Autonomous SoC for Neural Local Field Potential Recording in mm-Scale Wireless Implants

Lieuwe B. Leene, Michal Maslik, Pelong Feng, Katarzyna M. Szostak, Federico Mazza, Timothy G. Constandinou

Department of Electrical and Electronic Engineering, Imperial College London, SW7 2BT, UK

Summary
- Distributed architecture for 100s of sub-dural implants
- Wireless neural recording SoC with self-regulating supply
- Fully integrated system using only one external coil
- 92μW power budget while recording from 8 electrodes
- 0.1 - 825Hz Signal Bandwidth with 1.77μVrms Noise Figure
- Tracking 2nd Order ΔΣ topology for AFE with >100Ω R_{in}
- >66dB of dynamic range with no in-band noise corner

Introduction
Next generation brain machine interfaces fundamentally need to improve the information transfer rate and chronic consistency when observing neural activity over a long period of time. Towards this aim, the ENGINI project presents a novel System-on-Chip (SoC) for mm-scale wireless neural recording node that can be implanted in a distributed fashion.

ENGINI Challenges:
- Improve the decoding capacity of BMIs and record from multiple brain structures
- Ensure chronic stability and long-term reliability of the implanted devices
- Achieve complete wireless power delivery and data telemetry
- Increase the energy efficiency of the complete system to enable high data throughput

System Block Diagram

![System Block Diagram](image)

System Specifications
- **Features**
 - Low-Cost 0.25μm 2P4M CMOS Design
 - 0.23mm² AFE+DSP core per channel
 - NEF of 2.3 and PEF of 8.1
 - >200mV electrode offset tolerance and ±10mVp input range for 10 - 900kHz
 - Supply noise rejection with 90dB PSRR
 - Delta modulation of near-DC signals for increased dynamic range
 - 210kHz/LSK data rate from I²F band

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>This Work</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td></td>
<td>2017</td>
<td>2017</td>
<td>2015</td>
</tr>
<tr>
<td>Application</td>
<td>I²F</td>
<td>DCxG</td>
<td>DCxG</td>
<td>EAP</td>
</tr>
<tr>
<td>Pab (μA)</td>
<td></td>
<td>50</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>Supply (V)</td>
<td></td>
<td>15</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Total P (W)</td>
<td></td>
<td>93.6</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>CoreA (mW)</td>
<td></td>
<td>2.1</td>
<td>9</td>
<td>5.4</td>
</tr>
<tr>
<td># Channels</td>
<td></td>
<td>8</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>Bandwidth (kHz)</td>
<td></td>
<td>256</td>
<td>15</td>
<td>500</td>
</tr>
<tr>
<td>IR (dB)</td>
<td></td>
<td>66</td>
<td>55</td>
<td>52</td>
</tr>
<tr>
<td>BS</td>
<td></td>
<td>1.8</td>
<td>1.5</td>
<td>1.3</td>
</tr>
</tbody>
</table>

* Based on measured results and preliminary benching testing.

Instrumentation Front End
- Compact configuration with high sensitivity and reconfigurability of f_{ref}
- Intensive to process variation w.r.t V_{ref}, V_{DD}, G_{sw}, R_{in}
- Applicable to both synchronous and asynchronous systems
- Will scale improved efficiency and size with more advanced CMOS

Telemetry & Bias Circuits
- **Vref Regulation & Impedance control**
 - Bb Capacitor array tunes the LC tank
 - Impedance mismatch controlled VDD
 - without inducing resistive losses on-chip
 - Unique FM Mask for LSK data to identify multiple probes operating simultaneously

ADC Band-gap Reference Circuit
- Low α, High PSRR, 1.2V reference from V_{ref}
- <1V Supply voltage operation
- 1V, 1.3V, 1.5V V_{ref} level indicators for FSM
- 140nA bias current for each sensor FE

References: