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Abstract

Long range guided wave inspection of large engineering structures has been proven to be

very effective. However, there are still many aspects of the guided wave behaviour which

remain unknown. One of these aspects is the curvature effect which can substantially

change the physical properties of the guided wave mode, especially in a leaky system

where limiting the extent of energy radiation into the surrounding medium is critical for

successful inspection.

This thesis examines the curvature effect on the guided wave properties using a 2-D curved

plate system. Both unloaded and loaded cases are investigated systematically. Model

studies comprise exact and asymptotic analyses, including investigations of their limits.

The curvature effect in an unloaded case is examined by comparing the phase velocity and

the displacement mode shapes of fundamental modes between a straight case and curved

cases of various curvature radii, at all frequencies. The percentage difference of these

properties due to the curvature effect is found to increase exponentially with an increase

in radius, and is frequency dependent. This provides a graphical tool to pick the best

frequency at which the properties are least affected by the curvature. Results of Finite

Element (FE) modelling and experiment prove the validity of the analytical predictions.

For the loaded case (leaky case), the analytical solution is substantially more complicated,

partly due to the fact that the numerical calculations of the Bessel functions with a

complex order are hard to implement. The solutions produce the dispersion relation of

phase velocity and attenuation of an embedded curved plate system. The distribution of

energy, determining the amount of coupling between the guiding layer and the surrounding

medium, can be obtained, and can also be related to the changes of attenuation in a

particular mode when the plate is curved. Experimental and FE validations are provided.
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Chapter 1

Introduction

1.1 Motivation

Adequate roof support systems in underground coal mines are of vital importance to both

the safety and productivity of the mining operation. Since the 1960s, a rockbolt technique

to reinforce the roof in roadways and caverns in mines has become very popular [1].

The rockbolts are ribbed steel bars that are designed to stop and stabilise the rock move-

ments, and therefore can be constantly subjected to a high level of stress, especially at

locations where the surrounding rocks begin to fracture. As a result, regular inspections

of the rockbolts are essential to ensure their integrity. Possible problems are fracture, se-

vere bending distortion by rock movement, stress corrosion cracking, and loss of bonding

between the bolt and the rock, all of which can lead to unsafe roof conditions threatening

both personnel safety and production capacity.

A technique, based on a time response method using guided waves, has been developed

by Beard [2, 3] to inspect the rockbolts. Guided waves are undoubtedly one of the most

efficient Non-Destructive Evaluation (NDE) concepts to inspect and monitor elongated

structures. The guided wave inspection is straightforward and is based on ultrasonic elastic

waves that are excited at one location on the structure and propagate along its length.

Any subsequent echoes can indicate the presence of defects and/or other discontinuities.

For the rockbolt inspection, the setup is illustrated in Fig. 1.1.

A good understanding of the wave propagation properties for the specific structure, the

embedded rockbolt in this case, is the key to any successful inspection using guided waves.

There are many different wave modes which can propagate at different speeds, and they

are, in general, frequency-dependent. These properties are usually calculated numerically

and expressed in the form of frequency dependent dispersion curves for all the propagating
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Nut and
plate

Transducer

Instrumentation

Epoxy Layer
Surrounding Rock

Guided wave reflection
from bolt end

Rock bolt

Figure 1.1: Schematic diagram of the experimental setup for the rockbolt inspection (after Beard
[3]).

wave modes of the system, presenting phase velocities, group velocities and also attenua-

tions in the case of a leaky system such as the rockbolt embedded in rock (Fig. 1.1). A

leaky system is coupled with an infinite half space that the energy leaks into as the wave

modes travel along the guiding medium.

The dispersion curves can provide vital information for choosing the most appropriate type

of wave mode and frequency to achieve optimal excitation and propagation conditions for

the inspection; in this case the key goals are long-range propagation without excessive

attenuation and a good detectability of defects. In addition, the dispersion curves are

very important to the post processing of the inspection results, from which the defects

and other features of the structure can be identified, located and sized.

One major challenge for the rockbolt inspection is to achieve a good signal to noise ratio by

minimising the radiation of the propagation energy into the surrounding rock. Wave modes

are chosen at frequencies where the energy is concentrated at the core of the rockbolt [4].

This is to minimise the amount of energy at the interface between the bar surface and the

surrounding medium, hence limiting the amount of attenuation due to the energy leakage.

The dispersion curves for the rockbolt have so far been calculated based on cylindrical

waves propagating along a perfectly straight path (see for example Auld [5]). In reality,

many of the rockbolts may be bent along their length by the external forces that are

applied by movements of the rock layers, after they have been used for a period of time.

These curvatures along the length of the rockbolt are usually sufficiently small that they

have an insignificant effect on the wave propagation properties. However, the curvatures

can be critical when the rock movements are severe and the prediction of the straight case

can no longer correctly represent the curved case.

Beard [2] found that the wave modes, at a frequency thought to be optimum when the

rockbolt is straight, undergo a mode conversion where the energy distribution in the cross
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section shifts towards the surface close to either the inner or the outer radius of the cur-

vature after the rockbolt is curved. This allows a greater coupling at the metal/rock

interface, resulting in a higher amount of leakage as the wave propagates, and conse-

quently the signal to noise ratio can become very low such that an inspection using the

selected wave mode can no longer be possible. Therefore depending on this condition of

detectability, a bend along the propagation direction can be categorised into either critical

or non-critical. Fig. 1.2 shows a photograph of a rockbolt that was removed from the

mine after being used for many years; the bolt has several bend sections including those of

critical and non-critical natures. Currently, there is very poor understanding of the nature

of the wave propagation around these bends.

Exposed
end

Embedded length

Critical bend

Non-critical bend

Figure 1.2: Photograph of a rockbolt extracted from a mine after being critically bent by the
surrounding rock movements.

This curved rockbolt problem constitutes the motivation of the investigation in this thesis,

of which the objective is to gain insight into the curvature effect on the propagation prop-

erties. This particular geometry for the curved rockbolt problem is complex because of

double curvatures: the rockbolt is circular in section and is then curved also in the plane

of bending. As a result, there has been relatively little research on such curved cylindri-

cal geometries. A historical development of research in curved cylindrical geometries is

presented in the next section.

There is much similarity of wave behaviour in plates and bars, therefore it has been

shown by Beard [2] that it is possible to make inferences about wave behaviour in bars

from the study of wave behaviour in a simpler 2-dimensional plate system. There have

been some limited studies of the curvature effect recently by Beard [2], Wilcox [6] and

Valle et al. [7], all of which have used plate structures for their studies. However, these

studies do not address leaky problems which are fundamental to any potential guided wave

applications in embedded structures, and nor do they present any result in the region where

the frequency and “curvature radius to thickness ratio” are high. This is due to the fact

that the analytical solution can be unstable in these regions. This thesis aims to exploit

and extend on their ideas to resolve these omissions.
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1.2 Properties of Waves in Plates, Pipes and Bars

The basic concept of guided waves is based on the acoustic plane waves (also known

as bulk waves) of the material, propagating along a medium that is bounded by the

regular boundaries of the structure. The acoustic plane waves are of either compressional

or shear nature; in combination, they form specific types of frequency-dependent wave

motions, with their own individual propagation properties, for the corresponding structural

geometry. These wave modes have increasingly complex mode shapes with increasing

frequency, and they only exist beyond their cut-off frequencies. The frequency dependence

of these wave modes can be modelled analytically with dispersion curves, showing, for

example, the phase velocity and group velocity.

The common geometries, for which the guided wave inspection technique has been used,

are plates, pipes and bars. In each of the three cases, the wave motions can be categorised

into families of wave modes according to their propagation nature. It is worth noting that

pipes and bars have a similar geometry, and thus share the same families of wave modes.

For plates, the wave modes are either symmetric and antisymmetric along the mid-plane

through the thickness, which is the characteristic used to group them into the correspond-

ing families. For bars or pipes, the wave modes are, in general, divided into three families,

namely the longitudinal modes: a purely axially symmetric wave motion, the flexural

modes: an asymmetric mode involving a bending motion along the propagation direction,

and the torsional mode: a twisting motion along the centre axis. The category of families

for plates and pipes are illustrated in Figs. 1.3 and 1.4, of which the deformed mode shapes

of the wave motions for each family of the geometry type are shown.

Symmetric Mode

Propagation direction Propagation direction

Antisymmetric Mode

Figure 1.3: Families of wave motions of guided waves in plates (Diagram generated using Disperse
[148]).

1.3 Background on Guided Waves in Curved Beams

An analytical model to predict the properties of guided waves is one of the fundamental

needs when developing methods for guided wave inspection, as mentioned before. The
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Torsional Mode

Flexural Mode

Longitudinal Mode

Propagation direction

Figure 1.4: Families of wave motions of guided waves in bars/pipes (Diagram generated us-
ing Disperse [148]).The thick arrows indicate the general directions of particle movements in one
instance corresponding to a particular wave family.

development of analytical models has spanned over more than a century and has included

a wide variety of problems, ranging from the guided wave propagation in isotropic plates

[8, 9, 10, 11, 12] and cylindrical structures [13, 14, 15, 16, 17], to those with additional com-

plexities, such as multi-layered structures [18, 19, 20, 21, 22, 23], anisotropy of materials

[24, 25, 26, 27, 28] and leaky wave problems [29, 30, 31].

Mathematically, all of these different cases are governed by the same set of partial differ-

ential equations, also called the wave equations, describing the behaviour of the waves in a

3-dimensional space. The only difference between these cases is the boundary conditions,

and it is the introduction of these boundary conditions that makes the analytical solution

difficult. The majority of the above studies have used an elegant classical partial waves

technique to obtain modal solutions of guided waves in many structures with a simple

cross section geometry; the partial waves technique decomposes the coupled partial dif-

ferential equations into separable equations in terms of the shear and longitudinal partial

wave potentials (see for example Achenbach [32] or Auld [33]).

The studies of propagation in curvilinear beam waveguides are difficult, and mathemati-

cal models developed to date are still incomplete and complicated. These studies can be

roughly divided into two different branches concerning acoustic and elastic wave propaga-

tions. They correspond to many day to day physical applications such as the sound wave

propagation in musical instruments and impact testing of structures with such curved

geometry.
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1.3.1 Acoustic Waveguides

Acoustic waveguides can be purely longitudinal in which the particle motion in the acoustic

medium is polarised in the propagation direction, or purely shear in which the particle

motion in the acoustic medium is polarised in the direction that is perpendicular to the

propagation direction. Here it commonly refers to those wave modes that travel in a fluid

medium where only the longitudinal motion is supported.

In 1957, Waldron [34] derived a set of general equations to describe the particle move-

ments along a curved acoustic line. Later, Grigor’yan [35] extended on Waldron’s idea to

include acoustic propagation in an infinitely long bend with a rectangular cross-section.

In addition, he demonstrated the acoustical field line diagram in the bent sections. In the

earlier studies of curvilinear waveguides, the cross-section was confined to a rectangular

shape. This is partly because their governing equations are separable, and thus can readily

be solved.

In 1971, Rostafinski [36] successfully treated the acoustical problem of a curved rectangular

section joined to a straight section. He theoretically investigated the acoustic velocity

distribution of propagating and non-propagating modes in curved bends and presented a

method for determining the non-propagating modes generated at discontinuities. However,

his solutions were limited to very low frequencies. Subsequent study by Osborne [37]

produced solutions for the higher order modes of the same geometry as Rostafinski’s

study.

The first experimental study of a curved acoustic waveguide with a rectangular cross sec-

tion was carried out by Cummings [38] in 1974. In the same publication, Cummings

derived the principle governing equations for a curved circular section acoustic waveg-

uide in toroidal co-ordinates. However, toroidal co-ordinates, which are required to suit

the boundary conditions of a circular section curved geometry, is not one of the eleven

co-ordinate systems in which the governing wave equations are amenable to separable

solutions, and thus cannot be solved directly. (Details of the separability of differential

equations can be found in, for example, Morse and Feshbach [39], pp. 665-666). Cummings

did not produce any solutions to the circular section curved problem which remained a

stumbling block to progress for a long time. Other studies on various aspects of sound

propagation in rectangular curved waveguides were also conducted [40, 41].

In 1983, Keefe et al. [42] was the first to attempt to address the toroidal problem by

approximating the circular cross-section with appropriate sizes of rectangular slices stacked

on top of each other. This was a very crude model, therefore it is not surprising that a

high percentage of error was recorded. In the same year, Ting et al. [43] investigated the

problem of the same toroidal geometry using a perturbation method where the results was

solved asymptotically to the straight case, and the solution were therefore limited to cases
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of slight curvature.

Recently, a sequence of publications by Félix et al. using multimodal analysis [44, 45, 46]

produced the most promising solutions for analysing the acoustical characteristics in a bent

pipe. The solutions allow calculations of steady and dynamic (transient) problems, includ-

ing any kind of discontinuities. In addition, the reflection and transmission coefficients at

the entrance and exit of the bend have also been studied.

1.3.2 Elastic Waveguides

Elastic waveguides transmit wave propagations in an elastic medium supporting both

the longitudinal and/or shear wave motions that are coupled together. As expected,

there have been substantially fewer studies on elastic curved waveguides than on acoustic

curved waveguides because of the difficulty in obtaining the exact frequency dependent

characteristic solutions. Any analysis has thus had to rely heavily on approximation

approaches.

In 1960, Morley [47] derived a Timoshenko-like theory for the propagation of flexural elastic

waves in an infinite curved rod. Morley’s model included both the rotary inertia and radial

shear deformation about the neutral axis as in the Timoshenko theory. However, the model

is only valid for rods with a slight curvature, allowing the extension of the neutral axis to

be neglected, and the governing equations can then be simplified significantly. In 1974,

Crowley et al. [48] adapted from Morley’s Timoshenko theory to study the propagation of

light in a rectangular cross-section beam. The study involves numerical simulation of the

fringe pattern generated by a continuous wave, which was then compared to one obtained

experimentally from a transmitted light isochromatic technique, but strictly speaking, this

should be regarded as an acoustic problem.

In 1966, Witrick [49] investigated elastic wave propagation in a helical spring using the

same theory containing a small curvature, where he measured and identified two different

velocities corresponding to the bending and the torsional elastic wave modes.

Subsequently, Britton et al. [50] put forward an approximate theory for longitudinal elastic

waves in circular rings and helical springs. They have drawn a conclusion that a completely

different approximate theory is required for each type of propagation (i.e. longitudinal,

torsional and flexural). Frequency dependent dispersion curves for these fundamental types

of modes were presented. Nevertheless, approximate theories, such as the Timoshenko

theory, are subject to assumptions and can only accurately describe the behaviour of

the few lowest order modes where the distribution of the motion in the cross-section is

relatively simple. Some experimental validations were also produced in their late paper in

1971 [51], where short duration, wide band pulses were sent along a helical spring.
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A similar experiment to investigate the distortion of longitudinal square pulses in slightly

curved elastic rods was also performed by Hsieh et al. [52]. This was validated with results

obtained from an elementary theory where the rotary inertia and radial shear deformation

are neglected. Hsieh et al. demonstrated that a good agreement can be obtained when

the wavelength of the pulse is large compared to the curvature of the rod, and thus all

bending effects may be neglected. Then Bryan Moodie et al. [53] offered comparisons of

several mathematical techniques to solve the elementary theory.

The immense difficulty in producing such solutions have deterred many researchers from

considering this topic. Since Crowley’s study, the author is not aware of any publication

regarding this topic until a paper by Wu et al. [54] in 1996. Wu et al. derived the “non-

trivial” characteristic equations for a bent bar. Although these equations were never solved

in their publication, attention was paid to the calculation of the energy carried by wave

modes that are reflected or transmitted at the bend. Nevertheless, a heavy assumption

that the curvature radius goes to infinity was made to obtain solutions of the energy field

in an uncoupled form. Both smooth and sharp bends were investigated, and experimental

validations were carried out in a sequel paper [55]; carbon steel bars were bent at various

curvatures, while strain that can be linked to the energy around the circumference was

measured using diametrically opposite strain gauges.

Although the development of guided wave techniques to carry out long range inspection

for structures, such as pipelines and rockbolts, has advanced rapidly in the past two

decades [56], there are still many problems to be solved, one of which is the curvature

effect. Demma et al. [57] examined the mode conversion phenomenon of the fundamental

pipe modes at the straight/bend interfaces numerically and experimentally. Later, they

[58] extracted the dispersion curves for a bent pipe in vacuum using a finite element

toroid model; the dispersion curves and the characteristic mode shapes were subsequently

compared with the straight case.

Recently, a new branch of guided waves, concerning quantum particles that propagate in

nanoscale structures, such as thin wires, has attracted much attention. This has been

driven by the race in the semiconductor industry to achieve a faster computer processor

or other IC chips, where the electrons are transported between one component and the

next in a confining potential. Waves of this kind of propagation through a curved wire

have just been studied [59, 60] using an effective one-dimensional equation which can

subsequently match the solutions of the three-dimensional waveguide case. The wave

functions are constructed using a method similar to the multimodal technique which can

be easily solved as an eigen-problem.
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1.4 Project Collaborators

It is well known that the governing wave equations of a guided wave problem may be

solved using a variety of mathematical approximation methods such as the Normal Mode

Theory [61, 5], asymptotic method [62, 63], ray theory [64], JWKB expansion theory [65]

and spectral method [66, 67]. Although, all of these methods can substantially simplify

the numerical solutions of the problem, and thus may resolve the inseparable equations

in toroidal co-ordinates, they are often based on heavy assumptions which may limit the

solutions to specific conditions.

Due to the mathematical complexity in these alternative methods, it was decided in the

beginning that great benefits would be gained from a close collaboration with Dr. Dmitri

Gridin, Prof. Richard Craster and Mr. Alexander Adamou of the Mathematics Department

at Imperial College London. This collaborative project was funded by the Engineering

and Physical Science Research Council (EPSRC) [68]. This has provided a framework

in which ideas have been exchanged regularly in many useful meetings to try to tackle

the difficult mathematical problems. Some of the results obtained by the mathematics

collaborators are included in summary form in this thesis, and wherever this is done, it

is clearly identified as their work. Elsewhere, unless stated otherwise, all of the work in

this thesis is the author’s own. The followings are the list of publications as an outcome

of this project by the collaborators:

D. Gridin, R.V. Craster, J. Fong, M.J.S. Lowe and M. Beard, “The high-frequency asymp-

totic analysis of guided waves in a circular elastic annulus”, Wave Motion 38, 67-90 (2003).

D. Gridin and R.V. Craster, “Quasi-modes of a weakly curved waveguide”, Proceeding of

Royal Society London, series A, 459, 2909-2931 (2003).

D. Gridin and R.V. Craster, “Lamb-modes in curved plates”, Proceeding of Royal Society

London, series A, 460, 1831-1847 (2004).

A.T.I. Adamou and R.V. Craster, “Spectral methods for modelling guided waves in elastic

media”, The Journal of the Acoustical Society of America 116(3), 1524-1535 (2004).

D. Gridin, A.T.I. Adamou and R.V. Craster, “Electronic eigenstates in quantum rings:

Asymptotics and numerics”, Physical Review B 69, 155317 (2004).

D. Gridin, R.V. Craster and A.T.I. Adamou, “Trapped modes in curved elastic plates”,

submitted to Proceeding of Royal Society London, series A, in 2004.

The list of publications by the author can be found at the end of this thesis.
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1.5 Outline of Thesis

This thesis studies the significance of the curvature effect in the propagation direction

on the properties of the guided waves. The study has been carried out in a systematic

approach of several steps, with an ultimate aim to gain insight into the leaky curved

problem using a plate structure. Each of these steps describes a different aspect of the

problem and constitutes roughly a chapter in the thesis in the following way.

In chapter 1, subsequent to an introductory remark for this investigation, a literature

review on the wave propagations in curved beam structures, both acoustic and elastic

waveguides, has been presented. This gives the historical background of waveguides in a

curved beam, and details the difficulties of obtaining precise analytical solutions to the

behaviour of the wave modes in such problems. These difficulties would also justify the

use of plate structures initially to study the curvature effect, instead of starting out with

the more complex cylindrical structures.

Chapter 2 reviews the circumferential guided waves in an unloaded curved plate and their

engineering applications. Subsequently, the foundation theoretical concept of the disper-

sion relations of the circumferential waves in an unloaded plate is summarised, and the

essential notations are introduced. Although, the analytical solution for these dispersion

relations is well documented, numerical instabilities have prevented the calculation of so-

lutions when the product of frequency and radius is large. A detailed study of these

instabilities is presented. The dispersion curves were traced numerically using a scheme

implemented in Matlab, for which the key steps are outlined.

The instability problem of the analytical solutions can be overcome using three asymptotic

methods which were derived by our collaborators. The theory of these asymptotic methods

has been published in a joint paper [63]. In first part of the Chapter 3, the equations of the

asymptotic methods are summarised. Subsequently, in the second part of this chapter, the

author studies numerical examples of these methods, while the accuracy and robustness

of each of the asymptotic methods is investigated. However, the studies are limited to

the lower order wave modes existing in the guiding system as they are fundamental to the

calculation of the curvature effect in the later chapters.

In chapter 4, using the analytical solutions presented in the previous chapter, the cur-

vature effect on the frequency dependent phase velocity of the fundamental modes in an

unloaded plate is investigated. Since the dynamic interaction of the incident mode and the

defect/discontinuity is vital to an inspection, we then examine how the curvature affects

the through-thickness displacement distribution. A quantitative comparison between the

phase velocities and the mode shapes of the propagating modes is also made.

Chapter 5 is divided into two separate parts, introducing numerical and experimental
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techniques which were used to validate the analytical prediction of the curvature effect

of an unloaded case. For the experimental part, a modification of the analytical model

is presented; the modification was necessary to correctly represent the “real” situation of

the experiment, and thus to enable experiment and model results to be compared.

A review of the existing studies of leaky circumferential waves is given in chapter 6. The

exact analytical solution is extended to include the leaky curved plate cases. The routine

to trace the dispersion curves for these cases is developed, and it is more difficult because

of the complex roots. Using the analytical solutions, the prediction of the curvature effect

on the frequency dependent attenuation of the fundamental modes is obtained.

In chapter 7, the curvature effect on the attenuation of the wave modes in a loaded coupled

plate case is validated experimentally and by finite element modelling. An immersed pipe

experimental technique is proposed for the validation, and the results are explained.

Lastly, the concluding remarks are presented in the final chapter.
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Chapter 2

Circumferential Guided Waves in

Unloaded Plates

The effect of curvature along the propagation direction on guided wave properties can

be studied initially using plate structures in plane strain (2-D). This provides a sensi-

ble alternative to 3-D beam structures because of the relative simplicity in obtaining the

analytical solutions. The aim of this chapter is to provide the underlying analytical the-

ory, from which the frequency dependent (dispersive) propagation characteristics of wave

modes in a curved plate are calculated. The characteristic solutions can be numerically

evaluated, although they are unstable in certain combinations of input parameters. A

detailed study is also presented to investigate the circumstances in which these analytical

solutions become unstable.

2.1 Background

This section reviews the historical development of circumferential guided waves, and their

use in engineering applications.

2.1.1 Historical Background on Circumferential Waves

The study of waves propagating in the circumferential direction of a structure can be traced

back to as early as the 1920s, mainly inspired by the field of seismology. Researchers such

as Sezawa investigated the earthquake phenomena of surface waves propagating along the

slightly curved earth surface in both cylindrical [69] and spherical [70] coordinates.

In 1958, Viktorov [71] formulated the fundamental theory for the Rayleigh wave that

30



2. Circumferential Guided Waves in Unloaded Plates

propagates on both convex and concave cylindrical surfaces. He derived and solved the

governing differential equations, and introduced the concept of angular wavenumber. Sub-

sequently, in 1964, Keller et al. [72] used a first-order asymptotic approximation of the

“geometrical theory” to construct the surface wave field at high frequencies, however, the

effect of dispersion was not taken into account. In addition to the Rayleigh wave, there

are other modes of surface waves that are confined to propagating near curved bound-

aries. One of these modes is the “whispering gallery” wave mode, which was studied by

Brekhovskikh [73] in 1968. The mode was named after the whispering-gallery phenomenon

in large circular buildings such as St. Paul Cathedral, London, where the mode was first

discovered. In addition, there exist many more studies on curved surface waveguides

since the 1960s, concerning a wide spectrum of fields [74, 35, 75] which cover elasticity,

electromagnetics, hydrodynamics, optics and other fields.

In 1962, Horton et al. [76] were the first to demonstrate experimentally that circumferential

waves can exist in an aluminium cylinder. Subsequently, the first mathematical theory for

the Lamb-type elastic waves travelling around a solid cylinder was derived by Viktorov

[77] in 1963. Later, in a letter to the Journal of the Acoustical Society of America, Grace

et al. [78] attempted to extend on Viktorov’s work to include the attenuation due to the

leakage of energy as the waves propagate around the circumference of an immersed pipe.

However, the complex parameter which was used to account for the attenuation decay is

thought to be incorrectly used. The reason for such mistake will be explained in detail

later in Ch. 6.

Recently, Viktorov’s work was revised by Qu et al. [79] and Liu et al. [80], both of whom

introduced non-dimensional parameters to the formulations. One obvious advantage for

using these parameters is that the dispersion curves could be used universally for struc-

tures with the same material properties and “thickness to radius” ratio. In 1999, Valle

et al. [7] utilised these formulae to model multilayered solid cylindrical structures using

continuous boundary conditions between layers. In the same year, Kley et al. [81] demon-

strated experimentally the effectiveness of a technique to extract the dispersion curves

for circumferential guided waves. The waves were generated by a laser-ultrasonic method

in a two-layered cylinder. Subsequently, Maze et al. [82] used the same solution type to

calculate for the case of fluid filled pipes.

Despite the formulae of the circumferential Shear Horizontal (SH) waves being simpler

compared to those for the Lamb-type waves, the mathematical derivation of the charac-

teristic function for circumferential SH waves was only published by Gridin et al. [63] in

2003, and later was also reported by Zhao et al. [83] in 2004.

The usage of composite materials has increased steadily in the past decade, driven pri-

marily by substantial demands in the aerospace industry. As a result, research on circum-

ferential waves in anisotropic composite multilayered structures has also been receiving

31



2. Circumferential Guided Waves in Unloaded Plates

attention in recent years, in order to come up with a reliable fast inspection technique.

Deriving from the classical elasticity theory, Towfighi et al. treated the problem of elastic

waves in anisotropic cylindrical curved plates [84], and later for spherical curved plates

[85]. In 1998, Babich et al. [86] formulated an explicit expression for the amplitude of a

wave mode travelling along a curved inhomogeneous layer where the material properties

vary through the thickness. Additionally, Sharma et al. [87] examined the wave propa-

gations that are generated by the thermoelastic effect in a transversely isotropic curved

plate.

2.1.2 Engineering Applications using circumferential guided waves

The general review by Chimenti [12], which focuses on guided wave inspection techniques

for plates in particular, describes the developments in this area up to 1997. In addition

to plates, elongated cylindrical structures, such as pipelines, can be inspected successfully

using axially propagating cylindrical guided waves [56]. Guided wave techniques have

the advantage of long range coverage, and only a small area needs to be exposed for

excitation. However, an axially propagating guided wave technique is only for the screening

of pipelines, and thus does not give definite information about defects.

Therefore for local detailed inspection, the axially propagating guided wave technique may

not be applicable. In this case, conventional through-transmission ultrasound methods

have been used to measure the local wall thickness losses, as shown in Fig. 2.1. Although

this technique can pin-point the exact location and the severity of the defect accurately,

it can be very time consuming, especially when the pipe diameter is large. Alternatively,

guided waves propagating in the circumferential direction can potentially offer a robust

option for inspecting these cases. Theoretically the technique can inspect the full circum-

ference from a single point around the circumference of a structure, though this can only

be achieved if the excitation frequency and the excitation mode are carefully chosen to

obtain the best propagation characteristics.

Other than pipes, large curved metal plates are used in many engineering applications

such as those used in the construction of the cylindrical shell of a large oil tank, as

illustrated in Fig. 2.2. Techniques to inspect flat plates using Electro Magnetic Array

Transducers (EMATs) have been well developed [88]. A similar technique may be easily

adapted for inspecting the curved structures. Alers [89] considered using EMATs that are

mounted either on the outer surface of the pipe or inside of the pipe via a ‘pig’ moving

platform, to generate circumferentially propagating Rayleigh waves for the inspection.

Subsequently, Hirao et al. [90] applied circumferential Shear Horizontal (SH) waves to

inspect gas pipelines in a setup analogous to Alers’. In addition, pressure vessels can

potentially be inspected using guided circumferential waves around the circumference.
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The method is particularly attractive for the inspection of areas that are difficult to access

such as directly above supports.

Figure 2.1: Photograph of a conventional point by point through-transmission inspection tech-
nique around a small diameter water pipe.

Figure 2.2: Photograph of a large oil tank that is assembled by many large slightly curved plates.

Nevertheless, applications using circumferential waves remain novel, where much of the

work progressed merely over the past decade. In 1994, Nagy et al. [91] reported using

circumferential creeping waves to detect radially grown fatigue cracks on the far side of

so-called “weep” holes in thin airframe stiffeners, though the fuel contained in the wing

must be drained before any inspection. Later, Hassan et al. [92] investigated the possibility

of detecting these cracks in a fuel filled “weep” hole, and assessed the attenuation caused

by the radiation of energy into the fluid.
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In 1998, Cheeke et al. [93] instigated an intrinsic technique to sense the fluid level contained

inside the pipe; the technique takes advantage of the sizeable difference in group velocity

of the Lamb type circumferential waves between a filled and an empty pipe, Later, Li et

al. [94] invented a method to detect fatigue cracks in complex components that are used in

aging helicopters, such as the rotor hub, connecting links and pitch shaft. Subsequently,

Valle et al. [95] and Qu et al. [96] demonstrated that radial cracks in an annular structure

can be located and sized accurately using the Lamb-type circumferential guided waves.

Employing an optimisation process, Chen et al. [97] reported recently that the charac-

teristic parameters, such as the elastic constants, thickness and curvature radius, can be

measured using the low-frequency circumferential Lamb waves. This has a potential ap-

plication of evaluating the characteristic parameters for thin layers of protective materials

coated on the surface of pipelines.

2.2 Exact Theoretical Analysis of Circumferential Waves

A comprehensive version of the exact analytical characteristic formulae has been reported

by Qu et al. [79]. In this section, these equations are modified by the introduction of

new notations which are in-line with a recent publication [63], in such a way that they

may be easily adapted for various situations with the appropriate boundary conditions

(see Sec. 2.2.4); the equations are also consistent with those derived for the leaky cases in

Ch. 6.

The approach for solution in the circumferential geometry is similar to that in the straight

plate, where Bessel functions being used instead of exponential functions. The SH and

Lamb-type circumferential wave solutions are entirely independent (uncoupled), therefore

it is valid to treat them separately. Formulae for both the SH and Lamb-type circumfer-

ential waves are presented in this section.

2.2.1 Wave Equations

To study waves propagating circumferentially, a system of cylindrical co-ordinates, in the

r, θ and z direction, is used throughout this thesis. A schematic diagram showing the

cylindrical system is illustrated in Fig. 2.3. The governing mathematical equations of

elastic wave propagation in a bulk material are well documented; these equations will

be referred to as the wave equations (see for example Auld [5]). Previously, the wave

equations expressed in cylindrical coordinates have also been studied extensively for wave

propagations in the axial direction of a pipe [56]. The fundamental wave equations which
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Figure 2.3: The geometry of the circumferential waves problem (after Wilcox [5]).

are not subject to any external body forces, are considered:

ρ

(
∂2ū

∂t2

)
= ∇ · σij . (2.1)

where ū = (ur, uθ, uz) is the displacement vector in cylindrical coordinates, and ∇ is the

divergence operator. Eqn. 2.1 may be expressed in term of non-tensor equations which

are given in App. A.1. The Cauchy stress tensor σij can be related to the strain tensor εij

by Hooke’s law (Eqn. 2.2); and furthermore the strain tensor may be expressed in terms

of the displacement vector, ū (defined in App. A.2).

σij = λδijφ+ 2µεij . (2.2)

where δij is the Kronecker delta which is equal to one for i = j and is equal to zero for

i �= j, while dilatation φ = εrr + εθθ + εzz.

For circumferential propagation, the field in the elastic medium does not depend on the

z direction, and therefore any z direction dependent terms are omitted. As a result, the

displacement vector ū is only a function of r and θ. Furthermore, the field is dependent on

a time harmonic in the propagation direction, represented by e−iωt, where ω is the angular

frequency. In general, the time harmonic function is common to all field quantities and

therefore is suppressed throughout the formulation. The displacement field may be reduced

to the following form:

ū(r, θ) = Ū(r)eiνθ. (2.3)

where ν is the angular wavenumber and Ū is the wave displacement amplitude along the

radial line. For the non-attenuative problem considered in this chapter, both ν and ω

are assumed to be purely real quantities. Although the model depicts a pipe structure
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with waves propagating around its circumference, the circumferential continuity condition

is not considered theoretically. The waves are assumed to propagate along an infinite

circular cylinder, or along a cylindrical cavity of circular cross section in an infinite elastic

medium. Therefore ν may vary between zero and infinity.

2.2.2 Shear Horizontal (SH) Circumferential Waves

SH circumferential waves propagate in the θ direction and are polarised in the z direction.

The particle movements can be described by Eqn. A.3, corresponding to the equation of

motion in an infinite medium in the z direction. Eqn. A.3 may be expressed in terms of

the displacement in the SH direction, uz, in the following form:

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
uz + k2

Tuz = 0. (2.4)

where kT = ω/CT is the bulk shear wavenumber, and CT is the bulk shear velocity. Sub-

stituting the z component of Eqn. 2.3 into Eqn. 2.4 yields the following Bessel’s differential

equation for Uz:

(kT r)2
∂2Uz

∂(kT r)2
+ (kT r)

∂Uz

∂(kT r)
+ ((kT r)2 − ν2)Uz = 0. (2.5)

The general solutions of Eqn 2.5 may be satisfied by several combinations of Bessel func-

tions, each of which represents the oscillatory behaviour of the shear partial bulk wave

propagating towards and away from one point in the medium respectively. The three valid

combinations are the normal Bessel functions (J and Y ), the modified Bessel functions (I

and K) and the Hankel functions (H1 and H2) which are linear combinations of normal

Bessel functions of the first and second kinds. The general solution for Uz may be written

in the following form:

Uz = a1Wν(kT r) + a2Zν(kT r). (2.6)

where W and Z are placeholders for the solutions of a Bessel equation (after Pavlakovic

[14]), and may be substituted by any of the combinations discussed, and a1 and a2 are the

unknown field constants for the incident and reflected shear partial bulk waves respectively.

2.2.3 Lamb-Type Circumferential Waves

The exact formulation of the fields in a Lamb-type problem is analogous to that of the

SH waves. Particles of the circumferentially propagating Lamb-type waves polarise in
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both the radial and circumferential directions (ur and uθ). Therefore two coupled waves

equations in those directions, Eqn. A.1 and Eqn. A.2, are considered; the equations may

be simplified by using the convenient Helmholtz decomposition technique. The technique

separates the coupled equations in terms of two scalar potentials, ϕ and ψ, associated with

the longitudinal and shear motions respectively. The displacement field of Eqn. 2.3 may

be expressed as follows:

ur =
∂ϕ

∂r
+

1
r

∂ψ

∂θ
, uθ =

1
r

∂ϕ

∂θ
− ∂ψ

∂r
. (2.7)

And the equations of motion become two uncoupled Helmholtz equations:

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
ϕ+ k2

Lϕ = 0,
(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
ψ + k2

Tψ = 0. (2.8)

where kL = ω/CL and kT = ω/CT are the bulk longitudinal and shear wavenumbers

respectively. CL and CT are the longitudinal and shear bulk velocities of the material,

and may also be expressed in terms of the material properties, such as the Lamé constants

(λ, µ) and the density (ρ):

CL =

√
λ+ 2µ
ρ

, CT =
√
µ

ρ
. (2.9)

The modal solutions of the potentials may be assumed as follows:

ϕ(r, θ) = Φ(r)eiνθ, ψ(r, θ) = Ψ(r)eiνθ. (2.10)

where Φ(r) and Ψ(r) are the amplitude distributions of their corresponding modal solution

across the plate thickness. Then substituting these modal representations into Eqn. 2.8,

the wave equations may be rewritten for Φ and Ψ:

(kLr)2
∂2Φ

∂(kLr)2
+ (kLr)

∂Φ
∂(kLr)

+ ((kLr)2 − ν2)Φ = 0,

(kT r)2
∂2Ψ

∂(kT r)2
+ (kT r)

∂Ψ
∂(kT r)

+ ((kT r)2 − ν2)Ψ = 0. (2.11)

where the first and second equations correspond to the longitudinal and transverse wave

propagations in an infinite medium. As in the SH formulation, the general solutions of

Equations 2.11 may be expressed with the Bessel function placeholders, W and Z:

Φ = a1Wν(kLr) + a2Zν(kLr), Ψ = a3Wν(kT r) + a4Zν(kT r). (2.12)

where ais, with i = {1, 2, 3, 4} are the unknown partial bulk wave amplitudes.
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2.2.4 Boundary Conditions

The general solutions of the waves equations presented in the previous sections give the

basis for calculating the SH and Lamb-type circumferential guided waves. The solutions

are formulated in such a way that they can be easily adapted to form the characteristic

functions of both non-attenuative and attenuative homogeneous cases provided that the

appropriate boundary conditions are satisfied at the interfaces between different materials.

The formulation of circumferential waves continues from the work started by Lowe [98]

and Pavlakovic [14] for the plate and cylindrical guided waves respectively, therefore the

interfaces considered are in-line with those considered by them; the interfaces considered

are solid-solid, solid-vacuum, and solid-fluid. Only the non-attenuative cases are consid-

ered in this chapter, while the attenuative case of a leaky system will be presented in

Ch. 6.

It is worth noting that only an ideal fluid, which does not support any shear wave prop-

agation, is considered. In addition, only the boundary conditions that are relevant to the

formation of the characteristic functions are summarised in this section. There should be

an adequate number of conditions to set up a finite set of equations in the same unknown

field amplitudes of which the common solutions in the frequency-wavenumber domain

(ω − ν) can be determined. Since SH waves have polarisation in the z direction and the

fluid does not support any shear propagation, a slightly different boundary condition at

the interfaces would have to be used compared to those used for the Lamb-type wave prop-

agation. The boundary conditions for the SH waves are summarised in Tab. 2.1 where σzr

is the tangential stress.

Interface types

solid-vacuum solid1-solid2 solid-fluid

σzrsolid
= 0|r=a uzsolid1 = uzsolid2 |r=a uzsolid

= 0|r=a

σzrsolid1 = σzrsolid2 |r=a σrrsolid
= 0|r=a

Table 2.1: Boundary conditions for the circumferentially propagating SH waves at the interface,
r = a, between two types of materials.

For the circumferential Lamb-type waves, all the field components are z independent, since

there is no z direction polarisation in these waves. The four fields that are valid at these

interfaces where the radius r is equal to a distance a, are the normal radial stress σrr, the

tangential stress σrθ, the radial displacement ur, and the circumferential displacement uθ.

A summary of the boundary conditions for the Lamb case at various types of interface is

shown in Tab. 2.2.
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Interface types

solid-vacuum solid1-solid2 solid-fluid

σrrsolid
= 0|r=a ursolid1 = ursolid2 |r=a ursolid

= urfluid
|r=a

σrθsolid
= 0|r=a uθsolid1 = uθsolid2 |r=a σrrsolid

= σrrfluid
|r=a

σrrsolid1 = σrrsolid2 |r=a σrθsolid
= 0|r=a

σrθsolid1 = σrθsolid2 |r=a

Table 2.2: Boundary conditions for the circumferentially propagating Lamb-type guided waves
at the interface, r = a, between two types of material.

2.2.5 Characteristic Functions for an Unloaded Single Layer

The modelling of guided waves for a particular curvature of a single curved solid layer

in vacuum is fairly simple. This involves satisfying the traction-free boundary conditions

listed in the previous section with the general solutions for the specific types of propagation;

the general solutions for the SH and Lamb-type waves are given in Eqn. 2.6 and Eqn. 2.12

respectively.

The choice of the combination of Bessel functions for these general solutions in the axially

propagating cases has been studied extensively by Pavlakovic [14] who concluded that the

right choice of Bessel functions could improve the numerical stability. However, for the

circumferential case, the parameters used in the Bessel functions are very different, where

the order of the functions are not necessarily integer and can be very large. In this case,

there are little differences in the numerical stability when using various combinations of

Bessel functions, therefore the normal Bessel functions (J and Y ) will be used throughout

this thesis for the general solutions of non-attenuative cases. On the other hand, for waves

propagating along a layer that is coupled with an infinite half space where the energy leaks

into the surrounding half-space medium and vanishes in distance, the solutions cannot be

correctly represented by the normal Bessel functions. Further detail on this can be found

in Sec. 6.2.

SH Circumferential Waves

The traction-free boundary conditions at the inner and outer surfaces for the SH waves

can be reduced to:

∂uz

∂r
= 0; r = r1, r2. (2.13)

This condition is known as the homogeneous Neumann boundary condition, which is also

used in acoustic propagation problems. Substituting the general solutions into Eqn. 2.13
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creates a homogeneous system of two equations:

a1J
′
ν(kT r1) + a2Y

′
ν(kT r1) = 0, a1J

′
ν(kT r2) + a2Y

′
ν(kT r2) = 0. (2.14)

Then the dispersion relation for the modal solutions can be simplified to the following

elegant form:

J ′
ν(kT r1)Y ′

ν(kT r2) − J ′
ν(kT r2)Y ′

ν(kT r1) = 0. (2.15)

For every frequency ω, there is a finite number of real roots ν of Eqn. 2.15, relating to the

number of propagating modes. Substituting the root of a ω−ν pair back into Eqn. 2.14, the

field amplitudes a1 and a2 may be evaluated. The general through-thickness displacement

field is subsequently obtained:

uz(r, θ) = Uz(r)eiνθ ∝
{
Jν(kT r) − J ′

ν(kTa)
Y ′

ν(kTa)
Yν(kT r)

}
eiνθ. (2.16)

Lamb-Type Circumferential Waves

Similarly, for the Lamb-type waves, the traction-free boundary conditions need to be

satisfied in order to set up a characteristic function. First, the stresses σrr and σrθ have

to be re-written in terms of the displacement potentials, ϕ and ψ (see Eqn. 2.17). This

can be obtained by substituting the displacement field (Eqn. 2.7) into the strain tensor

(Eqn. A.2), while the Hookes Law relation (Eqn. 2.2) is used to obtain the stress-strain

relationship.

σrr = −λk2
Lϕ+ 2µ

(
∂2ϕ

∂r2
− 1
r2
∂ψ

∂θ
+

1
r

∂2ψ

∂r∂θ

)
,

σrθ = µ

(
2
r

∂2ϕ

∂r∂θ
− 2
r2
∂ϕ

∂θ
+

1
r2
∂2ψ

∂θ2
− ∂2ψ

∂r2
+

1
r

∂ψ

∂r

)
. (2.17)

By expressing the traction-free conditions at the inner and outer surfaces using Eqn. 2.17, a

4 × 4 homogeneous characteristic eigen-matrix for the 4 unknown field amplitude constants

a = (a1, a2, a3, a4)T is obtained:

D(ν, ω) · a = 0. (2.18)

The eigen-matrix D is a function of the frequency ω and angular wavenumber ν. The

roots of the characteristic eigen-matrix, given by the ω-ν pairs, can be evaluated when

the determinant of the matrix, D, is set to zero. The elements of matrix D for the

unloaded Lamb-type circumferential case are given in App. B. To solve for the unknown
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amplitudes, a, as an eigenvector, one of these unknowns must be assumed as an arbitrary

value. Subsequently, using the general solutions and Eqn. 2.7, the displacement fields can

be rearranged as the following:

ur(r, θ) =
{
a1kLJ

′
ν(kLr) + a2kLY

′
ν(kLr) + a3

iν

r
Jν(kT r) + a4

iν

r
Yν(kT r)

}
eiνθ,

uθ(r, θ) =
{
a1
iν

r
Jν(kLr) + a2

iν

r
Yν(kLr) − a3kTJ

′
ν(kT r) − a4kTY

′
ν(kT r)

}
eiνθ. (2.19)

2.3 Instabilities of Exact Analytical Solutions

With the derivations in the previous sections, dispersion curves for both the SH and Lamb-

type cases may be calculated and traced numerically using the characteristic functions,

Eqn. 2.15 and Eqn. 2.18 respectively. The computation requires finding of the roots in

the ω− ν domain. The root convergence is achieved using a bi-section iteration technique

and together with a summary of the tracing routine, will be discussed later in Sec. 3.2.

One major problem with the exact analytical dispersion relation of the circumferential

waves is that the solutions can become unstable numerically at high frequencies or when

the curvature radius of the system is large. This instability is associated with the very

large value of either, the elements of the characteristic function (Eqn. 2.18) or the de-

terminant of D. An unavoidable numerical breakdown is results, where values above the

machine precision being obtained. There are both upper and lower limits on the mag-

nitude of floating point numbers in each computer. All computation was carried out in

a commercial software, MatlabTM , where all variables are defined using double preci-

sion that has an overflow limit of ±1.79769313486232 × 10308 and an underflow limit of

±4.94065645841247 × 10−324.

As an example, the dispersion curves of a 3mm thick and 20mm inner radius curved

plate are plotted for the SH and Lamb-type circumferential waves in Figs. 2.4 and 2.5

respectively. The material used for this example is steel and has material properties of

CL = 5960m/s, CT = 3260m/s and ρ = 7932kg/m3. It can be seen in these figures that

no solution can be obtained in the higher-frequency region of the dispersion curves because

of the numerical instabilities which are caused by two related circumstances.

2.3.1 “Large f − d” Problem

The first type of the instabilities is the “ill-conditioning” of the eigen-matrix characteristic

function, D. It is also commonly known as the “large f−d” problem (f is frequency and d

is the plate thickness), which has been studied comprehensively in the straight plate case

by Lowe [98]. As the name has suggested, the characteristic functions become unstable
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Solution
breakdown

Figure 2.4: Every 20th mode of the shear horizontal SH dispersion curves of a 3mm thick and
20mm inner radius steel curved plate.

when the combination of the frequency and thickness becomes very large. The “large

f − d” problem is associated with the displacement decoupling of the inner and outer

surfaces when the bulk partial waves become inhomogeneous (evanescent).

In the Lamb-type guided wave homogeneous system, the solution can be thought of as a

superposition of 4 pairs of incident and reflected longitudinal and shear partial waves on

both inner and outer surfaces. The natures of these partial waves are represented by the

Bessel functions of the first and second kind (J and Y ) with the arguments ω̂1, ω̂2, ω̂3 and

ω̂4, which are defined as follows:

ω̂1 = kLr1, ω̂2 = kLr2, ω̂3 = kT r1, ω̂4 = kT r2. (2.20)

The amplitudes of these partial waves, a, associated with a particular propagating wave

mode can be determined by satisfying the boundary conditions at the inner and outer

surfaces. Fig. 2.6 illustrates the partial waves concept for a curved plate system. Each

type of partial waves strikes and reflects with the same angle from a normal radial line on

both the inner and outer surfaces.

When both partial bulk waves on the same surface become inhomogeneous, the displace-

ments and stresses of these modes at this surface begin to uncouple from the rest of the

structure, as the energy decays exponentially away from that surface. This is what hap-

pens, for example, with the Rayleigh wave mode on a straight plate, when the solution

transforms asymptotically from the A0 and S0 modes towards the Rayleigh mode at high
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Solution
breakdown

Unstable
region

Stable region
<� �

i

Line on which the dispersion characteristic
function is evaluated in Fig. 2.8

Figure 2.5: Every 5th mode of the Lamb dispersion curves of a 3mm thick and 20mm inner radius
steel curved plate.

frequencies. Unlike the symmetric boundary condition processed by the straight plate, a

curved plate has different boundary conditions at the inner and outer surfaces due to the

difference in curvature. It is worth stressing that as the frequency increases, each of these

partial bulk waves become inhomogeneous sequentially. This results in the Rayleigh wave

forming only on one surface at a time.

Once a partial wave in the system becomes inhomogeneous, elements in the solution matrix

would have to adapt a combination of both decaying and growing coefficients in order to

describe such decoupling behaviour, causing an ill-conditioning in the eigen-matrix D.

propagation direction

Longitudinal partial wave
Shear partial wave

Figure 2.6: The concept of partial waves theory illustrating the uncoupled longitudinal and shear
partial bulk waves at the inner and outer surfaces of a curved plate case.
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In a strongly curved plate (i.e. the ratio thickness to radius is large), all propagating

modes could become the surface Rayleigh-type waves at high frequencies (see Ch. 4).

Fig. 2.7 demonstrates this asymmetry of the curved plate by comparing the through-

thickness displacement mode shapes for the straight and curved cases for a plate of the

same thickness. It can be clearly seen that the energy of the A0 mode of the curved plate

concentrates on the outer surface.

Thus the computation of the roots of a dispersion relation after any of the partial waves

has become inhomogeneous, may be unstable. This area of stability can be illustrated in

Fig. 2.8, where the dispersion function is evaluated at a constant frequency ω, and as a

function of angular wavenumber ν, and corresponds to the calculation along the line shown

in Fig. 2.5. It can be seen that the characteristic function has an oscillatory feature, where

the zero crossings along the x-axis are the roots of the system. In the region ν < ω1, the

amplitude of these oscillations are more or less unvarying. In comparison, when ν > ω1, one

or more of the partial waves in the system would have become inhomogeneous; as a result,

the amplitude of the function can become very large due to the “large f−d” problem, and

may breakdown because of the large rounding error discussed before. Evaluating the roots

in this region can be computationally expensive because of an increase in the number of

iteration needed to obtain convergence.

Outer
surface

Top
surface

Bottom
surface Arbitrary amplitude

In-plane
displacement

Out-of-plane
displacement

Radial
displacement Circumferential

displacement

(a) (b)

Arbitrary amplitude
Inner
surface

Figure 2.7: Displacement mode shapes of the A0 mode at a frequency of 7MHz for (a) a straight
steel plate, 3mm thick, and (b) a curved steel plate, 3mm thick and 20mm inner radius.

2.3.2 Breakdown of the Bessel Function

In addition to the “large f−d” problem, the second instability phenomenon is related to the

breakdown of the Bessel functions contained within the eigen-matrix D of a curved plate

system. this occurs when the argument is much larger than the order of the function [99].

The complicated Bessel functions offer unique solutions to the Bessel partial differential

equations such as Eqn. 2.5. These equations appear in problems of vibrations, electric

fields, heat conduction, fluid flow . . . etc, in cylindrical geometry. Bessel functions of
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Figure 2.8: Lamb-type characteristic function calculated along the line shown in Fig. 2.5 for a
curved steel plate, 3mm thick and 20mm inner radius. The frequency is kept constant at 10MHz

the first and second kind (Jγ(x) and Yγ(x)), and their derivatives, are used in forming

the underlying dispersion relation equations (App. B), where γ and x are the order and

argument of the Bessel functions respectively. Instability of the Bessel functions is a

previously known problem and has been treated in much literature such as Abramowitz

et al. [99] and Watson [100] using, for example, series expansions and several asymptotic

expressions, but the accuracy of these schemes are generally conditional.

When x > γ, both Jγ(x) and Yγ(x) functions have oscillatory profiles with a relatively

low gradually changing amplitude, also the oscillation of the functions has a non-constant

frequency, as shown in Fig. 2.9. On the contrary, when x < γ, Jγ(x) has a zero value,

while Yγ(x) grows exponentially. Therefore when the partial bulk waves in the Lamb-type

case become inhomogeneous, i.e. ν < ωi with i = {1, 2, 3, 4}, the corresponding Bessel

function of the second kind Yν(ωi) can become numerically very large.

This does not necessarily lead to an immediate solution breakdown once the order is

larger than the argument of a Bessel function. As shown in Fig. 2.10, the Bessel function

of the second kind remains computable in MatlabTM even at a location of a high frequency

value where the corresponding partial bulk wave has long turned inhomogeneous (i.e. when

ν << ωi). However, the amplitude of the Bessel function may eventually exceed the double

precision limit at very high frequencies, corresponding to the spikes in Fig. 2.10 where

the function may be evaluated but the result is inaccurate.
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Figure 2.9: Amplitude of Bessel functions of the first Jγ(x) and second Yγ(x) kind, with the
argument γ assigned to be a constant. The Jγ(x) and Yγ(x) are shown in solid and dotted lines
respectively.

2.3.3 Comparison of the Two Instabilities

Although both the Yγ(x) and the “large f -d” problem could introduce instabilities to the

numerical calculation of the characteristic functions at different frequencies, the funda-

mental causes of these breakdowns are evidently linked to the introduction of evanescent

bulk partial waves in the solution. The order in which these two types of instabilities

occur is dependent on both the geometrical and mechanical properties of the system. The

only region where the solution is totally stable is where the partial waves in the system are

completely homogeneous. Based on this observation, both the stable and unstable regions

are indicated in Fig. 2.5.

