. (7)

Eq. (7) is an ML estimator because the sample r[i] in (6)
is conditional Gaussian – given s+[i], the likelihood function

f(r[i] | s+[i]) ∼ CN
(
s+[i],

N0

T

)
.

Therefore, the ML estimate of s+[i] for a given observation
r[i] is

ŝ+[i] = arg max
s+[i]

Pr (r[i] | s+[i]) = r[i].

Accurate precoding and transmission-timing calibration at
the transmitters admit a very simple sample structure at the
receiver since the target signal s+ is explicitly presented in
the samples. In this case, the fading MAC degenerates to a
Gaussian MAC and the M devices can be abstracted as a
single device transmitting the summation of sm directly to
the fusion center. In practice, however, both the channel-gain
compensation and the calibration of transmission timing can
be inaccurate. With either channel-gain or time misalignment,
clean samples as in (6) with s+ explicitly presented are
no longer available. The design of optimal estimators thus
becomes more challenging.

In the context of federated edge learning, our prior work [9]
studied the estimation problem for the misaligned OAC and
devised estimators that are ML optimal. In this paper, we fur-
ther extend our study in [9] considering a Bayesian approach.
Unlike ML estimation where the transmitted symbols sm are
treated as constants, this paper treats sm as random variables
(with unknown priors) and exploits the statistical characteristic
of sm as a kind of prior information to perform Bayesian
estimation at the receiver. In so doing, significant gains can
be achieved for both aligned and misaligned OAC.

III. SYNCHRONOUS OAC

This section focuses on the synchronous OAC where there
is channel-gain misalignment but no time misalignment in
the received signal. That is, we assume the calibrations of
transmission timing at the edge devices are satisfactory and
the relative time offsets of different signals at the fusion center
are negligible.

After matched filtering and sampling, the samples we ob-
tained can be written as

r[i] =

M∑
m=1

hmsm[i] + z[i], (8)

where hm is the residual channel gain due to inaccurate
channel-gain precoding. From each sample r[i], our goal is
to estimate s+[i] =

∑M
m=1 sm[i].

Eq. (8) is an underdetermined equation since we have
one equation for M unknowns. To estimate s+[i], the only
viable estimator in the literature is the ML estimator given in
Definition 1 – the raw sample r[i] is the best prediction about
s+[i] [9]. In this section, however, we show that the MSE of
the estimated ŝ+ can be significantly reduced by our Bayesian
approach, for which each device only needs to transmit two
pieces of prior information to the receiver.

A. The ML Estimator

To start with, let us analyze the ML estimate of s+ from
(8) and derive its MSE performance.

Proposition 1 (MSE of the ML estimator in synchronous
OAC). Given the samples in (8), the MSE performance of
the ML estimator is

MSEML = (h− 1)HV (h− 1) +
N0

T
, (9)

where h = [h1, h2, · · · , hM ]
>, 1 is an M × 1 all-ones vector,

V ,


V̂1 Ê∗1Ê2 · · · Ê∗1ÊM

Ê∗2Ê1 V̂2 · · · Ê∗2ÊM
· · · · · · · · · · · ·

Ê∗M Ê1 Ê∗M Ê2 · · · V̂M

 , (10)

and

Êm ,
1

L

L∑
i=1

sm[i], V̂m ,
1

L

L∑
i=1

|sm[i]|2, (11)

are, respectively, the first and second sample moments of the
symbols transmitted by the m-th device in one transmission.

Proof. As per Definition 1, we have ŝ+[i] = r[i] with the ML
estimator. The MSE of ŝ+ is then

MSEML =
1

L

L∑
i=1

|ŝ+[i]− s+[i]|2

=
1

L

L∑
i=1

∣∣∣∣∣
M∑
m=1

(hm − 1)sm[i] + z[i]

∣∣∣∣∣
2

(a)
=

1

L

L∑
i=1

∣∣∣∣∣
M∑
m=1

(hm − 1)sm[i]

∣∣∣∣∣
2

+
1

L

L∑
i=1

|z[i]|2

=
1

L

L∑
i=1

∣∣∣∣∣
M∑
m=1

(hm − 1)sm[i]

∣∣∣∣∣
2

+
N0

T
,

where (a) follows because sm[i] is independent of the noise
term z[i]; the last equality follows since the noise terms are
i.i.d. for different i.
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Defining h = [h1, h2, ..., hM ]> and s[i] = [s1[i], s2[i], ...,
sM [i]]>, MSEML can be written in a more compact form as

MSEML =
1

L

L∑
i=1

∣∣(h− 1)>s[i]
∣∣2 +

N0

T

= (h− 1)H
1

L

L∑
i=1

s∗[i]s>[i](h− 1) +
N0

T

= (h− 1)HV (h− 1) +
N0

T
.

If we define the first and second sample moments of the
symbols transmitted by the m-th device as in (11), V can
be written in the form of (10). �

Corollary 2 (MSE of the ML estimator in the aligned OAC).
Consider the aligned OAC where there is neither channel-gain
nor time misalignment. Given the samples in (6), the MSE of
the ML estimator can be obtained from (9) by setting h = 1:

MSEML =
N0

T
. (12)

To summarize, the MSE of the ML estimator is simply the
noise variance in the aligned OAC. When there is channel-
gain misalignment (i.e., the synchronous OAC), the additional
MSE introduced by the channel-gain misalignment is (h −
1)HV (h− 1).

B. The LMMSE Estimator

According to (9), the MSE performance of the ML estimator
can be poor when either |h − 1|2 or the noise variance is
large. To improve the estimation performance, this subsection
devises an LMMSE estimator. We show that, by letting each
device transmit two pieces of prior information, MSE can be
significantly reduced with the LMMSE estimator.

Definition 2 (LMMSE estimation). Given the samples in (8),
an LMMSE estimator estimates the sequence s+ ∈ CL symbol-
by-symbol by

ŝ+[i] = λr[i] + c, (13)

where the constants λ, c ∈ C are chosen so that the MSE
1
L

∑L
i=1 |ŝ+[i]− s+[i]|2 is minimized.

In each transmission, each device transmits the first sample
moment Êm and the second sample moment V̂m to the fusion
center reliably (in a digital manner, with channel coding
and automatic repeat request, for example) before the data
transmission. The fusion center then constructs a vector µ̂ and
a matrix D from the first and second sample moments by

µ̂ =
[
Ê1, Ê2, · · · , ÊM

]>
, (14)

D = diag
(
D̂1, D̂2, · · · , D̂M

)
, (15)

where D̂m is defined to be the sample variance of the symbols
transmitted by the m-th device in one transmission, i.e.,

D̂m ,
1

L

L∑
i=1

|sm[i]− Êm|2 = V̂m − |Êm|2. (16)

Given µ̂ and D, we now devise the LMMSE estimator.

Lemma 3 (positive definiteness of D and V ). Matrix D is
positive definite; matrix V is Hermitian positive definite.

Proof. For the diagonal matrix D, element D̂m is the sam-
ple variance of the symbols transmitted by device m. This
suggests that D̂m > 0, ∀m. As a result, D is positive definite.

For the complex matrix V , it can be seen from the definition
that it is Hermitian, i.e., V H = V . For any complex vector
x = [x1, x2, ..., xM ] ∈ CM , x 6= 0, we have

xHV x =

[x∗1, x
∗
2, ..., x

∗
M ]

1

L

L∑
i=1

[ |s1[i]|2 s∗1 [i]s2[i] ··· s
∗
1 [i]sM [i]

s∗2 [i]s1[i] |s2[i]|2 ··· s∗2 [i]sM [i]
··· ··· ··· ···

s∗M [i]s1[i] s
∗
M [i]s2[i] ··· |sM [i]|2

][
x∗1
x∗2
...
x∗M

]

=
1

L

L∑
i=1

∣∣∣∣∣
M∑
m=1

xmsm[i]

∣∣∣∣∣
2

> 0.

Thus, V is Hermitian positive definite. �

Theorem 4 (LMMSE estimation for the synchronous OAC).
Given a sequence of received samples r ∈ CL in (8), an
LMMSE estimator estimates the sequence s+ ∈ CL symbol-
by-symbol by

ŝ+[i] =
hHD1

hHDh+ N0

T

r[i] +

(
1− hHD1

hHDh+ N0

T

h

)>
µ̂. (17)

The MSE of the LMMSE estimator is

MSELMMSE = 1>D1−
∣∣hHD1

∣∣2
hHDh+ N0

T

, (18)

and we have MSELMMSE ≤ MSEML.

