

ENVIRONMENTAL IMPACTS OF LUNCHES SERVED IN THE US NATIONAL SCHOOL LUNCH PROGRAM

ALEXANDRA STERN, PHD AUGUST 30, 2022

NICE TO MEET YOU!

Postdoctoral fellow at US Environmental Protection Agency

NIH NATIONAL CANCER INSTITUTE


Focus: Healthy diets from sustainable food systems

sustainability

MDPI

Data Integration for Diet Sustainability Analyses

Zach Conrad ^{1,2,*}⁽¹⁾, Alexandra Stern ³, David C. Love ^{4,5}⁽¹⁾, Meredith Salesses ⁶, Ashley Cyril ⁶, Acree McDowell ⁶ and Nicole Tichenor Blackstone ³⁽¹⁾

DISCLOSURES

- This work was supported by the National Needs Fellowship grant number 2019-38420-29021 from the USDA National Institute of Food and Agriculture
- The views expressed herein at those of the authors and **do not necessarily represent the opinion** or policy of the agency
- This work is not associated with research at the US Environmental Protection Agency

The global food system is **driving climate change** and **environmental degradation** while contributing to unprecedented levels of **malnutrition**, and **economic inequalities**.

ARTICLE

https://doi.org/10.1038/s41586-018-0594-0

Options for keeping the food system within environmental limits

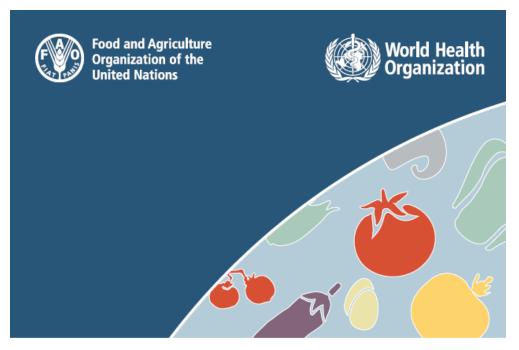
Marco Springmann^{1,2*}, Michael Clark³, Daniel Mason - D'Croz^{4,5}, Keith Wiebe⁴, Benjamin Leon Bodirsky⁶, Luis Lassaletta⁷, Wim de Vries⁸, Sonja J. Vermeulen^{9,10}, Mario Herrero⁵, Kimberly M. Carlson¹¹, Malin Jonell¹², Max Troell^{12,13}, Fabrice DeClerck^{14,15}, Line J. Gordon¹², Rami Zurayk¹⁶, Peter Scarborough², Mike Rayne⁷, Brent Loken^{12,14}, Jess Fanzo^{17,18}, H. Charles J. Godfray^{1,19}, David Tilman^{20,21}, Johan Rockström^{6,12} & Walter Willett²² ARTICLES PUBLISHED ONLINE: 31 AUGUST 2014 I DOI: 10.1038/NCLIMATE2353 nature climate change

Importance of food-demand management for climate mitigation

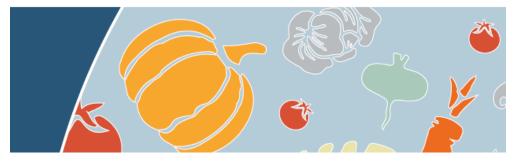
Bojana Bajželj¹*, Keith S. Richards², Julian M. Allwood¹, Pete Smith³, John S. Dennis⁴, Elizabeth Curmi¹ and Christopher A. Gilligan⁵

The Lancet Commissions

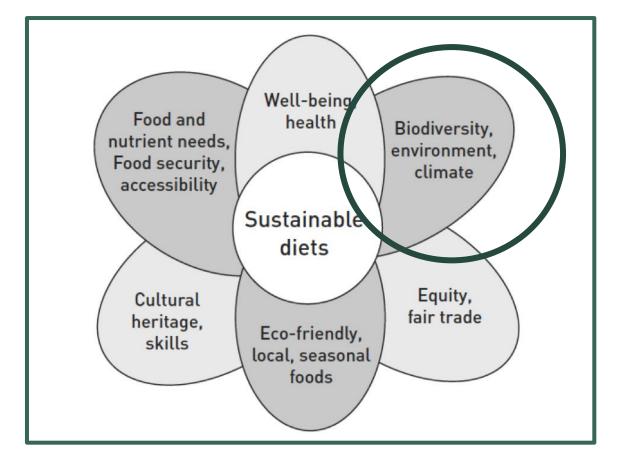
Food in the Anthropocene: the EAT-*Lancet* Commission on healthy diets from sustainable food systems