The Bessel functions are the main building blocks of the characteristic eigen-matrix D,

and are also used to describe the nature of the partial waves at the interfaces. Therefore

analysing the absolute amplitude of the Bessel functions at a typical area of dispersion

curves in the “ω− ν” domain can help us to visualise the causes of the two different types

of instability.

Taking the first and last partial waves that become inhomogeneous for a particular mode

with increasing frequency as an example, the absolute amplitude of their corresponding

Bessel functions of the first and second kinds, with the arguments ω̂1 and ω̂4 respectively,

are evaluated, as shown in Fig. 2.11. The Bessel functions of the first (J) and second kinds

(Y ) represent the decay rates of the incident and reflected partial wave amplitudes at the

surfaces. The arguments of the Bessel function denote the type of partial wave and at

which surface it is interacting, in such a way that the argument ω̂1 = kLr1 correspond to

the longitudinal partial wave at the inner surface, and the argument ω̂4 = kT r2 correspond

to the shear partial wave at the outer surface. A detail study of the partial wave analysis

for this kind of system is presented in Sec. 3.1.4.
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Figure 2.10: Three-dimensional plot of the second order Bessel function Yγ(x) evaluated using
MatlabTM around a numerically unstable region.

In addition, the lines ν = ω̂i for i = {1,2,3,4} are plotted to indicate the positions where

each of the partial waves transform from homogeneous to inhomogeneous. The plots are

calculated for a 3mm thick and 20mm inner radius curved steel plate.

Fig. 2.11(a) shows the absolute amplitude of Yν(ω̂1), where the amplitude on the left hand

side of ν = ω̂1 remains moderate; whereas the amplitude on the right hand side of the line

increases exponentially. Eventually the function breaks down at very high frequencies,

covering a substantial area of the dispersion curves. The breakdown area of the Bessel

function is indicated in white, and in grey if it is over an area of dispersion curves. It can

also be seen that the width of this grey area increases with increasing frequency.

Additionally, the Bessel function of the second kind corresponds to the other partial waves,

for instance the shear partial wave at the outer surface Yν(ω̂4), shown in Fig. 2.11(c), has an

amplitude which is typically much lower than that of Yν(ω̂1). Furthermore, the numerical

breakdown of Yν(ω̂4) is almost always beyond the area of the dispersion curves. Therefore

the precise reason of the Bessel function breakdown can actually be pinpointed to the

breakdown of Yν(ω̂1) of the system.

On the other hand, the “large f − d” problem is most likely to occur when Yν(ω̂1) has

a very high amplitude, indicated in Fig. 2.11(a), compared to amplitudes of other Bessel

functions in the same locations. This creates an “ill-conditioning” of D. In this area,

both Jν(ω̂1) (Fig. 2.11(b)) and Jν(ω̂2) have zero values, and therefore have no effect on
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the “large f − d” problem; whereas Jν(ω̂3) and Jν(ω̂4) (Fig. 2.11(d)) can have very small

absolute amplitudes in this area, especially where the partial waves are well coupled. As a

result, the genuine cause of the “large f − d” problem is highly dependent on the relative

difference in amplitudes between Yν(ω̂1) and Jν(ω̂4).

In general, it can be said that, if the “d/r1” ratio of the curved plate system is small, the

solution should breakdown due to the instability of the Bessel functions before the “large

f -d” problem becomes influential, and vice versa for a system with a large “d/r1” ratio.

This is because the argument of the Bessel function is a product of the frequency (ω), the

radius (r1, r2) and the reciprocal of the bulk wave speeds (C−1
T , C−1

L ), therefore increasing

the radius would proportionally reduce the value of frequency at which the Bessel function

breaks down. Numerical examples demonstrating this dependence will be presented later

in Sec. 3.3.

2.4 Summary

An extensive literature review on the development and current engineering applications

of the circumferentially propagating wave modes has been presented.

A theoretical analysis of waves propagating circumferentially in an unloaded plate has

been studied. The formulae of the SH and Lamb-type wave modes have been summarised

separately because of the difference in their polarisation directions. Then the fundamental

formulae in each type of propagation have been generalised to model a multilayered curved

plate structure, including both fluid and solid layers, by adapting the appropriate boundary

conditions listed in Sec. 2.2.4. As an example, the derivation of the characteristic functions

and other field quantities has been presented for an unloaded curved single layer.

Numerical solutions of the circumferential SH and Lamb-type modes can become unstable

at high frequencies. Depending on the geometrical and mechanical properties, the exact

solutions may be limited to low frequencies, especial those of the lower order modes. This

instability stems from the well known “large f − d” problem and the breakdown of the

Bessel function of the second kind Yγ(x), and has been discussed in detail.
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Chapter 3

Asymptotic Analysis of

Circumferential Guided Waves in

Unloaded Plates

The exact analytical dispersion characteristic function of the circumferential guided waves

becomes unstable at high frequencies and large curvature radius as discussed in the pre-

vious chapter. Keeping the initial motivation of investigating the curvature effect using

circumferential waves in mind, it is desirable to be able to calculate the analytical solutions

for curved plate systems of any curvature, and at any frequency. For this reason, alterna-

tive methods to calculate the exact analytical solutions is a necessity for the completion

of this thesis. Asymptotic analyses for those “ill-conditioned” characteristic functions has

been studied, as part of the collaborative project with researchers in the Mathematics

department at Imperial College. The asymptotic solutions have been derived by our col-

laborators, and subsequently have been implemented into a MatlabTM program where the

limits of these methods were further analysed by the author. This chapter is based on

work published in Gridin et al. [63] and Fong et al. [101].

In this chapter, the derivation of the asymptotic methods, found by Dr. D. Gridin and

Prof. R. Craster of mathematics department at Imperial College is summarised (Sec. 3.1).

Subsequently, a numerical routine that has ben implemented to trace the dispersion curves

for both the exact and asymptotic methods is outlined, and the dispersion curves of several

curvatures are presented as examples. Lastly, the accuracy and the efficiency of these

asymptotic methods are assessed.
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3.1 Asymptotic Solutions

To address the instability problems of the exact analytical solution of circumferential waves

in an unloaded curved plate, three asymptotic methods were proposed by our collaborators.

For completeness of this thesis, the derivations of these methods are summarised in this

section. The full details can be found in Gridin et al. [63].

The first method considered is the Uniform Asymptotic Method (UAM), with which the

exact Bessel functions are replaced with an uniform asymptotic expansion that is ex-

pressed in terms of the Airy functions. The second method, the Regional Asymptotic

Method (RAM), adapts a conditional asymptotic expansion which divides the calcula-

tions of the Bessel functions into three regimes depending on the order and the argument

of the Bessel functions. With further mathematical manipulations, the dispersion curves

can be subdivided into regions where the characteristic functions are expressed explicitly.

In the last proposed method, the Simplified Region Asymptotic Method (SRAM) extends

on the RAM by eliminating the exponentially small terms in the equations, to achieve a

complete stability of the characteristic function.

3.1.1 Uniform Asymptotic Method (UAM)

The methodology of the UAM to obtain dispersion relations is the same as the exact

method. Both methods require solving for roots in the ω−ν domain when the determinant

of this eigen-problem matrix is equal to zero, Eqn. 2.18. The only difference compared to

the exact derivation is that the Bessel functions [(Jν(kT,L ·r1,2) and Yν(kT,L ·r1,2)] and their

derivatives contained in the eigen-matrix D are replaced with the uniform asymptotes.

In the UAM, only the leading terms of the large-order asymptotes of the Bessel functions

that are uniform for all arguments x (see pp.366 of Abramowitz [99]), are used.

Jγ(x) ∼
(

4ζ
1 − x2

γ2

)1/4Ai(γ2/3ζ)
γ1/3

, Yγ(x) ∼ −
(

4ζ
1 − x2

γ2

)1/4Bi(γ2/3ζ)
γ1/3

,

J ′
γ(x) ∼ −2γ

x

(1 − x2

γ2

4ζ

)1/4Ai′(γ2/3ζ)
γ2/3

, Y ′
γ(x) ∼ 2γ

x

(1 − x2

γ2

4ζ

)1/4Bi′(γ2/3ζ)
γ2/3

. (3.1)

where ζ can be obtained using the following:

2
3
ζ3/2 = cosh−1(γ/x) −

√
1 − x2

γ2
, x < γ,

2
3
(−ζ)3/2 =

√
x2

γ2
− 1 − cos−1(γ/x), x > γ. (3.2)
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Although the UAM does not resolve the instability problem at high frequencies since the

nature of the Airy functions (Ai and Bi) is similar to that of the Bessel functions, a

significant reduction in the complexity of calculating the Bessel functions is achieved. As

a result, the calculation time required using the UAM is much reduced compared to that

of the exact method.

3.1.2 Regional Asymptotic Method (RAM)

One fundamental assumption used in the RAM is that the wavelength of the shear bulk

wave is much smaller than the inner radius of the curved plate (r1):

kT r1, kLr1 � 1. (3.3)

This assumption ensures that the arguments of the Bessel functions used in the dispersion

relations (2.15 and 2.18) are large. Consequently, the Bessel functions can be simplified

using the large-argument large-order (Debye’s) asymptotes that are expressed in 3 regimes

depending on the order γ and the argument x of the Bessel functions in the following

relationships:

Regime I: γ < x, Regime II: γ ≈ x, Regime III: γ > x. (3.4)

The leading terms of the large-argument large-order asymptotes of the Bessel functions,

and their first derivatives are summarised in App. C.1.

Shear Horizontal (SH) Waves

By adapting the solution in the appropriate regime (Eqn. 3.4 to represent the Bessel

functions in the dispersion relation, the SH dispersion curves can be sub-divided into five

regions in which a real angular wavenumber ν can be situated:

Region I: ν < kT r1, Region II: ν ≈ kT r1, Region III: kT r1 < ν < kT r2,

Region IV: ν ≈ kT r2, Region V: kT r2 < ν. (3.5)

These regions can also be visualised graphically in the dispersion curves shown in the

ν-ω domain of Fig. 3.1. Regions I and III are the main regions where the majority of

the solutions are calculated; while Regions II and IV are the transitional regions, which

are much narrower than Regions I and III. The purpose of these transitional regions

is to ensure a smooth transition by using a solution that is equally accurate in both
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3. Asymptotic Analysis of Circumferential Guided Waves in Unloaded Plates

neighbouring regions. The transitional areas surround the boundaries ν = kT r1, kT r2,

where the boundaries of this transitional area (ω̃−ν) is calculated by taking the argument

of the Airy function in Eqn. 3.1 equal to a constant, is defined in Eqn. 3.6 where the

subscripts T,L, 1, 2 may be chosen according to the region in which the solution applies;

the value of the constant dictates the width of translational area which increases with

frequency, and a constant value of 3 is typically used. Eqn. 3.6 can be applied to the

translational areas for the Lamb-type cases in the next section.

±
∣∣∣∣∣
(
ν

[
3
2
(cosh−1 (

νCT,L

ω̃r1,2
) −

√
1 −

(
ω̃r1,2

νCT,L

)2
])2/3∣∣∣∣∣ = 3 (Const.) (3.6)
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Figure 3.1: Shear horizontal (SH) circumferential dispersion curves and the regions defined for
the Regional Asymptotic methods (r1 = 0.02m and r2 = 0.023m, Steel as an example).

Using the appropriate asymptotes (App. C.1), the dispersion relation may be expressed

explicitly in each Region:

Region I: ν < kT r1

sin
{

(k2
T r

2
1 − ν2)1/2 − (k2

T r
2
2 − ν2)1/2

− ν

[
cos−1

(
ν

kT r1

)
− cos−1

(
ν

kT r2

)]}
= 0. (3.7)
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Region II: ν ≈ kT r1

Ai′
[(

2
kT r1

)1/3

(ν − kT r1)
]
cos

{
(k2

T r
2
2 − ν2)1/2 − ν cos−1

(
ν

kT r2

)
− π

4

}

−Bi′
[(

2
kT r1

)1/3

(ν − kT r1)
]
sin
{

(k2
T r

2
2 − ν2)1/2 − ν cos−1

(
ν

kT r2

)
− π

4

}
= 0.

Region III: kT r1 < ν < kT r2

2 sin
[√

k2
T r

2
2 − ν2 − ν cos−1

(
ν

kT r2

)
− π

4

]

+ cos
[√

k2
T r

2
2 − ν2 − ν cos−1

(
ν

kT r2

)
− π

4

]
e2[

√
ν2−k2

T r2
1−ν cosh−1(ν/kT r1)] = 0. (3.8)

Region IV: ν ≈ kT r2

e2[
√

ν2−k2
T r2

1−ν cosh−1(ν/kT r1)]Bi′
[(

2
kT r2

)1/3

(ν − kT r2)
]

+2Ai′
[(

2
kT r2

)1/3

(ν − kT r2)
]

= 0. (3.9)

Lamb-type Waves

Under the assumption of Eqn. 3.3, the second terms of the elements in the solution matrix

D (shown in App. B) are of higher asymptotic order, and therefore may be neglected.

Additionally, the determinant of the eigen-matrix may be reduced and expressed in the

following single equation:

f2
5 f

2
6 {Jν(ω̂2)Yν(ω̂1) − Jν(ω̂1)Yν(ω̂2)}{Jν(ω̂4)Yν(ω̂3) − Jν(ω̂3)Yν(ω̂4)}

+16ν4ω̂1ω̂2ω̂3ω̂4{J ′
ν(ω̂2)Y ′

ν(ω̂1) − J ′
ν(ω̂1)Y ′

ν(ω̂2)}{J ′
ν(ω̂4)Y ′

ν(ω̂3) − J ′
ν(ω̂3)Y ′

ν(ω̂4)}
−4ν2[f2

5 ω̂1ω̂3{Jν(ω̂2)Y ′
ν(ω̂1) − J ′

ν(ω̂1)Yν(ω̂2)}{Jν(ω̂4)Y ′
ν(ω̂3) − J ′

ν(ω̂3)Yν(ω̂4)}
+f2

6 ω̂2ω̂4{J ′
ν(ω̂2)Yν(ω̂1) − Jν(ω̂1)Y ′

ν(ω̂2)}{J ′
ν(ω̂4)Yν(ω̂3) − Jν(ω̂3)Y ′

ν(ω̂4)}]
+

32
π2
ν2f5f6 = 0. (3.10)

where f5 = 2ν2 − ω̂2
4, f6 = 2ν2 − ω̂2

3.

Eqn. 3.10 has been expressed in such a way that a convenient form of asymptotes for

the cross-products of the Bessel functions containing two different arguments (given in

App. C.2), could be readily used. As in the SH waves, the dispersion characteristic function

(Eqn. 3.10) is further simplified into nine regions by applying the appropriate cross-product

asymptotes for the Bessel functions corresponding to the different regimes, the nine regions

being:

Region I: ν < ω̂1, Region II: ν ≈ ω̂1, Region III: ω̂1 < ν < ω̂2,
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Region IV: ν ≈ ω̂2, Region V: ω̂2 < ν < ω̂3, Region VI: ν ≈ ω̂3,

Region VII: ω̂3 < ν < ω̂4, Region VIII: ν ≈ ω̂4, Region IX: ω̂4 < ν. (3.11)

where ω̂1 = kLr1, ω̂2 = kLr2, ω̂3 = kT r1, ω̂4 = kT r2. The graphical representation of
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Figure 3.2: Lamb-type circumferential dispersion curves and regions defined for the Regional
Asymptotic methods (r1 = 0.02m and r2 = 0.025m, Steel as an example).

these regions is illustrated in the dispersion curves of Fig. 3.2, where the dispersion relation

is expressed explicitly for each region. Regions II, IV, VI, VIII are the transitional regions,

where the solutions are derived in the same way as those of the SH case, and are shown

in App. C.3. Regions I, III, V, VII and IX are expressed in terms of the fundamental

trigonometric functions which can substantially reduce the complexity of the calculations.

The key equations of the Regions are summarised below:

Region I: ν < ω̂1

c1 sin(α1 − α2) sin(α3 − α4) + c2 cos(α1 − α2) cos(α3 − α4) + c3 = 0. (3.12)

Region III: ω̂1 < ν < ω̂2

−
{

f2
5 f

2
6

f̃1f2f3f4

(
cosα2e

−β1 + sinα2
eβ1

2

)
+ 16ν4f̃1f2f3f4

(
sinα2e

−β1

+ cosα2
eβ1

2

)}
sin(α3 − α4) − 4ν2

{
f2
6 f2f4

f̃1f3

(
− sinα2e

−β1 + cosα2
eβ1

2

)

+
f2
5 f̃1f3

f2f4

(
cosα2e

−β1 − sinα2
eβ1

2

)}
cos(α3 − α4) + c3 = 0. (3.13)
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Region V: ω̂2 < ν < ω̂3

c4 sinh(β1 − β2) sin(α3 − α4) + c5 cosh(β1 − β2) cos(α3 − α4) + c3 = 0. (3.14)

Region VII: ω̂3 < ν < ω̂4

sinh(β2 − β1)
{

f2
5 f

2
6

f̃1f̃2f̃3f4

(
cosα4e

−β3 + sinα4
eβ3

2

)
− 16ν4f̃1f̃2f̃3f4

(
sinα4e

−β3

+ cosα4
eβ3

2

)}
− 4ν2 cosh(β2 − β1)

{
f2
6 f̃2f4

f̃1f̃3

(
− cosα4

eβ3

2
− sinα4e

−β3

)

+
f2
5 f̃1f̃3

f2f4

(
cosα4e

−β3 − sinα4
eβ3

2

)}
+ c3 = 0. (3.15)

Region IX: ω̂4 < ν

c6 sinh(β1 − β2) sinh(β3 − β4) + c7 cosh(β1 − β2) cosh(β3 − β4) + c3 = 0. (3.16)

where c1 =
f2
5 f

2
6

f1f2f3f4
+ 16ν4f1f2f3f4, c2 = −4ν2

{
f2
5 f1f3

f2f4
+
f2
6 f2f4

f1f3

}
,

c3 = 8ν2f5f6, c4 =
f2
5 f

2
6

f̃1f̃2f3f4

− 16ν4f̃1f̃2f3f4, c5 = −4ν2
{
f2
5 f̃1f3

f̃2f4

+
f2
6 f̃2f4

f̃1f3

}
,

c6 =
f2
5 f

2
6

f̃1f̃2f̃3f̃4

+ 16ν4f̃1f̃2f̃3f̃4, c7 = −4ν2
{
f2
5 f̃1f̃3

f̃2f̃4

+
f2
6 f̃2f̃4

f̃1f̃3

}
,

αi = f2
i − ν cos−1(ν/ω̂i) − π/4, βi = f̃2

i − ν cosh−1(ν/ω̂i),

fi = (ω̂2
i − ν2)1/4, f̃i = (ν2 − ω̂2

i )
1/4. (3.17)

The dispersion relations of the transitional regions contain Bessel functions associated

only to partial waves that are homogeneous. This ensures that the Bessel function that

is determined using the uniform asymptotes expressed in terms of the Airy functions

(Eqn. 3.1), could not become unstable.

3.1.3 Simplified Regional Asymptotic Method (SRAM)

Although using the RAM resolves the instability problem of the Bessel functions, the

dispersion relation equations derived using the RAM (Eqns. 3.7 - 3.9 and Eqns. 3.12 - 3.16),

may still contain numerous exponentially small and large terms. These terms normally

exist in the equations of the dispersion relation inside the “unstable Region” shown in

Fig. 2.5, where some or all the partial waves are inhomogeneous, as discussed in Sec. 2.3.

In fact, the very small and large terms in the equations, representing the exponential decay

of the partial wave amplitudes, and thus having a similar effect to the “large f -d” problem.

They can cause the dispersion relation function to grow exponentially, and eventually the

solutions break down at very high frequency due to numerical overflow.
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This “ill-conditioning” of the dispersion functions may be overcome simply by eliminating

the exponentially small terms that describe the mild coupling condition of the partial

waves between the surfaces when they become inhomogeneous. By doing so, a considerable

reduction of the function amplitude and a removal of the exponential growth nature of

the function can be achieved. This allows the iteration of the roots to be quicker and the

solutions to be more stable.

As an illustration, a comparison of the Lamb-type dispersion characteristic functions for

Region V between the RAM and SRAM is shown in Fig. 3.3; the roots of the function are

where the curve crosses the x-axis. It can be seen that the nature of rapidly increasing

oscillation amplitude is effectively removed when using the SRAM. Since only the zero

crossing points of the function are of any interest, reducing the oscillation amplitude of

the function would not in any way affect the accuracy of the results; this is reflected in

the accuracy plots later in Sec. 3.4.

roots

roots

Figure 3.3: Lamb-type dispersion characteristic function of Region V at a frequency of 25MHz
for a curved steel plate structure (3mm thick and 20mm inner radius) using RAM (bottom) and
SRAM (top) with a “zoom-in” for low angular wavenumber values.

In Regions I and II of both the SH and Lamb-type systems, all partial waves are homoge-

neous or in the transition of becoming inhomogeneous. Therefore there are no exponen-

tially small and large terms in the dispersion relation of these regions which may cause

the “ill-conditioning” of the dispersion function; consequently, no further simplification of

the dispersion result is necessary in these regions.
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Shear Horizontal (SH) Waves

Region III: kT r1 < ν < kT r2

In Eqn. 3.8, the second term is typically very small for all the parameters used in the

solution, and therefore can be omitted. Doing so is equivalent to neglecting the boundary

condition of inner wall completely, resulting in a simplified asymptotic dispersion relation

for a curved plate:

sin
[√

k2r22 − ν2 − ν cos−1
(

ν

kT r2

)
− π

4

]
= 0. (3.18)

Region IV: ν ≈ kT r2

In this region, the first term of Eqn. 3.9 is exponentially small and therefore can be omitted,

resulting in a reduced dispersion relation for the whispering gallery type modes in a curved

plate:

Ai′
[(

2
kT r2

)1/3

(ν − kT r2)
]

= 0. (3.19)

Lamb-type Waves

The dispersion relations for the transitional regions are shown in App. C.4, in which the

exponentially small terms of the dispersion relations in the RAM (App. C.3) are identified

and eliminated.

Region III: ω̂1 < ν < ω̂2

In Eqn. 3.13, terms with e−β1 , where β1 is negative and large, are much larger than unity,

therefore c3 and the eβ1 terms can be neglected and the dispersion relation in this region

becomes:

{
f2
5 f

2
6

f̃1f2f3f4

cosα2

)
+ 16ν4f̃1f2f3f4 sinα2

}
sin(α3 − α4)

+4ν2
{
− f2

6 f2f4

f̃1f3

sinα2 +
f2
5 f̃1f3

f2f4
cosα2

}
cos(α3 − α4) + c3 = 0. (3.20)

This simplification can be applied similarly to both Regions V and Region VII.

Region V: ω̂2 < ν < ω̂3

−c4 sin(α3 − α4) + c5 cos(α3 − α4) = 0. (3.21)
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Region VII: ω̂3 < ν < ω̂4

(f2
6 − 4ν2f̃2

1 f̃
2
3 )(f2

5 cosα4) = 0. (3.22)

Region IX: ω̂4 < ν

With further simplification of Eqn. 3.16, its equation may be expressed as a combination

of two Rayleigh equations describing waves on the outer and inner surfaces of the curved

plate that correspond to the first and the second half of the equation respectively:

{(2ν2 − k2
T r

2
2)

2 − 4ν2
√
ν2 − k2

Lr
2
2

√
ν2 − k2

T r
2
2}

×{(2ν2 − k2
T r

2
1)

2 − 4ν2
√
ν2 − k2

Lr
2
1

√
ν2 − k2

T r
2
1} = 0. (3.23)

3.1.4 Partial Wave Analysis

The partial wave analysis [102] is an elegant way of representing the concept of guided wave

propagation. A guided wave of a particular wave mode may be decomposed into longitu-

dinal and shear partial waves that have appropriate amplitudes to satisfy the boundary

conditions at a given frequency. In a Lamb-type system, the physical behaviour of the

partial waves corresponding to each region (shown in Fig. 3.2) is illustrated in Fig. 3.4.

The length of the arrows in the figure indicates the amplitude of partial waves at the

inner r1 and outer r2 radii, while the direction of the arrows show the angle of interaction

between the partial waves and the boundary surfaces.

In general, the longitudinal and shear partial waves are reflected from the inner and outer

surfaces of the curved plate at a reflected angle which is the same as the incident angle; an

angle that is between the incident/reflected wave and the normal of the surface. However,

in cylindrical coordinates, the general direction of the wave front of these partial waves

rotates around the central axis. As a result, there is an infinite set of longitudinal-shear

partial wave pairs along the surfaces that are dependent on the θ direction.

As the frequency increases, the incident and reflected angles increase simultaneously. At

the point where the dispersion curve of a mode touches the line ν = ω̂1 in Region II (see

Fig. 3.2), the longitudinal partial wave is tangential to the inner surface. Subsequently, as

the dispersion curve crosses the line ν = ω̂1 into Region III, the longitudinal partial wave

on the inner surface must change from homogeneous to inhomogeneous (i.e. from real to

imaginary wavenumber) in order to ensure its resultant amplitude is the same as the other

partial waves.

As the frequency increases, the rest of the partial waves become inhomogeneous waves

sequentially as the dispersion curves cross the lines ν = ω̂2,3,4 in Regions IV, VI and VIII

respectively, as shown in Fig. 3.4. The wave modes eventually converge into the surface
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Rayleigh waves when both the longitudinal and shear partial waves become inhomoge-

neous. The behaviour of the partial waves that comprise the solution is in general very

different in each region, and hence the asymptotic solutions of the Bessel function in the

appropriate regime are used.

propagation direction

Longitudinal partial wave Shear partial wave Inhomogeneous partial wave

Homogeneous partial wave

(a) (b) (c)

(d) (e) (f)

Figure 3.4: Partial wave pattern at the boundaries of a generalised curved plate structure cor-
responding to the various locations in the dispersion curves of Fig. 3.2. (a) Region I. (b) ν = ω̂1.
(c) Region III. (d) Region V. (e) Region VII. (f) Region IX.

3.2 Implementation of Numerical Solutions

The analytical dispersion characteristic equations of both the exact and asymptotic meth-

ods for a single layered unloaded curved plate have been implemented in a MatlabTM

program, from which the modal solutions, also known as the roots of the characteristic

equations, are computed. The program evaluates the solutions in the frequency-angular

wavenumber ω-ν domain, and traces and joins the roots that belong to the same wave

propagating mode. The tracing routine used is very similar to that used by Lowe [9] with

some minor modifications, such as the choice of iteration and sweeping domains.

To trace the dispersion curves, a number of fundamental parameters defining the geomet-

rical and mechanical properties of the problem must be first defined. The program then

selects two close angular wavenumber values (ν1,2) chosen preferably in the region ν > ω̂1

where the gradient of the curves in the working domain ν − ω is similar between wave

modes.