Proof. See Appendix A in the supplemental materials. �

Corollary 5 (LMMSE estimator for the aligned OAC). Con-
sider the aligned OAC where there is neither channel-gain
nor time misalignment. Given the samples in (6), an LMMSE
estimator estimates the sequence s+ ∈ CL symbol-by-symbol
by

ŝ+[i] =
1>D1

1>D1 + N0

T

r[i] +
N0

T

1>D1 + N0

T

1>̂µ. (19)

The MSE of the LMMSE estimator is

MSELMMSE =
N0

T 1>D1

1>D1 + N0

T

. (20)

We have MSELMMSE < MSEML, where MSEML is given in (12).

Proof. Eq. (19) and (20) follow directly from (17) and (18) by
setting h = 1. Further, we have

MSEML

MSELMMSE
=

1>D1 + N0

T

1>D1
> 1, (21)

and hence MSELMMSE < MSEML. �
To summarize, the ML estimator suffers from both channel-

gain misalignment h and noise, whereas the LMMSE es-
timator can alleviate the estimation errors caused by both
the channel-gain misalignment and noise, thanks to the prior
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𝑑1 = 𝜏2

𝑑2 = 𝜏3 − 𝜏2

𝑑𝑀 = 𝑇 − 𝜏𝑀

𝑦1 𝑖

𝑦2 𝑖

𝑦𝑀 𝑖

⋯

𝜏2

𝜏𝑀

𝑠1 1 𝑠1 2 ⋯ 𝑠1 𝐿

𝑠2 1 𝑠2 2 ⋯ 𝑠2 𝐿

𝑠𝑀 1 𝑠𝑀 2 ⋯ 𝑠𝑀 𝐿

⋯⋯

Figure 3. Matched filtering the received signal by a bank of M filters of
lengths dk = τk+1 − τk .

information transmitted from the edge devices. The MSE gains
are not analytically straightforward from (9) and (18) for
the general channel-gain misalignment h. Therefore, let us
consider the aligned OAC wherein h = 1. It can be seen
from (21) that the MSE gains of the LMMSE estimator over
the ML estimator are 3 dB when 1>D1 = N0

T . Further, when
1>D1 ≤ N0

T , the gains can be significant.

IV. ASYNCHRONOUS OAC

This section considers the asynchronous OAC, where there
are both channel-gain and time misalignments in the received
signal. Let us first reproduce the received signal r(t) in (4)
below.

r(t) =

L∑
`=1

M∑
m=1

hmsm[`]p(t− τm − `T ) + z(t), (22)

where sm[`] is the `-th complex number transmitted from the
m-th device; hm = |hm|ejφm is the residual channel gain; τm
is the time offset of the m-th device relative to the first device.

A. Whitened Matched Filtering and Sampling

As shown in Fig. 2, the symbols from different devices in
the asynchronous OAC are misaligned in time. To obtain a
whitened discrete model from the received signal, we employ
a bank of M matched filters of different lengths to collect
power judiciously from r(t).

The matched filtering and sampling processes are illustrated
in Fig. 3. Specifically, the M matched filters {p′k(t) : k =
1, 2, ...,M} are defined as

p′k(t) =
1

2

[
sgn(t+ T )− sgn(t+ T − dk)

]
, (23)

where the length of the k-th matched filter is dk = τk+1− τk,
k = 1, 2, ...,M . For completeness, we define τM+1 = T .

The signal filtered by the k-th matched filter is given by

yk(t) =
1

dk

∫ ∞
−∞

r(ζ)p′k(t− ζ) dζ

=
1

dk

∫ ∞
−∞

(
L∑
`=1

M∑
m=1

hmsm[`]p(ζ−τm−`T )+z(ζ)

)
p′k(t−ζ)dζ,

and we sample yk(t) at (i−1)T +τk+1 : i = 1, 2, ..., L, L+1.
The samples we get are

yk[i] = yk(t = (i− 1)T + τk+1) =
1

dk

∫ (i−1)T+τk+1

(i−1)T+τk

M∑
m=1

hmsm[i− 1m>k] dζ +
1

dk

∫ (i−1)T+τk+1

(i−1)T+τk

z(ζ) dζ

=

M∑
m=1

hmsm[i− 1m>k] + zk[i], (24)

where we have defined sm[0] = sm[L + 1] = 0, ∀m, for
completeness.

Eq. (24) is very informative. Let us take a closer look:

1) Each sample in (24) is related to M complex symbols,
each of which comes from a different device.

2) It can be verified that E [zk[i]zk′ [i
′]] = N0T

dk
δ
(
(i−i′)(k−

k′)
)
. This means that the noise sequence zk is white:

zk[i] ∼ CN (0, N0T/dk) and is independent for different
k and i.

3) The symbols are aligned in time within the integral inter-
val of the M -th matched filter. Specifically, let k = M ,
we have

yM [i] =

M∑
m=1

hmsm[i] + zM [i], (25)

where zM [i] ∼ CN (0, N0T/dM ). Unlike the outputs of
other matched filters, the sampling outputs of the M -th
matched filter form a synchronous OAC with the noise
variance being amplified by T/dM times.

The third observation suggests that the ML and LMMSE
estimators designed for the synchronous OAC can also be used
in the asynchronous case, utilizing the outputs of the M -th
matched filter only (for the purpose of differentiation, we add
a prefix “p-” before the ML and LMMSE estimators since
only partial samples are used here).

Corollary 6 (MSEs of the p-ML and p-LMMSE estimators in
asynchronous OAC). In asynchronous OAC, given the output
of the M -th matched filter in (25), the MSEs of the ML and
LMMSE estimators are

MSEp-ML = (h− 1)HV (h− 1) +
N0T

dM
, (26)

MSEp-LMMSE = 1>D1−
∣∣hHD1

∣∣2
hHDh+ N0T

dM

. (27)

Proof. Corollary 6 follows from Proposition 1 and Theorem 4
by substituting dM/T for T since only the sampling outputs
of the M -th matched filter are used. �

From (26) and (27), it is clear that the MSEs of the p-ML
and p-LMMSE estimators hinge on the maximum time offset
τM as it determines the duration of the M -th matched filter
dM = T − τM . Take the p-LMMSE estimator for example. In
the synchronous OAC, we have τM = 0, and hence, dM = T .
In the asynchronous OAC, on the other hand, MSEp-LMMSE
increases with τM . To the extent that as τM → T (hence dM
→ 0), MSEp-LMMSE → 1>D1. In the next section, we shall
devise more powerful estimators that make use of the samples
from all matched filters.
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B. ML estimation vs LMMSE estimation

To start with, let us rewrite all the samples given by (24)
into a more compact form as

y = Gs+ z, (28)

where y, s, and z are defined as

y ,
[
y1[1], y2[1], ..., yM [1], y1[2], y2[2], ..., yM [2], ...,

y1[L], y2[L], ..., yM [L], y1[L+1], y2[L+1], ..., yM−1[L+1]
]>
,

s ,
[
s1[1], s2[1], ..., sM [1], s1[2], s2[2], ..., sM [2], ...,

s1[L], s2[L], ..., sM [L]
]>
,

z ,
[
z1[1], z2[1], ..., zM [1], z1[2], z2[2], ..., zM [2], ...,

z1[L], z2[L], ..., zM [L], z1[L+1], z2[L+1], ..., zM−1[L+1]
]>
,

and the M(L+ 1)− 1 by ML coefficient matrix G is

G ,



h1

h1 h2

... h2 ...
h1 ... ... hM

h2 ... hM h1

... ... h1 h2

hM ... h2 ...
h1 ... ... hM

h2 ... hM ...
... ... ...
hM ...

...


.

Eq. (28) is in the form of a classic inter-symbol interference
(ISI) channel model in digital communications with two main
difference:
1) The sequence of transmitted symbols s are continuous

complex values instead of discrete constellations. In digital
communications, the discrete constellation is a kind of prior
information to the receiver whereby the detection space
is naturally narrowed down to the possible constellation
points only. In OAC, however, we do not have such prior
information due to the continuous nature of the transmitted
signal. The estimation space is thus infinitely large.

2) Our aim is not to estimate the transmitted symbols s, but
a linear transformation of s:

s+ = Fs, (29)

where L by ML dimensional matrix F is given by

F =


1>

1>

...
1>

 ,
in which 1> is a 1×M all-ones vector.

To estimate s+ in (29), a viable estimator that utilizes all
the samples y is the ML estimator.

Definition 3 (ML estimation for the asynchronous OAC).
Given a sequence of samples y ∈ CM(L+1) in (28), the ML
estimate of sequence s+ ∈ CL is

ŝml
+ = F (GHΣ−1

z G)−1GHΣ−1
z y, (30)

where Σz denotes the covariance matrix of the noise sequence
z. In particular, Σz is a diagonal matrix since z is white.

The MSE of the ML estimator can be derived as

MSE =
1

L
E
[
(ŝml

+−s+)H(ŝml
+−s+)

]
=

1

L
Tr
{
F (GHΣ−1

z G)−1

GHΣ−1
z E[zzH ]Σ−Hz G(GHΣ−1

z G)−HFH
}

=
1

L
Tr
{
F (GHΣ−1

z G)−HFH
}

=
1

L
Tr
{
F (GHΣ−1

z G)−1F>
}
.

It is revealed in our prior work [9] that ML estimation is
much susceptible to noise due to the infinitely large estimation
space. As a result, error propagation and noise enhancement
are severe with the ML estimator.

Unlike ML estimation, which treats the transmitted se-
quence s as a constant sequence, this paper treats s as a ran-
dom sequence and leverages a Bayesian approach to address
the problems faced by ML estimation. As in the synchronous
case, we will show that the estimation performance can be
significantly improved by making good use of two pieces of
prior information (i.e., the first and second sample moments)
transmitted from each edge device.

Theorem 7 (LMMSE estimation for the asynchronous OAC).
Given a sequence of samples y ∈ CM(L+1) in (28), an LMMSE
estimator estimates the sequence s+ ∈ CL by

ŝLMMSE
+ = Ay + (F −AG)µ̃, (31)

where A , FD̃GH(GD̃GH + Σz)−1. The vector µ̃ , E[s]
and matrix D̃ , E[ssH ] − E[s]EH [s] can be constructed
from the first and second sample moments transmitted from
the devices, giving

µ̃ =
[
Ê1, Ê2, ..., ÊM , Ê1, Ê2, ..., ÊM , ..., Ê1, Ê2, ..., ÊM

]>
,

D̃ = diag
(
D̂1, ..., D̂M , D̂1, ..., D̂M , ..., D̂1, ..., D̂M

)
.

The MSE of the LMMSE estimator is

MSELMMSE =
1

L
Tr
[
(AG−F )D̃(AG−F )H+AΣzA

H
]
. (32)

Proof. See Appendix B in the supplemental materials. �
The performances of the ML and LMMSE estimators are

compared numerically in Section V. As will be shown, the
LMMSE estimator outperforms the ML estimator significantly
in terms of MSE. Intuitively, the LMMSE estimator leverages
the sample mean and sample variance transmitted from each
edge device as a kind of prior information, thereby reducing
the estimation space by much.

However, a problem with the LMMSE estimator is the high
computational complexity since the dimensionalities of the
matrices in (31) grow linearly with the number of devices M
and the packet length L. As a result, (31) is computationally
expensive for large M and L. Let us assess the computational
complexity of (31) by the matrix inversion (GD̃GH+Σz)−1,
which is the most computationally demanding part of (31).
To invert an n by n matrix, the best proven lower bound of
the computational complexity is Ω(n2 log n) [25]. Thus, the
complexity of (31) is Ω(M2L2 log(ML)). In OAC systems,
the packet length L is often much larger than the number of
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devices M . Let us fix M as a constant, the computational
complexity of (31) is then Ω(L2 logL).

In the next subsection, we shall solve this problem by
exploiting the sparsity of the coefficient matrix and developing
a sum-product MAP (SP-MAP) estimator. The MSE perfor-
mance of the SP-MAP estimator is on an equal footing with
the LMMSE estimator, but its computational complexity is
only Ω(L).

C. MAP Estimation
To tackle the high-complexity of the LMMSE estimation

and to devise a practical estimator for the misaligned OAC,
this subsection resorts to MAP estimation and puts forth an
SP-MAP estimator for the asynchronous OAC.

Definition 4 (MAP estimation for the asynchronous OAC).
Given the white samples {yk[i]} in (24), an MAP estimator
estimates the element of the target sequence s+ ∈ CL by

ŝ+[i] = arg max
s+[i]

Pr

(
s+[i] =

M∑
m=1

sm[i]
∣∣∣ y) , (33)

where

Pr

(
s+[i]=

M∑
m=1

sm[i]
∣∣∣ y) =

∫
∑M

m=1 sm[i]=s+[i]

f(s1[i],s2[i], ...,sM [i]|y)d(s1[i],s2[i], ...,sM [i]).

As can be seen, to obtain the MAP estimate, a first
step is to derive the joint posterior probability distribution
f(s1[i],s2[i], ...,sM [i]|y). For this purpose, we shall start from
the joint posterior distribution of all transmitted symbols
conditioned on the samples observed at the receiver, i.e.,
f(s1, s2, ..., sM |y). To ease exposition, we name f(s1[i],
s2[i], ...,sM [i]|y) the marginal posterior distribution and f(s1,
s2, ..., sM |y) the global posterior distribution.

The global posterior distribution can be factorized in the
following way:

f(s1, s2, ..., sM |y)

∝ f(y|s1, s2, ..., sM )f(s1, s2, ..., sM )

(a)
∝

M∏
k=1

L+1∏
i=1

f(yk[i]|s1, s2, ..., sM )

M∏
m=1

f(sm)

(b)
∝

M∏
k=1

L+1∏
i=1

f(yk[i]|V(yk[i]))

M∏
m=1

L∏
i=1

f(sm[i]), (34)

where ∝ stands for “proportional to”. Step (a) follows because
i) given the transmitted sequence s1, s2, ..., sM , all the
samples y are independent since the noise sequence is white;
ii) the transmitted symbols sm from different devices are
independent. Step (b) follows since
i) Each sample yk[i] is only related to a set of complex sym-

bols V(yk[i]) = {s1[i], s2[i], ..., sk[i], sk+1[i− 1], sk+2[i−
1], ..., sM [i−1]}. We call them the neighbor symbols of the
sample yk[i]. In particular, the number of non-zero symbols
in V(yk[i]) is

|V(yk[i])| =


k, when i = 1;

M, when 1 ≤ i ≤ L;

M − k, when i = L+ 1.

(35)

ii) f(sm) is the prior distribution of the transmitted symbols
from the m-th device. To construct this information at the
receiver, we assume the symbols of each edge device are
generated from a Gaussian distribution in an i.i.d. manner.
In particular, the Gaussian distribution is parameterized by
the first and second sample moments transmitted from each
edge device. This is a plausible assumption since there is
no randomness once a packet is generated at the transmitter
and the receiver can assume they are sampled from an
i.i.d. Gaussian with mean and variance being its sample
mean and sample variance. We emphasize that the devices
have to generate the first and second sample moments (i.e.,
the prior information to the receiver) for each new packet
and transmit it to the receiver. The receiver then estimates
different packets using different prior information.
The factorizations in (34) can be depicted by a graphical

model [5], [26]–[28], as shown in Fig. 4, where we use a
Forney-style factor graph [27] to represent the factorization.
Specifically, each edge in the graph corresponds to a variable
in (24), e.g., an observation yk[i] or a noise term zk[i]. The
variable Wk,i is a high-dimensional variable consisting of all
complex symbols in V(yk[i]), i.e., Wk,i = V(yk[i]) = {s1[i],
s2[i], ..., sk[i], sk+1[i− 1], sk+2[i− 1], ..., sM [i− 1]}.

The equality function/constraint “=” in Fig. 4 means that
the variables connecting to this function are exactly the same
(but may have different posterior distributions). The compati-
bility function δ, on the other hand, represents the constraint
that the values of the common symbols contained in the adja-
cent variables must be equal. For example, W1,1 = {s1[1]},
W2,1 = {s1[1], s2[1]}, and the common symbol betweenW1,1

and W2,1 is s1[1]. Therefore, we have to add a constraint
δ(W1,1,W2,1) between W1,1 and W2,1 to ensure that the
values of s1[1] in W1,1 and W2,1 are the same. In general,
for any two adjacent variables W and W ′ connecting to the
same delta function δ(W ,W ′), we have

δ(W ,W ′) =


1, if the values of all common symbols

between W and W ′ are equal;
0, otherwise.

Succinctly speaking, function δ is an on-off function ensuring
that the messages passed from W to W ′ and that passed from
W ′ to W satisfy the constraint that the values of the common
symbols between W and W ′ are equal.

Finally, the prior information fs1,s2,...,sM
is an M -di-

mensional Gaussian, the mean vector and covariance matrix
of which are given in (14) and (15), respectively. To avoid
unnecessary loops, the prior information is added every M
samples, as shown in Fig. 4.

D. The SP-MAP Estimator

The marginal posterior distribution f(s1[i], s2[i], ..., sM [i]|
y) is a marginal function of the global posterior distribu-
tion f(s1, s2, ..., sM |y). Therefore, it can be derived by a
marginalization process operated on Fig. 4, which can be
implemented efficiently via the sum-product algorithm.

A caveat here is that, unlike digital communications, all the
variables in Fig. 4 are continuous random variables since the
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Figure 4. A graphical interpretation of the factorization in (34). The high-dimensional variable Wk,i = V(yk[i]) = {s1[i], s2[i], ..., sk[i], sk+1[i − 1],
sk+2[i− 1], ..., sM [i− 1]}. To simplify notations, we denote yk[i] and zk[i] by yk,i and zk,i, respectively, in the figure.

transmitted symbols {s1, s2, ..., sM} are continuous complex
values. Therefore, the messages to be passed on the graph are
continuous probability density functions (PDFs) as opposed
to discrete probability mass functions (PMFs). In Theorem 8
below, we prove an important result that all the messages
passed on the tree are multivariate Gaussian distributions. This
suggests that we can parameterize the PDFs by their mean
vectors and covariance matrices – passing these parameters is
equivalent to passing the continuous PDFs.

Theorem 8 (Conditional Gaussian of the posterior distribu-
tions). Consider the MAP estimator defined in Definition 4. Let
s[i] = (s1[i], s2[i], ..., sM [i]), we have the following results:
1) The marginal posterior distribution f(s[i]|y) is an M -

dimensional complex Gaussian distribution, giving

f(s[i]|y) ∼ (36)

N

(
s[i],µs[i] =

[
µr

s[i]

µi
s[i]

]
,Σs[i] =

[
Σrr

s[i] Σri
s[i]

Σir
s[i] Σii

s[i]

])
,

where µs[i] is a 2M by 1 real vector consisting of
the real and imaginary parts of the mean of s[i], that
is, µr

s[i] and µi
s[i] are the real and imaginary parts of

sequence E[s[i]]>; the matrix Σs[i] is a 2M by 2M
covariance matrix. The moment parameters (µs[i],Σs[i])
can be computed by an analog message passing process
described in Algorithm 1 of the supplemental materials.

2) The posterior distribution f(s+[i] =
∑M
m=1 sm[i]|y) is a

complex Gaussian distribution, giving

f(s+[i]|y) ∼ (37)

N

(
s+[i],µs+[i] =

[
µr
s+[i]

µi
s+[i]

]
,Σs+[i] =

[
Σrr
s+[i] Σri

s+[i]

Σir
s+[i] Σii

s+[i]

])
,

where µr
s+[i] = 1>µr

s[i], µ
i
s+[i] = 1>µi

s[i], Σrr
s+[i] = 1>

Σrr
s[i]1, Σri

s+[i] = 1>Σri
s[i]1, Σir

s+[i] = 1>Σir
s[i]1, Σii

s+[i] =

1>Σii
s[i]1.

Proof. See Appendix C in the supplemental materials. �
Based on Theorem 8, the MAP estimator in Definition 4

can be refined as follows.

Definition 5 (SP-MAP estimation for the asynchronous OAC).
Given the output of the M matched filters y in (28), an SP-
MAP estimator first computes the moment parameters of the

Gaussian distribution f(s[i]|y) in (36) by analog message
passing. From the mean vector µs[i] = [µr

s[i],µ
i
s[i]]
>, the

SP-MAP estimator estimates s+[i] by

ŝ+[i] = 1>µr
s[i] + j1>µi

s[i]. (38)

Eq. (38) can be understood in the following way: since
f(s+[i]|y) is Gaussian, its mean vector maximizes the pos-
terior probability. As per the MAP rule in (33), an SP-MAP
estimator chooses the mean of f(s+[i]|y), i.e., (38), as the
MAP estimate.

Finally, we compare the complexity of the SP-MAP esti-
mator against that of the LMMSE estimator. With Gaussian
message passing, the messages passed on the graph are simply
the parameters of the Gaussian distributions instead of the
continuous Gaussian PDFs. Thus, the computations involved
in the analog message passing are only 1) the sum of 2M-
dimensional vectors/matrices, and 2) 2M-dimensional matrix
inversion. The computational complexity of the SP-MAP es-
timator is then Ω(LM2 logM). If we fix M as a constant,
the computational complexity of the SP-MAP estimator is
simply Ω(L). In contrast, the computational complexity of the
LMMSE estimator is Ω(L2 logL).

V. NUMERICAL AND SIMULATION RESULTS

This section evaluates the MSE performance of various
Bayesian estimators devised in this paper benchmarked against
the ML estimator. Specifically, we consider a MAC where
M = 4 devices communicate with a fusion center via OAC.
There can be channel-gain and time misalignments among
the signals received by the AP. We shall evaluate the MSEs
of different estimators under various degrees of channel-gain
misalignment, time misalignment, and EsN0:

1) The residual channel gain of the m-th device is hm =
|hm|ejφm . In the simulations, we set |hm| = 1, ∀m, and
focus on the impact of the phase misalignment caused by
residual phase offsets φm. Specifically, we assume {φm :
m = 1, 2, ...,M} are uniformly distributed in (0, φ) and
φ is the maximum phase offset. That is, φm ∼ U(0, φ).

2) Without loss of generality, the symbol duration is set to
T = 1. Recall that the p-ML and p-LMMSE estimators
make use of only the outputs of the M -th matched
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Figure 5. Numerical and simulation results of the ML and LMMSE estimators
in synchronous OAC under various degrees of phase misalignments.

filter. For these two estimators, the estimation perfor-
mance hinges on the length of the M -th matched filter
dM = 1− τM . In view of this, the time offsets τm, ∀m,
are set in the following manner: first, we fix the time
offset of the M -th device τM (and hence dM ); then, we
generate the time offsets of other devices uniformly in
(0, τM ).

3) EsN0 is defined as

EsN0 ,
1

N0

1

L

L∑
i=1

∣∣∣∣∣
M∑
m=1

ejφmsm[i]

∣∣∣∣∣
2

. (39)

The transmitted symbols of the four devices sm are gener-
ated uniformly in ranges [−6, 0], [−4, 2], [−2, 4], [0, 6], respec-
tively. Considering the intensive computational complexity
of the LMMSE estimator (see (31)), we use a short packet
length L = 128 to simulate the performance of the LMMSE
estimator. For all other estimators, the packet length is set to
L = 1024.

A. Synchronous OAC

We first consider the synchronous OAC and compare the
ML and LMMSE estimators under various degrees of phase
misalignments and EsN0. The maximum phase offset φ is set
to 0 (no phase misalignment), π/2 (mild),2 π (moderate), or
2π (severe).

Fig. 5 presents the MSEs of the ML and LMMSE estimators
versus EsN0 (in dB), wherein φ = 0 and π/2. The numerical
MSEs are generated by (9) and (18), respectively. In all our
simulations, the simulation results match the numerical results
very well. To ease presentation, we shall omit the numerical
results and present the simulation results in the following.

Two main observations from Fig. 5 are as follows:
1) In the aligned OAC (φ = 0), our LMMSE estimator

outperforms the ML estimator by much in the low-EsN0

2Notice that φ is the maximum phase offset and the phase offsets of all
devices are uniformly distributed in [0, φ]. If we look at the phase misalign-
ment between any two devices, the average pairwise-phase-misalignment is
only φ/3. That is why we classify π/2 as mild because the average pairwise-
phase-misalignment is only π/6.

Asyn

A-LMMSE

20 dB

20 dB

20 dB

20 dB

Figure 6. MSEs of the p-LMMSE estimator in asynchronous OAC under
various degrees of time and phase misalignments.

regime. At an EsN0 of −5 dB, the MSE gains are up to
6 dB. In the high-EsN0 regime, the two estimators are
equally optimal. This is consistent with our analysis in
Section III.