Walter Willett, Johan Rockström, Brent Loken, Marco Springmann, Tim Lang, Sonja Vermeulen, Tara Garnett, David Tilman, Fabrice DeClerck, Amanda Wood, Malin Jondl, Michael Clark, Line J Gordon, Jessica Fanzo, Corinna Hawkes, Rami Zurayk, Juan A Rivera, Wim De Vries, Lindiwe Majele Sibanda, Ashkan Afshin, Abhishek Chaudhary, Mario Herrero, Rina Agustina, Francesco Branca, Anna Lattey, Shenggen Fan, Beatrice Crona, Elizabeth Fax, Victoria Bignet, Max Troell, Therese Lindahl, Sudhvir Singh, Sarah E Cornell, K Srinath Reddy, Sunit a Narain, Sania Nishtar, Christopher J L Murray

WORLD RESOURCES REPORT CREATING A SUSTAINABLE FOOD FUTURE


A Menu of Solutions to Feed Nearly 10 Billion People by 2050

FINAL REPORT, JULY 2019



SUSTAINABLE HEALTHY DIETS GUIDING PRINCIPLES

SUSTAINABLE DIETS

- Low environmental impacts
- Protective of biodiversity and ecosystems
- Promote food and nutrition security
- Nutritionally adequate
- Economically fair and affordable
- Culturally acceptable

SCHOOL FOOD OPPORTUNITY

14 BILLION USD40% OF CHILDREN19% FREE MEALS

The overall objectives of this research were to evaluate the sustainability of school lunches in the U.S. and create realistic alternative menus for schools which balance tradeoffs across sustainability indicators to guide recommendations for improvement.

OBJECTIVE AND RESEARCH AIMS

- Collate life cycle inventories (LCIs) for foods served in the NSLP;
- Estimate the environmental impacts from the agricultural production of lunches;
- Explore the distribution of impacts across lunches and identify the contribution of impacts from quintiles and food groups; and
- Examine the composition of lunches by quintile to focus policy recommendations.

SPECIFIC AIMS

METHODS

AIMI DATA

Lunch data

→School Nutrition and Meal Cost Study

Environmental data

 \rightarrow ecoinvent 3.6

Recipe data

→Food Commodity Intake Database

Conversion data

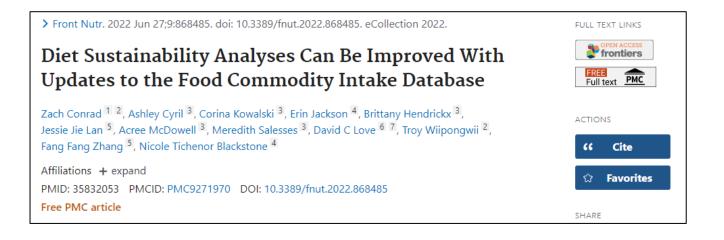
→Food Intakes Converted to Retail Commodities

- USDA periodic assessment of the school meals program
- Nationally representative sample of I,207 schools
- 2.2 million lunches served
- Over 1,300 unique food items
- Web based survey of week of lunch served

Food and Nutrition Service

School Nutrition and Meal Cost Study Summary of Findings

- Whole wheat pasta with meat sauce, a whole wheat roll, tossed salad with creamy dressing, canned peaches, and 1% milk
- Fajita with chicken and vegetables, corn chips, and apple juice
- Beef patty, whole wheat roll, and mashed white potatoes, and 1% milk
- Peanut butter and jelly sandwich, apple, and carrots

