
royalsocietypublishing.org/journal/rsta

Research
Cite this article: Kristensen PK, Niordson CF,
Martínez-Pañeda E. 2021 An assessment of
phase field fracture: crack initiation and
growth. Phil. Trans. R. Soc. A 379: 20210021.
https://doi.org/10.1098/rsta.2021.0021

Accepted: 8 March 2021

One contribution of 15 to a discussion meeting
issue ‘A cracking approach to inventing new
tough materials: fracture stranger than
friction’.

Subject Areas:
computational mechanics, mechanical
engineering, mechanics, materials science

Keywords:
Griffith, phase field fracture, fracture
mechanics, finite element analysis

Author for correspondence:
Emilio Martínez-Pañeda
e-mail: e.martinez-paneda@imperial.ac.uk

An assessment of phase field
fracture: crack initiation
and growth
Philip K. Kristensen1, Christian F. Niordson1 and

Emilio Martínez-Pañeda2

1Department of Mechanical Engineering, Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark
2Department of Civil and Environmental Engineering, Imperial
College London, London SW7 2AZ, UK

PKK, 0000-0002-0178-9985; EM-P, 0000-0002-1562-097X

The phase field paradigm, in combination with a
suitable variational structure, has opened a path
for using Griffith’s energy balance to predict the
fracture of solids. These so-called phase field fracture
methods have gained significant popularity over
the past decade, and are now part of commercial
finite element packages and engineering fitness-
for-service assessments. Crack paths can be predicted,
in arbitrary geometries and dimensions, based on
a global energy minimization—without the need
for ad hoc criteria. In this work, we review the
fundamentals of phase field fracture methods and
examine their capabilities in delivering predictions
in agreement with the classical fracture mechanics
theory pioneered by Griffith. The two most widely
used phase field fracture models are implemented in
the context of the finite element method, and several
paradigmatic boundary value problems are addressed
to gain insight into their predictive abilities across
all cracking stages; both the initiation of growth and
stable crack propagation are investigated. In addition,
we examine the effectiveness of phase field models
with an internal material length scale in capturing size
effects and the transition flaw size concept. Our results
show that phase field fracture methods satisfactorily
approximate classical fracture mechanics predictions
and can also reconcile stress and toughness criteria
for fracture. The accuracy of the approximation is
however dependent on modelling and constitutive
choices; we provide a rationale for these differences
and identify suitable approaches for delivering
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phase field fracture predictions that are in good agreement with well-established fracture
mechanics paradigms.

This article is part of a discussion meeting issue ‘A cracking approach to inventing new
tough materials: fracture stranger than friction’.

1. Introduction
It has been 100 years since Alan Arnold Griffith [1] presented the energy balance that gave birth
to the discipline of fracture mechanics. Cracks were postulated to propagate when the energy
released due to crack growth is greater than or equal to the work required to create new free
surfaces. Although this criterion for fracture is attractive, as it is based on simple thermodynamic
principles, the fracture mechanics community soon moved in other directions to embrace local
stress concepts such as stress intensity factors—a path opened by the work of Irwin [2]. More
amenable to analytical and numerical solutions, these stress-intensity approaches came at the cost
of imposing arbitrary criteria for determining the direction and extension of crack growth [3,4];
as discussed below, the spatial and temporal evolution of crack paths are a natural by-product
of Griffith’s energy balance. However, on the centenary of Griffith’s seminal contribution, one
can argue that the tables have been turned. The development of a variational stance for Griffith’s
theory and the subsequent pioneering use of the phase field paradigm to computationally track
evolving cracks have again brought the view of fracture mechanics as an energetic problem in
focus [5]. Originating in the early 2000s but mainly developed over the past decade [6–10], the
field of phase field fracture mechanics has enjoyed ever-increasing popularity up to its current
‘quasi-hegemonic status’ [11].

The phase field fracture method has provided a suitable mathematical and computational
framework for Griffith’s energy balance. Phase field fracture analyses have proven capable of
predicting—without ad hoc criteria—the nucleation, growth, merging, branching and arrest
of cracks, in arbitrary dimensions and geometries (e.g. [12–15] and references therein). These
capabilities are of increasing importance in advanced structural integrity assessment and the
applications of phase field fracture have soared; examples include composite materials [16,17],
shape memory alloys [18], rock-like materials [19], hydrogen embrittlement [20,21], functionally
graded materials [22,23], dynamic fracture [9,24], fatigue damage [25,26], ductile damage [27,28]
and Li-ion batteries [29,30]. On the occasion of the fracture mechanics meeting organized at the
Royal Society, and the associated Special Issue, we review the fundamentals of phase field fracture
and gain new insight into its ability to deliver predictions in agreement with the classical fracture
mechanics theory laid out by Griffith and his contemporaries.

The remainder of this paper is organized as follows. In §2, we introduce the phase field fracture
theory, starting from Griffith’s energy balance. The formulation is presented in a generalized
fashion, accommodating any constitutive choice for the crack density function. The details of the
numerical implementation are given in §3, in the context of the finite element method. The main
results and findings are presented in §4. First, we prescribe a remote K-field using a boundary
layer model to quantify the energy released during crack initiation. Secondly, to investigate the
capabilities of phase field fracture in accurately capturing stable crack growth, we use a double-
cantilever beam with a known analytical solution for the crack extension as a function of the
critical energy release rate and the applied load. Thirdly, using a plate of finite size with an edge
crack, we investigate how phase field fracture models can capture size effects associated with
the crack length. The present findings are discussed in the context of the literature in §5. Finally,
concluding remarks end the manuscript in §6.

2. A variational framework for Griffith’s energy balance
We shall describe the underlying mathematical formulation of phase field fracture models,
focusing first on their construction as an approximation of Griffith’s energy balance, and then
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Figure 1. Tracking interfaces implicitly using an auxiliary phase fieldφ. Examples capturing (a) microstructural evolution [32],
and (b) the propagation of cracks [33], for two instants in time (t0, t1). (Online version in colour.)

present a generalized virtual work formulation in which the phase field is introduced as an
additional independent kinematical descriptor. The theory refers to the response of a solid
with volume V occupying an arbitrary domain Ω ⊂ IRn (n ∈ [1, 2, 3]), with external boundary
∂Ω ⊂ IRn−1, on which the outwards unit normal is denoted as n.

(a) The phase field regularization
From a continuum viewpoint, the first law of thermodynamics provides a detailed balance
describing the interplay between the work done on the system, the internal energy, the kinetic
energy and the thermal power. Thus, thermodynamic equilibrium requires the total potential
energy supplied by the internal strain energy density and external forces, Π , to remain constant.
As noted by Griffith [1], in the context of a fracture process under quasi-static and isothermal
conditions, this entails balancing the reduction of potential energy that occurs during crack
growth with the increase in surface energy resulting from the creation of new free surfaces.
Mathematically, this can be formulated as follows. Consider a cracked solid with elastic strain
energy density ψe(ε), which is a function of the strain tensor ε. Under prescribed displacements,
the variation of the total energy Π due to an incremental increase in the crack area dA is given by

dΠ
dA

= dψe(ε)
dA

+ dWc

dA
= 0, (2.1)

where Wc is the work required to create new surfaces. The last term is the so-called critical energy
release rate Gc = dWc/dA, a material property that characterizes the fracture resistance of the
solid. Therefore, a pre-existing crack will grow as soon as the elastic energy stored in the material
ψe is sufficiently large to overcome the material toughness Gc. Griffith’s energy balance can be
formulated in a variational form as [31]:

Π =
∫
Ω

ψe (ε)dV +
∫
Γ

Gc dΓ , (2.2)

where Γ is the crack surface. Griffith’s minimality principle is now global and cracking
phenomena can be captured by minimizing (2.2), with crack behaviour (nucleation, trajectory,
etc.) being dictated only by the exchange between elastic and fracture energies. However,
minimization of (2.2) is hindered by the unknown nature of Γ , making the problem
computationally intractable. This obstacle can be addressed by exploiting the phase field
paradigm—an auxiliary (phase) field variable φ can be defined to describe discrete discontinuous
phenomena, such as cracks, with a smooth function. As illustrated in figure 1, the key idea is to
smear a sharp interface into a diffuse region using this phase field order parameter φ, which takes
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a distinct value for each of the two phases (e.g. 0 and 1) and exhibits a smooth change between
these values near the interface. The use of phase field variables to implicitly track interfaces has
gained significant traction in the condensed matter and materials science communities, becoming
the most widely used technique for modelling microstructural evolution [34]. Also, the success
has been recently extended to the phenomenon of corrosion, where the phase field is used to
describe the solid metal–aqueous electrolyte interface [35].

In the context of fracture mechanics, the phase field can be used to track the solid-crack
interface, enabling the handling of cracks with arbitrary topological complexity, as well as their
potential interactions. Thus, the phase field resembles a damage variable, taking (e.g.) the value
of φ = 0 in intact regions and of φ = 1 in fully cracked material points. Equally important, the
evolution law for the phase field variable is grounded on Griffith’s energy balance. Accordingly,
the Griffith functional (2.2) can be approximated using the following phase field-regularized
functional:

Π� =
∫
Ω

[
g (φ)ψe

0 (ε)+ Gcγ (φ, �)
]

dV, (2.3)

where � is a length-scale parameter that governs the size of the fracture process zone, ψe
0 denotes

the elastic strain energy density of the undamaged solid, and γ is the so-called crack surface
density function [7]. The work required to create a cracked surface is now expressed as a volume
integral, making the problem computationally tractable. Also, a degradation function g(φ) is
defined following continuum damage mechanics arguments, such that the stiffness of the solid is
degraded as the phase field approaches the value corresponding to the crack phase (e.g.ψe = 0 for
φ = 1). Choices for crack surface density function γ have been mostly inspired in the Ambrosio
& Tortorelli [36] approximation of the Mumford–Shah potential [37]—a well-known functional
in image segmentation that closely resembles the variational fracture formulation described here.
Upon these constitutive choices for γ , it can be proven using Γ -convergence that the regularized
functionalΠ� (2.3) converges to the Griffith functionalΠ (2.2) when �→ 0+ [38,39]. Thus, � can be
interpreted as a regularizing parameter in its vanishing limit. However, for � > 0+ a finite material
strength is introduced and thus � becomes a material property governing the strength [10]; e.g.
for plane stress

σc ∝
√

GcE
�

= KIc√
�

, (2.4)

where KIc is the material fracture toughness and E denotes Young’s modulus. From a numerical
perspective, the presence of a length scale � regularizes the problem, ensuring mesh-objectivity
as the model is non-local. We conclude this part by emphasizing that equation (2.3) provides a
rigorous approximation to Griffith’s energy balance that is amenable to numerical computations.
Fracture can be predicted with no other consideration than the minimization of a free energy
functional composed of the stored elastic bulk energy plus the fracture energy.

(b) Principle of virtual work: balance of forces
The primal kinematic variables of the model are the displacement field u and the damage phase
field φ. We restrict our attention to small strains and isothermal conditions. Accordingly, the strain
tensor ε is given by

ε = 1
2

(
∇uT + ∇u

)
. (2.5)

The balance equations for the coupled deformation-fracture system are now derived using the
principle of virtual work. We use δ to denote virtual quantities and introduce the Cauchy stress
σ , which is work conjugate to the strains ε. Accordingly, a traction T is defined, which is work
conjugate to the displacements u. Regarding damage, we introduce a scalar stress-like quantity ω,
which is work conjugate to the phase field φ, and a phase field micro-stress vector ξ that is work
conjugate to the gradient of the phase field ∇φ. The phase field is assumed to be driven by the
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displacement problem alone. As a result, no external traction is associated with φ. Accordingly, in
the absence of body forces, the principle of virtual work reads∫

Ω

{
σ : δε + ωδφ + ξ · δ∇φ}

dV =
∫
∂Ω

(T · δu) dS. (2.6)

This equation must hold for an arbitrary domain Ω and for any kinematically admissible
variations of the virtual quantities. Thus, by making use of the fundamental lemma of the calculus
of variations, the local force balances are given by

∇ · σ = 0

∇ · ξ − ω= 0
in Ω , (2.7)

with natural boundary conditions

σ · n = T

ξ · n = 0
on ∂Ω . (2.8)

(c) Constitutive theory
The potential energy density of the solid is defined as

ψ (ε, φ, ∇φ)=ψe + ψ f = g (φ)
1
2
ε : C0 : ε + Gcγ (φ, ∇φ). (2.9)

Here,ψ f is the fracture energy and C0 is the linear elastic stiffness matrix. Accordingly, the Cauchy
stress tensor is derived as

σ = ∂ψ

∂ε
= g (φ) (C0 : ε) . (2.10)

We shall now proceed to make constitutive choices for the phase field fracture formulation.
The two models that are arguably most widely used will be considered and the implications of
these constitutive choices investigated. First, we note that the degradation function g(φ) should
be continuous and monotonic, and take the values g(0) = 1 and g(1) = 0; the following quadratic
form is adopted:

g (φ)= (1 − φ)2 . (2.11)

Secondly, restricting our attention to phase field formulations derived from the family of
Ambrosio-Tortorelli functionals, we proceed to define the crack surface density function γ (φ) and
the crack surface A as follows:

A =
∫
Ω

γ (φ) dV =
∫
Ω

1
4cw�

(
w(φ) + �2|∇φ|2

)
dV. (2.12)

Here, the function w(φ) must fulfil w(0) = 0 and w(1) = 1, and

cw =
∫ 1

0

√
w(ϕ) dϕ. (2.13)

The choice of w(φ) = φ2 (cw = 1/2) renders the so-called standard or AT2 phase field model [36],
while the choice w(φ) = φ (cw = 2/3) introduces an elastic regime prior to the onset of damage, and
is often referred to as the AT1 model [40]. The stress–strain response resulting from the solution
to the homogeneous 1D problem (∇φ = 0) is shown in figure 2 for both models. It can be readily
seen how the AT1 model exhibits a linear response until reaching the critical stress, while the AT2

results deviate earlier from the undamaged stress–strain response. Also, the AT1 model exhibits a
sharper drop of the stress upon reaching the material strength. The critical failure stress attained
for each model is given by [20]

σAT1
c =

√
3EGc

8�
, σAT2

c = 3
16

√
3EGc

�
. (2.14)

Thus, as �→ 0, the material strength goes to infinity; this is consistent with linear elastic fracture
mechanics and Γ -convergence arguments. At this point, it should be noted that many other
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Figure 2. Uniaxial stress–strain responses predicted by theAT1 andAT2 constitutive choices of the crack density function.
(Online version in colour.)

constitutive choices have been proposed in the literature. For example, some models are based on
the Ginzburg–Landau formulations used in phase transition studies [41], while others, closer to
the formulation presented here, aim at coupling phase field with cohesive zone concepts [42–44].

The fracture micro-stress variables ω and ξ, which can have energetic and dissipative parts, are
defined as follows. Independently of the constitutive choices outlined above (AT1 versus AT2),
we derive the scalar micro-stress as

ω= ∂ψ

∂φ
= g′(φ)ψe + 1

4cw�
Gcw′(φ). (2.15)

Similarly, the phase field micro-stress vector ξ reads

ξ = ∂ψ

∂∇φ = �

2cw
Gc∇φ. (2.16)

The phase field evolution law (2.7)b can then be reformulated accordingly

Gc

2cw�

(
w′(φ)

2
− �2∇2φ

)
+ g′(φ)ψe (ε)= 0 (2.17)

showcasing the competition between the stored elastic energy and the fracture energy.

3. Numerical implementation
We proceed to describe the numerical implementation, in the context of the finite element method,
of the variational fracture framework described in §2. First, we introduce a history field variable
to ensure damage irreversibility. Secondly, we address the discretization of the weak formulation,
formulate the residuals and the stiffness matrices, and discuss solution schemes for the two-field
problem. The implementation is conducted within an Abaqus user-element (UEL) subroutine,
with the pre-processing of the input files carried out using Abaqus2Matlab [45].

(a) Damage irreversibility
Following Miehe et al. [7], a history variable field H is introduced to prevent crack healing,
ensuring that the following condition is always met

φt+�t ≥ φt, (3.1)
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where φt+�t is the phase field variable in the current time step while φt denotes the value of the
phase field on the previous time step. For both loading and unloading scenarios, the history field
must satisfy the Kuhn–Tucker conditions

ψe
0 − H≤ 0, Ḣ≥ 0, Ḣ(ψe

0 − H) = 0. (3.2)

Accordingly, the history field for a current time t over a total time τ can be written as

H= max
τ∈[0,t]

ψe
0(τ ). (3.3)

(b) Finite element discretization
We shall now describe the finite element discretization. Our numerical implementation uses as
nodal unknowns the displacement vector û and the phase field φ̂ fields. Considering the history
field H described above and the constitutive choices outlined in §2, one can formulate the weak
form of the two-field problem as

∫
Ω

{[
g (φ)+ κ

]
σ 0 : δε − g′(φ)Hδφ + Gc

2cw�

(
w′(φ)

2
δφ − �2∇φ∇δφ

)}
dV = 0. (3.4)

Here, σ 0 is the undamaged Cauchy stress tensor and κ is a small positive-valued constant that is
introduced to prevent ill-conditioning when φ = 1; a value of κ = 1 × 10−7 is here adopted.