2) When there is phase misalignment, both the ML and
LMMSE estimators suffer from error floor in the high-
EsN0 regime. In particular, the error floor of the aligned-
sample estimator is fairly pronounced even with mild
phase offset φ = π/2. The LMMSE estimator, on the
other hand, lowers the error floor by 86.4%.

If we further increase φ to π and 2π, similar results can
be observed and the LMMSE estimator consistently outper-
forms the ML estimator. Overall, we conclude that the prior
information is very helpful in the synchronous OAC, the
MSE performance is improved remarkably with the LMMSE
estimator.

B. Asynchronous OAC

Next, we evaluate the MSEs of the ML and Bayesian
estimators designed for the asynchronous OAC. With no prior
information, the viable estimators are the p-ML estimator
(Corollary 6) and the ML estimator (Definition 3). With
prior information, this paper devised a p-LMMSE estimator
(Corollary 6), an LMMSE estimator (Theorem 7), and an SP-
MAP estimator (Definition 5).

1) The p-ML and the p-LMMSE estimators: The p-ML
and p-LMMSE estimators utilize only the outputs of the M -
th matched filter. Thus, compared with their performance in
the synchronous OAC (i.e., Fig. 5), the introduction of time
offset simply results in an EsN0 penalty. For example, if the
maximum time offset τM = 0.9 (hence dM = 1− τM = 0.1),
then we only need to shift the curves of the ML/LMMSE
estimators in Fig. 5 by 10 dB to the right, where 10 dB is
calculated from 10 log10(1/dM ). An immediate result is that
the p-LMMSE estimator is still strictly better than the p-ML
estimator after the right shift.

Fig. 6 presents the MSE performance of the p-LMMSE
estimator (the performance of the p-ML estimator is omitted).
As predicted, the MSE performance deteriorates when there
is either time or phase misalignment – time misalignment
introduces a 20 dB EsN0 penalty (dM = 0.01 corresponds to
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20 dB

15 dB

15 dB

15 dB

Figure 7. MSEs of the ML estimator in asynchronous OAC under various
degrees of time and phase misalignments.

20 dB) while phase misalignment results in both EsN0 penalty
and error floor.

2) The ML estimator: Fig. 7 presents the MSEs of the
ML estimator under different time and phase misalignments.
As can be seen, when there is no phase misalignment, the
ML estimator suffers from time offset, the MSE performance
deteriorates by 20 dB when we decrease dM from 0.99 to
0.01. When there is phase misalignment, on the other hand,
an interesting observation is that the ML estimator benefits
from time misalignment: the MSEs are improved by 15 dB
when φ = π/2, π, and 2π.

ML uses the samples from all the matched filters, but it
utilizes no prior information. Comparing Fig. 6 with Fig. 7,
it can be seen that the ML estimator is even worse than the
p-LMMSE estimator (which uses only partial samples) when
there is phase misalignment. For example, to achieve a MSE
of 10 when φ = π/2 and τM = 0.01, the p-LMMSE estimator
requires an EsN0 of 24 dB while the ML estimator requires
45 dB. On the other hand, the advantage of the ML estimator
is that it exhibits no error floor in the high-EsN0 regime.

To summarize, a major problem of the ML estimator is that
it is very sensitive to noise due to the infinite estimation space.
As a result, it suffers from severe error propagation and noise
enhancement when there is phase misalignment [9]. This is
also validated in Fig. 7: there is a large EsN0 gap between the
phase-aligned OAC and the phase-misaligned OAC.

Next, we evaluate the MSEs of our LMMSE and SP-MAP
estimators designed for the asynchronous OAC.

3) The SP-MAP and LMMSE estimators: The SP-MAP and
LMMSE estimators utilize all the samples, and also, the prior
information transmitted from the edge devices. Their MSEs are
presented in Fig. 8 and 9, respectively, under various degrees
of time and phase misalignments. As shown, the estimation
performance of the two estimators is on the same footing in
terms of MSE. Thus, we shall focus on the SP-MAP estimator
in the following.

We have two observations from Fig. 8:
1) When there is no phase misalignment (φ = 0), the EsN0

penalty caused by asynchrony is 17 dB. Compared with
Fig. 6 and Fig. 7, where the EsN0 penalty is 20 dB with
the p-LMMSE and ML estimators, the SP-MAP estimator

17 dB

10 dB
10 dB

13 dB

Asyn

SP-MAP

Figure 8. MSEs of the SP-MAP estimator in asynchronous OAC under various
degrees of time and phase misalignments.

Asyn

LMMSE

Figure 9. MSEs of the LMMSE estimator in asynchronous OAC under various
degrees of time and phase misalignments.

compensates the EsN0 penalty introduced by asynchrony
by 3 dB.

2) When there is phase misalignments, the SP-MAP esti-
mator also benefits from the time misalignment. Take the
φ = π and 2π curves in Fig. 9 for example. When there is
time misalignment, the MSEs of the SP-MAP estimator
are improved by 10 dB and 13 dB, respectively.

In summary, 1) compared with the p-LMMSE estimator,
the SP-MAP estimator utilizes all the sampling output of the
matched filters and completely eliminates the error floors faced
by the p-LMMSE estimator; 2) compared with the ML esti-
mator, the SP-MAP estimator addresses the error propagation
problem by taking advantage of the prior information trans-
mitted from the devices. The MSEs are significantly reduced
in all cases; 3) compared with the LMMSE estimator, the SP-
MAP estimator attains the same level of MSE performance,
but is much more computationally efficient.

VI. CONCLUSION

Analog OAC is an efficient scheme to speed up the dis-
tributed data aggregation in MACs. The main spirit of OAC is
joint computation-and-communication by exploiting the super-
position property of the MAC whose output is an arithmetic
sum of the input signals.



12

In this paper, each device transmits two pieces of statistical
information about its transmitted data (i.e., the first and the
second sample moments) to the fusion center prior to data
transmission. These two pieces of prior information were
shown to be very helpful in the estimation of the arithmetic-
sum. In the aligned and synchronous OAC, the prior informa-
tion admits an LMMSE estimator at the receiver. Compared
with the ML estimator that uses no prior information, the
LMMSE estimator reduces the MSE by more than 6 dB in
the low-EsN0 regime and lowers the error floor by 86.4% in
the high-EsN0 regime. In the asynchronous OAC, an LMMSE
estimator and an SP-MAP estimator were devised to tackle
both the channel-gain and time misalignments among signals
thanks to the two pieces of statistical information. Compared
with the ML estimator, the LMMSE and SP-MAP estimators
address the error propagation and noise enhancement problems
and significantly reduce the MSE under various degrees of
phase and time misalignments.

A main ingredient of the estimators devised in this paper is
the “prior information” transmitted from the edge devices. In
digital communications, the transmitted symbols are discrete
constellations and the detection space is naturally narrowed
down to the possible constellation points – the discrete
constellation itself serves as a kind of prior information
to the receiver. In OAC, however, the transmitted symbols
are continuous complex values and the estimation space is
infinitely large. In this context, additional prior information
can be conducive to narrowing down the estimation space to
enable much better estimation performance. A broad lesson
is that making good use of prior information can be of great
advantage in processing the outputs of an analog medium such
as wireless channel or analog device.
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[14] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading
channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3546–
3557, 2020.

[15] N. Zhang and M. Tao, “Gradient statistics aware power control for over-
the-air federated learning in fading channels,” arXiv:2003.02089, 2020.

[16] M. M. Amiri, T. M. Duman, D. Gunduz, S. R. Kulkarni, and H. V.
Poor, “Blind federated edge learning,” IEEE Trans. Wireless Commun.,
vol. 20, no. 8, pp. 5129–5143, 2021.

[17] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AI Statistics. PMLR, 2017, pp. 1273–1282.

[18] A. Gupta and R. K. Jha, “A survey of 5G network: Architecture and
emerging technologies,” IEEE Access, vol. 3, pp. 1206–1232, 2015.

[19] Y. Shao and S. C. Liew, “Flexible subcarrier allocation for interleaved
frequency division multiple access,” IEEE Trans. Wireless Commun.,
vol. 19, no. 11, pp. 7139–7152, 2020.

