
DRF Codes: Deep SNR-Robust Feedback Codes
Mahdi Boloursaz Mashhadi, Deniz Gündüz, Alberto Perotti, and Branislav Popovic

Abstract—We present a new deep-neural-network (DNN) based error
correction code for fading channels with noisy channel output feedback,
called deep SNR-robust feedback (DRF) code. At the encoder, parity
symbols are generated by a long short term memory (LSTM) network
based on the message as well as the past forward channel outputs
observed by the transmitter in a noisy fashion. The decoder uses a
bi-directional LSTM architecture along with a signal to noise ratio
(SNR)-aware attention module. The proposed code overcomes two major
shortcomings of the previously proposed DNN-based codes over channels
with noisy channel output feedback: (i) SNR-aware attention mechanism
at the decoder enables reliable application of the same trained DNN over
a wide range of SNR values; (ii) curriculum training with batch-size
scheduling is used to speed up and stabilize training while improving
the SNR-robustness of the resulting code. We show that the DRF
codes significantly outperform state-of-the-art in terms of both the
SNR-robustness and the error rate in additive white Gaussian noise
(AWGN) channels with feedback. In fading channels with perfect phase
compensation at the receiver, DRF codes learn to efficiently exploit the
knowledge of the instantaneous fading amplitude (which is available to
the encoder through feedback) to reduce the overhead and complexity
associated with channel estimation at the decoder.

Index terms— Communication with feedback, channel coding,
LSTM, attention neural networks, curriculum training.

I. INTRODUCTION

Most wireless communication systems incorporate some form of
feedback from the receiver to the transmitter. Although feedback does
not improve the Shannon capacity of a channel [1], it can significantly
boost the reliability at finite block-lengths [2]–[4]. Codes that make
full use of feedback can potentially achieve improved performance as
predicted in [4]. However, the design of reliable codes for channels
with feedback has been a long-standing and notoriously difficult
problem. Several coding schemes for channels with feedback have
been proposed in the past [2], [5]–[8]; however, known solutions
either do not approach the performance predicted in [4], or introduce
unaffordable complexity. These schemes are also extremely sensitive
to both the precision of the numerical computations and the noise in
the feedback channel [3]. It has been proven that with noisy output
feedback, linear coding schemes fail to achieve any positive rate [9].
This is especially troubling since all practical codes are linear and
linear codes are known to achieve capacity without feedback [10],
and boost the error performance significantly in the case of noiseless
feedback [2]. For the noisy feedback case, considerable improvements
have been achieved using non-linear modulo operations [11].

More recently, some progress has been made by applying machine
learning (ML) techniques, where channel decoding is regarded as
a classification task, and the encoder and decoder, implemented as
deep neural network (DNN) architectures, are jointly trained in a
data-driven fashion [12]–[14]. In [12], the authors propose Deepcode
for communication with feedback, consisting of a recurrent neural
network (RNN) encoder architecture along with a two-layer bi-
directional gated recurrent unit (GRU) decoder architecture, which
are trained jointly on a dataset of random input/output realizations
of the channel. In [13], a convolutional neural network (CNN)

M. Boloursaz Mashhadi is with the 5GIC & 6GIC, Institute for Communica-
tion Systems (ICS), University of Surrey, UK. D. Gündüz is with the Dept. of
Electrical and Electronic Eng., Imperial College London, UK. A. Perotti and
B. Popovic are with the Radio Transmission Technology Laboratory, Huawei
Technologies Sweden.

encoder/decoder architecture with interleaving is used. In [14], deep
extended feedback (DEF) codes are introduced, which improve the er-
ror correction capability in [12] by an extended feedback mechanism
that introduces longer range dependencies within the code blocks.
These DNN-based codes achieve lower error rates in comparison
with traditional codes (e.g. Turbo, LDPC, and Polar codes that do
not exploit the feedback, as well as the Schalkwijk–Kailath scheme
[2] with a low resolution feedback), over an additive white Gaussian
noise (AWGN) channel with output feedback at the typical code rate
of r = 1/3 and relatively short block length of L = 50 [12]–[14].

Despite their significant performance, DNN-based codes are very
sensitive to the mismatch between the actual channel signal to noise
ratio (SNR) and the SNR value that the code is trained for, which
limits their application in practical communication systems with
time-varying SNR values. In this paper, we propose Deep SNR-
Robust Feedback (DRF) codes for fading channels with noisy output
feedback, which overcome the above-mentioned limitation of DNN-
based channel codes. The DRF encoder transmits a message followed
by a sequence of parity symbols, which are generated by a long
short term memory (LSTM) architecture based on the message as
well as the delayed past forward channel outputs observed by the
encoder through a noisy feedback channel. The decoder uses a bi-
directional LSTM architecture along with a SNR-aware attention
[15], [16] network to decode the message. The major contributions
of this paper can be summarized as follows:
• We propose an attention mechanism that enables SNR-aware

decoding of the DRF code, thereby considerably improving
its robustness in realistic time-varying channels, where there
may be a considerable mismatch between the training SNR and
the instantaneous channel SNR. For fading channels, in which
the instantaneous SNR may be varying on each transmitted
codeword (slow fading) or symbol (fast fading), we show that
the proposed DRF codes learn to efficiently exploit the Channel
State Information (CSI), which is available to the encoder
through feedback, and no further improvement is possible by
providing the CSI to the decoder.

• We propose a training approach with SNR scheduling and batch-
size adaptation. We start the training at low SNR values with a
small batch-size, and gradually increase the SNR and the batch-
size along the training epochs according to a schedule. The
proposed training approach improves the SNR-robustness of the
resulting code and speeds up the training. The DRF codes with
the proposed training approach not only achieve considerable
SNR-robustness, but also improve the error rate over Deepcode
[12] roughly by an order of magnitude.

The rest of this paper is organized as follows. In Section II,
we present the feedback channel model considered in this paper.
In Section III, we provide the DNN architectures for the DRF
encoder and decoder. In Section IV, we present our proposed training
technique. Section V presents the simulation results, and Section VI
concludes the paper.

II. SYSTEM MODEL

Fig. 1 illustrates the canonical fading channel with passive noisy
output feedback considered in this paper. Perfect phase compensation

Fig. 1: Fading channel with noisy channel output feedback.

at the receiver is assumed resulting in a real-valued magnitude fading
channel. We have yi = αixi + ni, where xi and yi denote the
channel input and output symbols, respectively, αi is the channel
fading coefficient, ni is the independent and identically distributed
(i.i.d.) Gaussian noise term, i.e., ni ∼ N (0, σ2

n). We will assume that
the channel fading coefficient comes from a prescribed distribution.
We consider both slow and fast fading scenarios, where the fading
coefficient remains constant on each codeword in the former but takes
i.i.d. random values on each symbol for the latter case. The channel
output is assumed to be available at the encoder with a unit time
delay via an independent AWGN feedback channel. At time i, the
encoder has a noisy view of what was received at the decoder (in
the past by one unit time) zi = yi−1 + mi, where mi is an i.i.d.
Gaussian noise term, i.e., mi ∼ N (0, σ2

m). We call this a passive
output feedback, as unlike in [11], the decoder cannot apply any
coding or other type of transformation on its received signal yi before
feeding it back to the encoder. The encoder can use the feedback
symbol to sequentially and adaptively decide what to transmit as the
next symbol. Therefore, channel input xi at time instant i depends
not only on the message b ∈ {0, 1}K , but also on the past feedback
symbols. The encoder maps the message b ∈ {0, 1}K onto the
codeword x = [x1, . . . , xL]T , where L is the block length and
K is the message length. The decoder maps the received codeword
y = [y1, . . . , yL]T into the decoded message b̂ ∈ {0, 1}K , where
r = K/L is the rate of the code. The block error rate (BLER) is
given by BLER = Pr{b̂ 6= b}. Similarly, the bit error rate (BER) is
given by BER = 1/K

∑K
k=1 Pr{b̂k 6= bk}, where bk and b̂k denote

the k’th bit of the transmitted and decoded messages, respectively.
We assume an average power constraint on the channel input, i.e.,
1
L
E[‖x‖2] ≤ 1, where the expectation is over the randomness in

the information bits, the randomness in the noisy feedback symbols
[z1, . . . , zL]T and any other randomness in the encoder. We denote
the forward and feedback channel SNR values by ρ = 1/σ2

n and
η = 1/σ2

m, respectively.

III. ENCODER/DECODER ARCHITECTURES

A major limitation of the existing DNN-based code designs in
[12]–[14] is their dependence on the channel SNR. That is, the
encoder-decoder pairs are trained jointly for a specific SNR value.
This means that, to be able to use these codes in practice, we will
have to train and store a different DNN pair for different ranges of
SNR values, which significantly limits their practical use in realistic
channels with varying SNR. On the other hand, in conventional
channel codes, the encoder depends only on the transmit power
constraint, and the decoder uses the same decoding algorithm for
all SNR values after converting the channel outputs into likelihood
values depending on the channel SNR. Accordingly, a major goal of
our paper is to implement a similar approach for DNN-based code
design. This is achieved in this paper by incorporating an attention
mechanism into the decoder of our proposed DRF code. This will
allow us to train and store a single DNN, which can be used for all
SNR values. Apart from this, we design the DRF code for fading
channels with feedback, when the instantaneous channel SNR may
change over time. This is different from the previous works that

(a) Encoder architecture.

(b) Decoder architecture.

Fig. 2: The block diagram of the proposed DRF code structure, (a)
encoder, (b) decoder. The novelties of the DRF encoder and decoder
architectures are shown in blue for emphasis.

consider the simple AWGN channel with feedback [12]–[14]. Fig.
2 depicts our proposed DRF encoder and decoder architectures for a
rate r = 1/3 code (the architecture could be easily generalized to all
rates r = 1/q with q being any positive integer greater than 1).

A. Encoder

Fig. 2a illustrates the encoder architecture. Encoding is a two-
phase process: in phase I, vector b = [b1, . . . , bK , 0]T consisting of
the message bits padded by a zero is transmitted over the channel
by an antipodal mapping, i.e., cI = 2b− 1. Zero padding is applied
to mitigate the increasing error rate effects on the last few bits of
the block as suggested in [12]. During phase II, the encoder uses a
1-layer LSTM network, including K + 1 LSTM units to generate
two sets of parity bits, i.e., c(1)II and c

(2)
II , based on the observations

of channel noise and fading in phase I and the delayed noise and
fading in phase II on each of the two sets of parity symbols. We
use single directional LSTM units due to the causality constraint
enforced by the channel model. The LSTM activation is hyperbolic
tangent, i.e., tanh(x) = ex−e−x

ex+e−x , while the output activation func-
tion is sigmoid, i.e., sigmoid(x) = 1

1+e−x . The resulting code
block transmitted over the channel is x = [xTI ,x

(1)
II

T ,x
(2)
II

T]T =
[x1, . . . , x3K+3]T , where xI = P{cI} = [x1, x2, . . . , xK+1]T ,
x
(1)
II = P{c(1)II } = [xK+2, xK+3, . . . , x2K+2]T , and x

(2)
II =

P{c(2)II } = [x2K+3, x2K+4, . . . , x3K+3]T . Here, P{·} denotes a
learned power re-allocation layer to balance the error over the whole
block as suggested in [12].

The encoder estimates the forward channel from observations of
the feedback. It knows the transmitted symbol xi and observes the
corresponding feedback symbol zi = αi−1xi−1 +ni−1 +mi with a
single delay, from which it can estimate the CSI αi−1. The estimate
of the CSI, denoted by α̂i−1, is then input to the encoder. In the
fast fading scenario, where the fading coefficient takes random i.i.d.
realizations on each symbol, the linear minimum mean square error
(LMMSE) estimate of the channel gain is calculated by

α̂i =
xi−1var(α)

|xi−1|2var(α) + σ2
n + σ2

m

zi+
σ2
n + σ2

m

|xi−1|2var(α) + σ2
n + σ2

m

E[α],

(1)
where E[α] and var(α) denote the expected value and variance of the
fading coefficient, respectively. In a slow fading scenario, the fading
coefficient is fixed over the whole codeword, i.e., for the considered
rate r = 1/3 code with a single bit zero padding we have α1 = · · · =
α3K+3 = α. The fading coefficient α takes random i.i.d. realizations
over different codewords, and the transmitter uses the causal vectors
zi = [z1, . . . , zi]

T and xi = [x1, . . . , xi]
T to calculate the LMMSE

channel estimate as

α̂ = var(α)xTi−1(var(α)xi−1x
T
i−1 + σ2

nI + σ2
mI)−1zi (2)

+ E[α](1− var(α)xTi−1(var(α)xi−1x
T
i−1 + σ2

nI + σ2
mI)−1xi−1),

in which I is the identity matrix. In (1), (2), knowledge of E[α] and
var(α) at the transmitter is assumed.

The causal CSI available at the encoder is fed into the LSTM
units to cope with channel uncertainty due to fading. To this end, we
concatenate the vector of instantaneous channel fading coefficients
in phase I, i.e. αI = [α1, . . . , αK+1]T , and the causal fading
coefficient in phase II i.e. Dα

(1)
II = [0, αK+2, . . . , α2K+1]T , and

Dα
(2)
II = [0, α2K+3, . . . , α3K+2]T , and feed into the LSTM units

at the encoder (D denotes a single delay, see Fig. 2a). We also
provide estimates of the noise in the forward and feedback channels
to the encoder, i.e. zI − αI � xI , D(z

(1)
II − α

(1)
II � x

(1)
II), and

D(z
(2)
II −α

(2)
II �x

(2)
II), where � denotes element-wise multiplication.

For the AWGN case where αI = α
(1)
II = α

(2)
II = 1, the corresponding

inputs are omitted to avoid unnecessary complexity.

B. Decoder

Fig. 2b illustrates the DRF decoder consisting of a two-layer
LSTM architecture (each including K + 1 LSTM units) and a SNR-
aware fully connected attention network. At the decoder, we use bi-
directional LSTM layers to exploit long range forward and backward
dependencies in the received code block. The phase I and II received
signals are concatenated at the decoder and fed to the bi-directional
LSTM layers. Each LSTM layer is followed by batch normalization.
Similarly to the encoder, the LSTM activation is hyperbolic tangent
while the output activation is sigmoid. The bi-directional LSTM
layers extract features from the noisy received signals, which are then
used for efficient decoding. Note that we use LSTM layers at both
the encoder and the decoder, which, according to our observations,
considerably reduce the error rate in comparison with simple RNN
and GRU layers used in [12]. This is because LSTM layers can better
learn long-range dependencies by avoiding the gradient vanishing
problem in training long RNN layers [17].

C. SNR-Aware Attention

Another novelty in our decoder architecture is the SNR-aware
attention module. An attention mechanism is a vector of importance
weights to measure the correlations between a vector of inputs
and the target to be predicted. Attention weights are calculated as
a parameterized attention function with learnable parameters [15],
[16]. We use a two-layer fully connected (FC) attention at the DRF
decoder. The idea is to let the attention layers learn how much each
bi-LSTM output features should be weighted according to the SNR.
Also, by means of the attention module, we explicitly provide the
noise standard deviation to the decoder, which enables learning codes
that are capable of adaptation to the channel SNR, which in turn
allows to use the same trained encoder/decoder weights over a wide
range of channel SNR values. Here, the standard deviations of the

forward and feedback channel noise are obtained through link-level
estimation. The number of attention weights determines the number
of neurons at the last FC layer, i.e., 2HK, where H is the length
of the LSTM hidden state (i.e., H = K here) and is multiplied by
2 because the LSTM layer is bi-directional. The total number of FC
attention layers and the number of neurons in each intermediate layer
are hyperparameters optimized numerically for the best performance.

IV. TRAINING DRF CODES

We denote the i’th training sample by Si = {bi, αi,ni,mi},
which consists of a random realization of the message bi, the
corresponding realization of the channel fading coefficient αi, and
the forward and feedback noise realizations, ni and mi, respectively.
We denote the encoder and decoder functions by f(·; θ) and g(·;ψ),
where θ and ψ are the trainable encoder and decoder parameters. We
have, b̂i = g(αif(Si; θ) + ni;ψ). To train the model, we minimize

L(θ, ψ,B) = − 1

|B|
∑
Si∈B

l(b̂i,bi; θ, ψ), (3)

where B is a batch of samples, l(b̂i,bi; θ, ψ) is the binary cross
entropy loss given by

l(b̂i,bi; θ, ψ) =

K∑
k=1

[bi]k log2(1− [b̂i]k) + (1− [bi]k) log2([b̂i]k),

(4)
and [bi]k and [b̂i]k denote the kth bit of the message and its estimate.

We use stochastic gradient descent (SGD) for training, where the
vector of all trainable parameters φT = [θT , ψT] is optimized in an
iterative manner

φ(t) = φ(t−1) − µt∇φL(φ(t−1),B(t)), (5)

where t is the iteration index, µt > 0 is the learning rate, and B(t)

is a random batch from the dataset.
To ensure that the model is trained with many random realizations

of the data and noise, we generate and use a new random set of
samples in each epoch. We denote the dataset used in the u’th training
epoch by Du = {Si}|D

u|
i=1 , where |Du| = ζ|Bu|, ζ is a constant and

|Bu| is the batch-size for the u’th epoch. Training DNNs with SGD,
or its variants, requires careful choice of the training parameters (e.g.,
learning rate, batch-size, etc.).

A. Batch-size Adaptation

In training machine learning models, a static batch-size held
constant throughout the training process forces the user to resolve
a tradeoff. Small batch sizes are desirable since they tend to achieve
faster convergence. On the other hand, large batch sizes offer more
data-parallelism, which in turn improves computational efficiency and
scalability. However, for the specific channel encoder/decoder training
task a significantly larger batch size is necessary not only due to
the data-parallelism benefits, but also because after a few training
steps, the error rate and consequently the binary cross entropy loss
(3) becomes very small, typically 10−4 ∼ 10−7 for the range of SNR
values considered here. Hence, to get a statistically accurate estimate
of such a small loss value, and consequently, an accurate estimate of
the gradient update in (5), the batch-size must be very large (typically
∼ 10000 samples here).

We here propose an adaptive batch size scheme tailored for training
a DNN-based channel encoder and decoder pair. In this scheme, we
train the model starting from a small batch-size |B1|, and multiply
the batch size by a factor of κ > 1 whenever the cross entropy
loss does not decrease by a factor of λ in two consecutive epochs,
until we reach a maximum batch-size of Bmax. The maximum batch-
size is constrained by the memory resources available to our training

platform. We hence train with a sequence of batch-sizes, |B1| ≤
|B2| ≤ · · · ≤ |BU | ≤ Bmax, where U is the total number of epochs.
Starting from a smaller batch size enables a faster convergence during
initial epochs. We increase the batch size whenever trapped around a
minimum due to insufficiency of the batch size to achieve an accurate
estimate of the gradient. The proposed batch-size adaptation stabilizes
and speeds up the training process.

B. SNR Scheduling

When training the channel encoder/decoder pair for a range of SNR
values, if low and high SNR samples are presented to the decoder
together during training, the trained DNN tends to be biased towards
the lower SNR. This is because the error probability for higher SNR
values can be orders of magnitude smaller than the lower ones. Hence,
the contribution of the high SNR samples in the batch to the binary
cross entropy loss (3) becomes negligible. In this case, the low SNR
samples will decide the loss value and consequently the gradient
updates (5) causing the channel code to be biased towards lower
SNR values.

To train a channel encoder and decoder pair suitable for a wide
SNR range, we here propose a scheduled-SNR training approach.
This is motivated by the idea of curriculum training [18], [19], which
suggests using a “curriculum” in presenting training samples to the
DNN based on their “difficulty”. Curriculum training improves both
the speed of convergence of the training process, and the quality of
the local minima obtained in the case of non-convex optimization
criteria [18], [19]. Assume the goal is to efficiently train a channel
encoder/decoder pair that works sufficiently well for all forward
channel SNR values ρ ∈ [ρmin, ρmax]. We start training with lower
SNR samples and increase the SNR along the epochs using a SNR
schedule of ρmin = ρ1 ≤ ρ2 ≤ · · · ≤ ρU = ρmax. We observed
that SNR scheduling combined with batch-size adaptation not only
stabilizes and speeds up the training, but also improves the SNR-
robustness when training an encoder/decoder pair for a wide SNR
range.

V. NUMERICAL EVALUATIONS

In this section, we evaluate the performance of the proposed
DRF codes and provide comparisons with previous works. In all the
simulations, we use 109 random samples to achieve a reliable estimate
of the error rate. Each sample includes a random realization of the
message b, and the corresponding random realizations of forward
and feedback channels. We set K = 50, L = 153, and use the
Adam optimizer. The values of the hyperparameters are: U = 15,
|B1| = 1000, Bmax = 16000, ζ = 100, λ = 2, κ = 2.

A. AWGN Channel

We first consider a static AWGN channel, i.e. αi = 1, ∀i. We show
the robustness of the proposed DRF codes to a mismatch between
the training and the actual channel SNR values, and provide BLER
comparisons with existing conventional and feedback channel codes.
We show that the DRF codes outperform the benchmark low density
parity check (LDPC) codes adopted for the fifth generation new
radio (5G NR) [20], by three orders of magnitude and the previously
proposed Deepcode [12] by an order of magnitude.

1) SNR-Robustness: We first compare the BLER of the proposed
DRF codes with and without the attention module, when there is a
mismatch between the actual channel SNR, ρ, and the SNR used
for training, ρ̂. Here, we train the codes with batch-size adaption but
for a specific SNR value (i.e., without SNR scheduling). The SNR
mismatch is defined as ∆ρ = ρ − ρ̂. The results are depicted in
Fig. 3, where we plot BLER versus ∆ρ for ρ = −1, 0, 1 dB. This
figure shows that without the SNR-aware attention module at the

Fig. 3: Comparison between the DRF code and LSTM-based Deep-
code in terms of BLER as a function of SNR mismatch ∆ρ (Noiseless
feedback).

decoder, the BLER is very sensitive to the SNR mismatch. In this
case, a negative SNR mismatch (i.e., training SNR is higher than the
actual channel SNR), can significantly degrade the BLER by orders
of magnitude. The BLER is less sensitive to a positive mismatch but
still roughly an order of magnitude BLER degradation is observed
if there is ∆ρ = +3 dB mismatch between the training and test
SNR values. This figure shows that DRF codes are significantly more
robust to both positive and negative SNR mismatch due to the SNR-
aware attention layers added to the decoder.

2) Comparison with Previous Works: In Fig. 4, we compare the
performance of DRF codes with NR LDPC [20], Deepcode [12], and
the DEF code [14]. We plot the BLER values achieved for each code
for the forward channel SNR values in the range [−1, 2] dB when
(a) the feedback is noiseless (η =∞), and (b) the feedback SNR is
η = 20 dB. The blue curve reports the BLER for the RNN-based
Deepcode architecture proposed in [12]. According to this figure, the
proposed DRF codes reduce the BLER by almost three orders of
magnitude in comparison with NR LDPC and an order of magnitude
in comparison with Deepcode [12]. Note that for the Deepcode and
DEF code, we have trained and used a different DNN for each of the
four SNR points. However, for the DRF code, we have used a single
DNN for all the SNR points, which is trained using our proposed SNR
scheduling approach. Hence, in comparison with the state-of-the-art
DEF code, DRF code achieves SNR-robustness with no significant
performance degradation in the noiseless feedback case. When the
feedback is noisy, DRF code also outperforms DEF code.

B. Fading Channel

In this subsection, we consider fading channels with feedback as
depicted in Fig. 1. Depending on the wireless environment, the CSI
coefficient αi may follow various statistics. We adopt the Rayleigh
fading channel model with an average power of Ω = 2σ2. In Fig.
5, we compare the resulting BER curves for DRF codes over both
fast and slow Rayleigh fading channels depending on the availability
of CSI at the receiver (CSIR). With CSIR, the decoder first per-
forms LMMSE channel compensation on the received symbols, i.e.,
ŷi = αi

|αi|2+σ2
n

, and then uses ŷi as input to the bi-directional LSTM
units for decoding. Note that the encoder is the same as depicted
in Fig. 2a for both cases. Fig. 5a exhibits the BER curves for the
noiseless feedback case (η =∞), and Fig. 5b for the noisy feedback
case at η = 20dB. For a fair comparison, we use the exact value of αi
(not its estimate) both at the encoder and decoder. The curves show
similar performance for the two cases with and without CSIR for both

Fig. 4: Comparison between the proposed DRF codes and previous
works, (a) Noiseless feedback, (b) Noisy feedback (η = 20dB).

the slow and fast fading scenarios. In other words, the proposed DRF
code learns to efficiently exploit the knowledge of the instantaneous
CSI available at the transmitter through feedback, but no further
improvement is achieved by providing the CSI also to the receiver.
We believe that this is because the DRF code architecture inherently
allows the receiver to adapt to the channel condition without a
separate pilot transmission and channel estimation pipeline. This is a
desirable property, which means that with the proposed DRF codes,
the complexity and overhead associated with pilot transmission and
channel estimation at the receiver can be reduced.

VI. CONCLUSIONS

We proposed a DNN-based error correction code for fading chan-
nels with output feedback, called the DRF code. It is shown that
the DRF code significantly improves over the previously proposed
DNN-based codes in terms of the error rate as well as robustness to
varying SNR values for AWGN channels with feedback. Over fading
channels, we showed that DRF codes can learn to efficiently use
the knowledge of the instantaneous channel fading (available to the
encoder through feedback) to reduce the overhead and complexity
associated with channel estimation at the receiver.

REFERENCES

[1] C. Shannon, “The zero error capacity of a noisy channel,” IRE Trans-
actions on Information Theory, vol. 2, no. 3, pp. 8–19, 1956.

[2] J. Schalkwijk and T. Kailath, “A coding scheme for additive noise chan-
nels with feedback–part I: No bandwidth constraint,” IEEE Transactions
on Information Theory, vol. 12, no. 2, pp. 172–182, 1966.

[3] R. G. Gallager and B. Nakiboğlu, “Variations on a theme by Schalkwijk
and Kailath,” IEEE Transactions on Information Theory, vol. 56, no. 1,
pp. 6–17, 2010.

[4] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Feedback in the non-
asymptotic regime,” IEEE Transactions on Information Theory, vol. 57,
no. 8, pp. 4903–4925, 2011.

[5] J. Ooi and G. Wornell, “Fast iterative coding techniques for feedback
channels,” IEEE Transactions on Information Theory, vol. 44, no. 7, pp.
2960–2976, 1998.

[6] Z. Chance and D. J. Love, “Concatenated coding for the AWGN channel
with noisy feedback,” IEEE Transactions on Information Theory, vol. 57,
no. 10, pp. 6633–6649, 2011.

Fig. 5: The BER curves for DRF codes over Rayleigh magnitude
fading channels with Ω = 1 versus the average channel SNR, ρ
(dB). (a) Noiseless feedback, (b) Noisy feedback (η = 20dB).

[7] Z. Ahmad, Z. Chance, D. J. Love, and C.-C. Wang, “Concatenated
coding using linear schemes for Gaussian broadcast channels with
noisy channel output feedback,” IEEE Transactions on Communications,
vol. 63, no. 11, pp. 4576–4590, 2015.

[8] K. Vakilinia, S. V. S. Ranganathan, D. Divsalar, and R. D. Wesel,
“Optimizing transmission lengths for limited feedback with nonbinary
LDPC examples,” IEEE Transactions on Communications, vol. 64, no. 6,
pp. 2245–2257, 2016.

[9] Y. Kim, A. Lapidoth, and T. Weissman, “The Gaussian channel with
noisy feedback,” in 2007 IEEE International Symposium on Information
Theory, 2007, pp. 1416–1420.

[10] P. Elias, “Coding for noisy channels,” IRE Convention record, vol. 4,
pp. 37–46, 1955.

[11] A. Ben-Yishai and O. Shayevitz, “Interactive schemes for the AWGN
channel with noisy feedback,” IEEE Transactions on Information The-
ory, vol. 63, no. 4, pp. 2409–2427, 2017.

[12] H. Kim, Y. Jiang, S. Kannan, S. Oh, and P. Viswanath, “Deepcode:
Feedback codes via deep learning,” IEEE Journal on Selected Areas in
Information Theory, vol. 1, no. 1, pp. 194–206, 2020.

[13] Y. Jiang, H. Kim, H. Asnani, S. Oh, S. Kannan, and P. Viswanath,
“Feedback turbo autoencoder,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 8559–
8563.

[14] A. R. Safavi, A. G. Perotti, B. M. Popovic, M. B. Mashhadi, and
D. Gündüz, “Deep extended feedback codes,” ITU Journal on Future
and Evolving Technologies (ITU J-FET), vol. 2, no. 6, pp. 33–41, 2021.

[15] Y. Kim, C. Denton, L. Hoang, and A. M. Rush, “Structured attention
networks,” in 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings, 2017.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Neural
Information Processing Systems, 2017.

[17] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in Proceedings of the 32th Interna-
tional Conference on Machine Learning, 2015, pp. 2342–2350.

[18] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in 26th Annual International Conference on Machine Learning
(ICML 2009), June 2009, pp. 41–48.

[19] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu,
“Automated curriculum learning for neural networks,” in Proceedings
of the 34th International Conference on Machine Learning, 2017, pp.
1311–1320.

[20] Huawei-HiSilicon, “Performance evaluation of LDPC codes for NR
eMBB data,” R1-1713740, 3GPP RAN1 meeting 90, Prague, Czech
Republic, August 21–25, 2017.

	Introduction
	System Model
	Encoder/Decoder Architectures
	Encoder
	Decoder
	SNR-Aware Attention

	Training DRF Codes
	Batch-size Adaptation
	SNR Scheduling

	Numerical Evaluations
	AWGN Channel
	SNR-Robustness
	Comparison with Previous Works

	Fading Channel

	Conclusions
	References