Making use of Voigt notation, the nodal quantities are interpolated as

u =
m∑

i=1

Niûi, φ =
m∑

i=1

Niφ̂i, (3.5)

where m is the total number of nodes per element, Ni denotes the shape function associated
with node i and Ni is the shape function matrix, a diagonal matrix with Ni in the diagonal
terms. Similarly, the associated gradient quantities can be discretized using the corresponding
B-matrices, containing the derivative of the shape functions, such that

ε =
m∑

i=1

Bu
i ûi, ∇φ =

m∑
i=1

Biφ̂i. (3.6)

Considering the weak form (3.4) and the discretization (3.5)–(3.6), we derive the residuals for
each primal kinematic variable as

Ru
i =

∫
Ω

{[
g (φ)+ κ

] (
Bu

i
)T

σ 0

}
dV (3.7)

and

Rφi =
∫
Ω

{
g′(φ)NiH + Gc

2cw�

[
w′(φ)

2
Ni + �2 (Bi)

T ∇φ
]}

dV. (3.8)

And finally, the consistent tangent stiffness matrices K are then obtained as follows:

Ku
ij = ∂Ru

i
∂uj

=
∫
Ω

{[
g (φ)+ κ

]
(Bu

i )TC0 Bu
j

}
dV (3.9)

and

Kφij = ∂Rφi
∂φj

=
∫
Ω

{(
g′′(φ)H + Gc

4cw�
w′′(φ)

)
NiNj + Gc�

2cw
BT

i Bj

}
dV. (3.10)

Therefore, the global system of equations reads{
u
φ

}
t+�t

=
{

u
φ

}
t

−
[

Ku 0
0 Kφ

]−1

t

{
Ru

Rφ

}
t

. (3.11)

Several schemes have been proposed to obtain the solutions for which Ru = 0 and Rφ = 0.
In so-called monolithic solution schemes, the displacement and phase field sub-systems are

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 J

un
e 

20
21

 



8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20210021

................................................................

phase field
induced

geometrically
induced

initial crack

K

R

y r

q
x

Figure 3. Boundary layer analysis: illustration of the boundary value problem and of the approaches adopted to introduce the
initial crack in the solid. (Online version in colour.)

solved simultaneously; while staggered (or alternate minimization) approaches solve each sub-
system sequentially. Monolithic solution strategies are unconditionally stable and, therefore, more
efficient. However, the total potential energy functional (2.3) is non-convex with respect to u and
φ, hindering convergence. Contrarily, for a fixed u, equation (2.3) is convex with respect to φ (and
vice versa) and the associated robustness has made staggered solution schemes more popular.
Notwithstanding, it has been recently demonstrated that the use of quasi-Newton methods
such as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm enables the implementation
of robust monolithic schemes that are very efficient and do not exhibit convergence issues [46,47].
Accordingly, the BFGS algorithm is employed here, in conjunction with a monolithic approach.

4. Results
We shall now model three paradigmatic boundary value problems to investigate the capabilities
of phase field fracture models in predicting crack initiation and growth in agreement with the
fracture energy balance. First, in §4a, the onset of crack growth is investigated by applying
a remote energy release rate through a boundary layer model. Secondly, we model crack
propagation in a double cantilever beam to compare phase field predictions with analytical
results derived from beam theory from a known applied displacement and material toughness
(§4b). Finally, in §4c, we show how size effects and the transition flaw size concept are a natural
by-product of phase field fracture models.

(a) Initiation of crack growth: prescribing a remote G
The initiation of crack growth is investigated under plane strain conditions using a so-called
boundary layer model. As illustrated in figure 3, the crack tip fields can be characterized as a
function of the remote elastic K-field. Thus, considering a polar coordinate system (r, θ ) and a
Cartesian coordinate system (x, y) centred at the crack tip, with the crack plane along the negative
x-axis, the displacement is given by the first term in Williams expansion [48]:

ui = K
E

r1/2fi (θ , ν) , (4.1)
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where the subscript i denotes the Cartesian components, and the functions fi(θ , ν) are given by

fx = 1 + ν√
2π

(3 − 4ν − cos θ) cos
(
θ

2

)
(4.2)

and

fy = 1 + ν√
2π

(3 − 4ν − cos θ) sin
(
θ

2

)
. (4.3)

Here, ν is Poisson’s ratio. The relationship between the stress intensity factor K and the energy
release rate G is given by Irwin’s relation [2]

G =
(

1 − ν2
) K2

E
. (4.4)

Consequently, the crack tip mechanics for a given remote G (or K) can be evaluated by
prescribing the displacements of the nodes located in the outer boundary of the finite element
model following (4.1)–(4.4). Only one half of the boundary layer geometry is modelled due to
symmetry. The model is discretized using approximately 30 000 quadratic quadrilateral elements
with reduced integration. The mesh is refined in the crack propagation region, where the element
aspect ratio is kept equal to 1. Throughout this manuscript, Poisson’s ratio is given by ν = 0.3.