[20] G. Zhu and K. Huang, “MIMO over-the-air computation for high-
mobility multimodal sensing,” IEEE Internet Things J., vol. 6, no. 4,
pp. 6089–6103, 2018.

[21] Y. Shao, S. C. Liew, and D. Gündüz, “Denoising noisy neural networks:
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Supplemental Materials

APPENDIX A
This appendix proves that the estimator in (17) is an

LMMSE estimator, and derives its MSE.
First, the MSE of a linear estimator is given by

MSE =
1

L

L∑
i=1

∣∣∣∣∣
M∑

m=1

(λhm − 1)sm[i] + c+ λz[i]

∣∣∣∣∣
2

=
1

L

L∑
i=1

∣∣∣∣∣
M∑

m=1

(λhm−1)sm[i]

∣∣∣∣∣
2

+ c
1

L

L∑
i=1

[
M∑

m=1

(λhm−1)sm[i]

]∗

+ c∗
1

L

L∑
i=1

[
M∑

m=1

(λhm−1)sm[i]

]
+ |λ|2N0

T
+ |c|2

= (λh−1)H
1

L

L∑
i=1

s∗[i]s[i]>(λh−1)+c(λh−1)H
1

L

L∑
i=1

s∗[i]

+ c∗(λh− 1)>
1

L

L∑
i=1

s[i] + |λ|2N0

T
+ |c|2

= (λh−1)HV (λh−1)+c(λh−1)Hµ̂∗ + c∗(λh− 1)>µ̂

+ |λ|2N0

T
+ |c|2, (40)

where V is as defined in (10) and µ̂ as in (14). As can be seen,
MSE is a quadratic function of both λ and c. The optimal λ
and c that minimize the MSE can be obtained by setting:

∂MSE
∂λ

= λ∗hHV h− 1>V h+ c∗h>µ̂+ λ∗
N0

T
= 0, (41)

∂MSE
∂c

= (λh− 1)Hµ̂∗ + c∗ = 0. (42)

Substituting (42) into (41) yields

λ =
hH

(
V − µ̂∗µ̂>

)
1

hH (V − µ̂∗µ̂>)h+ N0

T

.

To simplify λ, let us further define D = V − µ̂∗µ̂> and
we finally have

λ =
hHD1

hHDh+ N0

T

, c =

(
1− hHD1

hHDh+ N0

T

h

)>
µ̂.

Thus, (17) is the LMMSE estimator that minimizes the MSE.
Notice that this is an unbiased estimator since

1

L

L∑
i=1

(ŝ+[i]−s+[i]) = λh>µ̂+(1−λh)>µ̂−1>µ̂ = 0.

Substituting λ and c back into (40) yields

MSE = (λh−1)HV (λh−1)−(λh−1)>µ̂µ̂H(λh−1)∗

−(λh−1)Hµ̂∗µ̂>(λh−1) + |λ|2N0

T
+ |(λh−1)>µ̂|2

= (λh−1)HD(λh−1) + |λ|2N0

T

= 1>D1−
∣∣hHD1

∣∣2
hHDh+ N0

T

.

We next compare MSELMMSE with MSEML. From (9) and
(18), we have

MSEML −MSELMMSE (43)

= (h−1)HV (h−1)+
N0

T
−

(
1>D1−

∣∣hHD1
∣∣2

hHDh+N0

T

)
.

Multiplying both sides of (43) by hHDh+ N0

T and defining

q

(
N0

T

)
, (MSEML −MSELMMSE)

(
hHV h+

N0

T

)
=
(
hHDh+

N0

T

)(
hHV h− 1>V h− hHV 1

+1>V 1− 1>D1 +
N0

T

)
+ |1>Dh|2. (44)

Since D is positive definite, we have hHDh + N0

T > 0.
To prove MSELMMSE ≤ MSEML, we only need to prove the
minimum value of q

(
N0

T

)
is nonnegative.

From (44), we know that q(N0/T ) is a quadratic function of
N0/T . Then, N0/T that minimizes q(N0/T ) can be obtained
by setting:

∂q(N0/T )

∂(N0/T )
= 2

N0

T
+ hHDh+ hHV h− 1>V h− hHV 1

+ 1>V 1− 1>D1 = 0.

Since the noise variance cannot be negative, we have

N0

T
= max

(
0,

1

2

[
1>D1− (hHDh+ hHV h− 1>V h

−hHV 1 + 1>V 1)
])
.

1) When 1
2

[
1>D1−(hHDh+hHV h−1>V h−hHV 1+

1>V 1)
]
≤ 0, we have N0/T = 0 and

q

(
N0

T

)
≥ q(0) = hHDh(hHV h− 1>V h− hHV 1

+ 1>V 1)− hHDh1>D1 + |1>Dh|2

Let us define E , V −D = µ̂∗µ̂>, then

q(0)=hHDh(hHV h−1>V h−hHV 1+1>E1)+|1>Dh|2

= hHDh(hHDh−1>Dh−hHD1) + hHDh(hHEh

− 1>Eh−hHE1+1>E1) + |1>Dh|2

= (h−1)HDhhHD(h−1)+hHDh(h−1)HE(h−1)

= |(h−1)HDh|2 + hHDh|(h−1)>µ̂|2 ≥ 0,

where the last inequality follows because D is positive defi-
nite. Therefore,

MSEML −MSELMMSE ≥
q(0)

hHDh
≥ 0.

This formula matches our intuition: when the noise variance
N0/T = 0 and the channel precoding is perfect, i.e., h = 1,
we have q(0) = 0. The ML and the LMMSE estimators are
the same in this case as λ = 1 and c = 0.

2) When 1
2

[
1>D1−(hHDh+hHV h−1>V h−hHV 1+

1>V 1)
]
> 0, we have

q

(
N0

T

)
≥ q
(1

2

[
1>D1− (hHDh+ hHV h− 1>V h

− hHV 1 + 1>V 1)
])

= |1>Dh|2 − 1

4

(
1>V h+ hHV 1− hHEh− 1>E1

)2
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= |1>Dh|2 − 1

4

[
1>Dh+ hHD1−(h−1)HE(h−1)

]2
= |1>Dh|2 − 1

4

[
2(1>Dh)r − |(h−1)>µ̂|2

]2
(a)

≥ |1>Dh|2 −
[
(1>Dh)r

]2
=
[
(1>Dh)i

]2 ≥ 0

where (a) follows from 1
2

[
1>D1 − (hHDh + hHV h −

1>V h− hHV 1 + 1>V 1)
]
> 0. That is, we have 1>V h+

hHV 1−hHEh−1>E1 ≥ 0, and hence 2(1>Dh)r−|(h−
1)>µ̂|2 > 0.

Overall, we have MSELMMSE ≤ MSEML.

APPENDIX B

This appendix proves Theorem 7. We first show that the
estimator in (31) is an LMMSE estimator. Given the signal
model in (28), a linear estimator estimates s+ by ŝ+ = Ay+
c. The MSE of the linear estimate ŝ+ is then given by

MSE =
1

L
E
[
(Ay+ c− s+)H(Ay+ c− s+)

]
. (45)

The matrixA and vector c that yield the minimum MSE can
then be obtained by setting ∂MSE/∂A = 0 and ∂MSE/∂c =
0. Thus, we have

∂MSE
∂A

= E
∂Tr[(Ay+ c− s+)(Ay+ c− s+)H ]

∂A
=AE[yyH ] + cEH [y]− E[s+y

H ]

=AGE[ssH ]GH+AΣz+cEH [s]GH−FE[ssH ]GH=0,
∂MSE
∂c

=AE[y]+c−E[s+]=AGE[s]+c−FE[s]=0.

Given µ̃ = E[s] and D̃ = E[ssH ]− E[s]EH [s], we have

A = FD̃GH(GD̃GH + Σz)−1,

c = F µ̃−AGµ̃.

This gives us the LMMSE estimator in (31). The MSE of the
LMMSE estimator can be obtained by substituting A and c
into (45), giving

MSE =
1

L
E
[
(Ay+ c− s+)H(Ay+ c− s+)

]
=

1

L
E
{

[(AG−F )s+Az+c]
H

[(AG−F )s+Az+c]
}

=
1

L
E
[
sH(AG− F )H(AG− F )s+ cH(AG− F )s+

zHAHAz + sH(AG− F )Hc+ cHc
]

(a)
=

1

L
E
[
sH(AG− F )H(AG− F )s+ zHAHAz

− 1

L
µ̃H(AG− F )H(AG− F )µ̃

]
=

1

L
Tr
{

(AG−F )(E[ssH ]−µ̃µ̃H)(AG−F )H+AΣzA
H
}

=
1

L
Tr
[
(AG−F )D̃(AG−F )H+AΣzA

H
]
,

where (a) follows by substituting c = (F −AG)µ̃.

Algorithm 1 Analog message passing for SP-MAP estimation.
1: Input: Samples y and coefficient matrix D.
2: Output: The marginal posterior distribution f(s[i]|y).
3: # Initialization:
4: for k = 1, 2, ...,M and i = 1, 2, ..., L+ 1 do
5: wk,i = V(yk[i]);
6: Compute the information aboutwk,i contained in each

sample yk[i], i.e., fb(wk,i), following (48).
7: # Forward message passing:
8: for i = 1, 2, ..., L+ 1 do
9: for k = 1, 2, ...,M do

10: Compute the information about wk,i contained in
all the samples {yk′ [i′] : k′ < k, i′ < i}, i.e., f`(wk,i),
following (55) and (56).

11: # Backward message passing:
12: for i = L+ 1, L, ..., 2, 1 do
13: for k = M,M − 1, ..., 2, 1 do
14: Compute the information about wk,i contained in

all the samples {yk′ [i′] : k′ > k, i′ > i}, i.e., f ′r(wk,i),
following (57) and (58).

15: # Marginalization:
16: for i = 1, 2, ..., L do
17: Compute the marginal posterior distribution f(s[i]|y),

as per (60).

APPENDIX C

This appendix proves Theorem 8. Note that the key of
Theorem 8 is the first part that the marginal posterior dis-
tribution f(s[i]|y) is an M -dimensional complex Gaussian
distribution. Provided that this argument is right, the rest of
Theorem 8 holds. In the following, let us dive deeper into
the analog message passing and prove that f(s[i]|y) is an
M -dimensional complex Gaussian distribution and can be
computed by Algorithm 1.

To begin with, we point out that a multivariate Gaussian
distribution can be parameterized by two sets of parameters
[29]–[31]: the moment parameter (µ,Σ) and the canonical
parament (η,Λ). The two sets of parameters can be trans-
formed into one another and they are useful in different
circumstances, as detailed below.

The moment parameters (µ,Σ). For a multivariate real
Gaussian random variable w of dimension 2M , its moment
parameters are defined as

µ = E[w], Σ = E
[
(w− µ)(w− µ)>

]
.

The moment form of the Gaussian distribution is given by

N (w;µ,Σ) =
1

(2π)M |Σ| 12
exp

{
−1

2
(w−µ)>Σ†(w−µ)

}
.

Lemma 9 (Marginalization of a multivariate Gaussian [30]).
Let w ∼ N (w;µ,Σ) be a multivariate Gaussian random
variable of dimension 2M with the moment parameters being
(µ,Σ). Let us partition w = [w1,w2]> where w1, w2 are
multivariate Gaussians of dimension κ and 2M − κ, respec-
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tively. The moment parameters can be partitioned accordingly
as

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

If we marginalize out w2 from w, the marginal f(w1) is still
a Gaussian distribution, giving

f(w1) =

∫
w2

N
([
w1

w2

]
;

[
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
dw2

∝ N (w1;µ1,Σ11). (46)

The canonical paraments (η,Λ). For a Gaussian random
variable w of dimension 2M , its canonical parameters are
defined as

η = Σ†µ, Λ = Σ†.

The canonical form of the Gaussian distribution is given by

N (w;η,Λ) = exp

{
−1

2
w>Λw +w>η + ρ

}
,

where ρ is a constant

ρ = −1

2

(
2M ln 2π − ln |Λ|+ η>Λ†η

)
.

Lemma 10 (Product of multivariate Gaussians [31]). Let
{wk : k = 1, 2, ...,K}, wk ∼ N (w;ηk,Λk) be a set
of multivariate real Gaussian random variable of dimension
2M . Then, the product of them is still a Gaussian with the
new canonical parameters being the sum of the canonical
parameters of the original K Gaussians.

K∏
k=1

N (wk;ηk,Λk) ∝ N

(
w;

K∑
k=1

ηk,

K∑
k=1

Λk

)
(47)

∝ exp

{
−1

2
w>

K∑
k=1

Λkw +w>
K∑
k=1

ηk +

K∑
k=1

ρk

}
.

Now that the factor graph in Fig. 4 has a tree structure, we
only need to pass the messages from left to right (forward mes-
sage passing) and then from right to left (backward message
passing). Each message needs to be computed only once, after
which the exact marginal posterior distribution converges.

Forward Message Passing – We first investigate how the
messages are passed from left to right in Fig. 4. Without loss
of generality, we shall focus on message passing from one
variable Wk,i to another variable Wk+1,i on the right.

Notice that Wk,i = V(yk[i]) = {s1[i], ..., sk[i], sk+1[i −
1], sk+2[i − 1], ..., sM [i − 1]} and Wk+1,i = V(yk+1[i]) =
{s1[i], ..., sk[i], sk+1[i], sk+2[i − 1], ..., sM [i − 1]}. Thus, the
only difference between Wk,i and Wk+1,i is the (k + 1)-th
symbol. We consider each complex random variable sk[i] as a
pair of real random vector: the real part and the imaginary part.
Then, each Wk,i can be viewed as a 2M -dimensional real
random variable. To simplify the notation, we denote the 2M -
dimensional real variates corresponding to Wk,i and Wk+1,i,
respectively, by

wk,i =
(
br1, ..., b

r
k, b

r
k+1, b

r
k+2, ..., b

r
M , bi1, ..., b

i
k, b

i
k+1, b

i
k+2, ..., b

i
M

)
,

wk+1,i =
(
br1, ..., b

r
k, c

r
k+1, b

r
k+2, ..., b

r
M , bi1, ..., b

i
k, c

i
k+1, b

i
k+2, ..., b

i
M

)
,
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Figure 10. The forward message passing from Wk,i to Wk+1,i (in blue)
and the backward message passing from Wk+1,i to Wk,i (in green).

as shown in Fig. 10.
On the left half of Fig. 10, there are four edges centered

around the equality function “=” (marked in blue). Due to the
equality constraint, these four edges are associated with the
same high-dimensional variable wk,i. In the forward message
passing, there are four messages to be computed.

1) The message passed from the bottom, denoted by
fb(wk,i). This message carries the information about wk,i

contained in the sample yk,i. As per (24),

yk,i =

M∑
m=1

(hrm + jhim)(brm + jbim) + (zrk,i + jzik,i)

=

M∑
m=1

(hrmb
r
m−himbim)+zrk,i+j

M∑
m=1

(hrmb
i
m+himb

r
m)+jzik,i,

where zrk,i, z
i
k,i ∼ N (0, N0

2dk
). Thus, the likelihood function

f(yk,i|wk,i) is Gaussian, giving

f(yk,i|wk,i)∝exp

− dkN0

[
yrk,i−

∑
m

(hrmb
r
m−himbim)

]2
× exp

− dkN0

[
yik,i −

∑
m

(hrmb
i
m + himb

r
m)

]2 .

When we pass the information bottom up, yk,i is our obser-
vation (hence a constant) and wk,i is the variable. Therefore,
fb(wk,i) = f(yk,i|wk,i). After some manipulations, we can
write fb(wk,i) as a 2M -dimensional Gaussian distribution:

fb(wk,i) ∝ N (wk,i,ηb,Σb), (48)

where ηb and Σb are defined as

ηb =
2dk
N0

[
β1

β2

] [
yrk,i
yik,i

]
, Σb =

2dk
N0

[
β1β

>
1 β1β

>
2

β2β
>
1 β1β

>
1

]
, (49)

and the matrices β1 and β2 are composed of channel coeffi-
cients as follows:

β1 =


hr1 hi1
hr2 hi2
...

...
hrM hiM

 , β2 =


−hi1 hr1
−hi2 hr2

...
...

−hiM hrM

 .
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In (49), we have assumed that the dimensionality of wk,i

is 2M , that is, yk,i = yk[i] is related to M complex variables.
However, this is only valid when the number of neighbor
symbols of yk[i] is M . As shown in (35), |V(yk[i])| = M
only when 1 < i ≤ L. Thus, we can compute ηb and Σb by
(49) only when 1 < i ≤ L.