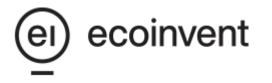


EXAMPLE LUNCHES

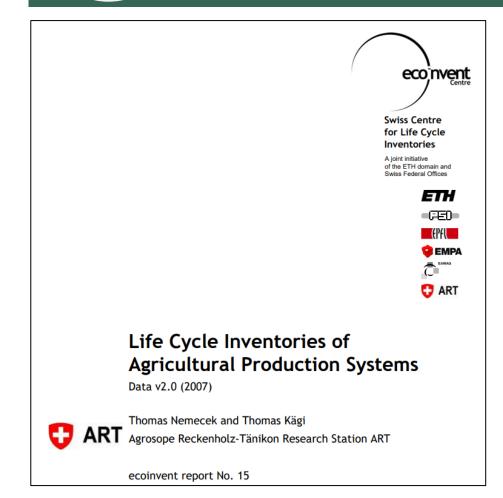
- Food Commodities Intake Database (FCID)
- 500 commodities linked to 5,000 Food and Nutrient Database for Dietary Studies (FNDDS) Codes
- Standard forms and cooked status
 - Dried, juice, flour

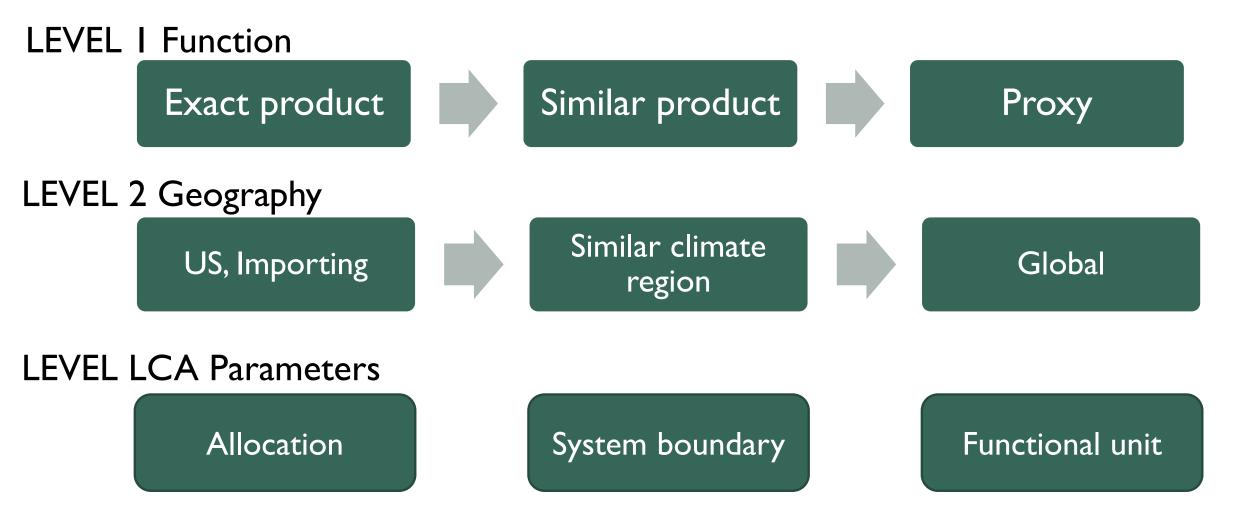
RECIPE DATA

\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$


FNDDS	FNDDS	FCID Code	FCID	Commodity	Cooked
Code	Description		Description	proportion	Status
51300110	bread, whole wheat	1500402000	wheat flour	42.25	9
51300110	bread, whole wheat	1500401000	wheat grain	18.576	2
51300110	bread, whole wheat	1500124000	corn, field, syrup	3.629	2
51300110	bread, whole wheat	600350000	soybean, oil	2.677	2
51300110	bread, whole wheat	1500404000	wheat, bran	1.163	2
51300110	bread, whole wheat	600348000	soybean, flour	0.587	9
51300110	bread, whole wheat	3600223000	milk, nonfat solids	0.561	2
51300110	bread, whole wheat	2003128000	cottonseed, oil	0.233	2
51300110	bread, whole wheat	3600224000	milk, water	0.015	2
51300110	bread, whole wheat	3600222000	milk, fat	0.006	2

SELECTING ENVIRONMENTAL DATA


- Range of possible data sources
 - US Federal LCA Commons
 - World Food LCA Database
 - Ecoinvent 3.6
 - Literature
 - Mekonnen and Hoekstra
 - dataFIELD
 - Poore and Nemechek


SELECTING ENVIRONMENTAL DATA

Ecoinvent

- Consistent system boundaries and allocation methods
- LCI over LCA results
 - Ability to manipulate inventory
 - Consistent LCIA methods
 - Uncertainty analyses
- Wide range of agricultural products from around the world
- Overlap with WFLDB

SELECTING ECOINVENT INVENTORIES/PROCESSES

PROCESSES AND PROXIES

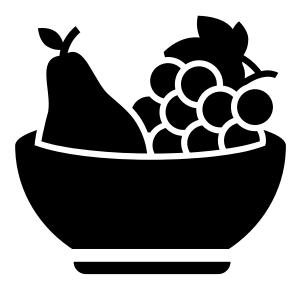
FCID	FCID Description	Process	Proxy (1,0)
1100007000	Apple, fruit with peel	apple production apple US	0
1100008000	Apple, peeled fruit	apple production apple US	0
103299000	Potato, tuber, w/peel	potato production potato US	0
402117000	Collards	brassica	1
500064000	Brussels sprouts	brassica	1
1003180000	Grapefruit	citrus	1

Proxy group	Process
brassica	broccoli production broccoli GLO
brassica	cabbage white production cabbage white RoW
brassica	cauliflower production cauliflower GLO
citrus	orange production, fresh grade orange, fresh grade US
citrus	mandarin production, sorted and graded mandarin, fresh grade RoW
citrus	lemon production lemon MX

ANALYSES

- Impact assessment methods
 - ILCD
 - ReCiPE Midpoint H

Software

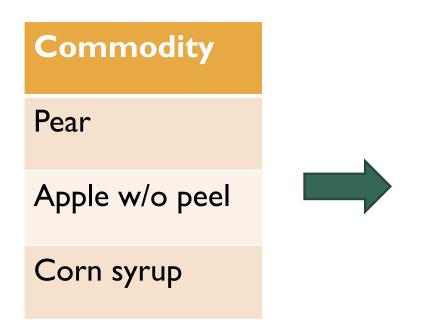

- openLCA
- Simapro as comparison

орепьса

Database	Software	Impact Assessment Methods
Ecoinvent 3.6	ecoquery	ILCD 2.0
Ecoinvent 3.6	openLCA	ReCiPe 2016
WFLDB 3.1	Simapro	ILCD 2011
WFLDB 3.4	Simapro	ILCD 2011
WFLDB 3.5	Simapro	PEF

DATA LINKAGES – RECIPES, PROXIES, AND CONVERSIONS

Menu Item Fruit cup



Recipe Agricultural Commodities to Foods

Commodity Pear Apple w/o peel Corn syrup

DATA LINKAGES – RECIPES, PROXIES, AND CONVERSIONS

Recipe Agricultural Commodities to Foods

LCI ecoinvent 3.6 Direct, proxies, proxy groups

LCI Assignment

Tree fruit group

apple production | apple | Cutoff, U – US

Corn, field, syrup - mod - beet sugar production | molasses, from sugar beet | Cutoff, U

DATA LINKAGES – RECIPES, PROXIES, AND CONVERSIONS

		Recipe Proportion 100g ⁻¹		Conversion Inedible, cooking loss		Final Impact
GHG Impact kg co2 eq kg-l		Proportion				of fruit cup
0.25	X	0.50	V	Stem and seeds	=	X
0.08	Λ	0.48		Stem, peel, seeds		
0.62		0.02		None		

RESULTS

Table I-I. Environmental impacts of lunches served in the National School Lunch Program during the 2014-2015 SY.