The initiation of crack growth is investigated considering both the AT1 and AT2 constitutive
choices for the crack density function. Also, we assess the influence of the two approaches that can
potentially be used to define the initial crack: (1) via the phase field, by defining φ = 1 as the initial
condition (or enforcing H→ ∞), and (2) geometrically, by duplicating the nodes along the crack
faces; see figure 3. The aim is to assess whether phase field fracture models predict the initiation
of cracking at G = Gc, as it would be expected based on the classical fracture mechanics theory.
Fracture is unstable, exhibiting a flat crack growth resistance response and therefore the remote
load at initiation (as characterized by G or K) can be easily identified. By dimensional analysis,
the length scales governing the problem are the phase field length scale �, the element size h and
a fracture or characteristic material length (e.g. [49]):

Lf = Gc(1 − ν2)
E

. (4.5)

Note that the initial crack length a and the outer radius of the boundary layer R (chosen such that
R, a>> �, Lf ) are not relevant in the present boundary value problem. Thus, we investigate the
role that the two remaining non-dimensional groups (�/h, Lf /�) play on our fracture mechanics
assessment.

The results obtained for the non-dimensional group �/h are shown in figure 4. Note first that,
in all cases, the solution appears to converge when the mesh sufficiently resolves the phase field
and fracture length scales. The results are essentially identical if eight elements or more are used
to resolve �. This is not unexpected given the mesh objectivity of non-local models but element
length-dependent corrections for the surface energy have been proposed [5].1

Secondly, we observe that the predictions of the AT2 model lead to higher G values than those
of the AT1 crack density function. This could be due to the larger unloading region exhibited
in the AT2 model after the critical stress has been reached, see figure 2. Thirdly, and arguably
most importantly, while all mesh-converged values of G at crack initiation approach Gc, the
approximation is notably better when the initial crack has been introduced by prescribing the
nodal values of the phase field. Values of G/Gc very close to unity are attained with both AT1

and AT2 models when the initial crack has been defined using the phase field, showcasing the
agreement between phase field models and classical fracture mechanics theory. However, when
the crack is introduced geometrically (e.g. by duplicating the nodes along the crack faces), the
magnitude of the energy release rate at the initiation of crack growth is noticeably larger than the
fracture energy (G/Gc ≈ 1.3). We further investigate this by plotting the phase field contours in

1No mesh anisotropy effects are investigated in this work.
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Figure 4. Boundary layer analysis: Mesh sensitivity of the energy release rate at initiation of crack growth for different
constitutive choices and approaches for implementing the initial crack. The value of the characteristic fracture length scale to
the phase field length scale is Lf/�= 10. (Online version in colour.)

the vicinity of the crack tip, the distribution of φ along the extended crack plane (r, θ = 0◦), and
the crack extension as a function of the remote G—see figure 5.

We shall first discuss the phase field contours, figure 5a. The qualitative results presented
emphasize the additional energy cost associated with prescribing the crack geometrically; the
phase field has to increase upon loading in all directions surrounding the crack tip. On the other
hand, the phase field is already fully developed at the existing crack faces when the crack is
prescribed through the phase field region. This energy barrier can rationalize the differences
observed in figure 4. Another related and relevant effect is the role that the phase field natural
boundary condition plays. Upon making use of the constitutive choices, equation (2.8)b can be
re-formulated as

∇φ · n = 0, (4.6)

implying that the phase field variable φ must approximate the free surface with a zero slope.
This is shown in figure 5b, which depicts the distribution of φ along the extended crack plane
(θ = 0◦), with r being the distance ahead of the crack tip. Results are shown as computed with
the AT1 model and for both the cases of the initial crack being induced by the phase field
and geometrically. The distribution of φ shown corresponds to an instant close to the fracture
event; due to the sudden crack extension observed in the case of the geometric initial crack, the
phase field variable takes significantly lower values. More importantly, when the crack is induced
geometrically a plateau can be observed close to the crack tip, while the result obtained for the
phase field induced initial crack (where there is no free crack surface) reveals a monotonically
increasing φ as r → 0. Finally, let us turn our attention to figure 5c. The crack extension has
been computed using the crack surface expression given in equation (2.12). Thus, the cases
where the initial crack has been introduced prescribing the phase field variable φ = 1 exhibit a
non-zero crack surface even before applying the load, as φ drops away from the crack tip in a
smooth manner, with the smearing of the crack controlled by the magnitude of �. This additional
contribution to the crack surface, not present in the case of the geometrically induced cracks,
is likely to contribute to the different values of G measured at crack initiation. The figure also
highlights a key difference between the AT1 and AT2 formulations. Owing to the lack of a purely
elastic phase in AT2 models, the magnitude of the crack surface formed prior to brittle fracture
is larger.
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Figure 5. Boundary layer analysis. (a) Phase field contours for theAT1model and both geometrically (red, dashed) and phase
field (blue, solid) induced initial cracks; (b) crack tip phase field distribution for theAT1model (r, θ = 0◦), shortly before the
onset of crack growth; and (c) crack extension, as computed from the crack surface density function—equation (2.12). The value
of the characteristic fracture length scale to the phase field length scale is Lf/�= 10. (Online version in colour.)

There could be other factors influencing the precision of the phase field fracture model in
predicting the initiation of crack growth. One aspect that has been discussed in the literature
[50,51] is the influence of the damage irreversibility condition (§3a). In particular, it has been
argued that the irreversibility condition (3.3) prevents the phase field from attaining its optimal
crack profile, providing a source of inaccuracy. Thus, we re-calculate figure 4 enforcing the
irreversibility condition (3.3) only when φ ≥ 0.95, ensuring damage irreversibility in fully cracked
material points but leaving the gradients free to form their optimal profile. As shown in figure 6,
no noticeable effect is observed in the present boundary value problem (a long, infinitesimally
sharp crack). Differences are in all cases below 0.2%.

Finally, we explore the role of the value of the characteristic fracture length scale to the phase
field length scale, Lf /�, as the Γ -convergence properties of the approximation of the Griffith
functional by the phase field functional hold for �→ 0. The results, shown in figure 7, reveal a
negligible influence of the Lf /� over a range spanning six orders of magnitude. Thus, the results
and conclusions from figure 4 hold; phase field fracture predictions for the initiation of crack
growth are close to those of classical fracture mechanics but the approximation improves if the
initial crack is defined using the phase field variable.

(b) Stable crack growth: double cantilever beam analysis
We shall now investigate the effectiveness of phase field fracture methods in approximating stable
crack growth. For this purpose, we will model crack propagation in a double cantilever beam; a
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Figure 6. Boundary layer analysis: influence of enforcing damage irreversibility on the initiation of crack growth. Symbols
denote the results without the irreversibility condition, equation (3.3). The value of the characteristic fracture length scale to
the phase field length scale is Lf/�= 10. (Online version in colour.)

10–2 10–1 1 10 102 103

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Lf /�

G
Gc

G AT1 phase field induced initial crack
AT1 geometrically induced initial crack
AT2 phase field induced initial crack
AT2 geometrically induced initial crack

Figure 7. Boundary layer analysis: influence of varying the fracture length scale Lf = Gc(1 − ν2)/E, with �/h= 12. (Online
version in colour.)

boundary value problem with a known analytical solution, based on beam theory, for relating the
energy release rate, the applied displacement and the crack length. To the best of our knowledge,
this analysis has not been conducted before.

The geometry of the model is shown in figure 8. Only a quarter of the boundary value problem
is modelled, taking advantage of symmetry. Plane strain conditions are assumed, with a thickness
of B = 1 mm. The height is also taken to be equal to H = 0.9 mm. The initial crack length is given
by a = a0 = 10 mm and a vertical crack mouth opening displacement δ is prescribed along the
symmetry axis. Here, Poisson’s ratio is also taken to be ν = 0.3. The model is discretized using a
total of 190 140 quadratic quadrilateral elements with reduced integration, with the characteristic
length of the element along the crack propagation region being ten times smaller than the phase
field length scale (in agreement with the mesh sensitivity analysis conducted above; figure 4). The
phase field length scale is chosen to be �= 0.03 mm and Lf /�≈ 0.003. A representative result of
crack propagation is shown in figure 9, where the red colour is employed to denote fully cracked
material points (φ > 0.95) while blue colour is used to denote intact material points (φ ≈ 0).
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Figure 8. Double cantilever beamanalysis: sketch of the boundary value problem. Only one quarter of the problem ismodelled
taking advantage of symmetry.

Figure 9. Double cantilever beam analysis: snapshot of the crack propagation process, with red colour denoting fully cracked
material points (φ > 0.95) and blue colour used to denote intact material points (φ ≈ 0). (Online version in colour.)

An analytical relation between the energy release rate and the applied displacement for a given
crack size, a, can be readily derived using Timoshenko beam theory. The relationship between the
transverse force P acting on the quarter model (figure 8) and the displacement δ is given by

δ = Pa3

ĒBH3 + Pa
κμBH

. (4.7)

Here, Ē = E/(1 − ν2) is the plane strain Young’s modulus, μ= E/(2(1 + ν)) is the shear modulus,
and κ ≈ 5/6 is the shear coefficient for the rectangular beam cross section. Exploiting symmetry
around the horizontal axis, the energy release rate may be calculated from the compliance
C = δ/P by

G = 2 · P2

2B
dC
da

= 3P2a2

ĒB2H3
+ P2

κμB2H
. (4.8)

Accordingly, the energy release rate can be formulated as a function of displacement, δ, and crack
length, a, as follows:

G = 3ĒH3

a4 · 1 + (Ē/3κμ) (H/a)2(
1 + (Ē/κμ) (H/a)2

)2 · δ2, (4.9)

and thus, for a given material toughness Gc, equation (4.9) provides a unique relation between
the beam displacement δ and the crack length a.

As in the previous case study, we employ both the AT1 and AT2 models and assess as well the
influence of either defining the initial crack geometrically or using the phase field. In addition,
unlike the previous analysis, results are now sensitive to the methodology employed to measure
crack extension; we choose to compare two options: (1) using the crack surface integral (2.12), and
(2) assuming that the crack front is given by the φ = 0.95 contour. The results for each approach
are shown in figure 10a and 10b, respectively.

A satisfactory agreement is observed. All finite element results provide a stable cracking
response that qualitatively mimics that of the analytical solution. However, quantitative
differences can be observed, and these are particularly noticeable for specific modelling and
constitutive choices. Namely, a better agreement is attained when the crack extension is measured
using the crack density function (2.12), as opposed to assuming the crack front to be the furthest
point with φ = 0.95. Also, the AT1 model appears to deliver predictions that are closer to the
beam theory solution, relative to the AT2 model. Nevertheless, all results appear to display a
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Figure 10. Double cantilever beam analysis. Crack extension as measured by: (a) the crack surface density function,
equation (2.12), and (b) the furthest point withφ = 0.95. (Online version in colour.)

similar shape and the differences are mainly related to the onset of crack initiation and the length
of the initial crack. Thus, all phase field results require a larger applied displacement to initiate
the fracture process. Also, as in the previous case study, the AT1 model with a phase field-induced
crack overpredicts the initial crack length, as there is a contribution from the gradients of φ to the
crack density function. Some general trends to take note of are that the problem exhibits some
sensitivity to the size of �/H and that all constitutive choices exhibit a slowing of the crack growth
relative to the analytical solution. This is seemingly not caused by edge effects, as identical results
have been obtained for a beam of length L = 30 mm. The correspondence between the analytical
and predicted curves may be improved by accounting for the slight loss of bending stiffness
caused by the degradation from the phase field in the gradient region. Furthermore, the phase
field attains non-zero values along the top edge which further reduces the bending stiffness of the
beam. The latter may be remedied by introducing a strain split scheme for preventing damage
evolution from compression [7,52].

(c) Size effects and the transition flaw size
So far, we have focused on the original phase field fracture formalism, with the aim of providing
a regularization that accurately approximates Griffith’s energy balance in the �→ 0+ limit. Thus,
the length scale has been considered exclusively a regularizing parameter. However, there is an
increasing interest in investigating the implications of considering a finite phase field length
scale and the resulting analogies with gradient damage models [10,53,54]. As discussed in §1, the
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Figure 11. Transition flaw size analysis: geometry and loading configuration of the numerical model.

consideration of a finite � > 0+ introduces a critical stress proportional to 1/
√
�, which is absent in

Griffith’s formulation and linear elastic fracture mechanics. Thus, � becomes a material property.
The motivation for adopting a positive, constant � stems from the fact that Griffith’s theory is
unable to capture some well-characterized size effects. One of these important size effects is the
transition flaw size concept, which is the cornerstone of many engineering standards and fracture
mechanics-based engineering design; if a crack is smaller than the transition flaw size, then the
crack will not grow and the specimen will fail at the material strength (or at the yield stress σy,
if plastic design is considered). We shall show here that the transition flaw size paradigm is a
natural by-product of variational phase field fracture models that consider � to be an internal
material length.

We model fracture in a single-edge notched specimen of width W and height 6W. The plate is
subjected to a remote tensile stress σ . As shown in figure 11, only the upper half of the sample is
considered for the finite element analysis, taking advantage of symmetry. The specimen contains a
crack of length a, which will be varied throughout the analysis. In all cases, the crack is introduced
into the model by defining the initial condition φ = 1 on the phase field, in agreement with our
findings above for best practice. Both the AT1 and AT2 models are considered, to assess the
implications of different constitutive choices for the crack density function. The phase field length
scale is chosen to be small relative to the sample dimensions, �/W = 0.03, and the mesh is refined
along the crack ligament, where the characteristic element length equals h/�= 0.1. The model is
discretized using a total of 11 251 quadratic quadrilateral elements with reduced integration.

The results obtained are shown in figure 12, where we have superimposed the strength failure
criterion (also referred to as plastic collapse if σc = σy) and the Griffith (linear elastic fracture
mechanics) prediction:

σ =
√

EGc

πa
(
1 − ν2

) 1
f (a/W)

, (4.10)

with the following geometry factor f (a/W) for a plate of finite size with an edge crack:

f
( a

W

)
=

(
2W
πa

tan
πa
2W

)1/2 (
cos

πa
2W

)−1
[

0.752 + 2.02
a

W
+ 0.37

(
1 − sin

πa
2W

)3
]

. (4.11)

The results shown in figure 12 are given in terms of the failure stress σf as a function of the crack
size a, for both AT1 and AT2 models. Note that the material strength takes different values for each
of these constitutive choices—see (2.14). It can be observed that phase field fracture models are
capable of reconciliating stress and toughness criteria for fracture; a good agreement with the
Griffith criterion is observed for large cracks and predictions transition smoothly to a strength-
driven failure as the crack size decreases below the transition flaw size.
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Figure 12. Transition flaw size analysis: failure strength as a function of the crack size for (a)AT1, and (b)AT2 phase field
models. The solid grey lines denote the fracture predictions according to the material strength and to Griffith’s criterion (4.10).
(Online version in colour.)

In terms of constitutive choices for the crack density function, both AT1 and AT2 models
appear to provide a good agreement with the limiting cases of σf = σc and G = Gc. The agreement
appears to be slightly better for the AT2 case, in that the material strength is only attained when
using the AT1 model for very short cracks (much smaller than the transition flaw size). Or, in
other words, the transition between pure strength and pure toughness-driven criteria appears to
span a wider range of crack sizes in the case of the AT1 formulation.

5. Discussion
Our results show that phase field fracture models provide a good approximation to classical
fracture mechanics predictions. Three research questions have been answered, the first one being:
can phase field fracture methods capture crack growth initiation at the appropriate energy release
rate? By modelling crack growth from an existing (long) crack upon the application of a remote
G (or K), we have seen that cracking takes place at G ≈ Gc but only for certain modelling choices.
Specifically, using the phase field variable to induce the initial crack provides a result closer
to Griffith’s criterion, while introducing the crack geometrically leads to crack initiation values
of G that are slightly larger than Gc. It is important to emphasize that this finding relates to
a long, infinitesimally sharp crack. Similar conclusions were attained by Klinsmann et al. [55]
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for a finite crack using the AT2 model and a pure bending boundary value problem. We also
find that the specific constitutive choice for the crack density function (AT1 versus AT2) does
not play a significant role, with the AT2 model predicting the initiation of crack growth at a
slightly larger G. We have also shown that these conclusions hold for �→ 0, independently of
whether or not the irreversibility condition is employed. In fact, enforcing damage irreversibility
appears to have a negligible effect on the efficacy of phase field models for accurately predicting
crack initiation, under the conditions considered here (a long sharp crack). Our analysis suggests
that the delay in initiating fracture when the initial crack is geometrically prescribed is related
to the natural boundary condition (2.8)b, constraining φ to be constant near the crack surface,
and the additional energy expenditure required to build-up a highly constrained phase field
region around the crack tip (even behind the crack). There are other sources that can potentially
contribute to discrepancies in crack initiation predictions, which have not been quantified as we
have judged them a priori to be of secondary importance. For example, in elastic-plastic solids,
plasticity introduces non-proportional straining but, while this effect can be significant during
continued crack growth [56,57], a very minor influence is expected for crack initiation under
small-scale yielding conditions. Also, the extent to which a Griffith-like energy balance can be
used for ductile solids is questionable [53,58–61]; the thermodynamics picture will change, as
local plastic flow provides a localized source of heat. Along the same lines, different constitutive
choices for the crack density function can also provide different degrees of approximation, in the
same way that this is observed with different traction-separation laws in cohesive zone models,
where larger unloading regimes in the traction-separation law lead to larger differences compared
to a proportional loading scenario. Hence, for cohesive zone models, a trapezoidal law with a
smaller unloading region, like the one by Tvergaard & Hutchinson [62], can provide a better
approximation of crack initiation, relative to an exponential law, such as that by Xu & Needleman
[63], with a large unloading regime. In any case, differences are expected to be small also for phase
field models; our results show that both AT1 and AT2 models predict the initiation of crack growth
at G ≈ Gc (for a phase field induced initial crack) despite their different unloading regimes—see
figure 2. It must be emphasized that our findings are related to solids containing cracks; phase
field fracture models can also predict the nucleation of cracks from pristine samples and non-
sharp defects such as notches, where the conclusions reported here might not apply. In particular,
the conclusions drawn in regard to the irreversibility condition might change [50,51] and it has
been reported that prescribing φ = 1 at the defect surface is not the most accurate way of capturing
crack nucleation from blunted notches [10].