For the boundary samples (i = 1, L + 1) whose neighbor
symbols are less than M , we further multiply the parameters
ηb and Σb in (49) by an indicator vector γ and an indicator
matrix Γ, respectively, to ensure that fb(wk,i) does not contain
information about the symbols that do not belong to V(yk[i]).
The general form of ηb and Σb are

ηb =
2dk
N0

[
β1

β2

] [
yrk,i
yik,i

]
◦ γk, (50)

Σb =
2dk
N0

[
β1β

>
1 β1β

>
2

β2β
>
1 β1β

>
1

]
◦ Γk, (51)

where ◦ is an elementwise multiplication. The indicator vector
γ and the indicator matrix Γ are defined as follows.

First, for the first M samples (i.e., i = 1), we have
|V(yk[i])| = k from (35). Thus, we define

γk =

[ 1k×1

0(M−k)×1

1k×1

0(M−k)×1

]
,

Γk =

[ 1k×k 0k×(M−k) 1k×k 0k×(M−k)

0(M−k)×k 0(M−k)×(M−k) 0(M−k)×k 0(M−k)×(M−k)

1k×k 0k×(M−k) 1k×k 0k×(M−k)

0(M−k)×k 0(M−k)×(M−k) 0(M−k)×k 0(M−k)×(M−k)

]
,

where 1 and 0 are all-ones and all-zero matrices with sub-
scripts denoting their dimensions.

Second, for the last M samples (i.e., i = L + 1), we have
|V(yk[i])| = M − k from (35). Thus, we define

γk =

[ 0k×1

1(M−k)×1

0k×1

1(M−k)×1

]
,

Γk =

[ 0k×k 0k×(M−k) 0k×k 0k×(M−k)

0(M−k)×k 1(M−k)×(M−k) 0(M−k)×k 1(M−k)×(M−k)

0k×k 0k×(M−k) 0k×k 0k×(M−k)

0(M−k)×k 1(M−k)×(M−k) 0(M−k)×k 1(M−k)×(M−k)

]
.

Finally, for all other samples (1 < i ≤ L), we simply set

γk = 12M×1, Γk = 12M×2M .

This is consistent with (49).
2) Next, we consider the message ft(wk,i) passed from the

top. This message is the prior information of wk,i and only
added when k = M (see Fig. 4). Therefore, we can write this
message as

ft(wk,i) = 1k=Mft(wM,i) + (1− 1k=M )12M×1,

that is, ft(wk,i) is ft(wM,i) when k = M and an all-ones
vector otherwise. In particular,

ft(wM,i) ∝ N (wM,i,µt,Σt), (52)

where

µt =
[
Êr
1, Êr

2, ..., Êr
M , Êi

1, Êi
2, ..., Êi

M

]>
,

Σt =
1

2
diag

(
D̂1, D̂2, ..., D̂M , D̂1, D̂2, ..., D̂M

)
.

It is easy to transform the moment form of ft(wM,i) to the
canonical form by

ft(wM,i) ∝ N
(
wM,i;ηt = Σ†tµt,Λt = Σ†t

)
.

3) The third message, denoted by f`(wk,i) in Fig. 10, is
the message passed from wk−1,i on the left. This message is
obtained in the same way as f`(wk+1,i) and we will analyze it
at the end of forward message passing. For now, let us assume
it is Gaussian and denote it by

f`(wk,i) ∝ N (wk,i;η`,Λ`) . (53)

4) As per the sum-product rule, the message out of a local
function along an edge is the product of all incoming messages
to this local function along all other edges. Thus, the message
out of the equality function “=”, denoted by fr(wk,i) in
Fig. 10, can be obtained by

fr(wk,i) = fb(wk,i)ft(wk,i)f`(wk,i). (54)

This is the “product” step of the sum-product algorithm. From
Lemma 10, we know fr(wk,i) is a Gaussian distribution, and

fr(wk,i) ∝ N (wk,i;ηr,Λr) , (55)

where ηr = ηb +η`, Λr = Λb + Λ`. We emphasize that this
message is an aggregation of all the known information about
wk,i from the left side of the graph.

The next step is to pass the message fr(wk,i) through the
compatibility function δ. Notice that the compatibility function
connects two different variables: on the LHS, the variable
associated with the edge is wk,i; on the RHS, the variable
associated with the edge is wk+1,i. Therefore, we have to
integrate fr(wk,i) over all variates that are in wk,i but not in
wk+1,i. This is the “sum” step of the sum-product algorithm.

Notice that the common variates of wk,i and wk+1,i are

w∩ =
(
br1, ..., b

r
k, b

r
k+2, ..., b

r
M , b

i
1, ..., b

i
k, b

i
k+2, ..., b

i
M

)
,

and the two different variates are brk+1 and bik+1 – in wk+1,i,
these two variates are crk+1 and cik+1.

Let us integrate fr(wk,i) over brk+1 and bik+1, giving,

f(w∩) =

∫
brk+1

∫
bik+1

fr(wk,i)db
r
k+1db

i
k+1.

As per Lemma 9, f(w∩) is also Gaussian. In particular, if we
write fr(wk,i) and f(w∩) in moment form as

fr(wk,i) ∝ N (wk,i;µr,Σr) ,

fr(w∩) ∝ N (w∩;µ∩,Σ∩) ,

then µ∩ can be obtained by deleting the (k + 1)-th and (k +
1 + M )-th rows of µr; Σ∩ can be obtained by deleting the
(k + 1)-th and (k + 1 +M )-th rows and columns of Σr.

However, w∩ is a (2M−2) dimensional variable. To obtain
f`(wk+1,i), we have to expand the dimensionality of w∩ by
adding crk+1 and cik+1 in the (k + 1)-th and (k + 1 + M )-
th positions. After expansion, f`(wk+1,i) is still multivariate
Gaussian:

f`(wk+1,i) ∝ N (wk+1,i;µ`,Σ`) , (56)
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Figure 11. The marginalization process in the sum-product algorithm.

where µ` can be obtained by adding two zeros to µ∩; and Σ`

can be obtained by adding two all-zero rows and two all-zero
columns to Σ∩.

To summarize, we have shown that all the messages in-
volved in the forward message passing are 2M -dimensional
multivariate Gaussians and can be parameterized by (48), (52),
(53), (55), (56), respectively.

Backward message passing – Our tree structure is symmet-
ric. Thus, backward message passing is symmetric to forward
message passing. As shown in Fig. 10, to pass the messages
from wk+1,i and wk,i, we first compute three incoming
messages fb(wk+1,i), ft(wk+1,i), and f ′r(wk+1,i), where
fb(wk+1,i) and ft(wk+1,i) are the same as that in the
forward message passing and f ′r(wk+1,i) is the message
passed from wk+2,i on the right.

Then, f ′`(wk+1,i) and f ′r(wk,i) are computed from “prod-
uct” and “sum”, respectively, by

f ′`(wk+1,i) = fb(wk+1,i)ft(wk+1,i)f
′
r(wk+1,i), (57)

f ′r(wk,i) =

∫
crk+1

∫
cik+1

f ′`(wk,i)dc
r
k+1dc

i
k+1. (58)

Marginalization – After one forward message passing from
left to right and one backward message passing from right to
left, the marginal posterior distribution of each variable wk,i

converges and can be computed by

f(wk,i|y)=fb(wk,i)ft(wk,i)f`(wk,i)f
′
r(wk,i), (59)

as illustrated in Fig. 11. Therefore, f(wk,i|y) is a 2M -
dimensional real Gaussian distribution. In particular, if we
write the four messages on the RHS of (59) in the canonical
form, then the canonical parameters of f(wk,i|y) is the sum
of them.

Recall that wk,i = (br1, ..., b
r
M , b

i
1, ..., b

i
M ) is a 2M dimen-

sional real random variable, where brm and bim are the real
and imaginary parts of the m-th complex element of Wk,i =
V(yk[i]) = (s1[i], s2[i], ..., sk[i], sk+1[i − 1], sk+2[i − 1], ...,
sM [i − 1]), thus, f(Wk,i|y) is an M -dimensional complex
Gaussian distribution.

Let k = M , we have WM,i = (s1[i], s2[i], ..., sM [i]) =
s[i]. This means

f(s[i]|y) = f(Wk,i|y) (60)

is an M -dimensional complex Gaussian, the mean and covari-
ance of which can be computed from (59).


