Inaugural Symposium: The Role of Higher Education Institutes and Life Cycle Assessment in Achieving Sustainable Futures

Imperial Network of Excellence in Sustainability through Life Cycle Approaches

The impact of lifespan assumptions in LCA: Comparing the replacement of building parts versus building layers—A housing case study

26 March 2025 | London

Annette Davis | PhD Candidate & Early-Stage Researcher & Architect La Salle School of Architecture, Ramon Llull Barcelona, Spain

Alberto Quintana-Gallardo | PhD, Architect & LCA practitioner Universitat Politècnica de València, Spain

Núria Martí Audí | Professor & Architect La Salle School of Architecture, Ramon Llull Barcelona, Spain

Ignacio Guillén Guillamón | Professor & Architect Universitat Politècnica de València, Spain

European Commission

Horizon 2020 European Union funding for Research & Innovation

Contents lists available at ScienceDirect

Energy & Buildings

journal homepage: www.elsevier.com/locate/enb

The impact of lifespan assumptions in LCA: Comparing the replacement of building parts versus building layers—A housing case study

Annette Davis ^{a,*}, Alberto Quintana-Gallardo ^b, Núria Martí Audí ^a, Ignacio Guillén Guillamón ^b

ARTICLE INFO

Keywords:
Building Layers
Building Parts
Replacement
Industrialised Construction
EU Level(s) Framework
Life cycle thinking
Housing

ABSTRACT

The circular economy transition of the built environment is of high priority in the EU, a challenge even more pressing in the housing sector. Conceptualising buildings as ensembles of standardised and prefabricated products, which can be separated into both defined building parts or layers is an accepted circular design approach facilitating future replacement and reuse. Life Cycle Assessment (LCA) is a tool for achieving circularity by informing design choices based on predefined lifespans. However, there is conflicting top-down guidance about whether to assume individual lifespans for constituent components or to group these into building layers when carrying out whole building LCAs. This study reviews the latest guidance on building layers and parts according to the European Level(s) framework, ISO 20887 standard for Design for Disassembly and Adaptability, and the Shearing Layers concept. An energy efficient housing case study was used to compare organisation of the Life Cycle Inventory into separate lifespans for components and layers aligned to Shearing Layers, with lifespans defined by Level(s) Indicator 2.1. The study focussed on Module B4 replacements over a 100-year period. The findings reveal that assuming the replacement of building components as opposed to layers results in greater carbon emissions. In both cases, emissions were approximately double the amount of upfront carbon to produce the initial building. These findings demonstrate the importance of lifespan assumptions in LCA, which should be further developed. The study provides an LCA template for practitioners to organise the building inventory and apply lifespan assumptions, improving rationale behind design decisions.

1. Introduction

Approximately half of the planet's natural resources are utilised for the built environment [79], making the construction industry both the recognising the need to reduce greenhouse gas emissions from both operational activities and resource consumption [66,73]. This has resulted in a greater reliance on Life Cycle Assessment (LCA), which is increasingly required and regulated in Europe [38,72]. LCA is also more

^a Technical School of Architecture and Edification La Salle (ETSALS), Universitat Ramon Llull, Barcelona, Spain

^b Center for Physics Technologies (CTFAMA), Universitat Politècnica de València, Valencia, Spain

Presentation Outline

- 1 Introduction
- Methodology
- 3 Interpretation of results
- 4 Conclusions
- Reflections implications for practice & higher education in architecture

Applying key circular architectural design theories to LCA

1. Introduction

Why is housing important?

Why is housing important? 750 of EU building stock is residential

Industrialised Construction

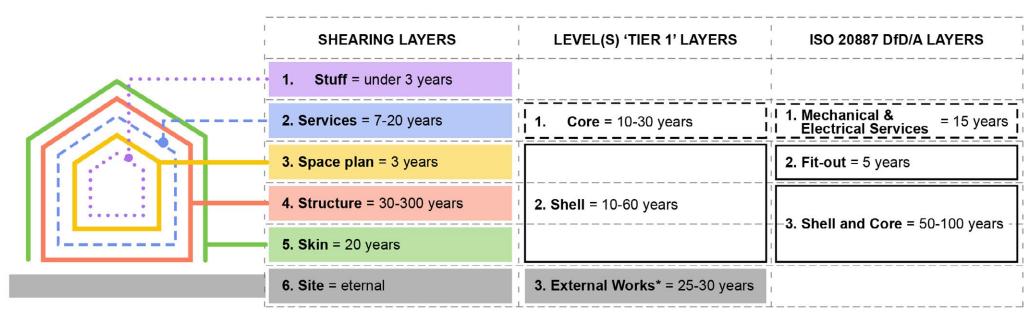
'Modular' approach supporting the Circular Economy transition

Daiwa House Modular Europe's off-site factory & built housing in Wales, UK.

Current guidelines

Lifespan assumptions - EU Level(s) indicator 2.1

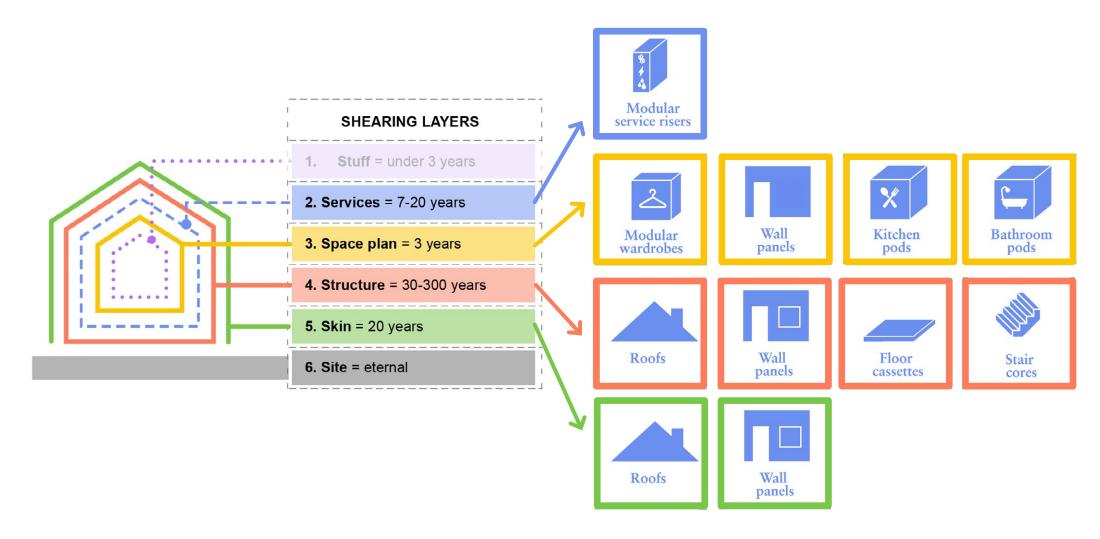
Thematic areas	Macro-objectives	Indicators			
	Greenhouse gas emissions along a building's life cycle	1.1 Use stage energy performance (kWh/m2/year)	1.2 Life cycle Global warming potential (CO2 eq./m2/year)		
Resource use and environmental performance	2. Resource efficient and circular material life cycles	2.1 Bill of quantities, materials and lifespans	2.2 Construction and demolition waste	2.3 Design for adaptability and renovation	2.4 Design for deconstruction
	3. Efficient use of water resources	3.1 Use stage water consumption (m3/ occupant/year)			
Health and comfort	4. Healthy and comfortable spaces	4.1 Indoor air quality	4.2 Time out of thermal comfort range	4.3 Lighting	4.4 Acoustics
Cost, value and	5. Adaption and resilience to climate change	5.1 Protection of occupier health and thermal comfort	5.2 Increased risk of extreme weather	5.3 Sustainable drainage	
LIPK	6. Optimised life cycle cost and value	6.1 Life cycle costs (€/m²/year)	6.2 Value creation and risk factors		



European framework for sustainable buildings

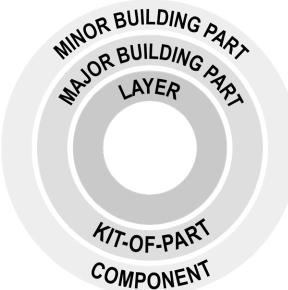
#BuildCircular

Current guidelines


Contradictory layering approaches for practitioners

^{*}Includes utilities equipment and connections

Current guidelines


Contradictory layering approaches for practitioners

Industrialised Construction

Defining 'Components' and 'Kit-of-Parts'

Kit-of-Parts, or major building parts, create building systems that may **form enclosed spaces**. Examples include **external wall panels**, **façade systems**, **bathroom pods**, **and internal wall systems** (with doors).

Kit-of-Parts are composed of **components**, or minor building parts, such as **doors and windows** within wall panels, **partition walling**, **and fitted wardrobes**.

Aims of the study

The purpose of this LCA study is to **compare the impact on GWP results of replacements during the use phase**, based on two prominent circular architectural design approaches outlined in relevant grey and academic literature: **assuming individual lifespans for minor building parts (components)** versus grouped average lifespans **for building layers.**

This study considers:

- Defined building parts and layers consistent with an industrialised approach.
- Recurring embodied carbon due to replacements.
- A 100-year lifespan, appropriate for housing and promoting longevity.
- Application of Brand's Shearing Layers, with inclusion of the building services layer.
- → Visual presentation of LCA results to aid practitioners in carbon hot-spotting to inform sustainable design decisions.

2. Methodology

The case study house

A highly energy-efficient house built using industrialised construction

Edificación Eco-Eficiente

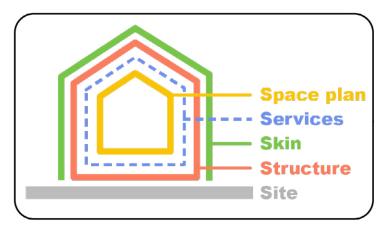
Location: UPV campus. Valencia, Spain **Built:** 2011. Prefabricated and assembled

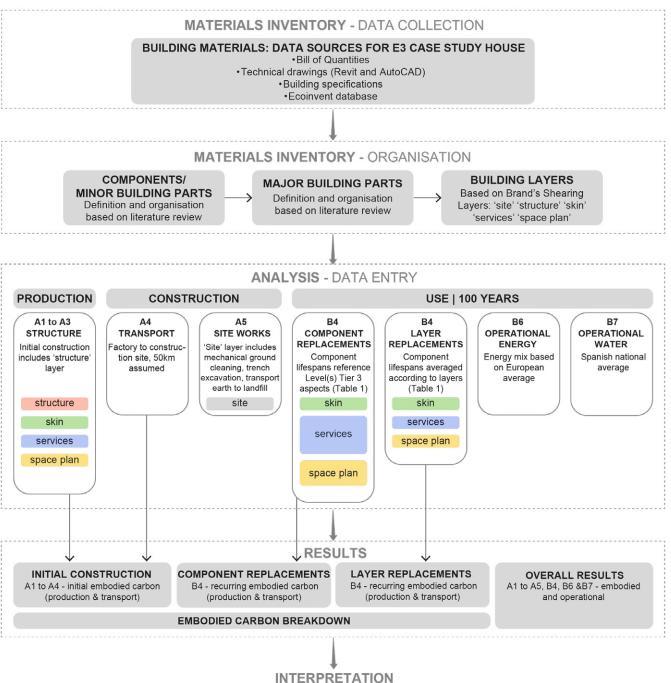
within 19 days on-site

Architect: Ignacio Guillén Guillamón

Construction: Steel frame & ventilated facade

Energy strategy: Passive design & on-site electricity generation (Class A energy rating)





Methodology

Five of Stewart Brand's six 'Shearing Layers of Change' applied to the case study house

Methodology

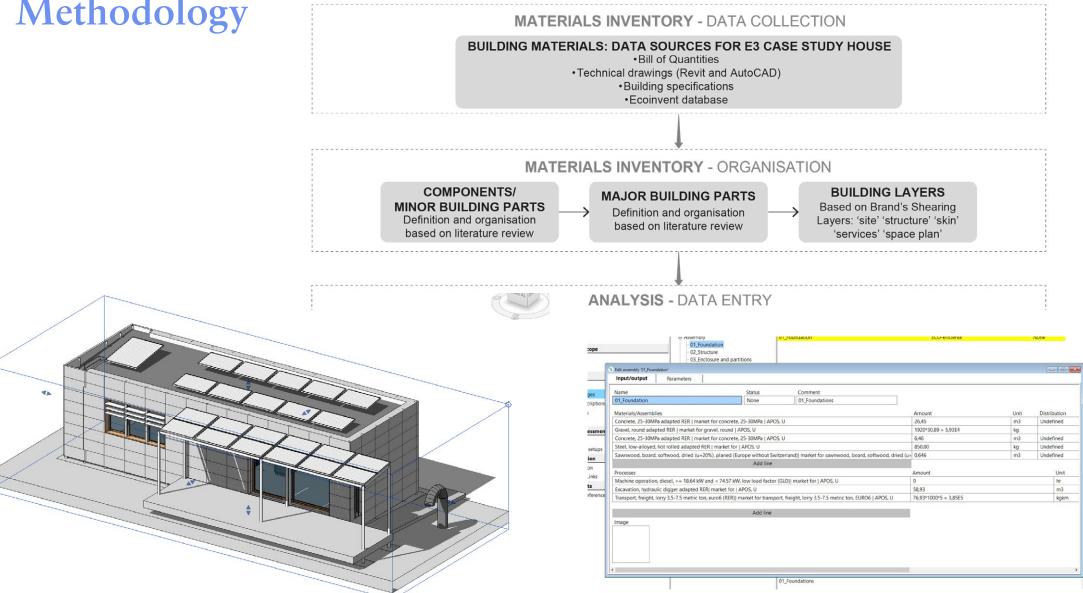
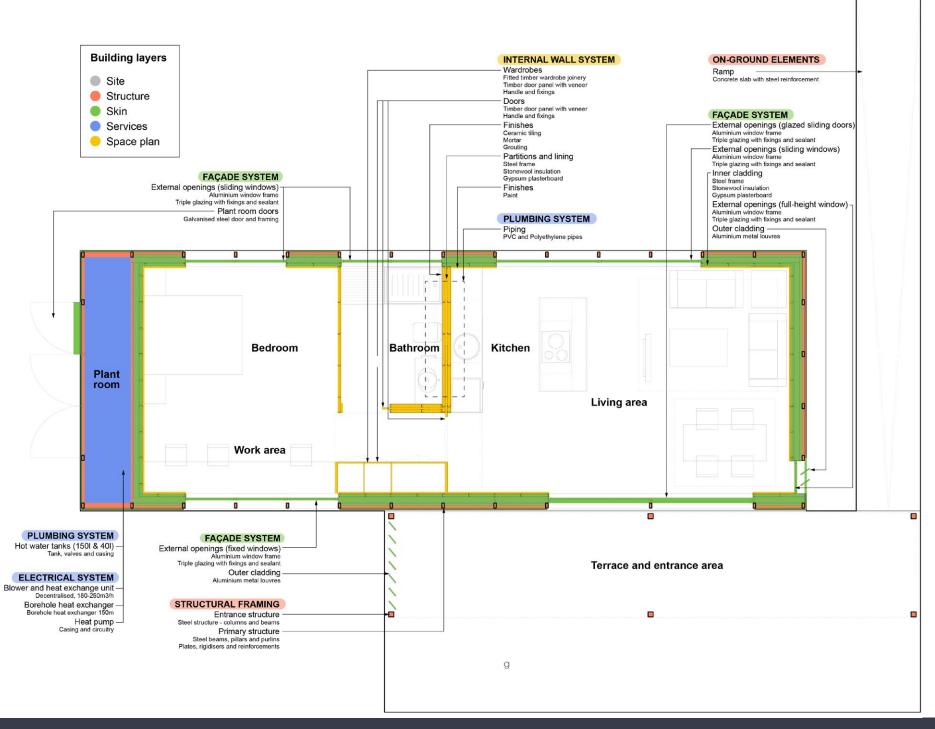


Image show the Revit BIM model for the Edificación Eco-Eficiente house Model used in conjunction with CAD drawings, specifications and BoQ for the lifecycle inventory - material types and quantities

Image shows data entry within Simapro software The study utilises the Ecoinvent database

Methodology


ANALYSIS - DATA ENTRY PRODUCTION CONSTRUCTION USE | 100 YEARS A1 to A3 **A4** A₅ **B4 B4 B6 B7 STRUCTURE TRANSPORT** SITE WORKS COMPONENT **LAYER OPERATIONAL OPERATIONAL** REPLACEMENTS REPLACEMENTS **ENERGY** WATER Initial construction Factory to construc-'Site' layer includes tion site, 50km mechanical ground Component Component Energy mix based Spanish national includes 'structure' cleaning, trench lifespans reference lifespans averaged on European average layer assumed Level(s) Tier 3 according to layers excavation, transport average earth to landfill aspects (Table 1) (Table 1) site skin skin structure skin services services space plan services space plan space plan RESULTS **INITIAL CONSTRUCTION** LAYER REPLACEMENTS COMPONENT REPLACEMENTS **OVERALL RESULTS** A1 to A4 - initial embodied carbon B4 - recurring embodied carbon B4 - recurring embodied carbon A1 to A5, B4, B6 &B7 - embodied (production & transport) (production & transport) (production & transport) and operational **EMBODIED CARBON BREAKDOWN** INTERPRETATION

Case study inventory

Table 1
Case study inventory organised into building layers, major and minor building parts.

Building layer	Average lifespan (years)	Average replace- ments	Major building part	Minor building part	Lifespan (years)	Replace- ments	Referenced Level(s) 'Tier 3 Aspect' Indicator 2.1
Structure	100	0	Foundation	Slab on grade	100	0	Frame (beams, columns and slabs)
				Footings	100	0	*Structural building parts assumed 100-year
			On-ground	Ramp	100	0	lifespan rather than 60 years as per Level(s)
			elements	Slab	100	0	Indicator 2.1
			Structural	Primary structure	100	0	
			framing	Entrance structure	100	0	
Skin	30	3	Façade system	Outer cladding	30	3	External wall systems, cladding and shading
				Sandwich panelling	30	3	devices
				Inner cladding	30	3	
				External openings	30	3	Façade openings (including windows and external doors)
			Roof system	Roof panelling	30	3	Weatherproofing
Services	24	4	Renewable	Photovoltaic	15	6	Electricity generation
			energy system	panelling system Solar collector	15	6	
			Planting and	system			The said has disastent as
			Electrical system	Blower & heat exchange unit	30	3	Electricity distribution
				Borehole heat exchanger	30	3	
				Heat pump	20	4	Heating plant and distribution
			Plumbing	Underfloor heating	30	3	Radiators
			systems	Hot water tanks	25	3	Cold water distributionHot water distribution
				Pipes	25	3	
Space Plan	27	3	Internal wall	Partitions and	30	3	Internal walls, partitions and doors
			systems	lining			
				Finishes	20	4	Wall and ceiling finishes
				Doors & wardrobes	30	3	Internal walls, partitions and doors/Cupboards
				i			wardrobes and worktops
			External floor	Floor base	30	3	Ground floor slab
			system	Floor finish	25	3	Paving and other hard surfacing
			Internal floor	Floor base	30	3	Ground floor slab
			system	Floor finish	30	3	Floor finishes, coverings and coatings
			Ceiling system	Ceiling base	30	3	Internal walls, partitions and doors
				Ceiling finish	20	4	Wall and ceiling coatings

Layers & lifespan assumptions

Defining the number of replacements within 100 years

average lifespan = rounded((x1 + x2 + x3 + ... + xn)/n)

Values for building layer lifespans were calculated by averaging using the mean: sum of all **component lifespans (x)** divided by the **total number of building parts within the layer (n)** rounded to the nearest whole number.

Case study inventory

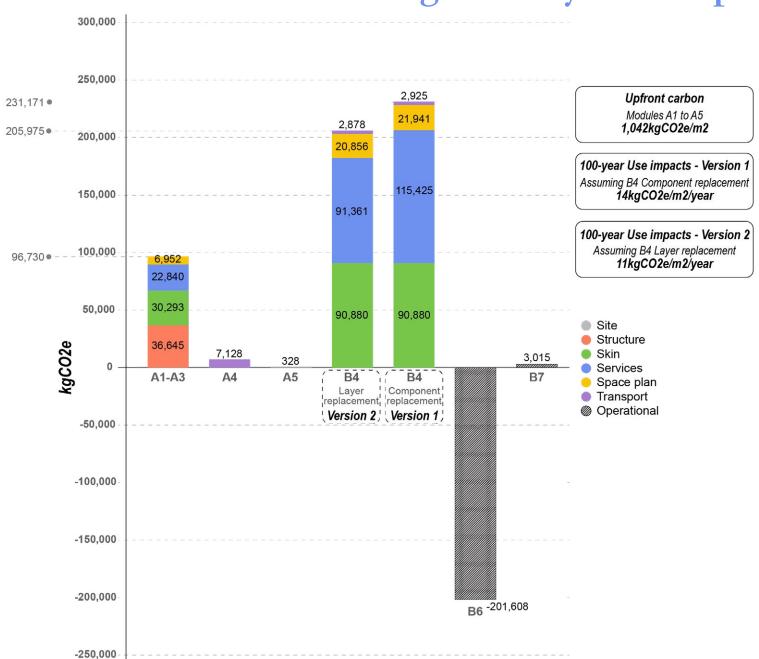
Table 1
Case study inventory organised into building layers, major and minor building parts.

Building layer	Average lifespan (years)	Average replace- ments	Major building part	Minor building part	Lifespan (years)	Replace- ments	Referenced Level(s) 'Tier 3 Aspect' Indicator 2.1
Structure	100	0	Foundation	Slab on grade	100	0	Frame (beams, columns and slabs)
				Footings	100	0	*Structural building parts assumed 100-year
		i	On-ground	Ramp	100	0	lifespan rather than 60 years as per Level(s)
			elements	Slab	100	0	Indicator 2.1
			Structural	Primary structure	100	0	
		i	framing	Entrance structure	100	0	
Skin	30	3	Façade system	Outer cladding	30	3	External wall systems, cladding and shading
				Sandwich panelling	30	3	devices
				Inner cladding	30	3	
				External openings	30	3	Façade openings (including windows and external doors)
		- 1	Roof system	Roof panelling	30	3	Weatherproofing
Services	24	4	Renewable	Photovoltaic	15	6	Electricity generation
			energy system	panelling system			
		i i	58 55	Solar collector	15	6	
				system			
			Electrical system	Blower & heat	30	3	Electricity distribution
		i		exchange unit			
				Borehole heat	30	3	
				exchanger	Delicate.	· ·	
		i	reservation.	Heat pump	20	4	Heating plant and distribution
			Plumbing	Underfloor heating	30	3	Radiators
			systems	Hot water tanks	25	3	Cold water distributionHot water distribution
		i		Pipes	25	3	
Space Plan	27	3	Internal wall	Partitions and	30	3	Internal walls, partitions and doors
		1.0	systems	lining			
				Finishes	20	4	Wall and ceiling finishes
				Doors & wardrobes	30	3	Internal walls, partitions and doors/Cupboards,
		i					wardrobes and worktops
		1	External floor	Floor base	30	3	Ground floor slab
			system	Floor finish	25	3	Paving and other hard surfacing
			Internal floor	Floor base	30	3	Ground floor slab
		i	system	Floor finish	30	3	Floor finishes, coverings and coatings
		1	Ceiling system	Ceiling base	30	3	Internal walls, partitions and doors
				Ceiling finish	20	4	Wall and ceiling coatings

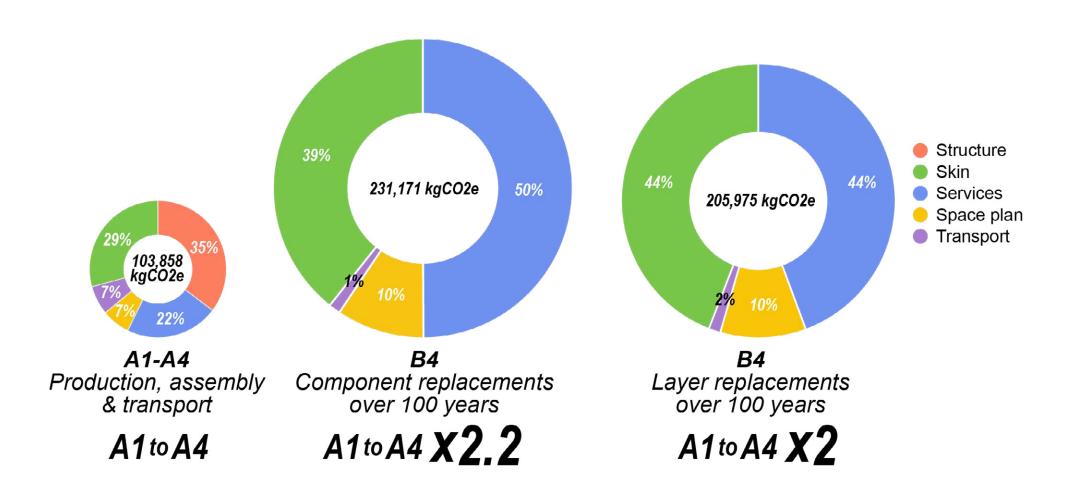
LCA modules included in the study

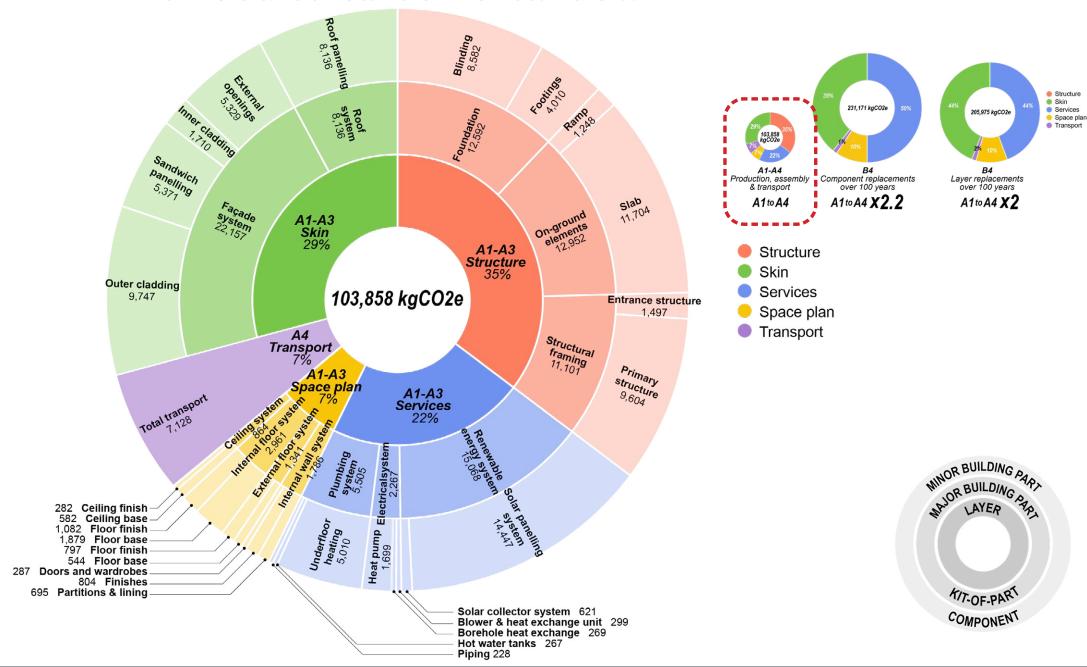
PHASE	Production A1 to A3				ruction o A5	Use B1 to B7						End-of-Life C1 to C4				Beyond End-of-Life D			
MODULE	Raw material supply	Transport to manufacturing plant	Manufacturing & fabrication	Transport to project site	Construction & installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy	Operational water	Deconstruction/demolition	Transport to disposal facility	Waste processing	Disposal	Reuse potential	Recycling potential	Energy recovery potential
	A 1	A2	А3	A 4	A5	В1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4		D	
	1 100-year use period																		
	2 Embodied carbon breakdown																		

EN 15978 Sustainability of Construction Works. Assessment of Environmental Performance of Buildings. Calculation Method.

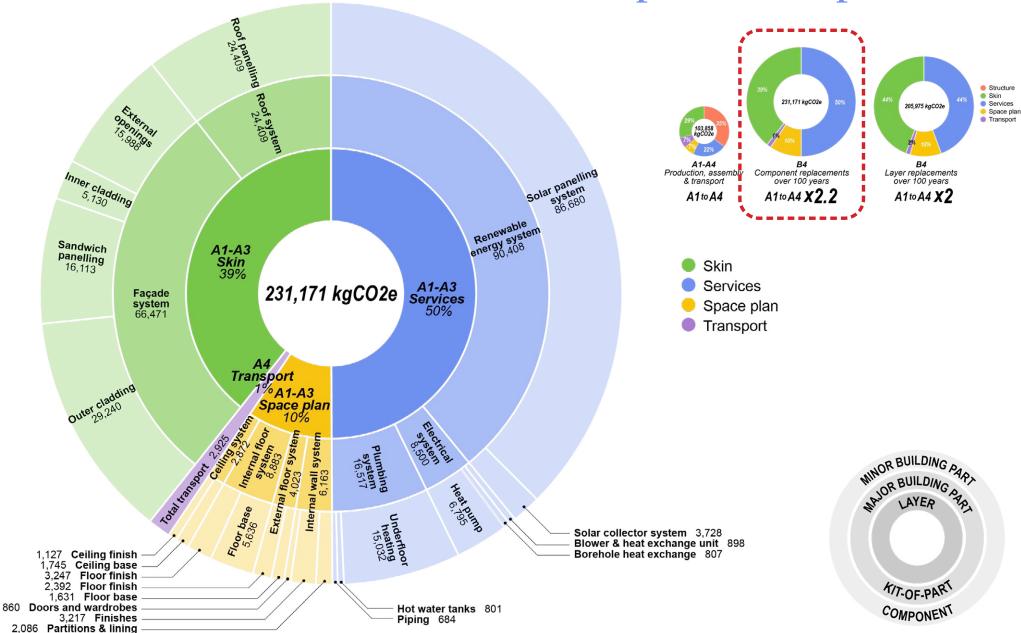


3. Interpretation of Results

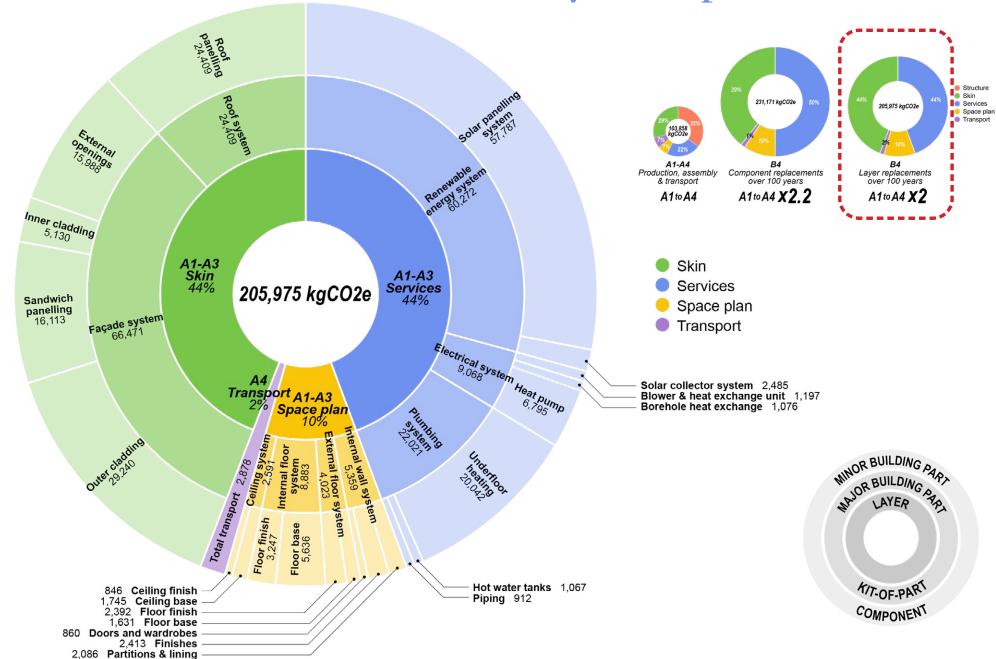

Carbon dioxide emissions during a 100-year use period



Embodied carbon breakdown by layer



A1-A4 embodied carbon breakdown

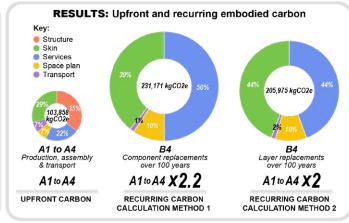


B4 embodied carbon breakdown - component lifespans

B4 embodied carbon breakdown - layer lifespans

4. Conclusions

Conclusions


Applying the circular principle building layers to the replacement of building parts has an impact on LCA results quantifying CO₂ emissions, producing different results compared to managing individual component lifespans.

Highlights

- LCA study investigating the **impact of circular design principles** in industrialised housing.
- Two calculations compare replacement of building layers versus components.
- Replacement of building components results in greater carbon emissions.
- Both methods resulted in emissions approximately double the upfront carbon.
- The findings are useful for Life Cycle **Inventory definition** and **carbon hot-spotting**, which is particularly advantageous for the continuous improvement of industrialised building systems.

5. Reflections

Implications for practice

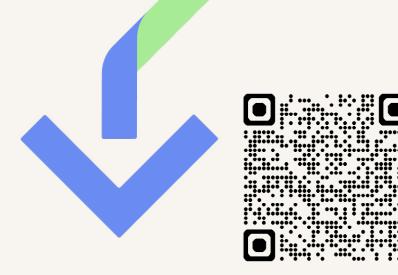
it is crucial for practitioners to utilise **industrialised construction**, integrating **design for disassembly** to facilitate future maintenance, building adaptations, and End-of-Life reuse scenarios. This enhances **building circularity** and increases the likelihood of realising LCA calculations and assumptions.

- CA replacement calculations should use a component approach
- Using layers is helpful to organise the LCI and aid carbon hot-spotting
- More accurate lifespan data needed from manufacturers
- Oesigners to incorporate measures to reduce embodied emissions during the use phase
- Greater LCA collaboration between designers and off-site contractors needed
- Simplified LCA methodologies needed for 'normal' architects
- Detailed up-to-date databases needed for LCA practitioners
- Regulating embodied carbon LCA calculations should be included in the procurement process
- Policy measures needed to enhance reliability/standardisation for component lifespans

Implications for academia & education

The construction industry is **risk-averse**, **resistant to change and slow to modernise**. It is crucial for architectural education to **integrate life cycle thinking** to embed sustainable design practices from the **planning and concept design stages**.

- Students increasingly familiar with the basics from information exposure in the media
- Need to incorporate LCA into architecture courses & educational programs
- Applied design projects for students to critically assess/contextualise impact of design decisions
- Introduce each life cycle stage in separate curriculum modules to go into greater depth
- Need to make students passionate about environmentally sustainable design
- "If we show LCA as something foreign to architectural practice, students will hate it"



Thank you

Questions?

read the full article published in Elsevier's Energy & Buildings

let's connect on LinkedIn

If you would like to know more, please contact me at annette.davis@salle.url.edu or visit the project website at re-dwell.eu