		Mean (SE)				
	Global Warming	Land Use m ² a	Water	Eutrophicati	Eutrophication Potential	
	Potential kg CO ₂ eq.	crop eq.	Consumption m ³	Marine g N eq.	Freshwater g P eq.	
Per Lunch	I.5 (2.7E-2)	I.8 (3.4E-2)	5.5E-2 (6.6E-4)	3.1 (4.9E-2)	0.24 (I.6E-3)	
Per 1000 kcal	2.4 (4.3E-2)	2.9 (5.5E-2)	8.9E-2 (1.1E-3)	5.0 (8.0E-2)	0.39 (2.7E-3)	

SY = School year; SE = standard error of the mean is the variability of lunches from School Nutrition Meal Cost Study.

 Table I-2. Average
composition of lunches served in the National School Lunch Program exclusively in the 1st or 5th quintiles for all impact categories by food group. Results are energy (kcal) adjusted averages of lunches exclusively in the Ist (low impact; n=62,000) or 5th (high impact,

n=38,000) quintiles for all impact categories.

Food Group	Low Impact	High Impact	p-value
Fruit (cup eq.)	0.62	0.72	0.04 *
Fruit juices	0.05	0.17	0.00 ***
Other fruit	0.57	0.55	003 *
Vegetables (cup eq.)	0.61	0.73	0.00 **
Red orange	073	() 19	00/
Starchy	0.11	0.20	0.00 ***
Other fruit	0.13	U.I /	0.05
Beans and peas	0.05	0.05	0.89
Dark green	0.10	0.12	0.24
Protein foods (oz.eq.)	0.69	72	0 00 ***
Beefand perk	0.00	1.02	0.00 ***
Poultry	0.18	0.32	0.00 **

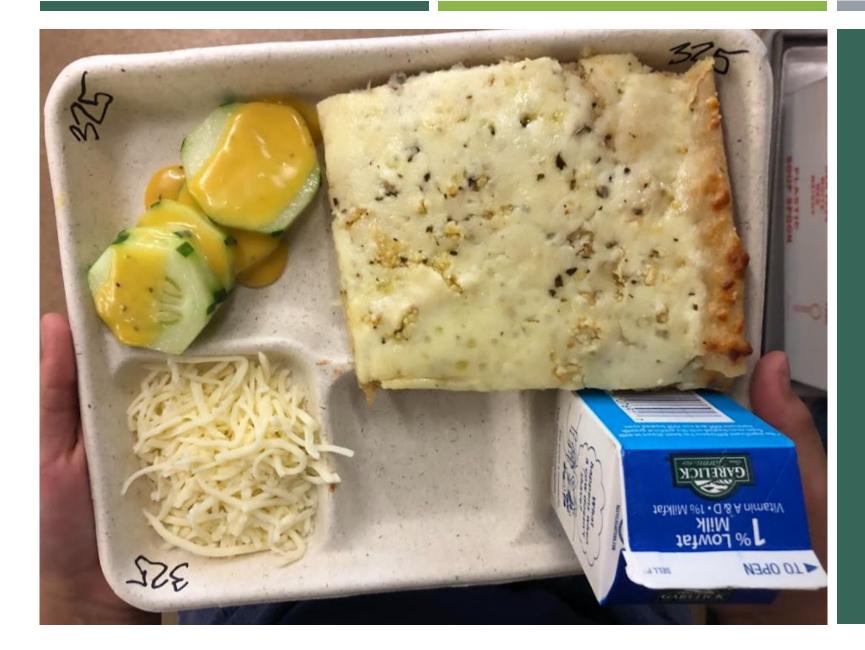
 Table I-2. Average
composition of lunches served in the National School **Lunch Program** exclusively in the 1st or 5th quintiles for all impact categories by food group. Results are energy (kcal) adjusted averages of lunches exclusively in the Ist (low impact; n=62,000)

or 5th (high impact, n=38,000) quintiles for all impact categories.