The second research question deals with the capabilities of phase field fracture models
in predicting stable crack growth, in agreement with beam theory and the fracture energy
balance. We gained new insight by modelling the progressive failure of a double cantilever beam
with a known analytical solution, based on Timoshenko beam theory. The results revealed a
satisfactory agreement but also noticeable quantitative differences depending on the approach
employed to measure the crack extension and the constitutive model. The best result was
attained by employing the AT1 model and, more importantly, measuring the degree of crack
extension through the crack density function—equation (2.12). The lack of a similar study in
the literature, to the best of our knowledge, hinders gaining further insight by comparing to
previous studies.

Finally, we aimed at shedding light on the capabilities of phase field fracture models to capture,
by attributing � a physical meaning, well-known size effects that cannot be predicted with Griffith
theory. Griffith’s framework and linear elastic fracture mechanics can capture how the critical load
for fracture scales as 1/

√
L, where L is the reference size of the specimen, and how the strength

of the specimen decreases with increasing crack size. However, this scaling size effect breaks
down as the load required to fracture small samples (L → 0) does not go to infinity—cracks do not
propagate if they are smaller than a reference length (the transition flaw size), and failure by other
mechanisms sets in. These inconsistencies can be addressed by incorporating a length scale or a
critical strength. In the context of phase field models, the consideration of � as a material constant
naturally introduces a critical stress—see (2.4). We have shown that this approach can readily
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capture the transition flaw size concept, gradually changing from toughness-driven to strength-
driven failures. This is observed with the initial crack prescribed using the phase field and for both
AT1 and AT2 models (with a slightly better performance using the latter). Similar conclusions
were drawn by Tanné et al. [10] using a different boundary value problem (a plate with a central
crack), the AT1 model and a geometrically induced initial crack. Thus, our findings demonstrate
that phase field models without an elastic phase can also reconcile toughness and strength. The
capabilities of variational phase field models in incorporating the concepts of material strength
and toughness bring them in agreement with the coupled criterion of finite fracture mechanics
[64,65], but with the additional modelling capabilities intrinsic to phase field models. Along these
lines, several modelling strategies and constitutive prescriptions have been presented to enhance
the crack nucleation capabilities of phase field models and decouple the strength and the phase
field length scale [43,66,67].

6. Conclusion
We have reviewed the most widely used phase field fracture models and revisited their ability to
deliver predictions in agreement with classical fracture mechanics theory. The energy balance of
Griffith theory was cast in a variational form and approximated using a regularized phase field
functional. Then, the nucleation and growth of cracks were predicted based on this global energy
minimization problem. We focused our efforts on three boundary value problems of particular
relevance, all of which involve solids containing sharp cracks.

First, we used a boundary layer model to impose an increasing G and assess whether phase
field fracture can predict the initiation of growth at G = Gc. We found that this result is only
attained with accuracy if the initial crack is introduced by prescribing the initial value of the phase
field variable φ, while the models containing a geometrically induced crack overestimate the
critical value of G. From our predictions of phase field distribution and crack surface evolution,
we conclude that this is due to the natural boundary condition for the phase field ∇φ · n = 0
and the energy barrier associated with the build-up of a highly constrained phase field region
around the crack tip. In addition, we have tested and discussed other hypotheses that can
potentially rationalize the mismatch with Griffith’s criterion; we conclude that, for the conditions
considered here, the irreversibility condition and non-proportional straining play a secondary
role. Secondly, we assessed for the first time the capabilities of phase field fracture in predicting
sustained, stable crack growth in agreement with beam theory and Griffith’s energy balance.
While all predictions were deemed satisfactory, the degree of agreement improved notably if
the crack extension was measured using the crack density functional and, for the AT1 model,
if the crack was introduced using the phase field. Finally, we treated the phase field length scale
as a material property and modelled the failure of a plate with different crack sizes, showing
that the consideration of a constant � > 0+ enables capturing the vanishing effect of small flaws
on the fracture strength and reconciles toughness and strength failure criteria. This size effect,
which cannot be captured by Griffith’s theory, was appropriately predicted with both AT1 and
AT2 models.

It is therefore concluded that phase field models can deliver accurate fracture predictions
if suitable modelling choices are made. Specifically, we note that (for the conditions examined
here) the constitutive choices for the crack density function (AT1 versus AT2) play a secondary
role but accuracy can be improved noticeably if the initial crack is defined using the phase field
and the crack extension is measured using the crack density function (2.12). These findings have
been discussed in the context of the literature, emphasizing the new and complementary insight
provided, which is hoped to be valuable in assessing the capabilities of phase field fracture
models in delivering predictions in agreement with the energy balance that gave birth to fracture
mechanics.
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