Food Group	Low Impact	High Impact	p-value
Protein foods (oz. eq.)	0.69	I.72	0.00 ***
Cured luncheon meat ²	0 20	0 23	0 54
Seafood	0.04	0.01	0.04 *
Eggs	0.01	0.03	0.00
Legumes	0.01	0.04	0.13
Nuts and seeds	0.19	0.01	0.00 ***
Soy products	0.04	0.04	0.82
Dairy (cup eq.)	1 58	1 03	0 00 ***
Cheese	0.71	0.26	0.00 ***
MIIK	0.86	U./6	0.00
Grains (oz. eq.)	2.42	2.12	0.00 ***
Refined grains	0 98	0 96	0 79
Whole grains	1.43	1.16	0.00 **

Table 1-3. Total lunch composition and percent contribution of impacts from food groups for lunches served in the **National School** Lunch Program. Food group contribution to total impacts is a factor of commodity impacts from varying production practices and amount served. Mass

practices and amount served. Mass of each food group is expressed as the percent of the total mass of all lunches served. Color ranges from light green and yellow to light and dark red to denote food groups' contribution intensity. Red cells represent the greatest contribution to lunch impacts, whereas light green represents the lowest contribution.


	0/	% Contribution to Total Environmental Impact						
Food	% Lunches	Global		_	Eutrop	hication		
Groups	by Mass	Warming Potential	Land Use	Water Consumption	Marine	Freshwater		
Fruits	20.0	1.3	2.1	26.5	1.7	3.2		
Other fruit	15.0	0.8	1.3	16.5	1.1	2.0		
Juice	5.0	0.5	0.0	10.0	0.6	1.2		
Vegetables	16.0	2.8	2.5	14.3	3.2	8.4		
Ked orange	6.0	0.4	0.6	5.6	0.6	0.7		
Starchy	4.0	0.7	0.8	6.1	1.1	4.1		
Other	4.0	1.3	0.5	1.8	0.9	3.2		
Beans and peas	1.0	0.2	0.6	0.5	0.3	0.3		
Dark	1.0	0.7	0.8	6.1	1.1	4.1		
Meat	8.0	67.3	65.6	28.0	60.2	39.5		
Poultry	5.0	9.0	0.1	19.2	9.5	18.4		
Beef	2.0	52.5	56.0	4.6	47.3	13.6		
Dairy	36.0	21.7	17.0	7.0	24.3	28.5		
Grains	8.0	2.7	0.2	4.3	7.7	10.5		
Other	5.0	1.8	2.4	4.2	1.0	1.4		
Sweeteners	3.0	0.3	0.7	0.8	0.8	0.6		
Oil	2.0	0.9	2.9	5.3	0.8	7.1		
Fag	03	03	0.4	8.6	03	0.4		
Seafood	0.2	0.9	0.0	0.4	0.0	0.2		
Nuts and seeds	0.2	0.0	0.2	0.5	0.1	0.1		

Food	# FCID	% FCID	% Total Impact from Proxies					
groups	commodities	requiring proxies	Warming Use Con.				ation	
			Potential			Marine	Freshwater	
Fruit	153	56	0.3	0.3	2.7	0.3	0.5	
Vegetables	189	63	0.6	0.9	2.1	0.9	2.0	
Grain	44	48	1.4	0.9	2.8	1.3	2.7	
Meat	58	40	0.0	0.0	0.1	0.0	0.0	
Fish and seafood	6	33	0.0	0.0	0.1	0.0	0.0	
Nuts and seeds	29	55	0.0	0.0	0.0	0.0	0.0	
Eggs	6	0	0.0	0.0	0.0	0.0	0.0	
Dairy	7	0	0.0	0.0	0.0	0.0	0.0	
Oils and fats	26	62	0.3	0.5	3.1	0.3	1.0	
Sweeteners	15	60	0.1	0.2	0.2	0.2	0.2	
Other	29	45	0.0	0.0	0.5	0.0	0.1	
Total diet	562	54	2.7	2.8	11.6	3.1	6.3	

USE OF PROXIES IN LINKAGES TO FCID AND PERCENT CONTRIBUTION OF PROXIES TO TOTAL IMPACTS, BY FOOD GROUP

RANKING OF IMPACTS BY IMPACT CATEGORY AND METHODS IN THE TEN MOST SERVED COMMODITIES IN NSLP.

Food	Process Name	Database	Software	LCIA Method	Climate Rank	Land Rank
apple	apple production apple US	ecoinvent 3.6	ecoquery	ILCD 2.0 2018 Mid no LT	2	2
apple				ILCD 2011 Midpoint+		
appie	Apple, at farm (WFLDB 3.1)/US U	WFLDB 3.1	Simapro	V1.06	3	2
apple	Apple, at farm (WFLDB 3.4)/US U (QLL18.1.0)	WFLDB 3.4	Simapro	ILCD 2011 Mid+	1	2
apple	Apple, at farm (WFLDB 3.5)/US	WFLDB 3.5	Simapro	PEF	2	3
apple	apple production apple Cutoff, U - US	ecoinvent 3.6	openLCA	ReCipe 2016 Mid (H)	2	1
beef	beef cattle production on pasture and feedlot cattle					
beel	for slaughtering, live weight RoW	ecoinvent 3.6	ecoquery	ILCD 2.0 2018 Mid no LT	10	10
beef	Beef, fresh meat, at slaughterhouse (WFLDB 3.1)/US U	WFLDB 3.1	Simapro	ILCD 2011 Mid+ V1.06	10	10
beef	Beef, fresh meat, at slaughterhouse (WFLDB 3.4)/US U (QLL18.1.0)	WFLDB 3.4	Simapro	ILCD 2011 Mid+	10	10
beef	Beef, fresh meat, at slaughterhouse (WFLDB 3.5)/US	WFLDB 3.4		PEF	10	10
beel		WFLDD 5.5	Simapro	FCF	10	10
beef	beef cattle production on pasture and feedlot cattle for slaughtering, live weight Cutoff, U - RoW	ecoinvent 3.6	openLCA	ReCipe 2016 Mid (H)	10	10
carrot	carrot production carrot CN	ecoinvent 3.6	ecoquery	ILCD 2.0 2018 Mid no LT	3	3
carrot	Carrot, at farm (WFLDB 3.1)/GLO U	WFLDB 3.1	Simapro	ILCD 2011 Mid+ V1.06	1	3

DISCUSSION

FUTURE OF SCHOOL LUNCH

- Implications for policy, funding, and school meal programming
- New standards for lunch planning
 - Minimum requirements for legumes (including peanuts) and fish
 - Limits for beef and cheese

- Reduce the burden for schools in selecting suitable fish options
 - Federal and state agencies and nonprofits provide lists of acceptable options based on locality
- Funding through legislation and Farm to School
- Effective behavioral interventions for menu changes

	Preschool	Grades K-5	Grades 6-8	Grades 9- I 2			
	Amount of Food Per Week (Minimum per day)						
Meat and Meat Alternative (oz. eq.)	7.5 (1.5)	8-10 (1)	9-10 (1)	10-12 (2)			
Beans and Peas (Legumes)	1.5	1.5 2		2			
	Amount of Food per Month						
Fish	1.5	4	4	4			
Beef	< 4.5	< 6	< 6	< 6			
Cheese	< 4.5	< 6	< 6	< 6			

UPDATED NUTRITION STANDARDS

THANK YOU!

SPECIAL THANKS

- My committee
 - Timothy Griffin
 - Nicole Tichenor Blackstone
 - Christina Economos
- Boston Public Schools
 - Laura Benevidez
 - Nancy Fisher
 - Kelly Thompson and Caitlin Tenario

- Collaborators
 - Scott Richardson (photo credits)
 - Steve Levine
- Funding
 - USDA NIFA, Doctoral Fellowship in Childhood Obesity Prevention