There is in general an infinite number of frequencies ω that can satisfy the dispersion

relation for any one angular wavenumber. Therefore an upper frequency limit must be

specified to restrict the number of wave modes traced. The program steps and iterates in

the ω domain up to the specified upper frequency limit, where a finite number of frequency
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roots ωm for both ν1 and ν2, is evaluated.
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Figure 3.5: Illustration of a typical dispersion curves 1D-iteration and tracing procedure.

Each pair of these roots ν1,2ωm provides the starting point for the firstmmodes, and is used

to linearly extrapolate an estimated angular wavenumber value in a small frequency step

δω. Convergence is obtained by iterating over a range of angular wavenumbers (sweeping)

as demonstrated in Fig. 3.5. The program switches to a quadratic extrapolation once a

third point is found. Doing so can usually provide a better estimation for the extrapolation,

and thus a reduction in the overall number of iterations.

The stepping size in frequency δω might be reduced when there are two closely located

roots found in the sweeping range, or when the gradient is very extreme to extrapolate

accurately. In general, a large step can be used in the regions where ν > kT r1 for the SH

case and ν > kLr1 for the Lamb-type case. This is because the dispersion curves in these

regions have gradients that vary little with frequency. The tracing process is repeated for

all m modes.

In addition, MatlabTM automatically registers the value of double precision variables with

“Inf ” or “0” when they become overflow or underflow respectively, as discussed in Sec. 2.3.

Using these properties, it would possible to distinguish if the instability is caused by

the Bessel functions or the “large f -d” problem; the Bessel function breakdown causes

the value of Yν(ω̂1) in the solution (Eqn. B.1) to become Inf, while the determinant of

the solution matrix becomes Inf if the solution breakdown is caused by the “large f -d”

problem.

When using the regional methods, extra procedures are included to determine the region

in which the estimated ω-ν is located, allowing an appropriate dispersion relation to be

used. Nevertheless, there is one obvious difficulty in applying such a regional scheme.

Since the equation of the dispersion relation is different for each region, a discontinuity
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may occur at the boundary of any two regions. By increasing the sweeping range, the

discontinuity problem of the curves can often be resolved, but this may just as easily cause

the extrapolation to track the neighbouring mode. To rectify this problem, a much smaller

frequency step δω for the extrapolation is automatically applied near the boundaries when

regional schemes are used. The general concept of the tracing routine is summarised with

the flow chart shown in Fig. 3.6.
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Figure 3.6: Flow chart of the tracing routine that has been implemented in a MatlabTM program.

A Bi-Section Method (BSM) [103] is used for the iteration in this program; the BSM

is a very simple method to use but is regarded as inefficient. Other potentially more

efficient methods such as the Newton’s method ([104]) have been considered. However

due to the exponential growth nature of the dispersion functions (Fig. 2.8), these methods

often add and subtract extremely unequal numbers, resulting in higher numerical rounding

errors compared to the BSM. It appears that the BSM has provided a much more stable

scheme for this kind of problem as it only makes use of the polarity of the function at

each evaluation, while ignoring the solution magnitude. The solutions are iterated until a

minimum accuracy of a specified value is obtained. In all the calculations of this chapter,

an accuracy of 1 × 10−9 was used; the value was chosen so that the numerical error is

many orders less than the error caused by using the asymptotic methods.

Additionally, the routine has been programmed to solve the characteristic function of a
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3. Asymptotic Analysis of Circumferential Guided Waves in Unloaded Plates

multilayered curved plate using the classical exact global matrix method [98]. The Global

Matrix [G] forms a secular equation that relates the partial waves amplitudes {A} at each

layer boundary to the external boundary conditions of the system in the following form:

[G]{A} = 0. (3.24)

However, as there are currently no asymptotic solutions available for multilayered struc-

tures, solutions are likely to suffer from instabilities at high frequencies due to the reasons

discussed previously in Sec. 2.3.

3.3 Numerical Examples

As an example, numerical results of the dispersion curves for the circumferential SH and

Lamb-type waves of a curved plate were calculated using the exact solution and the three

asymptotic approximation methods with the tracing routine described in the previous

section. The curved plate structure investigated was composed of steel that has material

properties of CL = 5960m/s, CT = 3260m/s and ρ = 7932kg/m3. To demonstrate

the effect of curvature, three geometries have been carefully chosen so that the solution

corresponding to the same mode breaks down at different frequencies; these example

geometries are tabulated in Tab. 3.1. The curvature of a plate is defined by the “d/r1”

ratio in this thesis, where d is the thickness and r1 is the inner radius.

r1(m) r2(m) Curvature: d
r1

r2
r1

geometry 1 0.02 0.021 0.05 1.05

geometry 2 0.02 0.023 0.15 1.15

geometry 3 0.02 0.025 0.25 1.25

Table 3.1: Geometries of the curved plate used for the case study in this thesis.

SH waves

Fig. 3.7(a) shows four dispersion curves of the SH type wave modes that are calculated

for the geometry 2. Due to the large number of modes existing in the frequency range

of interest, only every 20th mode is presented in the graph to give a better visual quality.

Using the exact method (top graph), it is evident that the solutions break down at the high-

frequency high-angular wavenumber region as expected. Replacing the Bessel functions in

the dispersion relation with the uniform asymptotes (Sec. 3.1.1), as shown in the second

graph, did not result in any improvement in the stability of the solutions. This is shown
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3. Asymptotic Analysis of Circumferential Guided Waves in Unloaded Plates

by comparing the frequency at which these curves break down to those of the exact case

in graph 1; the breakdown point of each curve is marked with a cross in Fig. 3.7. As

mentioned earlier, the time required to trace these curves using the UAM was significantly

reduced.

By using the RAM (shown in the third graph from the top in Fig. 3.7(a)), the dispersion

relation function becomes more stable and its solution could consequently be obtained at

higher frequencies. Nevertheless, despite the improvement in stability compared to the

UAM, the solutions can be seen to break down at even higher frequencies. The RAM

eliminates the instability of the Bessel functions, therefore any further breakdown of the

RAM solutions would have to be caused by the “large f -d” problem.

This is further confirmed by the SRAM, shown in the bottom graph of Fig. 3.7(a), where

solutions are obtained for dispersion curves of all three geometries at any frequencies.

Further investigation has indicated that there are no signs of any solution breakdown up

to a frequency that is twice of that shown in Fig. 3.7(a). The dispersion functions of the

SRAM do not grow exponentially with increasing frequency; as a result, there should not

be any frequency limit at which the solutions become unstable.

Lamb-type waves

Figs. 3.7(b - d) present the Lamb-type dispersion curves that were calculated using the

exact and asymptotic methods for geometry 1 to 3 respectively; the red and blue curves

in the figures are used to distinguish between the neighbouring modes. Again for clarity,

only every 5th mode is plotted here in the figures of the Lamb-type cases.

In order to compare dispersion curves of different geometries, both the frequency ω and the

angular wavenumber ν must be scaled with the thickness d and the radius corresponding

to the mid-point through the thickness of a curved plate rmid (Eqn. 3.25). By doing so

the circumferential wave dispersion curves are located in a similar location of the graph

regardless of their geometry. However, it is worth stressing that the dispersion curves are

only universal for geometries with the same r2/r1 ratio. All graphs in the Lamb-type case

(Figs. 3.7(b - d)) were traced to an upper frequency-thickness (fd) limit of 0.18MHz-m.

This is to ensure that a similar number of modes are presented in each graph to provide

a good visual comparison.

Scaled frequency, ω̄ = f · d, Scaled wavenumber, ν̄ =
ν · d
rmid

. (3.25)

As in the SH case, the UAM does not improve the stability of the dispersion curves in

the Lamb-type case. The solutions of both UAM and exact method fail at exactly the

same frequencies, as illustrated in the top two graphs of Figs. 3.7(b - d) for all three
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geometries. In general, the value of the fd product at which the exact solutions of a

particular mode break down, increases with increasing curvature, though the cause of this

solution breakdown in each geometry case might vary between the “large f − d” problem

and the breakdown of the Bessel functions.

In the case of r2/r1 = 1.05 (Fig. 3.7(b)), the exact solution breakdown is caused by

the instability of the Bessel functions. Using the RAM, a dramatic improvement in the

solution stability is achieved in the dispersion curves. Nonetheless, the lower order modes

still break down at very high fd products.

In the case of r2/r1 = 1.15 (Fig. 3.7(c)), though the breakdown of the exact solutions is

caused by the instability of the Bessel functions, the elements of the characteristic eigen-

matrix D at the point of the breakdown contain some extremely large and small terms.

Because of this, the solutions are as likely to fail by the “large f -d” problem as much as

by the breakdown of the Bessel functions. It is not surprising that only a very little extent

of the dispersion curves is further traced when the RAM is used, compared to the exact

method.

As the curvature increases, such as in the case of r2/r1 = 1.25 (Fig. 3.7(d)), the “large

f -d” problem becomes dominant. It can be seen that there is no improvement compared

to the exact method when using either UAM or RAM. This suggests that any solution

breakdown at this geometry is purely caused by the “large f -d” problem. Such trend of

increasing domination of the “large f−d” problem over the breakdown of Bessel functions

can also be observed in the graphs (3) of Figs. 3.7(b - d), corresponding to r2/r1 increasing

from 1.05 to 1.25. In this sequence of figures, the fd product values at which the solutions

break down decreases.

Finally, by using the SRAM (graphs (4) of Figs. 3.7(b - d)), any instability nature of

the dispersion relation is removed, and it is possible to trace solutions for all modes, and

at all frequencies. The asymptotic methods have unquestionably solved the numerical

instability problem discussed earlier in Sec. 2.3.

The dispersion curves in this chapter are plotted along the frequency-angular wavenumber

ω-ν axes. Other forms of dispersion curves such as the tangential phase velocity Vph and

the group velocity Vgr, are sometimes more commonly used because of their physical

meanings to certain applications. The tangential Vph and Vgr of the wave modes can be

easily converted from the ω-ν domain, using the following relationships:

Vph(rad/s) =
ω

ν
. (3.26)

Vgr(rad/s) =
∂ω

∂ν
. (3.27)
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3.4 Comparison of Asymptotic Methods

3.4.1 Accuracy

A simple observation of the dispersion curves reveals few differences between the results

obtained using the exact method and the asymptotic methods, shown in Fig. 3.7. However,

some errors at very low frequencies are expected as noted in Sec. 3.1. This is because

the Debye’s asymptotes used for the substitution of the Bessel functions are intended

for large-orders and large-arguments, and thus they could easily hit their limits at low

frequencies. Although the exact solution, which is extremely stable at low frequencies,

can in theory be used instead of the asymptotic solutions at these frequencies to achieve

an all-round accuracy for the dispersion curves, but for comparison purposes of each

asymptotic method, this is not implemented at this stage.

To investigate the accuracy of various asymptotic methods preciously, a more specific

analysis is conducted to measure the relative error of the dispersion curves. The relative

error is defined as the absolute percentage difference in angular wavenumbers ν between

the asymptotic (ν(aymptotic,m,ω)) and the exact (ν(exact,m,ω)) methods, and it is normalised

by the angular wavenumber of the exact method:

Relative Error(%) =
ν(aymptotic,m,ω) − ν(exact,m,ω)

ν(exact,m,ω)
· 100. (3.28)

The percentage error is measured for every mode m at a frequency step, δω. This per-

centage error can then be mapped over the area of the corresponding dispersion curves for

each asymptotic method, presented in a three-dimensional plot.

Unfortunately, the calculations of the relative error are limited to positions where the

exact solution is computable. As a result, only modes which exist at frequencies that are

lower than the breakdown frequency of the first fundamental mode when using the exact

method are compared. The area of investigation is indicated by the rectangular boxes in

the dispersion curves, shown in the plot (a) of Figs. 3.8 to 3.11.

As the asymptotic solutions become increasingly accurate with increasing frequency, the

comparison in these rectangular boxes between various asymptotic and exact methods

should have higher errors relatively compared to that at higher frequencies; therefore the

comparison is representative of the investigation of the accuracy for these methods in the

worse case scenario.
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Figure 3.8: Measurements of the relative percentage error in angular wavenumber ν of the
circumferential shear horizontal dispersion curves in an annular steel structure (geometry 2 :
r2/r1 = 1.15). (a) 3-D error plot of the UAM, projecting over the calculation area of the ex-
act dispersion curves. (b) 3-D error plot of the RAM. (c) 3-D error plot of the SRAM.
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Figure 3.9: Measurements of the relative percentage error in angular wavenumber ν of the
circumferential Lamb-type dispersion curves in an annular steel structure (geometry 1 : r2/r1 =
1.05). (a) 3-D error plot of the UAM, projecting over the calculation area of the exact dispersion
curves. (b) 3-D error plot of the RAM. (c) 3-D error plot of the SRAM.
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Figure 3.10: Measurements of the relative percentage error in angular wavenumber ν of the
circumferential Lamb-type dispersion curves in an annular steel structure (geometry 2 : r2/r1 =
1.15). (a) 3-D error plot of the UAM, projecting over the calculation area of the exact dispersion
curves. (b) 3-D error plot of the RAM. (c) 3-D error plot of the SRAM.
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Figure 3.11: Measurements of the relative percentage error in angular wavenumber ν of the
circumferential Lamb-type dispersion curves in an annular steel structure (geometry 3 : r2/r1 =
1.25). (a) 3-D error plot of the UAM, projecting over the calculation area of the exact dispersion
curves. (b) 3-D error plot of the RAM. (c) 3-D error plot of the SRAM.
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SH waves

Fig. 3.8 shows a three-dimensional error plot of the SH mode using geometry 2 and all three

asymptotic methods; the 3-D error plot is assembled using approximately 500 grid points

in each axis. For the UAM shown in Fig. 3.8(a), the solutions are extremely accurate,

having a relatively error of less than 0.00005% generally. The relatively high level of

error in the very low frequency region is anticipated because of the use of high-order high

argument asymptotes for the Bessel functions.

For the regional asymptotic methods (i.e. the RAM and SRAM shown in Figs. 3.8[b -

c]), it can be seen that the level of error is in general slightly higher than that of the

UAM. This is attributed to the further simplification of the dispersion relation used in

these methods. Additionally, a relatively high level of error is also detected at which the

boundaries between the two neighbouring regions are located, for example at ν = cT r1.

This is caused by the fact that the expressions of the dispersion relation in different

regions become less accurate at these boundaries where they reach their limits. This

results in a slight discontinuity between any two regions. The effect of this discontinuity

has been minimised by using the dispersion relations of the transitional regions in which

their solutions are typically uniform across the neighbouring regions. This effect may

further reduce by taking a higher constant value in Eqn. 3.6 to increase the size of the

transitional region area, however this increases the complexity of the calculations at the

same time.

Lamb-type waves

Figs. 3.9 to 3.11 present the three-dimensional error plots of the Lamb-type modes for

the various asymptotic methods associated with the geometries 1, 2 and 3 respectively.

These 3-D plots are assembled using a different number of grid points depending on the fd

range of investigation. In the Lamb-type case, the percentage error is significantly higher

than that of the SH case. This is because the Lamb-type dispersion relations are far more

complex than those of the SH case.

In general, the accuracy of the solution depends on the accurate description of each term

in the dispersion relation. In the asymptotic methods, these terms are substituted with

asymptotes, and in cases of the SRAM, these terms may even be further simplified by

utilising only the leading orders of the asymptotes. It can be seen that the total error

can be easily accumulated when calculating the dispersion function that comprises many

asymptotic terms.

The sharp peaks of the error amplitude at the very low frequencies are due to the same

reason as the SH case. The amplitude of these sharp peaks has been truncated to enhance
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the visual details in the 3-D error plot for the rest of the dispersion curve area. The high

level of error at the boundaries between the regions is clearly visible. This is even more

obvious in Regions VIII and IX of the SRAM (Fig. 3.2), where the dispersion relations have

been heavily simplified as the partial waves on the inner and the outer surfaces become

weakly coupled; this areas are indicated by label “A” in, for example, Figs. 3.10(c) and

3.11(c).

The solutions for the UAM generally have an error of less than 0.001% in most parts of

the dispersion curves, and a slightly higher level of error is observed at locations where the

curves are very close to each other. On the other hand, for the regional methods, solutions

have an error of typically less than 0.01%, except at locations near the boundaries between

two regions. Overall, the RAM appears to behave better near the boundaries than the

SRAM. In spite of this, the worst accuracy near the boundaries occurs at a very low

frequency and has a value of no more than 0.1%, which in most cases is sufficient to

provide an extremely good prediction to the dispersion relation.

To sum up, simplification of the dispersion relations using all three asymptotic methods

has been shown to retain a high degree of accuracy. This accuracy generally increases

further with increasing frequency. Therefore even in the area near to the boundaries, the

accuracy is exceptionally high in the high frequency region.

3.4.2 Speed

On top of the asymptotic methods being accurate, they are also extremely robust. The

speed of the tracing routine is compared between the exact and asymptotic methods.

Fig. 3.12 shows a comparison of the time in seconds that is required to trace the first 45

Lamb-type modes of the dispersion curves for the geometry 1 using various methods. An

upper frequency limit is set at 32MHz. The calculations were performed with the tracing

routine described in Fig. 3.6 using a computer with a Pentium IV 2.4GHz processor and

512MBytes of random access memory.

In the UAM, Airy functions are used instead of the Bessel functions; they are much

easier to compute numerically, resulting in halving the tracing time compared to the exact

method. A further reduction in the tracing time is achieved when using the RAM which

expresses the dispersion relations in each region separately; this eliminates the need to

assemble the eigen-problem matrix D in each iteration, allowing the RAM to speed up

significantly. In the case of tracing the dispersion curves using SRAM, the solutions are

well-conditioned, where the moderately oscillating amplitude can substantially allow the

number of iterations needed for convergence to be reduced.
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Figure 3.12: Time for tracing the Lamb-type circumferential dispersion curves for a 1mm thick,
20mm inner radius annulus steel structure using exact and Asymptotic methods.

3.5 Summary

This chapter has shown that the normally unstable exact dispersion relation of the circum-

ferential guided elastic waves can be made stable by using asymptotic methods, allowing

the solution to be extracted at all frequencies and geometries. The dispersion relations in

these asymptotic methods can, in general, be related to the nature of the partial waves at

different parts of the dispersion curves.

The steps of a numerical scheme to trace dispersion curves have been summarised. Using

this tracing routine, numerical examples of several curvature radius cases, using both the

exact and asymptotic methods, have been presented. Subsequently, the type of instability

that causes the breakdown of the exact dispersion relation have been analysed using these

examples. Furthermore, both the accuracy and the robustness of the solutions have been

examined thoroughly for all three asymptotic methods.
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Chapter 4

Curvature Effect on Propagation

Properties in Unloaded Plates

Having demonstrated the accuracy and the effectiveness of the asymptotic methods in the

previous chapter, the curvature effect on the propagation properties can now be thoroughly

analysed at any frequency and for any wave mode using these solutions. In this chapter,

a quantitative method to calculate the difference in phase velocity between straight and

curved plates is introduced. The outcome of this provides a plain graphical interpretation

representing the influence of the curvature at various frequencies for a particular mode;

these graphs subsequently allow one to pick the best excitation frequency at which the

mode is best suited for a particular engineering application.

In the second half of this chapter, the physical behaviour of the wave modes in a curved

plate, such as the mode shapes, is examined; this behaviour may then be related to the

propagation properties. Additionally, the features of the dispersion curves for a curved

plate are explained using the“ method of bounds”. This chapter is based on work published

in Fong et al. [105].

4.1 Analytical Predictions of the Curvature Effect

To analyse the effect of curvature, the phase velocities of wave modes in both straight

and curved plates must first be calculated numerically. In the case of the straight plates,

solutions of the dispersion curves can be readily obtained from a general purpose commer-

cial program, Disperse [98]; whereas for the case of the curved plates, the solutions are

evaluated numerically in the ω − ν domain using the numerical tracing routine described

in Sec. 3.2, and are subsequently converted into the Vph − ω domain using Eqn. 3.26.

The solutions were calculated using the exact formulation (Sec. 2.2.5) where possible, and
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4. Curvature Effect on Propagation Properties in Unloaded Plates

the asymptotic methods (Sec. 3.1) where the exact solution becomes unstable. This en-

sured that the calculations of these dispersion curves in any frequency range are extremely

accurate.
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Figure 4.1: Phase velocity dispersion curves of an aluminium straight plate (Solid lines) of 3mm
thickness (d) and an aluminium curved plate (Dashed lines), d = 3mm and r1 = 0.02mm. The
curves are labelled according to the straight plate system.

Fig. 4.1 shows the phase velocity dispersion curves for both straight and curved plate

cases. The Lamb modes in a straight plate can, in general, be separated into two families

depending on the symmetry of the displacement mode shapes with respect to the mid-

plane of the plate. The labelling of Lamb modes in a straight plate is in accordance to

this symmetry property, with A and S correspond to the antisymmetric and symmetric

modes. Only the curves for the straight plate are labelled in Fig. 4.1. However, although

dispersion curves of the curved plate may be found at locations close to those of their

straight plate counterparts as can be seen in Fig. 4.1, these modes cannot be labelled in

the same way.

For a curved plate system, there is no absolute distinction between symmetric and anti-

symmetric mode shapes, due to the difference in curvature between the inner and outer

surfaces. The plate no longer possesses a symmetry through the thickness and thus these

modes become “quasi plate modes”. As a result, the through-thickness displacement fields

of these curved plate modes correspond only to “near symmetric” or “near anti-symmetric”

distribution, and these two natures may interchange from one section to another along the

dispersion curve of a specific curved plate mode. This interchanging of symmetrical natures

is linked to a repulsion phenomenon of the dispersion curves, which will be discussed later

in Sec. 4.3.3. Nevertheless, the dispersion curves are often very similar to those of the

straight plate case.
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4. Curvature Effect on Propagation Properties in Unloaded Plates

The difference between these curves can be very subtle, and may be detected only upon

careful inspections at certain frequencies. Therefore the significance of the curvature effect

on wave modes in an unloaded plate may be quantified by comparing the phase velocity

Vph directly as a function of frequency between straight and curved plates over a range of

curvatures using the following relationship:

Normalised diff. in Vph(%) =
abs[Vph(straight pl.) − Vph(curved pl.)]

Vph(straight pl.)
· 100. (4.1)

In a curved plate system, the wave properties such as the linear phase velocity calculated

using Eqn. 3.26 vary depending on the radial position at a particular frequency. There-

fore before the phase velocities between the straight and curved plates can be compared,

the circumferential wave speed must be recalculated along the mid-line position through

the plate thickness (rmid) so that it is compatible with that of the straight case; the

corresponding equations for calculating the linear phase and group velocities are:

Vph(m/s) =
ω

ν
· rmid (4.2)

Vgr(m/s) =
∂ω

∂ν
· rmid (4.3)

As an example, the first four fundamental modes are investigated here in this chapter,

namely the A0, S0, A1 and S1 modes in the straight plate; these modes are commonly used

for non-destructive evaluation, therefore have a higher investigation value. Additionally,

their dispersion curves are of the least complicated nature as they intersect with other

modes in the phase velocity-frequency domain for both the straight and curved cases,

thus allowing a direct comparison between these two cases easily. By contrast, it would

be a lot harder to compare the higher order modes directly because the symmetric and

the neighbouring anti-symmetric modes cross each other typically at phase velocity higher

than the longitudinal bulk velocity in the straight case, while the curved plate counterparts

do not cross. A detailed examination of the mode crossing phenomenon is presented in

Sec. 4.3.3.

The comparisons are carried out using dispersion curves calculated for a 1mm thick alu-

minium plate, and with the material properties of CL = 6320m/s, CT = 3130m/s and

density, ρ = 2700kg/m3. The comparison of the phase velocity for each of these modes

forms a three-dimensional surface plot, shown in Fig. 4.2, with a frequency range of 0 to

6MHz, and an inner radius range of 0 to 0.1m, where the parametric surface represents

the amount of the phase velocity differences between the straight and curved plates.

In all four cases, the dispersion profile of the normalised phase velocity difference is not

dependent on the inner radius which also known as the curvature radius in this thesis;
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their amplitudes decay rapidly with increasing radius, showing as expected, that the phase

velocity converges to the velocity of the straight plate case as the curvature reduces.

Additionally, it can be observed that the velocity difference is significantly higher in all

four cases at the very low frequencies.
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Figure 4.2: Effect of curvature on the phase velocity of (a) A0, (b) S0, (c) A1 and (d) S1 modes.
The surface plots show the percentage difference in phase velocity Vph between the straight and
curved plates as a function of frequency at the mid-wall radius (rmid) for a 1mm thick aluminium
plate. The solutions of the phase velocity were calculated using analytical methods detailed in the
previous chapters.

In the case of the A0 mode, its phase velocity tends to zero as the frequency reduces,

as a result, the percentage differences may appear to be substantially larger when the

absolute phase velocity difference is normalised with this phase velocity value at these low

frequencies.

In the case of all other modes, both wave modes of the curved and straight plates become

non-propagating at their cut-off frequency (for example shown in Fig. 4.1), and their phase

velocity tends to infinity. Additionally, the “out of plane” (radial) displacement field of this
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“quasi-S0” mode becomes antisymmetric, while the “in-plane” (tangential) displacement,

which usually has a very small amplitude, remains symmetric. This mode corresponds to

the vibration “breathing mode” of a pipe, where it can only vibrate as a whole and no

energy can be transmitted from one location to another around the circumference. Below

the cut-off frequency, the surface boundary condition can no longer support this type of

wave motion.
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Figure 4.3: Dispersion curves of the “quasi-S0” mode for aluminium plates of a range of thickness
to radius ratios (d/r1) at location near their cut off frequency.

The cut-off frequency of the curved case in general increases with increasing thickness to

radius ratio of the curved plate (i.e. ∝ curvature), as shown in Fig. 4.3. This phenomenon

can be attributed to the change of curvature in the plate system, and consequently alters

the nature of the waves that interact with the boundaries of the propagation system,

resulting in a shift of cut-off frequency of the wave mode. The phase velocity changes

rapidly close to the cut-off frequency; for this reason, the difference between the straight

and curved cases at location close to their cut-off frequency can appear to be very large

in the higher order mode cases when comparing.

Using the dispersion profile in these three-dimensional plots shown in Fig. 4.2, it is possible

to locate a frequency at which the mode is least sensitive to the curvature. The advantage

of performing NDT inspection at this frequency is that the received echoes would allow one

to locate the corresponding features precisely regardless of whether curvature exist along

the propagation direction. These frequencies for the four modes of interest are labelled as

“optimal frequency” and are indicated in Fig. 4.2.
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4.2 Physical Properties of Waves in Curved Waveguides

As shown earlier in the previous sections, the phase velocity depends on both the frequency

and curvature radius. The through-thickness displacement mode shapes of a particular

mode can govern its phase velocity at a given frequency. In this section, the relationship

between the change of the mode shapes and that of the phase velocity as the plate curvature

changes is investigated.

One major factor of this curvature dependency is the difference in curvature between the

boundaries at the top and bottom surfaces. As a result, the displacement mode shape

distribution for the curved plate modes tends to shift towards either surface compared to

the straight plate case; there is no longer a symmetry in distribution along the mid-line of

the thickness. The level of this mode shape shift might generally increase with increasing

curvature.

As an illustration, the displacement mode shapes of the fundamental zero order symmetric

(S0) and anti-symmetric (A0) modes at the selected frequencies may be compared visually

between the straight (thickness: 1mm) and curved (thickness: 1mm, inner radius: 10mm)

plates, as shown in Fig. 4.4.

It can be seen that both the A0 and S0 modes in the case of the straight plate converge

to the surface Rayleigh wave speed at high frequencies, however these wave modes do not

behave in the same way as soon as the curvature is introduced. Once again using the

partial waves technique, discussed in Sec. 3.1.4, to decompose a mode into longitudinal

and shear partial waves that interact with the boundaries at the inner and outer surfaces,

it is possible to comprehend the physical behaviour of these two modes.

The idea of the asymptotic regions in Fig. 3.2 and the corresponding behaviour of the

partial waves in Fig. 3.4 will be referred to considerably in this section for the explanation

of various phenomena. Here the behaviour of the “quasi-A0” and “quasi-S0” modes in

three different curvature ranges is considered, including a moderately curved case, and

cases when the curvature is either very large or very small.

Moderate Curvature Radius

When a plate is moderately curved, the dispersion curve of the “quasi-S0” mode appears

in Region VIII (Fig. 3.2) at high frequencies; in this region, only the partial waves at the

inner surface are completely inhomogeneous and have amplitudes much greater than that

at the outer surface. As a result, most of the energy concentrates only on the inner surface

at these frequencies as shown in Fig. 4.4, hence the corresponding phase velocity can be

thought of as the phase velocity for the Rayleigh wave on the concave surface [74].
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Small Curvature Radius

On the other hand, when the curvature of a plate is large such as that used for Fig. 3.7d

(d/r1=0.25), all higher order modes tend asymptotically to the “quasi-S0” mode in Region

VIII at high frequencies, where they share the same physical behaviour. And as a result,

when the curvature of the system is large, these higher order modes would eventually

become the Rayleigh wave on the concave surface in the same way as the “quasi-S0 mode

as the frequency increases.

Large Curvature Radius

When the curvature of the system is small, the width of Region VIII narrows and the

“quasi-S0” mode crosses the boundary ν = ω̂4 into Region IX, where partial waves on

both the inner and outer surfaces become inhomogeneous. As expected, the mode shapes

of the “quasi-S0” and “quasi-A0” modes and their corresponding linear phase velocities

may become similar to each other in this region. In addition, the curves of the higher order

modes can no longer converge to the “quasi-S0” mode at high frequencies, but instead they

converge asymptotically to a single wave speed in the Region VIII.

As r1 → ∞, the properties of the “quasi-S0” and “quasi-A0” modes would eventually

coincide and Region VIII disappears as the boundaries ν = ω̂3 and ν = ω̂4 merge, while

the higher order modes converge to the shear bulk velocity.

Whispering Gallery Wave

For the “quasi-A0” mode, the partial waves become inhomogeneous on both surfaces at

high frequencies. Therefore the displacement decays exponentially towards the mid-plane

from both surfaces; the decay is represented by the nature of the Bessel function of the

second kind Yγ(x) where γ > x. However, due to the curvature effect, the decay of

displacement amplitude away from the outer surface decays much faster than that on the

inner surface. In this case, as the frequency increases, most of the energy concentrates

relatively on the outer surface, forcing the phase velocity to match the velocity of the

Rayleigh wave on the outer surface, or the whispering gallery wave [106].

The pure whispering gallery wave can be easily calculated by considering a rod where

waves propagate in the circumferential direction. This eliminates the boundary condition

at the inner surface to simulate the condition where the partial waves are decoupled from

the inner surface of the curved plate at high frequencies. Furthermore, since the boundary

conditions (σθθ and σrθ = 0) are axially symmetric, the components associated with the

outgoing radiation are not required and the general solutions (Eqn. 2.12) can be reduced
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4. Curvature Effect on Propagation Properties in Unloaded Plates

to the following forms:

ϕ(r, θ) = [a1Jν(kLr)]eiνθ, ψ(r, θ)solid = [a2Jν(kT r)]eiνθ. (4.4)

The secular equation of the dispersion relations is constructed by substituting these general

solutions back into Eqn. 2.17. The solution of first fundamental mode of this secular

equation is the whispering gallery wave. The dispersion curve can then be extracted as

described in Sec. 3.2.

It can be seen in Fig. 4.4 that at high frequencies the “quasi-A0” mode converges to the

speed of the whispering gallery mode, indicating that the energy of the “quasi-A0” mode

is trapped very close to the outer surface.

Mode Shapes Comparison

In general, the degree of difference in the displacement mode shapes between the straight

and curved plates can be linked directly to the difference in the phase velocity. This is

further illustrated, for example, in Fig. 4.2(a), at 1MHz and 6MHz for the “quasi-A0”

mode, where the differences in phase velocity correspond roughly to the minimum and

maximum respectively within the range of interest. At these two frequencies, the “quasi-

A0” mode, as shown in Fig. 4.4, is found to have the minimum and maximum differences in

displacement mode shapes between the straight and curved plates when compared visually.

It is thought that the study of the mode shape similarity can provide an interesting insight

into the curvature effect.

The similarity of the mode shapes can be investigated using a “displacement dot prod-

uct” method modified from Beard [2], which involves comparing the two “out-of-plane”

(ūx and ūr), and the two “in-plane” (ūz and ūθ) through-thickness displacement vectors

between the straight and curved plates. The ¯ denotes the vector of through-thickness

amplitudes, and x and z are the “out -of-plane” and “in-plane” directions of a straight

plate respectively, while r and θ are the corresponding directions of a curved plate (see

Fig. 4.5 for illustration).

Mathematically the similarity of the displacement vectors between the straight and curved

plates can be described by a similarity factor “S” which is evaluated by taking the av-

erage dot product of the vectors in the “in-plane” and “out-of-plane” directions in turn

(Eqn. 4.5). The similarity “S-factor” equals zero if the mode shapes under comparison are

identical, and equals one if they are completely different.

S = 1 − 1
2

(
(ūz · ūθ)
|ūz||ūθ| +

(ūx · ūr)
|ūx||ūr|

)
. (4.5)
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Figure 4.5: Coordinates system of the straight and curved plates.

The “S-factor” was calculated for the S0 and A0 modes for a 1mm thick, 10mm inner

radius curved aluminium plate compared with a straight 1mm thick aluminium plate, in a

frequency range of 0-10MHz. The displacement mode shapes vectors were discretised into

101 equal distance points across the wall thickness. The results, together with the phase

velocity percentage differences for the corresponding curvature and frequency range, are

presented in Fig. 4.6.

In both cases, the “S-factor” follows the trend of the phase velocity percentage difference.

Additionally, the amplitude of the “S-factor” can be roughly correlated to that of the

phase velocity percentage difference. Although there is a qualitative similarity between

the two parameters where an “S-factor” of 0.3 is approximately equivalent to 4% of phase

velocity difference (shown in Fig. 4.6), they are not in a simple relationship; this may

be quantified by taking the ratio of the difference in phase velocity to the “S-factor”, as

shown in Fig. 4.7. Note that the vertical scale of the figures has been magnified to reveal

the differences. It can be seen that the difference between the two parameters is bigger

particularly at frequencies where there are subtle changes in the phase velocity, such as

4-6MHz for the A0 mode and 2-4MHz for the S0 mode.

Nevertheless, this sudden increase in amplitude of the “S-factor” and the phase velocity

difference can provide a fairly good indication of the frequency at which the modes start to

converge to the Rayleigh wave. This is because in this frequency range, the curved plate

mode has the majority of its energy shifted towards one surface as discussed earlier, while

the straight plate mode remains symmetric, causing a sudden increase in the property

difference between these two cases.
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Figure 4.6: Difference in mode shapes between a curved (1mm thick and 10mm inner radius)
and a straight (1mm thick) plates for the A0 (top) and S0 (bottom) modes.

4.3 Characteristics of Dispersion Curves in Curved plates

4.3.1 Concept of the Method of Bounds

For the Lamb wave dispersion curves of a straight plate in vacuum, Mindlin [107] instigated

an ingenious method to characterise the basic features of the curves using the “method

of bounds”. The idea of this method is based on mapping the so-called “bounds” to the

dispersion curves of the coupled guided wave system. In the case of Lamb-type propagation

in a straight plate, Mindlin defined the “bounds” as:

• the dispersion curves of an uncoupled guided wave system, supporting purely one

of their fundamental wave propagation types (i.e. either the longitudinal or shear

type propagation) that satisfy all two traction-free boundary conditions at the plate

surfaces.

The system of “bounds” allows one to visualise the asymptotic behaviour of the curves

to the “bounds” according to their physical characteristics, and to a large extent the

“bounds” guide the dispersion curves of the coupled system.
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Figure 4.7: Ratio of the difference in phase velocity to the “S-factor” for the A0 and S0 modes
taken from data presented in Fig. 4.6.
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Figure 4.8: An illustration of the method of bounds by Mindlin [107] , showing the dispersion
curves of a plate system and those supporting purely longitudinal and shear motions known as
“bounds”.

To study the more complex dispersion curves one must often be satisfied with successive

approximations starting from the cases for which solutions are familiar. Fig. 4.8 illustrates

the concept of the method of bounds, where it can be seen that the Lamb wave dispersion

curves in a plate are closely related to the “bounds”. A more detailed examination of

the “bounds” is provided later in Sec. 4.3.3. In this section, using a comparable method

to Mindlin’s method of bounds, various features of dispersion curves in a curved plate in

vacuum may be identified in a similar fashion.

4.3.2 Shear Horizontal (SH) Dispersion Curves in Curved Plates

The SH wave modes in the straight plate contain purely shear motion polarised in the

z direction, while satisfying the symmetric traction-free boundaries on the top and the
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bottom surfaces. As a result, they are themselves the “bounds” of the wave system.

However, unlike the straight case, the boundary conditions in the curved case are not

symmetric. Therefore unless the dispersion curves are calculated from solutions satisfying

each of the two boundary conditions individually, the dispersion curves of SH waves in

curved plates cannot qualify to be true “bounds” as defined by Mindlin [107].

It would not be possible to decompose these dispersion curves further in satisfying each

of the two boundary conditions in turn, since the two boundary conditions define also

the geometry of the waveguide system such as the thickness; both boundary conditions

are therefore needed in any solution. However, it would be possible to assume that the

thickness of the plate is infinitely small and the curvatures on the inner and outer surfaces

tend towards being identical. With this assumption in mind, two sets of dispersion curves

can be obtained as a shell system for curvature corresponding to thin plates with radius

equal to the value of either the inner or outer surface.

The dispersion relation of the M th SH shell mode of curvature radius of r1,2 and shell

thickness d may be modified from the straight case which is taken from Auld [5], and is

given as:

ω(M) =

√[
((M − 1)π)2 + (ν(M) · r1,2 · d)2

]
× CT /d. (4.6)

where ν(M) · r1,2 are the linear wavenumber at the inner (r1) and outer (r2) surfaces of

the curved plate respectively.

As an example, the dispersion curves are plotted in Fig. 4.9 for a curved steel plate with

inner and outer radii of 10mm and 20mm respectively; the large curvature difference

between the inner and outer surfaces is used to exaggerate the features in the dispersion

curves that are caused by the two boundary conditions. The figure shows the dispersion

curves of the curved plate SH wave modes calculated using Eqn. 2.15, together with

a selected number of modes for the two shell systems with radius equal to the either

boundary curvature (i.e. r = r1,2).

When only one of the curvature radii is considered in the solutions of the shell systems,

the dispersion curves maintain the same cut-off frequencies as those of the curved plate

system. This suggests that these cut-off frequencies of the SH modes cannot be affected

by the change in curvature, and they are only dependent on the thickness of the plate.

It can be seen that the 1st order shell modes correspond to the linear bulk velocity at the

inner and outer surfaces (i.e. ν = kT r1,2) respectively. Additionally, all the modes of the

two shell systems converge to the linear bulk velocity corresponding to the shell curvature

radius at high frequencies (i.e. ν = kT r1 and ν = kT r2 for the inner and outer surfaces).
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Figure 4.9: Angular wavenumber dispersion curves of SH modes in a steel curved plate (thickness:
10mm, inner radius: 10mm), and dispersion curves of the 1st, 5th, 6th and 7th modes of the shell
system in which both curved boundary surfaces have their radius matched either to r1 or to r2. A
zoom-window shows the 7th mode in the region ν < kT r1.

The mapping of the shell modes in the dispersion curves helps to visualise the amount of

effect by each of the boundary conditions.

The two sets of shell modes can only coexist in the region ν < kT r1 where the SH curved

plate modes are affected by both boundaries. In the region ν > kT r1, only the dispersion

curves of the shell modes corresponding to the curvature radius of the outer surface r2
are related to the SH curved plate modes; hence SH wave modes in this region may be

considered as the Whispering Gallery waves of a purely shear nature.

Taking the 7th order mode as an example, shown in the zoom-in window of Fig. 4.9, the

SH curved plate mode has a dispersion profile sandwiched in between the two shell cases,

showing that in this region the dispersion curves of the plate mode are influenced roughly

the same by the boundary conditions on both surfaces. And as the plate mode moves

towards ν = kT r1, the curves change their normal trajectory and linger along ν = kT r1

momentarily before changing their trajectory once again as they move into the region
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ν > kT r1. This region is marked by the green circle in Fig. 4.9.

In this region, there are no SH shell modes of the inner curvature radius r = r1 present

since the partial wave on the inner surface has turned inhomogeneous. However, this

does not lead the plate dispersion curves to converge asymptotically to the shell modes of

the outer curvature radius r = r2. When ν > kT r1, the fields disconnect from the inner

surface, therefore having solutions that are bounded by the both inner and outer surfaces

would not correctly describe their physical behaviour.

In order to model the asymptotic solution of modes in this region, one would have to

consider the SH wave mode solutions that propagate in a rod with radius of r2. The

solutions for such wave propagation may be reduced directly from the RHS of Eqn. 2.14

where the outgoing partial wave term is eliminated, and the dispersion relation may be

expressed as the following:

a1J
′
ν(kT r2) = 0. (4.7)

Fig. 4.10 shows the dispersion curves of SH modes in a curved steel plate, and those in a

steel rod. It can be clearly seen that in the region ν > kT r1, the dispersion curves of SH

modes in a rod agree exactly to those of the plate case. This shows that solutions bounded

by only the outer surface are relevant in this region.

4.3.3 Lamb-type Dispersion Curves in Curved Plates

According to Mindlin’s method of bounds, the “bounds” of the coupled Lamb-type system

are constituted of the dispersion curves of wave modes in the same geometry, which support

either the purely shear motion or the purely longitudinal motion in the circumferential

direction. These “bounds” can easily be calculated numerically using a similar analytical

approach to that of the SH mode, detailed in Ch. 2. The dispersion relations for these

two sets of “bounds” are:

Shear modes: J ′
ν(kT r1)Y ′

ν(kT r2) − J ′
ν(kT r2)Y ′

ν(kT r1) = 0. (4.8)

Longitudinal modes: J ′
ν(kLr1)Y ′

ν(kLr2) − J ′
ν(kLr2)Y ′

ν(kLr1) = 0. (4.9)

A set of “bounds” of the coupled Lamb-type dispersion curves should have the following

properties:

1. the “bounds” pass through a family of cut-off frequencies at ν = 0.

2. the crossing of the any two “bounds” forms the “intersectors”, as shown in Fig. 4.8.
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Figure 4.10: Angular wavenumber dispersion curves of SH modes in a steel curved plate (thick-
ness: 10mm, inner radius: 10mm), and dispersion curves of SH mode in a steel rod (outer radius:
20mm).

3. the dispersion curves of the coupled Lamb-type wave modes are separated by the

“bounds”, and they only cross the bounds at the “intersector”.

Fig. 4.11 shows the dispersion curves of the Lamb-type wave modes in a steel curved

plate (thickness: 3mm, inner radius: 10mm). Additionally, it shows the sets of uncoupled

longitudinal and shear curved plate modes of the corresponding curved plate system, which

form the diamond like pattern of “bounds”.

It can be seen that the uncoupled wave modes satisfy the first two properties of the

“bounds” at all frequencies, whereas the third property is valid everywhere except inside

the region ω̂1 < ν < ω̂2 where ω̂1 and ω̂2 are (ωr1/CL) and (ωr2/CL) respectively. In

this region (marked in Fig. 4.11), the dispersion curves of the coupled system do not seem

to establish any connection with those of the uncoupled systems. This is because in this

region the dispersion curves of the uncoupled longitudinal case do not depend on the inner

surface of the curved plate; this phenomenon is similar to that in the region ν > kT r1

of the SH case, shown in Fig. 4.9 of the previous section. Thus the “bounds” of these
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Figure 4.11: Angular wavenumber dispersion curves of the Lamb-type waves, and of the uncou-
pled purely longitudinal plate waves and purely shear plate waves, in a steel curved plate (thickness:
3mm, inner radius: 10mm). The location labels are marked inside the circles.

uncoupled plate modes would not be relevant in this region.

In the region ν > ω̂2, the “bounds” are made up solely of the dispersion curves of the

purely shear case. A peculiar phenomenon may be observed in this region for the dispersion

curves of a plate when curvature along the propagation direction is introduced. Since the

dispersion curves of the curved plate case cannot cross the “bounds”, it can be seen in

Fig. 4.11 that these curves first run asymptotically along one “bound” (label “A”); they

subsequently move towards the neighbouring “bound” with increasing frequency (label

“B”), coming close range to neighbouring mode at the location 7 before repelling each

other to run asymptotically along “bound” (label “C”). This repulsion phenomenon is also

highlighted by the location labels 5-7 in Fig. 4.11, additionally, the zoom-in of location 7

is shown in Fig. 4.12.

92



4. Curvature Effect on Propagation Properties in Unloaded Plates

95 100 105 110 115
4.5

5

5.5
x 10

6

Angular wavenumber, �

Fr
eq

ue
nc

y
(H

z) 4 Lamb modeth

3 Lamb moderd

3 purely shear
plate mode

rd

B

C

Figure 4.12: A zoom-in window of the angular wavenumber dispersion curves, showing the
repulsion phenomenon at location correspond to the label 7 of Fig. 4.11 in the region ν > ω̂2.

On the other hand, in the region ν < ω̂1, the dispersion curves of the coupled Lamb

case behave similarly to the straight plate case (see for example pp. 19 of Mindlin [107]).

The dispersion curves follow asymptotically along the “bounds” at positions between the

cut-off and the first set of “intersectors” (label “D”), the two neighbouring modes then

come in close range at the intersector before repelling back towards the previous “bound”.

Thereafter they establish a parabolic profile between two “intersectors” in a terrace-like

grid (label “E”) until they reach the boundary of ν = ω̂1.

In the Lamb dispersion curves of the straight plate case, a mode crossing phenomenon,

where a symmetric mode and a neighbouring anti-symmetric mode intersect, occurs typ-

ically at the “intersectors”. However, this phenomenon vanishes in a curved plate case

(see, for example, location labels 1-5 in Fig. 4.11, and a zoom-in of label 2 is shown in

Fig. 4.13).

It has been shown by Zhu et al. [108] that the crossings of “bounds” are in fact “discon-

tinuity points” of the coupled system in the straight case. These “discontinuity points”

coincide with the so-called “intersection” and “near intersection” features in the Lamb

dispersion curves. The results from Zhu’s investigation indicated that no two propagating

modes of one system travelling at the same speed and frequency can coexist. The same

hypothesis may be applied to the curved plate system here.

Noting that the “intersectors” exist only in the region ν < ω̂1, it would be possible to

make use of the Region Asymptotic Method (RAM) discussed in Sec. 3.1.2 to evaluate

the values of the (ωI , νI) roots at the “intersectors” in this region. The formulation of

the asymptotic solutions of the purely longitudinal and shear circumferential curved plate
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Figure 4.13: A zoom-in window of the angular wavenumber dispersion curves, showing the
repulsion phenomenon at the “intersector” correspond to the label 2 of Fig. 4.11 in the region
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modes are analogous to that of the SH wave, shown in Eqn. 3.7, and they are given in the

following forms:

Shear modes: sin
{[(

ωI

CT
r1

)2

− ν2
I

]1/2

−
[(

ωI

CT
r2

)2

− ν2
I

]1/2

−νI

[
cos−1

(
νICT

ωIr1

)
− cos−1

(
νICT

ωIr2

)]}
= 0.

Longitudinal modes: sin
{[(

ωI

CL
r1

)2

− ν2
I

]1/2

−
[(

ωI

CL
r2

)2

− ν2
I

]1/2

−νI

[
cos−1

(
νICL

ωIr1

)
− cos−1

(
νICL

ωIr2

)]}
= 0.

(4.10)

The unknown values of (ωI , νI) at the “intersectors” are evaluated by finding the zeros

of a system of the two above equations. To validate the existence of the “discontinuity

points” in the curved plate system, the (ωI , νI) was first calculated numerically for the

“intersectors” at the locations labelled 1-5 in Fig. 4.11. The calculation was performed

with a tolerance factor of 1 × 10−12 and the results are summarised in Tab. 4.1.

Subsequently, the Lamb-type dispersion function (Eqn. 2.18) was evaluated based on the

results of (ωI , νI) at the “intersectors”, where a perturbation in the frequency domain was

carried out, while νI was fixed. Figs. 4.14 and 4.15 shows the amplitude of the Lamb-type

dispersion function over a small range of frequencies at locations close to the “intersectors”

label 1 and 4 respectively for comparison. In both graphs, the dispersion function does
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Frequency (Hz) at Angular wavenumber

“Intersector” location label “intersector”, ωI at “intersector”, νI

1 2248180.1763508 12.6391630164712

2 4496360.35270159 25.2783260329422

3 6357612.76403117 47.616506606474

4 6744540.52905239 37.9174890494132

5 7109763.21793554 17.8257820710146

Table 4.1: (ωI , νI) roots of the intersectors, corresponding to the case presented in Fig. 4.11.

not pass through the x-axis at the frequency of the “intersector”. This indicates that

the dispersion curves of the curved plate do not possess a root at the “intersector”, thus

illustrating the condition of the “discontinuity points” at the “intersectors”.

In general, the dispersion curves of the two neighbouring modes in a curved plate case

cannot cross each other, however, they may come close to each other at the “intersector”,

then repel each other as they move beyond this point (see Fig. 4.13). This is also shown

in Figs. 4.14 and 4.15 where ωI of the “intersector” is located in between two Lamb-type

roots, each of which corresponds to one of the two neighbouring modes. The gap between

these two neighbouring roots in these plots increases with increasing curvature, and vice

versa as the curved plate system moves towards the straight case.

The condition on whether any two modes should intersect or repel each other at the

“intersector” has been investigated by Überall et al. [109], who linked this character,

though with little evidence, to that encountered for the energy levels of atoms during a

molecular formation based on a perturbation theory.

Nevertheless, Überall concluded that if the neighbouring two modes belong to a different

through-thickness symmetry near the “intersector”, like the case of the symmetric (S) and

antisymmetric (A) modes in straight plates (these two families are represented by inde-

pendent orthogonal solutions), they may intersect each other. On the other hand, if the

two neighbouring modes have similar mode shapes (i.e. belonging to the same orthogonal

family), as in the case of two neighbouring modes of the same symmetry in straight plates,

they repel each other after a near intersection, exchanging the nature of the corresponding

modes simultaneously.

By contrast, the solutions of the curved plate case, though they satisfy the orthogonality

condition, cannot be divided into two independent orthogonal families due to asymmetry

of the boundary conditions. Based on the argument by Überall, the repulsion phenomenon

between two neighbouring modes must occur at all “intersectors”, which can be observed

in Fig. 4.11. Moreover, the physical character of curved plate modes changes between
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an angular wavenumber is fixed at νI1 of location 1. The frequency at which the corresponding
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Figure 4.15: Lamb-type characteristic function of a curved plate (blue solid line), calculated as
a function of a small range of frequencies near the “intersector” label 4 shown in Fig. 4.11, while
an angular wavenumber is fixed at νI4 of location 4. The frequency at which the corresponding
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the “near symmetric” and the “near anti-symmetric” mode shapes as they pass by each

“intersector”.

4.4 Summary

Using the asymptotic methods, the difference in phase velocity between the straight and

curved plates as a function of radius and frequency has been studied for the first few

fundamental plate modes in this chapter. The results of this comparison are presented in

a 3-D plot for each individual mode, where an optimal frequency can be picked for a given

engineering application.

The energy distribution of a wave mode can shift towards either the inner or outer surface

when the curvature is present. Using this property, one could increase the sensitivity

of the detection of defects at certain through thickness locations. The change in mode

shapes between the straight and curved plates has been investigated using a “dot product”

technique, which can be used to compare directly with the corresponding change in phase

velocity at a particular frequency and curvature radius.

In this chapter, we have shown that various features of the dispersion curves in the curved

plate may be identified using a modified version of the “method of bounds”; a system

of uncoupled dispersion curves supporting primarily shear and longitudinal waves. These

features include a family of cut-off frequencies, the near intersection points between two

neighbouring modes and the asymptotic behaviours of the dispersion curves. Moreover,

the repulsion phenomenon in the dispersion curves has been examined numerically.
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Chapter 5

Confirmation of Curvature Effect

in Unloaded Plates

The purpose of this chapter is to test the validity of the theoretical background, developed

in the previous chapters, for the curvature effect on the propagation properties of guided

waves in an unloaded plate. The confirmation cases are divided into two main sections

where the analytical solutions are compared to results obtained using independent Finite

Element (FE) modelling and experimental measurements respectively.

In the first section, a cyclic periodic FE model is utilised to extract the phase velocity

dispersion curves numerically for plates of a range of curvature radii. Since the difference

in phase velocity can be tiny when the curvature is small, it is extremely important that

the accuracy of the numerical approximation in the FE modelling, which relates to the

size of the elements, is ensured. A convergence analysis to pinpoint the limiting case of the

element size is therefore performed. The solutions of the FE modelling are subsequently

used for evaluating the curvature effect by comparing with the straight case as a function

of frequency for each curvature radius.

An experimental technique to illustrate the curvature effect has proven to be very difficult

because of the relatively small changes in velocity. In the second section, a simple tech-

nique to investigate the effect of curvature on the waveguide properties is presented. The

technique involves thin aluminium strips bent to different curvatures within its material

yield limit. In addition, permanently attached transducers were used for exciting and

gathering of the wave signals to improve the accuracy of the experiment. This method al-

lows sensitive measurements of the percentage difference in phase velocity between curved

and straight plates.

However, since the curvature radius was restricted to the elastic limit of the plate material,

the change in the phase velocity due to the curvature effect can be as little as in the order of
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a hundredth of a percent. As a result, any other influences, such as the change of through-

thickness local density and stress, may become significant. These additional influences

are investigated, leading to an appropriate adjustment to the analytical model. Good

agreements are obtained when the experimental results are correlated with the improved

analytical predictions.

5.1 Finite Element (FE) Modelling

5.1.1 Introduction

Many problems in engineering are either difficult or impossible to solve analytically due

to the complexity involved in describing the geometry of a real life structure. As a con-

sequence, analytical solutions can be obtained only for limited simple situations. For

complex systems, engineers therefore resort to numerical methods, which provide an ap-

propriate approximation to the solution. Most numerical methods, such as the Finite

Element (FE) method [110], employ a technique of discretisation in which the solutions

are formulated based on a constituent set of elements or nodes, which are then combined

to obtain the solution for the whole structure. In the case of FE, as the size of the elements

becomes smaller, the model forms a continuum which represents the real structure with

increasing accuracy. This numerical technique takes advantage of the recent rapid advance

in the processing power of digital computers to include enormous complexity while being

able to analyse the solution efficiently.

FE procedures have been employed extensively in solid and fluid structures for analyses of

heat transfers, stress, flow . . .etc. Recently, they have been used increasingly in simulating

ultrasonic waveguide propagations [111, 112, 113]. This method provides a vital research

tool for both academic and industrial use.

The use of standard commercial FE programs to calculate the guided wave dispersion

curves for structures with complicated arbitrary cross-section has been previously reported

by Gavrić [114], and subsequently adapted by Wilcox et al. [115], so only a brief description

of the method is given in this section. Coincidentally, Wilcox’s FE method was originally

formulated to approximate solutions of a straight case based on an annular structure.

Therefore it would be possible to apply a specific curvature radius to the annular structure

to model the curved plate cases exactly.

The procedure of the modelling is analogous to that by Wilcox et al. [115] who used a

so-called cyclic symmetry model, where a given order of periodic variation around the cir-

cumference is prescribed. This axially harmonic condition allows a 3-D structure problem

to be modelled with 2-D axi-symmetric harmonic elements representing the cross section
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Figure 5.1: Schematic diagram of a 2-D cyclic symmetry FE model for the evaluation of dispersion
curves.

of the structure normal to the propagation direction.

The model consists of discretising the thickness of the plate into a row of a desired number

of 2-D axially symmetric elements, such that the radial length of the row corresponds to

the thickness of the plate (see Fig. 5.1). Symmetric boundary conditions are subsequently

applied to the top and the bottom of the row of elements to simulate an infinitely wide

plate (the width direction is vertical in Fig. 5.1). Noting that there is no variation of the

displacement field in the z direction for circumferentially propagating Lamb modes. An

illustration of the modelling is shown in Fig. 5.1.

Assuming the waves propagate in the circumferential direction, θ, the circumferential

periodic cyclic order, n, of the FE model related to the angular wavenumber, ν, by

2π
rmid

ν
= wavelength, λ =

Circumference
Cyclic order, n

=
2πrmid

n
. (5.1)

For a model with fixed radius, varying the periodic cyclic order, n, around the circumfer-

ence would therefore force the propagating modes to propagate at a certain wavelength

λ. As in the analytical calculations (Eqn. 3.25), the dispersion relation is calculated along

the mid-line through the plate thickness (rmid).

This unloaded system subsequently forms an eigen-problem of an equilibrium relation

between the internal stiffness matrix k, global mass matrix M, nodal displacement û and

nodal acceleration ˆ̈u in a local scale, expressed as a set of linear simultaneous algebraic

equations of the following type:

[M]ˆ̈u+ [k(n, ωm)]û = 0. (5.2)
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The natural frequencies (ωm) of the plate corresponding to the mth propagating mode

can be solved using the eigensolver routine available in most commercial FE packages.

The results presented in this section were obtained using the program Finel [116], a FE

program developed at Imperial College, with which the periodic cyclic order, n can be

specified and the corresponding ωm solved. Finel finds the roots, n − ωm, of the specific

system using the Lanczos method of eigenvalue extraction.

By solving for ωm over the first m modes and a range of periodic cyclic orders, n, a

complete set of eigen-solution (ωm, n) discrete points are obtained (shown, for example,

in Fig. 5.2), and can then be joined to form dispersion curves. The only drawback with

this technique is that the periodic cyclic orders n which can be analysed are restricted to

integers, and this may result in a low resolution at the region where the phase velocity is

high.

5.1.2 Accuracy of the FE Model

To ensure the accuracy of the FE solution, there should be enough elements across the

thickness to closely represent all mode shapes in the real structure. In this section, the

checking of the accuracy is divided into two parts. In the first part, a convergence analysis

is performed, from which an optimal number of elements through the thickness to obtain

an adequate level of accuracy is evaluated. Additionally, since the mode shapes, which

can be highly distorted due to the curvature, are linked to the propagation properties as

discussed in Sec. 4.2, it is important that the mode shapes calculated analytically match

those extracted using the method. This comparison in mode shapes is presented in the

second part of this section.

Convergence Analysis

The through-thickness displacement mode shapes become more complicated with increas-

ing in both the mode and periodic cyclic orders (i.e.m and n respectively) shown in Fig. 5.2

for the Lamb circumferential dispersion curves of an aluminium curved plate (thickness:

1mm, inner radius: 20mm). Therefore the results can quickly become inaccurate when

the product of mn grows larger.

As a rule of thumb, practice has shown that at least 6 elements should be used for each

displacement harmonic cycle across the thickness. However, with such a small difference

in phase velocity between the straight and curved plates in the case when the curved plate

has small curvature, the accuracy of the FE modelling should be at least a factor of the

higher than the changes due to the curvature effect. In this section, a study is carried

out to determine the number of elements required to model the wall thickness in order
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to ensure an acceptable level of accuracy. For simplicity, only four noded quadrilateral

elements with unity aspect ratio are considered throughout the FE study.

As an illustration of the effect where the thickness of the model is constructed with less

than the appropriate number of elements, Fig. 5.3 shows two dispersion curves for a 1mm

thick, 20mm inner radius aluminium curved plate composed of two different element sizes

corresponding to 34 and 47 elements through the plate thickness respectively.

With 34 elements through the thickness (Fig. 5.3(a)), the solutions do not resemble those

calculated using exact solution at high values of nm product where the displacement mode

shapes become complicated; this indicates a breakdown of the FE solution. In this case,

there is simply an inadequate number of elements to resemble the full displacement field

across the thickness, resulting in distorted displacement mode shapes. To extract the full

dispersion curves up to n = 1400 without any obvious solution breakdown, 47 elements

through the thickness (Fig. 5.3(b)) was found to be the absolute minimum.

Taking the 20th mode at n = 1200 as an example, both the in-plane and the out-of-plane

displacement mode shapes have approximately 10 harmonics across the thickness, therefore

there should be at least 60 elements across the thickness according to the “rule of thumb”.

Nonetheless, the results generated using 60 elements are generally less accurate than is

acceptable for the investigation of the curvature effect. In addition, for a given number of

elements used, the level of the accuracy decreases with increasing m and frequency ωm.

To demonstrate those points, the percentage error in frequency of the 20th propagating

mode is calculated in relation to the exact analytical solutions for a 1mm thick and 20mm

inner radius curved aluminium plate. The result, shown in Fig. 5.4, is calculated at every

n with n = {1, 2, 3 . . . etc.} and over a range of number of elements through the wall

thickness.

With 2000 elements used across the wall thickness in the model, a typical percentage

error of less than 0.001% was obtained for all locations of the dispersion curves (maximum

range: n = 1400 and m = 20). In comparison, the small percentage difference caused

by the curvature effect discussed in Sec. 4.1, even in the case of the smallest curvature

investigated (inner radius: 0.1m), is approximately one order bigger than the error due to

the finite element (FE) approximation.

This clearly indicates that many more elements than that according to the “rule of thumb”,

are required to ensure the accuracy level for predicting the curvature effect on the prop-

agation properties. However, keeping in mind that the calculation time necessary for

an eigen-matrix calculation depends mainly on the total number of Degree of Freedom

(DOF) which increases proportionally with increasing number of elements. Therefore a

model with a high number of elements can be computational expensive. This is especially
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Figure 5.3: Dispersion curves extracted using the FE axially cyclic symmetric model with two
different sizes of elements for an aluminium curved plate (thickness: 1mm, inner radius: 20mm).
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Figure 5.4: Percentage error in frequency of the 20th mode as a function of the periodic cyclic
order n and the number of elements through the thickness for an aluminium curved plate (thickness:
1mm, inner radius: 20mm).
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important if the modelling is to be repeated many times over the range of periodic cyclic

orders, n, in order to extract the dispersion curves.

Fig. 5.5 demonstrates the calculation time required to solve the eigen-problem using mod-

els with increasing elements, which were calculated using the FE program, Finel; the

linear relationship shown in the figure is due to the fact that a substantial proportion of

the reported time is for assembling the stiffness matrix of the problem. In reality, the

relationship is likely to be an exponential best fit.
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Figure 5.5: Calculation time required to solve the eigen-matrix for the first 20 modes at n = 1200
for an aluminium curved plate (thickness: 1mm, inner radius: 20mm) with the thickness of the
model assembled using various numbers of elements according to Fig. 5.1. These calculations were
carried out using the FE program Finel.

Nevertheless, if only the lower order fundamental modes are being considered in the FE

simulation of the curvature effect, 1000 elements through the thickness should be more

than adequate to obtain the necessary high accuracy.

Mode Shapes

The displacement mode shapes of a cyclic symmetry FE model can be obtained by means

of solving the eigenvector û in Eqn. 5.2 for the corresponding n− ωm pair. The through-

thickness displacement field is then acquired from these displacement amplitudes at the

nodal points along either the top or the bottom symmetry boundary (see in Fig. 5.1).

Two different types of mode shapes, one having many harmonics through its thickness with

the other being highly asymmetric, have been considered for investigation in this section.

A 1mm thick and 10mm inner radius aluminium curved plate was modelled using FE;

the FE model was constructed using 1000 elements through the thickness. Figs. 5.6 and
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5.7 present the through-thickness displacement mode shapes using every 10th nodal point

across the thickness, and those calculated using the exact displacement field equations of

Eqn. 2.19.

It can be seen that the mode shapes of the 10th mode in Fig. 5.7 are very much more

complicated than those of the “quasi-A0” mode in Fig. 5.6, and hence each harmonic

through the thickness is constructed with a less number of nodal points compared to the

lower order modes, resulting in a reduction in accuracy. In the case of Figs. 5.6 and

5.7, there are no noticeable discrepancies between the mode shapes calculated using the

exact and the FE methods in both plots. Additionally, mode shapes having dominant

amplitudes on the outer surface have been accurately modelled using the FE method.

5.1.3 Results of FE Simulations

This section deals with the confirmation of the curvature effect using the solutions obtained

from the FE modelling of various curvature radii. The FE calculations are based on

aluminium curved plates that have material properties of CL = 6320m/s, CT = 3130m/s

and density, ρ = 2700kg/m3.

Prediction of the Curvature Effect using FE

The effect of curvature on the phase velocity is examined as a function of curvature

radius and frequency in a similar manner as the analytical comparison detailed in Sec. 4.1.

Although the accuracy of the FE solutions in the curved plate case is highly dependent on

the number of elements used across the thickness, for a given thickness, a change in the

radius should not in theory affect the accuracy of the FE results. It is therefore possible

to assume that the convergence analysis in the Sec. 5.1.2 is correct for 1mm thick curved

aluminium plates of any given curvature radius.

For a crude visual comparison between the exact and FE methods, the eigen-solutions of

periodic cyclic order n (angular wavenumber ν) - frequency ωm pair have been calculated

using the FE cyclic symmetry model for 1mm thick curved aluminium plates of curvature

radii in the range found in Fig. 4.2. The percentage differences in phase velocity were

calculated according to Eqn. 4.1, which requires the eigen-solutions to be converted first

into the phase velocity-frequency (Vph − ω) domain using Eqn. 4.2, and are subsequently

interpolated at a regular frequency interval. The accuracy was ensured by using quadratic

interpolation on FE solutions that are extracted at sufficiently close n intervals.

The phase velocity at each curvature radius was then compared with the exact solution of

the straight case obtained from Disperse at the same regular interval. The overall results
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Figure 5.6: Displacement mode shapes of the “quasi-A0” mode at 8.53MHz for a 1mm thick and
10mm inner radius aluminium curved plate, extracted using the exact (solid lines) and the FE
(cross points) methods. The FE model is constructed using 1000 elements through the thickness.
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Figure 5.7: Displacement mode shapes of the 10th “quasi-mode” at 8.53MHz for a 1mm thick
and 10mm inner radius aluminium curved plate, extracted using the exact (solid lines) and the FE
(cross points) methods. The FE model is constructed using 1000 elements through the thickness.
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generate 3-D plots of the percentage difference as a function of radius and frequency for

each individual propagating mode in a similar way to Fig. 4.2. Figs. 5.8 and 5.9 show

the percentage difference between the straight and curved plate cases for the A0 and

A1 modes respectively. Both plots appear to bear a striking resemblance to their exact

solution counterparts (Figs. 4.2(a) and 4.2(c)) in terms of their shapes and amplitudes.

A direct comparison between the FE and exact methods, shown in Figs. 5.10 and 5.11 for

the A0 and A1 modes respectively, reveals that the solutions are, in general, extremely

accurate with an absolute difference in percentage (∆%) between the exact and FE meth-

ods of less than 0.001%, except near their cut-off frequencies. One obvious explanation

of this reduced level of accuracy is that the cut-off frequencies vary with the curvature

radii, and their gradients near these frequencies can change dramatically from one point

to another, hence introducing higher errors when interpolating their eigen-solutions at the

regular frequency intervals.
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Figure 5.8: Percentage difference in phase velocity Vph of the A0 mode as a function of frequency
and curvature radius for a 1mm thick aluminium plate calculated using a cyclic symmetric FE
model.

At frequencies other than the cut-off frequency, the accuracy of the FE method as a

function of radius may be demonstrated by plotting the percentage difference of the A0

mode at 4MHz calculated using the exact and FE methods concurrently, as shown in

Fig. 5.12. It can be seen that the FE eigen-solutions overlay the solutions of the exact

method for any curvature radius at this frequency, and a similar accuracy can, in general,

be obtained across the whole frequency spectrum except near the cut off frequencies for

the reasons mentioned.
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Figure 5.9: Percentage difference in phase velocity Vph of the first order anti-symmetric mode
(A1) as a function of frequency and radius for a 1mm thick aluminium plate calculated using a
cyclic symmetry FE model.
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Figure 5.10: Absolute difference in percentage of the phase velocity difference of the A0 mode
between the exact (Fig. 4.2(a)) and the FE (Fig. 5.8) methods in a 1mm curved aluminium plate.
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Figure 5.11: Absolute difference in percentage of the phase velocity difference of the A1 mode
between the exact (Fig. 4.2(c)) and the FE (Fig. 5.9) methods in a 1mm curved aluminium plate.
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Figure 5.12: Percentage difference due to the curvature effect as a function of radius for the A0

mode of a 1mm thick aluminium plate at 4MHz using exact analytical (solid line) and FE (circles)
methods.
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5.2 Experimental Studies

In this section, experimental techniques to illustrate the effect of curvature on the Lamb-

type plate wave propagation properties are presented. Furthermore, many of the issues

raised during the experiments, such as the excitability of a pure mode, are investigated

and discussed.

5.2.1 Experimental Samples

The experiment was carried out with thin high-grade aluminium alloy (Al-2014A-T4)

strips that are 0.97mm thick. The thin Al-2014A-T4 aluminium alloy plate has a high

ultimate tensile strength that allows one to bend the strips to a tight curvature without

passing the yield limit. It is also easier to handle than, for example, steel because of

its lower Young’s modulus. The material properties of the Al-2014A-T4 aluminium alloy

[117] are summarised in Tab. 5.1.

Material Al-2014A-T4

Young’s modulus (MPa) 69500

Ultimate Tensile Strength (MPa) 385

0.2% Proof stress (MPa) 85

Elongation (%) 18

Table 5.1: Material properties of the Al-2014A-T4 aluminium alloy strip [117] used for the
experiments.

The theory of circumferential waves developed in the previous chapters were for wave

modes propagating in an infinitely wide plate, but of course this is not achievable in

practise. Therefore finite width strips must be used, as shown in Fig. 5.13. Strips with

a large aspect ratio (H/d) would be favourable in this experiment. However, it is more

difficult to bend a wide strip, and furthermore, to achieve a consistent curvature across

its length.

Recently, in 2002, Mukdadi et al. [118] have discovered that for plates with a small aspect

(H/d) ratio, plate modes corresponding to the width of the strip H can be coupled with

the normal plate modes of thickness d, creating a guiding system for a rectangular cross

section. The extent to which the dispersion relation for this guiding system differs from

the infinitely wide plate case of thickness d is highly dependent on the H/d ratio used.

Currently there is no literature addressing either the relationship between the H/d ratio

and the dispersion relation, or whether it is appropriate to use the modes of a rectangular

cross section to approximate those of the infinitely wide plate. To address these questions,

guided waves in the rectangular section will be investigated later in Sec. 5.2.4.
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Figure 5.13: Schematic diagram of a thin curved aluminium strip, attached with a PZT plate.

For now, it is assumed that two sets of modes exist: those that are guided purely or almost

purely by the width edges of the strip will be referred to as “width modes”, while those

that are guided by the thickness edges of the strip will be referred to as “thickness modes”.

The width of the strip sample for the experiment was chosen so that the H/d ratio is large

enough that the “width modes” have minimum interference with the “thickness modes”

of the plate. The excitation of the width modes could also be minimised by exciting the

strip in such a way that the excitation force does not match the mode shapes of any of

the width modes; this will be discussed in the next section. Ideally, only the wave mode

for the investigation should be excited, but this is not always easy to achieve. Therefore

the sample strip should also be long enough so that it can act as a delay line where the

received signals of different modes are well separated from each other in time.

Taking all of these into consideration, an aluminium strip 0.97mm thick (d), 30mm wide

(H) and 700mm long (L) was selected for the experimental investigation of the curvature

effect.

5.2.2 Excitation Technique

As shown in Fig. 4.2, the curvature effect on the phase velocity of any chosen mode is

generally very small, especially when the curvature radius is large. Therefore the excitation

method should always provide the same reference signal at different curvatures in order

to eliminate any unnecessary error due to the shifting in excitation positions, and this is

achieved using a permanently attached PZT transducer.

The mode for the investigation should be easy to excite. The A0 mode has predominantly

“out of plane” displacement at almost all frequencies and for plates of any curvature.

Additionally, its properties are significantly influenced by the curvature effect and it is
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thus ideal for the investigation. Exciting this mode requires driving the plate with a

strong normal force, which is relatively easy to achieve efficiently using two thickness

expansion PZT ceramic plates attached to the surfaces on either side of the plate, one

excited 180 degrees out of phase to the other.

A commercially available lead based piezoelectric ceramic material Pz27 with properties

shown in Tab. 5.2 was used for the experiment. When a voltage is applied to the PZT

plates, one contracts while the other one expands, and vice versa in turn, generating a

normal force on both surfaces in a synchronised fashion.

The size of the PZT plate used in this experiment is chosen based on the fact that the

excitation frequency range is near the centre resonant frequency CfPZ of the PZT plate,

calculated using the relationship given by Eqn. 5.3, where dPZ is the PZT plate thickness

and VPZ is the compressional bulk velocity of the PZT material (see Fig. 5.13).

CfPZ =
VPZ

2dPZ
. (5.3)

The experiment was performed at below the cut-off frequencies of the higher order Lamb

wave modes (≈< 2MHz) to minimise any multimodal excitation of the “thickness modes”.

The PZT elements was 1mm thick (dPZ), 3mm wide (WPZ) and 30mm long (LPZ); the

centre frequency CfPZ of the PZT element is approximately 1.3MHz.

Ceramic Properties Pz27

Density (kg/m3) 7740

Compression Velocity (m/s) 2760

Mechanical losses 0.02

Dielectric losses 0.02

kp 0.59

Coupling factors kt 0.47

k33 0.70

Table 5.2: Ceramic properties of the piezoelectric plate transducer, Pz27 used in the experiment.

The PZT plates could be attached at the end of the aluminium strip (shown in Fig. 5.14)

using either a silver loaded glue or a fast cure epoxy, both of which have advantages and

disadvantages. The silver loaded glue, though highly conductive, contains relatively large

particles which causes a thick coupling layer in between the PZT plates and the aluminium

plate. On the other hand, the fast cure epoxy is easy to manipulate and also gives a much

thinner coupling layer than the silver loaded glue, but the epoxy is not conductive. Either

the thick or non-conductive coupling layer can cause a significant voltage drop across the

adhesive layer when a voltage is applied between the plate and the PZT, leading to a
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reduction in the signal to noise ratio. Overall the fast cure epoxy was found to have a

better performance than the silver loaded glue, and therefore was used for the experiment.

+V

Propagation
direction

aluminium strip

driving force
direction

PZT plates

Figure 5.14: Schematic diagram of exciting the A0 mode in an aluminium strip using PZT plates.

5.2.3 Experimental Setup

The aluminium strip may be bent at different curvatures by mean of fixing the length of

the strip onto a set of plastic fixtures that are pinned on a wooden board along a specific

curvature radius. A photograph of the experimental setup is shown in Fig. 5.15. In order

to allow the plate to deform reversibly, the curvature radius of the experiment is limited

by the fact that the sample material should not yield during the bending process. Using

the material properties listed in Tab. 5.1, one can calculate the smallest curvature of the

aluminium alloy strip, at which the stress applied on the strip during bending is within

the yield limit of the material. This relationship between the yield stress σy and the

minimum curvature radius rmin can be readily obtained from standard equations of the

stress analysis in the following form:

2σyield

d
=

E

rmin
(5.4)

where E and d are the Young’s modulus and plate thickness respectively. The smallest

curvature radius rmin for which the sample plate remains elastic is approximately 0.09m.

The measurements were taken in a pulse-echo configuration where a signal is transmitted

and received through the same set of PZT plates. A 30 cycle Hanning windowed wave

packet, which provides a smooth narrow band signal, was used for the excitation. The

equipment for generating such a signal involves a pulse generator, a function generator,

a power amplifier and a receiver amplifier, all of which have been integrated into a single

machine, “WaveMaker-Duet” [119]. Additionally, an oscilloscope and a computer are
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Figure 5.15: A photograph of the experimental setup for the investigation of the curvature effect.

used to save the data of the receiving wave signal for further processing. Fig. 5.16 shows

a schematic diagram of the experimental setup.

The pulse generator triggers the oscilloscope simultaneously, while the function generator

delivers a tone burst signal with an integer number of cycles to the PZT plates via the

power amplifier. The toneburst signal travels back and forth along the aluminium plate

after reflecting from the end of the plate, and subsequently being picked up by the same

PZT plates. The received signal is amplified and displayed on an oscilloscope and may

then be captured digitally in a computer via a GPIB connection.

5.2.4 Excitation Issues of Strip with a Rectangular Cross Section

Due to the presence of the width boundaries in a rectangular cross-section strip, the plate

modes in a finite width plate strip may be different to those predicted theoretically for an

infinitely wide plate. In general, there are two known issues associated with a waveguide

of a rectangular cross-section. In this section each of these two issues is addressed in turn.

“Width-Edges” Effect

The first issue is the so-called “width-edges” effect, where the displacement field across the

width of the strip alters due to the presence of the width-edges of a metal strip. Fromme

[120] measured the out of plane displacement field of the metal plate surface using a Laser

Vibrometer with an excitation method similar to that described in the previous section.
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Figure 5.16: Schematic diagram of the experimental setup in a pulse-echo configuration.

He reported that the amplitudes of the out of plane displacement field is significantly

higher close to the edges than elsewhere on the strip; the results are reproduced with

permission in Fig. 5.17.

The “width-edges” effect has also been investigated on our experimental sample, where the

out of plane displacement was measured across the width of the strip at several locations

along its length using a Laser Vibrometer. The measurements were taken from the first

arriving signal of the A0 mode from the excitation source at 0.1mm intervals across the

width of the strip at 450kHz, and the measured displacement amplitudes were normalised

to the maximum amplitude across the width.

Fig. 5.18 shows the displacement amplitude variation across the width. It can be seen that

the displacement field has a roughly constant amplitude in the central region of the strip

at various locations away from the excitation, and as expected a much higher amplitude

close to the width edges can be observed. Moreover, The actual amplitude along the edges

was found to be dependent of its location along the strip, though, no further investigation

was carried out. The high amplitude along the edges is thought to be caused by the fact

that the particles are allowed greater movement due to the lack of constraint along the

free boundary, while this is not the case in the central region. In general, the percentage

of total energy at edges goes down as width goes up, therefore the “width-edges” effect

would have less influence on the displacement field for a wider strip.

This suggests that the A0 plate mode exists in both finite and infinitely wide plates, despite
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Figure 5.17: A reproduction of a scan measured by Fromme [120] (with permission). The scan
shows the out of plane displacement field of the A0 mode over the surface of a 1mm thick, 30mm
wide aluminium strip. The A0 mode is excited using the same method as described in Sec. 5.2.2
at 160kHz, and the field is measured using a Laser Vibrometer.

the presence of the “width-edges” effect, and they are travelling at the same velocity [118].

It also appears [118] that the A0 mode has the same phase velocity regardless of the width

of the strip at a particular frequency. However, based on the argument on the relationship

between the phase velocity and the mode shapes discussed in Sec. 4.2, some influence of

the “width-edges” effect should be expected, though they are thought to be insignificant.

This view was confirmed in the study by Gazis et al. [121] who used approximate equations

of motion to investigate the influence of the width of a plate strip on the velocity of the

lower order modes. Gazis et al. concluded that the width-edges of the metal strip have a

significant influence on the phase velocity up to a large “H/d” ratio, after which the velocity

converges asymptotically towards that of an infinitely wide straight plate. Although there

is no specific value of “H/d” given to which the velocity is considered to be converge to

that of the plate case. The velocity measurements of the A0 mode taken from the 30mm

wide strip match exactly to that of the analytical prediction, demonstrating that the strip

has a “H/d” ratio where the velocity is asymptotic to that of the infinitely wide plate.

Rectangular Wave Modes

During the experiment, an excitation of a single pure A0 plate mode was extremely difficult

to achieve. Despite exciting at a frequency that is lower than the cut-off frequencies of

the higher order modes, multimodal excitation was very common. Furthermore, many of

the modes which are excited travel at velocities which do not correspond to either the A0

or S0 mode. This raises the suspicion that wave modes which are excited correspond to

those of the rectangular cross section.

Every care has been taken to ensure that only the out of plane displacement field corre-
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Figure 5.18: Measured out-of-plane displacement amplitude of the A0 mode across the width of
the aluminium strip sample at several locations along its length, at 450kHz.

sponding to the A0 mode is excited. However, an imperfection of the PZT bonding to the

strip surface is inevitable, resulting in an uneven distribution of the out of plane loading

across the bond line of the PZT plate. This behaviour encourages the excitation of waves

that are wholly or partially coupled with the waves reflecting back and forth between the

boundaries of the width-edges. These coupled modes are referred to as the “rectangular-

modes” in this thesis in recognition of their existence in a rectangular cross-section.

At many frequencies, the excitation of the “rectangular-modes” is unavoidable. However,

at other frequencies these “rectangular-modes” may not be strongly excited. This is

because the “rectangular-modes” become highly dispersive at these frequencies, where the

different frequency components of the corresponding signal travel at different velocities,

resulting in the energy of the dispersive mode being spread out in time. In this case a good

clean signal of the A0 mode can be obtained for the measurement of the phase velocity

difference between the straight and curved waveguides. Fig. 5.19 shows the time responses

at frequencies of 650kHz and 1MHz, at which the “width-modes” are strongly excited and

are extremely dispersive respectively.

Using the FE cyclic symmetry modal analysis detailed in Sec. 5.1, the dispersion curves

of the waveguide consisting of a rectangular cross-section with dimensions (thickness:

0.97mm, width: 30mm), as in the experiment, were obtained. The FE model used a large

radius of 400mm to obtain the approximate solutions for the straight case. This technique

of approximation had been verified by Wilcox et al. [115]. Figs. 5.20 and 5.21 show the

frequency-angular wavenumber and phase velocity-frequency dispersion curves for such

a rectangular waveguide. The presence of the edges introduces an extra dimension of
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Figure 5.19: Time responses of the experiment in a pulse-echo configuration using a straight
aluminium strip (thickness:0.97mm, width: 30mm) which was excited with a 30 cycle Hanning
windowed toneburst signal at one end of the strip.
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Figure 5.20: Frequency-angular wavenumber dispersion curves for a rectangular cross section
aluminium strip (thickness: 0.97mm, width: 30mm, Black lines), and those of an infinitely wide
aluminium plate (0.97mm, Red lines). The dispersion curves of the rectangular cross section were
modelled using a cyclic symmetry FE model with an inner radius of 400mm.
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movement, and the rectangular cross section system is therefore able to support a much

higher number of wave modes in the frequency range below the cut-off frequency of the

higher order infinite plate modes.

In general, the waves of a rectangular cross section waveguide can be divided into 3 types

depending on their interaction with the different sets of boundaries.

1. Thickness-plate modes: These correspond to modes of an infinite plate whose

thickness is the same as that of the strip and are subject to the edges effect. Only

two exist in a frequency range of up to 1.4MHz in this case (see Fig. 5.20).

2. Width-plate modes: These correspond to modes of an infinite plate whose

thickness is equal to the width of the strip and are subject to the edges effect.

There are many in this frequency range.

3. Twisting modes: Modes that are coupled between the “thickness-plate modes”

and the “width-plate modes”, resulting in a twisting motion of the metal strip.

The dispersions curves of the latter two cases are shown in Figs. 5.22 and 5.24, while the

mode shapes of the lower order modes of their corresponding type have been calculated at

300kHz from the eigen-vectors at the corresponding ωm−n eigenvalues shown in Figs. 5.23

and 5.25. Although there are many wave modes of these two types in the frequency range

of interest for this experiment, judging from their mode shapes, it can be easily seen that

many of the higher order modes could not be excited because of very poor matching of

the excitation force to their complex mode shapes. Furthermore, the “width-edges” effect

is clearly visible from the mode shapes of the A0 mode shown in Fig. 5.24.

Having the dispersion curves of the rectangular cross section, it is now possible to investi-

gate the modes that have been excited during the experiment and their amplitudes at var-

ious frequencies, using a 2-dimensional Fourier transformation (2DFFT) technique [122].

The technique provides an indirect means of extracting the dispersion curves of the Lamb

waves quantitatively from the experimental measurements of multimodal signals. This

technique measures the signal of the time-responses at a certain known distance interval

along the propagation direction using a Laser Doppler Vibrometer (LDV). An illustration

of the setup can be found in Fig. 5.26. The measurement was performed in a “pitch-catch”

configuration where the signal is excited with the PZT plates and subsequently picked up

by the LDV after travelling a certain distance along the strip.

Generally, the measured results are in the time-spatial domain from which the 2DFFT is

applied to transform the data into the frequency-wavenumber domain. The time-response

data was measured with 32,000 time sampling points at every 1mm interval over a distance

of 100mm in the propagation direction. The collected data formed a matrix, from which
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Figure 5.22: Dispersion curves of the “width-plate modes” for a rectangular cross section alu-
minium strip (thickness: 0.97mm, width: 30mm). The lower order modes are labelled in the
zoom-in window, which correspond to the mode shapes in Fig. 5.23.
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the 2DFFT was performed in a MatlabTM program. The 2DFFT generates a 2-D colour

map showing the distribution of energy and its amplitude at various locations in the

frequency-wavenumber domain. By overlaying this colour map with the dispersion curves

for the sample (Fig. 5.23), the modes that are strongly excited would be easily identified.

To visualise the contrast between the multimodal and the nearly pure-mode excitations,

the 2DFFT technique was performed twice at the centre frequencies of 650kHz and

1.0MHz. These frequencies correspond to those used in obtaining the time responses

of Fig. 5.19. At 650kHz (Fig. 5.27), as well as the A0 mode, the S0 and 1st order “width-

plate” modes have been strongly excited, although it is also clearly visible that there are

numerous other “width-plate” modes being weakly excited. With such a multimodal ex-

citation, it would be impossible to carry out any sensitive measurements of the curvature

effect on the A0 mode.
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Function
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Figure 5.26: Schematic diagram of the experimental setup for measuring the time responses at
a regular spatial interval along the propagation direction.

On the other hand, the 2DFFT result measured at 1.0MHz (Fig. 5.28) reveals that the S0

and the “width-plate” modes have not been strongly excited. This confirms the observation

of a nearly “pure-mode” excitation of the A0 mode in the time response at this frequency

shown in Fig. 5.19(b).

Typically, a good signal to noise ratio can be obtained in a relatively broad frequency range

of approximately 300kHz to 2MHz using the PZT plates. Within this frequency range,

there are many frequencies at which a nearly “pure-mode” excitation can be achieved and

may be used for measuring phase velocity accurately.
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Figure 5.27: A colour map showing the result of the 2DFFT of the measurements obtained from
the aluminium strip sample (thickness: 0.97mm, width: 30mm) with 32000 time and 100 spatial
sampling points. The aluminium strip was excited at a centre frequency of 650kHz. The colour
map overlays with the dispersion curves of the aluminium strip sample.

Figure 5.28: A colour map showing the result of the 2DFFT of the measurements obtained from
the aluminium strip sample (thickness:0.97mm, width: 30mm) with 32000 time and 100 spatial
sampling points. The aluminium strip was excited at a centre frequency of 1.0MHz. The colour
map overlays with the dispersion curves of the aluminium strip sample.
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5.2.5 Measurement of Relative Velocity

The permanently attached PZT plates allow the signal to be excited and received at the

same reference locations, thus any shift in the time response should in theory, be caused

by the difference in phase velocity of the A0 mode travelling at different curvatures. The

time response of the wave packet signal of both the straight and curved systems after

travelling a certain distance, for example the first or the second end reflection of the metal

strip, may be measured. Since the difference in phase velocity between the straight and

curved cases is extremely small, as predicted in Sec. 4.1 (in most cases the difference is

less than 1%), the actual difference in time between the straight and curved cases after

travelling back and forth along the strip would still be much less than the time period of

one wavelength.

The most reliable way to measure fractional changes in velocity is to identify the zero-

crossing time of a particular sinusoid in the signal, as shown in Fig. 5.29. These two

measured zero crossing points have the same phase, however, the difference in the mea-

sured times is caused by the velocity shift in the curved plate. Therefore the normalised

phase velocity difference at the excitation frequency for a toneburst signal which had trav-

elled a distance l, can be calculated using Eqn. 5.5. V phst is the phase velocity of the

corresponding wave mode in a straight plate. This measurement relies on the signal being

very narrow band, which can be treated practically as a single sinusoid.

Difference in Vph(%) =
l

V phst
· abs[tc − tf ]

tctf
· 100. (5.5)

where tc and tf are the zero-crossing time of the curved and straight cases respectively.
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Figure 5.29: Time response of end reflection of the A0 mode, (a) for a straight and (b) for a
curved waveguide, and (c) the detail of their overlay, showing the arrival time of the striaght ts
and curved tc cases.
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5.2.6 Preliminary Results on Velocity Measurements

As discussed in the previous chapter, numerical instability of the exact circumferential

waveguide solution occurs at high frequencies. Therefore the experimental measurements

were validated against solutions obtained using the exact method, and with the asymptotic

method where exact solutions become unstable. Results were only measured at certain

frequencies where a nearly “pure-mode” was obtained, as discussed earlier. At other

frequencies, the excitation of the “rectangular modes” interfered with the A0 mode signal.

Using several identical sample strips, experimental measurements were possible at 450kHz,

1.0MHz, 1.1MHz and 1.3MHz over a range of curvature radii, and these results together

with those calculated from the analytical and FE methods are shown in Fig. 5.30.

The change of velocity from these predictions grows rapidly with reducing curvature ra-

dius as expected. Although the experimental results follow a similar upturn with reducing

curvature radius at all four frequencies, the change of velocity from the experimental mea-

surement was found to be higher than those from the analytical predictions. Additionally,

these changes were also found to increase steadily with increasing curvature.

In general, there are two possible explanations for this discrepancy. First, it was difficult to

force the aluminium strip into a constant curvature along the whole length with merely the

plastic supports, especially at the ends of the strip, due to its elasticity. Nevertheless, this

problem was thought to be minor and could be easily fixed. Secondly, the strip sample was

constantly under stress when curved, which could change the material properties through

the thickness. This was thought to be the significant cause of the error, and therefore

further investigation was necessary.

5.2.7 Validation against an Improved Analytical Model

Bending of the metal strip can have two profound effects on the material properties through

the thickness of the plate, which are discussed in this section. The effects are the local

applied stress and the local density, both of which could affect the acoustical properties

locally. The stress field varies linearly across the thickness in such a way that the inner

and the outer surfaces have the highest compression and tension respectively at that

particular curvature radius. Therefore the experimental validations could be improved

either by taking into account the stress condition and the local density variation in the

model, or by annealing the experimental samples to remove the variation of material

properties permanently at each curvature.

The annealing idea is thought to be far too difficult to achieve without damaging the

bonding of the PZT plates during the process, which could alter the reference signal, and

thus reduce the accuracy of the measurements. For this reason, it would be sensible to
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simply include these “stress-induced” conditions into the analytical model. For this to be

done, it is necessary to understand what parameters need to be updated in the analytical

model.

The dispersion relation (Eqn. 2.18) is governed by the geometry properties of the thick-

ness d and mean radius rmid, and also the material mechanical properties of the Young’s

modulus E, poisson’s ratio υ and density ρ. The latter are linked to the Lamé constants

(λ, µ) in the following forms:

λ =
υE

(1 + υ)(1 − 2υ)
, µ =

E

2(1 + υ)
. (5.6)

and thus Eqn. 2.9 of the bulk velocities, CT and CL become:

CL =

√
E(1 − υ)

ρ(1 + υ)(1 − 2υ)
, CT =

√
E

2ρ(1 + υ)
. (5.7)

Both the thickness d and the length of the mid-plane of the aluminium strip are assumed to

be constant during bending. By contrast, the material properties can change significantly

due to the acousto-elastic effect [123] where the bulk velocities of a material are sensitive

to stress within the material, as well as the local density changes. The bulk velocities of

a stressed structure may be calculated using the Murnaghan third-order elasticity theory

[124]. The theory relates the stresses and the bulk velocities in the orthogonal directions

of the cartesian coordinates.

Since the Lamb-type wave modes in an infinitely wide curved plate polarise only in the r

and θ directions, which can be assumed to be orthogonal at a local level, the bulk velocity

can then be recalculated using the following relevant equations [123]:

ρ0C
2
LP = λ+ 2µ− Plocal

3K0
(7λ+ 10µ+ 6l + 4m)

ρ0C
2
TP = µ− Plocal

3K0
(3λ+ 6µ+ 3m− n

2
)

ρ0C
2
LS = λ+ 2µ+

Slocal

3K0
(
λ+ µ

µ
(4λ+ 10µ+ 4m) + λ+ 2l)

ρ0C
2
TS = µ+

Slocal

3K0
(4λ+ 4µ+m− λ

µ

n

4
) (5.8)

The subscripts L and T indicate the longitudinal and shear wave motion respectively, and

Plocal and Slocal are the compressional and tensional local stresses applied in the direction

of propagation (i.e. on the inner and outer halves through the thickness respectively). µ,

λ, l, m, and n are the first and third order global elastic constants, whereas K0 is the

global bulk modulus for an isotropic material defined as K0 = (λ+ 2µ/3), while ρ0 is the
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density of the material in the initial unstrained state. The third-order elastic moduli of

solids account for the non-linear interaction of sound waves in solids that are caused by

the applied directional stresses.

One basic assumption in the theory is that the material remains elastic throughout the

deformation. This was investigated by measuring the stress as a function of strain for

the aluminium sample in an Instron 5500 series tensile testing machine, and the results

are shown in Fig. 5.31. It can be seen that the stress-strain relationship has remained

virtually linear, even above the maximum stress level relating to that experienced by the

aluminium strip with the smallest curvature radius investigated. The small offset in the

graph could be caused by the slipping of the clamping jaws during the measurement.

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000
Strain ( )��

St
re

ss
(M

P
a)

Stress corresponds
to minimum curvature
radius in experiment

Linear best fit line

Figure 5.31: Stress strain relationship of the aluminium sample (Al-2014A-T4, thickness:
0.97mm, width: 30mm, length: 700mm). In addition, the highest stress level, corresponding
to that in aluminium strip with the minimum curvature radius (10cm), is indicated in the graph.

The third-order elastic moduli of aluminium based alloys with various weight propor-

tions of copper (Al-Cu) and Magnesium (Al-Mg) have been measured by Kesava Raju et

al. [125]. The third-order moduli of the Al-2014A aluminium sample may be inferred from

Kesava Raju’s measurement results of the aluminium alloy that contains the closest metal

compositions. The moduli were taken from the mean values of the measurements of a

Al-4.8%Cu composition, compared to a Al-4.5%Cu-0.4%Mg composition for the Al-2014A

aluminium sample, and they are listed in the Tab. 5.3 in the expression defined by Toupin

et al. [126] which can be converted back to those used in Eqn. 5.8 by using the following

[123]:

l =
ν1

2
+ ν2, m = ν2 + 2ν3, n = 4ν3. (5.9)

To include the conditions due to bending, an improved plate model with its thickness

discretised into 9 layers has been analysed; each layer has a thickness of δd and is assumed
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Toupin and Bernstein [126] Murnaghan [124]

ν1 + 6.0 l -7.8

ν2 -10.8 m - 25.6

ν3 -7.4 n -29.6

Table 5.3: Mean value of the measured third-order elastic moduli of Al-4.8%Cu alloys at 298K
in units of 1010Nm−2, obtained from Toupin et al. [126], and the corresponding moduli expressed
by Murnaghan [124] .

to have the same curvature at the top and bottom of each layer. In addition, it is assumed

that the plate is sufficiently wide compared to the thickness and the properties are uniform

at all points in each layer. By doing so, the local density, ρlocal in each layer, due to

strain while bending, may be calculated as a function of the local radius (rlocal) shown in

Eqn. 5.10.

ρlocal =
ρ0 r

3
mid

rlocal(rmid + υrlocal − υrmid)2
. (5.10)

Using Eqns. 5.8 and 5.10, the appropriate values of CL, CT and ρlocal corresponding to

the local curvature radius in each layer of the model can be calculated to account for

the through-thickness variations of density and velocity due to the local applied stresses.

The solution of this analytical model of each layer is assembled using the Global Matrix

method [98], with suitable boundary conditions between the layers (i.e. σrr, σrθ, urr and

uθθ are continuous at the interface, while maintaining stress free conditions at r = r1,2).

As a demonstration, the parameters of each of the 9-layers for the case of an aluminium

sample that is bent to a curvature radius of 20cm are listed in Tab. 5.4. A negative value

of stress in the table indicates compressional stresses P , while a positive value indicates

tensional stresses S. The aluminum sample has unstrained material properties of: CL =

6320m/s, CT = 3230m/s and density ρ0 = 2700kg/m3. Layer 5 is on the neutral axis and

so has properties which have not been modified, while the local material properties are

calculated at the mid-depth position in each layer. It can be seen from Tab. 5.4 that the

bulk velocities are, in general, more sensitive to the compressional stresses than to the

tensional stresses. Using these parameters, the dispersion curve of the A0 mode of this

multi-layered model was calculated and is shown in Fig. 5.32.

It is worth noting that although the percentage changes of longitudinal and shear bulk

velocities, due to the stress and strain conditions on the outermost layers of the plate,

are as high as 0.19% and 0.26% respectively, the change in phase velocity of the A0 mode

calculated with the stressed multilayered model compared to the unstrained single curved

layer, is typically less then one thirtieth of a percent over the whole frequency range. The
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improved model (Blue dashed line), and for an aluminium straight plate of the same thickness
(Black solid line).
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5. Confirmation of Curvature Effect in Unloaded Plates

reason for such a small phase velocity alteration despite the larger changes of the bulk

velocities may be understood to be the cancelling effect of the stress conditions where the

overall stress is averaged out over the top and bottom halves through the thickness.

The dispersion curves of the 0.97mm thick aluminium plate were recalculated for curvature

radii between 0.1m and 0.7m using the improved multilayered model, and subsequently

used to compare again with the experimental results using Eqn. 4.1. The solutions are

limited to curvature of small radii because of the solution breakdown when the curvature

radius is large, as discussed in Sec. 2.3. It can be seen in Fig. 5.33 that the prediction of the

experimental measurements using the analytical stressed model has improved significantly,

compared to the single layer unstrained model used before in Sec. 5.2.6. The upturn of the

velocity difference curve in Fig. 5.33 for the stressed curved plate case, occurs at a higher

curvature radius. This is because when the curvature radius is small, the acousto-elastic

effect becomes dominant, and therefore increases the difference greatly compared to the

unstrained case.
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Figure 5.33: Percentage difference in phase velocity Vph at 1.0MHz as a function of radius
between 0.97mm thick aluminium straight and curved plates calculated with the multilayered
analytical model (Solid line), and the experimental measurements (Dotted line).

5.2.8 Experimental Validation of the Displacement Mode Shapes

As discussed in Sec. 4.2, the displacement mode shapes can change substantially when

the plate is bent from one curvature radius to another, and it is therefore interesting

to measure such an effect experimentally. In general, it is rather difficult to measure

the through-thickness displacement mode shapes directly and accurately, especially for

plates with very small thickness. However, the curvature effect can shift the displacement

field towards one surface, resulting an asymmetric mode shapes. Thus it is possible to

validate the displacement mode shapes indirectly by comparing the ratio of displacement

amplitudes taken on directly opposite sides faces of the plate.

The measurements was taken using the same aluminium sample and excitation method

described earlier in Sec. 5.2.1 and Sec. 5.2.2 respectively. The toneburst signal of the
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5. Confirmation of Curvature Effect in Unloaded Plates

aluminium strip

PZT dice for
measuring out-of
plane displacement

PZT plates

Figure 5.34: Schematic diagram of the PZT dice which are used to measure the out-of-plane
displacement on the two surfaces.

A0 mode was subsequently picked up by two small PZT dice elements (2mm cubes) that

were glued directly opposite to each other on either side of the plate surfaces, as shown

in Fig. 5.34. This allows the out-of-plane displacement amplitudes on both surfaces to be

measured and are subsequently used for the validation of the phenomenon of asymmetric

through-thickness mode shapes.

To compensate for any difference in the transducer sensitivity and coupling, each of the

measured amplitudes was first normalised by the corresponding displacement amplitude

taken when the plate is straight. The ratio of the amplitudes measured in the experiment

were then compared with those calculated using the exact solution, and the results are

shown in Fig. 5.35. The results of the measurements show a consistent trend with the

analytical predictions. When the plate is straight, the ratio of the amplitude measured

on the outer surface to that on the inner surface, is equal to one. As the curvature

of the aluminium plate reduces, the displacement ratio reduces too, indicating that the

displacement amplitude on the outer surface is becoming greater than that on the inner

surface, hence shifting the displacement field as predicted.

5.3 Summary

The accuracy of using a cyclic symmetry finite element modelling technique to calculate

dispersion curves of curved plates has been demonstrated; this requires that a sufficient

number of elements be used to represent the through-thickness displacement mode shapes

precisely. The number of elements required is dependent on the complexity of the mode

shapes, which increases with increasing frequency and mode order. The asymmetric be-

haviour of the through-thickness mode shapes has been correctly presented in the mod-

elling. The results of the FE modelling were then used to validate the exact prediction of
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Figure 5.35: Ratio of the A0 out-of-plane displacement amplitude between the outer and the
inner surfaces as a function of curvature for a 0.97mm aluminium plate at 1.0MHz obtained ex-
perimentally (Solid line) and analytically (Dashed line).

the curvature effect on the phase velocity. In general, good agreement has been obtained,

except near the cut-off frequency of the wave mode due to some minor numerical errors.

A simple experimental technique to validate the curvature effect has been introduced. Due

to the small changes in phase velocity by the curvature effect, all aspects which could cause

an inaccurate prediction have been carefully investigated. This includes the selectivity of

the excitation wave mode and the local through-thickness variation of density and bulk

velocities caused by the strain-stress conditions. The results of these investigations form

the basis of an improved model, where conditions other than the curvature effect that

were induced during the experiment, have been included into the analytical model. The

experimental measurements match the prediction obtained from the improved analytical

model reasonably well.
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Chapter 6

Circumferential Guided Waves in

Loaded Curved Plates

This chapter concerns the investigation of the curvature effect on the guided wave proper-

ties in curved plates coupled to an infinite half space of solid or fluid. This is an extension

of the studies on the unloaded case detailed in the previous chapters, where it was found

that the curvature has an insignificant effect on the wave propagation velocity when the

curvature radius is moderately large. Thus predictions of a straight structure should in

theory provide a sufficient accuracy for the inspection of a curved structure of the same

cross section in most cases. In a loaded system, such as an embedded rockbolt, a dramatic

increase in attenuation of some wave modes has been previously reported [2] when the

rockbolt was curved, and thus the loaded curved system may still prove to be significantly

different to the loaded straight system.

The aim of this chapter is to understand the effect of curvature on the attenuation due

to the leakage of energy into the surrounding medium as the wave mode propagates along

the structure. This study is of fundamental importance, especially to improve the under-

standing of some issues in the inspection technique of curved rockbolts (see Ch. 1).

To the best of the author’s knowledge, there are currently no publications on the exact

analytical solution of leaky circumferential Lamb-type waves, except a paper by Rousselot

[127] dealing with circumferential wave propagation around thin shells. The reason for the

lack of publications in this field is mainly the difficulty in solving the analytical solutions of

this particular system; the analytical solution contains many complicated Bessel functions

of complex order as part of the global solution. Currently, there is very little knowledge

on how best this complex function is solved. In this chapter, both the analytical solution

of the loaded curved plate problem and the solving of the Bessel functions with a complex

order are addressed.
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6. Circumferential Guided Waves in Loaded Curved Plates

Numerical examples of the leaky case are presented in the second half of the chapter,

which are subsequently used for predicting the curvature effect on the attenuation and

phase velocity of the leaky plate modes. This chapter is based on work published in Fong

et al. [128].

6.1 Literature Review on Leaky Circumferential Waves

Although, as mentioned earlier, there are currently very few papers studying the leaky

circumferentially propagating guided waves, there is a relevant topic that is closely linked

concerning leaky vibration modes scattering from pipes immersed in fluid; this topic has

been studied extensively using a so-called “Resonance Scattering Theory” (RST) which

was first derived in 1945 by Osborne et al. [129]. The difference between the studies of the

leaky circumferentially propagating guided waves and the wave mode scattering problem

using RST is that the former case addresses the waves travelling along a curved plate

system, while their energy is leaked into the surrounding medium; on the other hand, the

latter case addresses vibration, and does not correctly describe the attenuative nature of

propagating modes due to leakage into the surrounding medium.

The general solutions for the displacement field (U) of wave modes are typically given

by Eqn. 6.1, where A is the field amplitude as a function of radial position through the

thickness, and ν and ω are the angular wavenumber and angular frequency respectively.

U(r, θ) = A(r) · ei(νθ−ωt). (6.1)

Either or both the wavenumber ν or frequency ω in Eqn. 6.1 can in theory be set to be

complex, where the imaginary part accounts for the decay in the field amplitude as the

wave modes propagate. However, these two complex quantities are in fact representing

problems of two very different physical natures as reported by Bernard et al. [130].

The use of these two complex quantities can be easily mixed up, especially in a leaky

curved plate system where the coupled half space medium has a much smaller impedance

than the plate layer. For example, a metallic plate layer couples with a water half space.

In this case, due to the mismatching of the impedance between the two coupled materials,

the leakage is normally small. As a consequence, the imaginary part of the complex root,

regardless whether a complex frequency ω̄ or a complex wavenumber ν̄ is used, is not the

dominant part of the root. In fact, there is very little difference in the real part of the roots

between solutions calculated using the complex frequency ω̄ and the complex wavenumber

ν̄. For this reason, good agreement for an experimental validation have been reported

[131] despite the experiment corresponding to one case and the analytical prediction to

the other.
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Figure 6.1: Illustration of the leaky circumferential wave problem and the coordinate system.

The RST uses a complex frequency (ω̄ = ωreal + iωimag), and integer wavenumber; the

solutions describe a steady state leaky system of the vibration modes of pipes with a

certain integer number of harmonic cycles around the circumference at various frequencies.

However, for a transient system (Fig. 6.1), a complex wavenumber (ν̄ = νreal + iνimag) and

real frequency should be used; this would allow a correct description of the field amplitude

that decays over distance while propagating around a curved waveguide.

The fundamental governing equations for these two problems are extremely similar, both

of which contain Bessel functions. However, because of the use of a complex frequency ω̄

in the case of RST, only the Bessel functions of a complex argument and a real order are

required to be solved; the solutions to the Bessel function with this combination of the

argument and order are readily available (see for example Abramowitz et al. [99]).

On the other hand, problems represented by the Bessel functions with a complex order

have not been studied thoroughly in the past; as a result, their nature is not yet clearly

understood. Currently there are few numerical schemes available to calculate the Bessel

functions of this combination of order and argument, and all of them are extremely difficult

to implement; some of these issues are discussed later in this chapter.

Because of this obstacle in solving these Bessel functions, the investigation of the vibration

scattering problem using the RST has become much more advanced compared to the leaky

guided wave problem.

6.1.1 Complex Frequency - RST

All references listed in this section relate to solutions calculated using the complex fre-

quency ω̄ while the wavenumber remains real throughout. The RST was originally de-
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6. Circumferential Guided Waves in Loaded Curved Plates

veloped for problems of acoustic-wave scattering from elastic cylinders and spheres which

has subsequently been applied to the case of elastic wave scattering from cavities (see for

example [132, 133, 134]).

Using the normal modal analysis, Breitenbach et al. [133] for the first time in 1983, plot-

ted the phase velocity dispersion curves for the low-frequency modes in an aluminium

cylindrical shell of various ratios of inner and outer radii.

Later, in 1984, Gaunaurd et al. [135] produced the phase velocity, group velocity and also

attenuation dispersion curves for the first few circumnavigating surface waves using both

the normal mode analysis and the RST. Subsequently, Talment et al. [136] extended this

to the higher order modes, including the so-called “whispering gallery mode”, the Rayleigh

mode and the fluid-borne Stoneley mode.

In 1999, Maze et al. [137] examined the repulsion phenomena in the phase-velocity dis-

persion curves of the circumferential plate waves using a perturbation theory. The papers

by Talment et al. [136] and Maze et al. [137] were later summarised in a publication by

Bao et al. [138], together with a small extension which includes solutions for pipes that

are both loaded and filled.

In 1998, Ahyi et al. [139] observed experimentally the acoustic excitation of the A0 wave

mode on a shell using long-pulse incident sound waves. The technique involves capturing in

a photograph the wavefronts of the excited wave modes that are leaked into the surrounding

fluid, from which it would be possible to evaluate the velocity of the corresponding wave

mode.

6.1.2 Complex Wavenumber - Leaky Guided Circumferential Waves

Up until now, all analytical studies of the leaky circumferentially propagating guided

waves have been limited to surface-type or interface-type waves. The first paper in which

a complex wavenumber was used to account for the energy leakage of the surface Rayleigh

wave on elastic cylinders into the surrounding fluid, was published in 1975 by Frisk et

al. [140]. In the subsequent year, the same group of authors published two other papers

on the solutions of two surface type circumferential waves on immersed pipes: one being

the study of creeping waves [141] which are also known as the Franz modes, and the other

being the “whispering gallery wave” [106]. The solutions of both cases were obtained

using a heavily reduced form of the exact method, of which the limiting case corresponds

to either of these two waves types.

Detailed experimental studies of the circumferentially propagating Rayleigh and Lamb

waves have been previously examined on a cylinder immersed in water by Bunney et

al. [142] in 1969. Additionally, in the same paper, Bunney et al. studied these waves on
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6. Circumferential Guided Waves in Loaded Curved Plates

cylinders with a range of different materials.

Later, in 1985, Rousselot [127] derived the dispersion curves of circumferentially propagat-

ing waves in a shell system (i.e. wall thickness d → 0) using a modal theory. Despite the

success in obtaining the analytical solutions to this case, the results shown in this paper

are limited to the low frequency region of the dispersion curves.

In 1997, Hassan et al. [92] investigated a family of circumferential creeping waves around a

fluid-filled cylindrical cavity in an elastic medium, where the phase velocity, group velocity

and also attenuation dispersion curves were studied for this family of wave modes. The

formulation of the analytical solution was adapted from that of the Rayleigh case on curved

surfaces [74]. Later, in a sequel paper, Hassan et al. [143] examined the attenuation of the

solid-borne Rayleigh waves and the fluid-borne Creeping waves in a fluid-filled cylindrical

cavity, and some experimental validations of the analytical predictions were given.

6.2 Exact Analytical Model of the Leaky Circumferential

Waves

A system may be considered to be leaky if a solid or fluid half space is coupled either on

the inner (concave) or outer (convex) surface of the pipe or curved plate. However, it can

readily be seen that for the filled case the energy leaking into the internal medium can be

re-incident further around the pipe and so in fact is not lost, whereas for the externally

loaded case, the leaking energy vanishes away from the interface. Therefore the convex

case is the more interesting to study.

Fig. 6.1 shows the schematic diagram and the coordinate system of the problem of interest,

where a curved metal plate couples with either a solid or fluid half space on the outer plate

surface; this system will be referred to as the leaky case for the rest of this thesis.

The fundamental formulations of the wave equations used in this chapter are analogous

to those presented in Sec. 2.2.2 and Sec. 2.2.3 for the unloaded SH and Lamb-type cases.

For the SH case, the relevant equation of motion (Eqn. 2.4) is expressed in terms of the

displacement uz in the z direction. On the other hand, for the Lamb-type waves, the

equations of motion are uncoupled into two separable equations in terms of the two scalar

potentials, ϕ and ψ, corresponding to the longitudinal and shear motions respectively

(Eqn. 2.7).
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6.2.1 Displacement Field Equations

Solid layer(s)

As in Ch. 2, the common time harmonic factor (e−iωt) in the general displacement field

equations is suppressed throughout. The equations of motion (see Eqns. 2.4 and 2.8 for

the SH and Lamb cases respectively) are expressed in terms of Bessel equations which can

be solved using Bessel-type functions. For solid layer(s), Bessel functions of the first kind

(J ) and second kind (Y ) with complex order may be used. The solution for the SH case

become:

uz(r, θ)solid = [a1sJν̄(kT r) + a2sYν̄(kT r)]eiν̄θ. (6.2)

whereas for the Lamb-type case, the solutions are:

ϕ(r, θ)solid = [a1sJν̄(kLr) + a2sYν̄(kLr)]eiν̄θ, (6.3)

ψ(r, θ)solid = [a3sJν̄(kT r) + a4sYν̄(kT r)]eiν̄θ.

where ais, with i={1,2. . . etc} are the unknown plane wave amplitudes in the solid layer

(denoted by the subscript s).

Solid Half Space

A solid half space supports the propagation of both the shear and longitudinal bulk waves.

Only the Hankel function of the first kind (H1), corresponding to the outward propagating

plane wave, is suitable to represent solutions in an infinite half space. The solution for the

SH case becomes:

uz(r, θ)solidhs
= [a1shs

H1
ν̄ (kT r)]eiν̄θ. (6.4)

while the solution for the Lamb-type case is:

ϕ(r, θ)solidhs
= [a1shs

H1
ν̄ (kLr)]eiν̄θ, (6.5)

ψ(r, θ)solidhs
= [a2shs

H1
ν̄ (kT r)]eiν̄θ.

where aishs
, with i={1,2. . . etc} are the unknown plane wave amplitudes in the solid half

space (denoted by the subscript hs).
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Fluid Half Space

A perfect fluid half space cannot support any shear propagation, therefore any shear

components in the solid layer would not be able to couple with the fluid layer, hence

uzfluid
= 0 in the SH case, while ψ = 0 in the Lamb-type case. As a result, the solutions

of the leaky and non-leaky SH cases are both non-attenuative.

The solution for the fluid half space in the Lamb-type case, supporting only the longitu-

dinal wave propagation, is reduced to the following form:

ϕ(r, θ)fluidhs
= [afhs

H1
ν̄ (kLr)]eiν̄θ. (6.6)

where afhs
is the unknown plane wave amplitude in the fluid half space of the Lamb-type

case.

6.2.2 Solution of the Fluid-Loaded Solid Curved layer

As an example, the solution of Lamb-type waves in a solid curved plate coupled with

a fluid half space on the outer surface (see Fig. 6.1) is presented in this section; the

analytical solution is also in-line with the numerical and experimental validations presented

in the next chapter. In all cases, the solution is obtained by applying the appropriate

boundary conditions of each interface discussed in Sec. 2.2.4, and using the correct stress

or displacement field equations. The stress field equations (Eqn. 2.17) can be obtained

from the displacement field equations. According to Tab. 2.2, the five boundary conditions

for the case of a fluid-filled solid curved layer are:

σrrsolid
= 0|r=r1

σrθsolid
= 0|r=r1

σrθsolid
= 0|r=r2

ursolid
= urfluid

|r=r2

σrrsolid
= σrrfluid

|r=r2

(6.7)

where r1 and r2 are the radius at the inner and outer surfaces of the solid layer respectively.

The overall solution of the layers can be assembled using the Global Matrix method (see

for example Lowe [98]). This forms a homogeneous eigen-problem that relates the square
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eigen-matrix [D] to the field amplitudes a in the form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 · · · · · · · · · D15

...
. . .

...
...

. . .
...

...
. . .

...

D51 · · · · · · · · · D55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1s

a2s

a3s

a4s

afhs

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0. (6.8)

It is worth noting that the eigen-matrix [D] is assembled with the boundary conditions in

the order listed in Eqn. 6.7, and the elements of D are expressed explicitly as follows:

D11 = k2
Ls

[ − λJν̄(ω̂1) + 2µsJ
′′̄
ν (ω̂1)]

D12 = k2
Ls

[ − λYν̄(ω̂1) + 2µsY
′′
ν̄ (ω̂1)]

D13 = 2µsiν̄
r1

[ − 1
r1
Jν̄(ω̂3) + kTsJ

′̄
ν(ω̂3)]

D14 = 2µsiν̄
r1

[ − 1
r1
Yν̄(ω̂3) + kTsY

′
ν(ω̂3)]

D15 = 0

D21 = 2µsiν̄
r1

[ − 1
r1
Jν̄(ω̂1) + kLsJ

′̄
ν(ω̂1)]

D22 = 2µsiν̄
r1

[ − 1
r1
Yν̄(ω̂1) + kLsY

′̄
ν(ω̂1)]

D23 = µs[ − k2
Ts
J ′′̄

ν (ω̂3) + kTs
r1
J ′̄

ν(ω̂3) − ν̄2

r2
1
Jν̄(ω̂3)]

D24 = µs[ − k2
Ts
Y ′′

ν̄ (ω̂3) + kTs
r1
Y ′̄

ν(ω̂3) − ν̄2

r2
1
Yν̄(ω̂3)]

D25 = 0

D31 = −2µsiν̄
r2

[ − 1
r2
Jν̄(ω̂2) + kLsJ

′̄
ν(ω̂2)]

D32 = −2µsiν̄
r2

[ − 1
r2
Jν̄(ω̂2) + kLsJ

′̄
ν(ω̂2)]

D33 = −µs[ − k2
Ts
J ′′̄

ν (ω̂4) + kTs
r2
J ′̄

ν(ω̂4) − ν̄2

r2
2
Jν̄(ω̂4)]

D34 = −µs[ − k2
Ts
Y ′′

ν̄ (ω̂4) + kTs
r2
Y ′̄

ν(ω̂4) − ν̄2

r2
2
Yν̄(ω̂4)]

D35 = 0

D41 = −kLsJ
′̄
ν(ω̂2)

D42 = −kLsY
′̄
ν(ω̂2)

D43 = −iν̄
r2
Jν̄(ω̂4)

D44 = −iν̄
r2
Yν̄(ω̂4)

D45 = kLf
H ′1

ν̄ (ω̂5)

D51 = −k2
Ls

[ − λsJν̄(ω̂2) + 2µsJ
′′̄
ν (ω̂2)]

D52 = −k2
Ls

[ − λsYν̄(ω̂2) + 2µsY
′′
ν̄ (ω̂2)]

D53 = −2µsiν̄
r2

[ − 1
r2
Jν̄(ω̂4) + kTsJ

′̄
ν(ω̂4)]

D54 = −2µsiν̄
r2

[ − 1
r2
Yν̄(ω̂4) + kTsY

′̄
ν(ω̂4)]

D55 = k2
Lf

[ − λfH
′1
ν̄ (ω̂5) + 2µfH

′′1
ν̄ (ω̂5)]

(6.9)

where ω̂1 = kLsr1, ω̂2 = kLsr2, ω̂3 = kTsr1, ω̂4 = kTsr2, ω̂5 = kLf
r2, and λ and µ

are the Lamé constants of the material, while the subscripts s and f indicate the material
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properties corresponding to the solid layer and the fluid half space respectively. The prime

′ indicates the derivative of a function in respect to the radius r.

The solution to Eqn. 2.18 which consists of the complex wavenumber, ν̄, and the real

frequency, ω, is obtained using a tracing routine written by the author and an optimisation

routine available in the software MatlabTM . The procedure of this 2-D tracing routine is

discussed in Sec. 6.3.

The linear (tangential) phase velocity (Vph) and the attenuation (Atten) of the wave

modes are calculated at the mid-thickness of the plate (rmid), and can be expressed in the

following relationships:

Vph(m/s) =
ω · rmid

νreal
. (6.10)

Atten(dB/m) =
νimag

rmid
· 20log10(e). (6.11)

6.2.3 Bessel Function of the Complex Order

The numerical solution to Eqn. 6.8 was found to be extremely demanding, this is mainly

because of the fact that an accurate calculation of the Bessel functions with a complex

order is very complicated. As discussed in Sec. 2.3.2, the Bessel functions of the order γ

and argument x are the unique standard solutions to the Bessel’s differential equation in

the following form:

y′′ +
1
x
y′ + (1 − γ

x2
)y = 0. (6.12)

Many engineering problems, especially those showing cylindrical symmetry, are described

by the Bessel equation. In most circumstances, both the order and the argument of the

Bessel function are real, or the order is real and the argument is complex. In this case,

the Bessel equation can be easily treated using various methods, such as convergent series

and asymptotic expansions . . . etc. The details can be found in, for example, Ch. 9 of

Abramowitz et al. [99].

However, the Bessel function of a complex order and a real/complex argument can arise

in a few engineering problems such as acoustic wave propagations (see for example Frisk

et al. [140]). Before computers were available, the theoretical treatment of the Bessel

function of this kind relied heavily on asymptotic solutions that are subject to numerous

conditions (details can be found in Langer [144]), and they are not always suitable for

numerical calculations. Recently, the solutions of the Bessel function of this kind have

been revised so that numerical schemes, such as Chebyshev expansions, recursion relations

and numerical integration of the integral representation, can be applied.
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The Chebyshev Expansions Technique (CET) [145] involves expressing the Bessel function

in terms of the Chebyshev polynomial series. It has been reported [145] that the calcula-

tions using the CET can become uneconomical when the order and argument of the Bessel

function are large.

On the other hand, the recurrence method has been shown [146] to provide the “most

powerful” solution to the Bessel functions of complex order. The method takes advantage

of the recurrence relations of the Bessel functions (Eqn. 9.1.27 of Abramowitz et al. [99]),

from which the solution can be significantly simplified, and thus can easily be implemented

and evaluated. Nevertheless, the accuracy of the numerical calculation using this method

is highly dependent on the values of the orders and arguments used.

The theoretical background of the integral representation of the Bessel function has been

examined briefly by Watson (pp. 46 of [100]). The numerical study of this Numerical

Integration Scheme (NIS) has been investigated by one of the collaborators of the present

work, Alexander Adamou, and the procedures of the method are summarised below.

In general, Bessel functions of the first kind Jγ(x) may be expressed in the form of an

integral in the following form (Eqn. 9.1.20 of [99]):

Jγ(x) =
2(1

2x)
γ

π
1
2 Γ(γ + 1

2)

∫ 1

0
(1 − t2)γ− 1

2 cos(xt)dt. (6.13)

where Γ is the Gamma function. The formula is valid for �(γ) > −1
2 , and can be nu-

merically integrated. For �(γ) < −1
2 , recurrence relations are used to express the Bessel

function in terms of other Bessel functions with �(γ) > −1
2 , which are then integrated as

before.

The Bessel function of the second kind Yγ(x) can be evaluated using the following expres-

sion (Eqn. 9.1.2 of [99]):

Yγ(x) =
Jγ(x) cos(γπ) − J−γ(x)

sin(γπ)
. (6.14)

The NIS was implemented in a MatlabTM program where the accuracy of the solution can

be specified. It is worth noting that the numerical integration breaks down for large x (at

around x > 100) due to the rapid oscillations of the integrand.

In 1986, Thompson et al. [147] examined the Bessel functions of complex order using com-

bination of both the CET and the recurrence relations to achieve a good accuracy in any

range of the order and argument of the Bessel function. Based on his findings, Thompson

outlined suitable choices of algorithms using a combinations of the above methods accord-

ing to the γ− x region, in order to achieve the best accuracy. This has subsequently been
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implemented into a commercial program MapleTM as a “ready-to-use” function (see for

example http://www.maple.com); this Maple function can be linked to MatlabTM from

which the phase velocity and attenuation dispersion curves are calculated.

The accuracy of Thompson’s method may be checked by comparing the numerical results

with those calculated using the NIS with a tolerance value higher than the number of

significant figures displayed by MatlabTM . The numerical comparisons were performed

using values of γ and x that fall into the three different regions: �(γ) < x, �(γ) ≈ x and

�(γ) > x. The results are shown in Tab. 6.1, where the NIS has a theoretical tolerance

in accuracy of at least 10× 10−15, therefore the differences of the solutions between these

two methods correspond to the accuracy of CET (shown in Tab. 6.2). It can be seen

that the results produced by Thompson’s method for both the real and imaginary parts

are extremely accurate in all regions. The solution is slightly less accurate in the region

of γ > x, but nevertheless it has an accuracy of 1 × 10−7%. Therefore the method

should in theory provide sufficient accuracy when evaluating the dispersion curves using

the characteristic functions Eqn. 6.8 for the study of the curvature effect.

6.3 Two-dimensional Optimisation Routine

In an attenuative case, where the attenuation is due to leakage into a surrounding material,

the roots of the system (Eqn. 6.8) are complex (ν̄, ω where ν̄ = νreal + νimagi ), as

discussed earlier, and can be treated as a system of three independent parameters. The

tracing routine is, in general, very similar to that of the 1D problem detailed in Fig. 3.6

of Sec. 3.2.

The only difference compared to the non-attenuative case is that the roots of the charac-

teristic function for the leaky case are searched in a plane of two independent parameters,

while the remaining one is fixed. The plane in which a root is searched can be in any

combination of the three parameters. In the author’s implementation of the optimisation

routine, a root is searched in the plane of imaginary part of wavenumber and frequency

(νimag − ω), while the real part of the wavenumber νreal is fixed.

As in the non-attenuative case, the first step of the routine is to locate two “initial roots”

corresponding to the same mode at two real angular wavenumbers, Re(ν1) and Re(ν2) that

have very close values. These roots provide the starting points of the line tracing routine

in both the increasing and decreasing frequency directions. This searching of the “initial

roots” may be repeated to search for a desired number of higher order modes.

To find a root of two parameters, the calculation may be treated as a minimisation problem
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when the characteristic function of Eqn. 6.8 is expressed in the following way:

Modified Characteristic Function (MCF) = log
(

abs[�(det(D)) + �(det(D))]
10 × 10100

)
.

(6.15)

� and � indicate the real and imaginary quantities of the determinant of the character-

istic function, D. Since the absolute quantity of D is usually very large, for clarity the

amplitudes of D can be normalised with a very large number, such as 10 × 10100, and

expressed on a Log scale.

Fig. 6.2 illustrates the root finding routine of two independent parameters. The contour

lines indicate the amplitude of the MCF. Having chosen the real part of the angular

wavenumber νreal, the amplitude of the MCF forms a sink at the corresponding root in

the νimag-ω plane, showing a minimum of the function which corresponds to a root of the

leaky system (Label A in Fig. 6.2).

The approximate location of a sink may be located by sweeping along the νimag and ω

plane in turn to locate the general direction of the local minimum with respect to each

parameter. This would subsequently allow the minima to be homed-in using a numerical

algorithm of a two-dimensional steepest descent (see for example Press et al. [103]); the

algorithm, as shown in Fig. 6.2, iterates to find the nearest local minimum of the MCF

in the direction of the steepest descent gradient at a given starting point in the νimag-ω

plane. The process is iterated as many times as required until a specified accuracy is

achieved; a typical accuracy is set to 1 × 10−6 for the values of both νimag and ω.

Using the “initial roots”, the second step of the routine traces the dispersion curves of the

modes in the user specified frequency range, at every real angular wavenumber intervals

Re(δν). To trace a dispersion curve, an “initial guess point” is first identified by extrapo-

lation in a step of Re(δν) using previously found roots that can either be the “initial roots”

or roots that are subsequently found. A linear extrapolation is used for the first 5 points

on a curve, thereafter a quadratic extrapolation can be used to improve the efficiency of

the scheme; this is similar to a technique used in Disperse [148].

In Fig. 6.2, the linear extrapolation of the tracing routine is demonstrated. It can be

seen that an “initial guess point” at Real(ν + 2δν) is obtained by extrapolating using the

two known roots at Real(ν) and Real(ν + δν), and the root is located using the steepest

descent gradient iteration scheme. The extrapolation technique applies to both increasing

and decreasing real wavenumber directions.

This tracing routine typically takes a lot longer than the 1D-tracing routine of the non-

leaky case (Sec. 3.2). This can be attributed to the complexity of finding roots in the
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plane of two independent parameters, additional time is required during the first step of

the routine to search for the “initial roots”. For the 1-D problem of a non-attenuative

case, the finding of the “initial roots” requires sweeping along one parameter within a

particular range over n number of steps, whereas for the leaky problem, the searching of

the “initial roots” requires sweeping along both parameters. If the same number of steps

n is used in sweeping both parameters, the time needed to find the “initial roots” in an

attenuative problem would be the square of that needed for the non-attenuative case.

The size of the step in each parameter for the initial sweeping is decided based on the size

of the sink. The function MCF generates sinks that are localised, covering a small area in

the Imag(ν)-ω plane. As demonstrated in Fig. 6.3, the direction of the steepest descent

gradient does not always point towards the nearest root as one sweeps in the frequency

along a particular Imag(ν). It can be seen that the direction of the steepest descent

gradient points towards the sink along Im(ν1 + δν), while it points away from the sink

along Im(ν1). Therefore the step size of imaginary wavenumber Im(δν) must be small

enough so that when sweeping along Im(ν1) and Im(ν1 + δν), the steepest decents are

not both pointing away from the sink, which might result in the root not being identified.

Similarly, the same criterion applies when choosing the step size for the frequency sweeping.

Im
ag

(
)

�

Frequency ( )�

Root

Sweeping in Frequency

Im( )� ���
	

Im( )�
	

Direction of the steepest
descent gradient pointing
towards the root

Direction of the steepest
descent gradient pointing
away from the root

Figure 6.3: An illustration of the sweeping of the initial complex roots along a real wavenumber,
Re(ν1), in frequency δω and in imaginary wavenumber, Im(δν), steps.
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6.4 Numerical Examples of a Fluid Loaded Case

As an example, numerical solutions of the dispersion curves for circumferential leaky

Lamb-type waves in the system, illustrated in Fig. 6.1, were calculated using the solution

detailed in Sec. 6.2.2, and with the tracing routine described in Sec. 6.3.

Steel layer Water half space

Longitudinal Vel. CL, (m/s) 5959.6 1410.0

Shear Vel. CT , (m/s) 3260.0 —

Density ρ, (kg/m3) 7932 1000

Table 6.3: acoustical properties and density of the materials used in the numerical example of
this chapter.

Figs. 6.4(a) and 6.4(b) show the phase velocity and attenuation dispersion curves of the

Lamb type waves in a steel curved plate (thickness: 3mm, and inner radius: 40mm) coupled

with a water half space on the outer surface. The acoustical properties and the density of

these materials used in the numerical example are listed in Tab. 6.3. It can be seen that

the phase velocity dispersion curves (Fig. 6.4(a)) are very similar to those of the non-leaky

cases (see for example Fig. 4.1). This is because the solid layer remains as the dominant

guiding layer in which the waves propagate at a similar speed to the non-leaky case, while

some of their energy leaks into the water. The same phenomenon can also be found in

the straight case when a water half space coupled to a solid layer would not change the

physical properties of the wave modes significantly in the layer. The attenuation due to the

energy leakage into the water for each individual mode is represented by the attenuation

dispersion curves as a function of frequency, shown in Fig. 6.4(b). A comparison of the

attenuation between straight and curved plates that are coupled with a water half space

is given later in Sec. 6.5.

Figs. 6.5 and 6.6 show the mode shapes of the leaky and non-leaky cases for both the A0

and S0 modes respectively for a curved plate (thickness: 3mm, inner radius: 40mm). In

both cases, despite the fact that they are calculated using different analytical solutions,

the mode shapes of these two modes in the solid layer appear to be almost the same. This

is because the water in the leaky case has a much lower impedance than the plate, thus

has little effect on the mode shapes. Nevertheless, if the impedance between the plate and

the water were similar, it would have a big effect on the mode shapes.

Furthermore as mentioned in Sec. 4.2, the change in mode shapes can be linked directly

to the propagation properties such as the phase velocity. As a result, provided that the

geometry of the main guiding medium (i.e. the solid plate) is kept the same, a matching in

phase velocity of the wave modes between the leaky and non-leaky cases can be expected.
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Figure 6.4: Dispersion curves of the Lamb-type modes in a leaky curved plate systems of a 3mm
thick, 40mm inner radius steel plate coupled with a water half space on the outside of plate.
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Figure 6.5: Radial (Red) and circumferential (Blue) displacement field for the quasi-A0 mode in
a steel curved plate (thickness: 3mm, inner radius: 40mm) at 2.5MHz. Leaky case is for water on
the outside of the plate.
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Figure 6.6: Radial (Red) and circumferential (Blue) displacement field for the quasi-S0 mode in
a steel curved plate (thickness: 3mm, inner radius: 40mm) at 2.5MHz. Leaky case is for water on
the outside of the plate.
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In addition to the typical Lamb-type modes, the fluid-borne Franz modes [149] (also

known as creeping waves) can also be calculated using the formulation derived in Sec. 6.2.2.

Figs. 6.7(a) and 6.7(b) show the dispersion curves of the Franz modes in the same frequency

range as those shown in Figs. 6.4(a) and 6.4(b). There is an infinite number of these

modes at each frequency, all of whose phase velocity converge to the bulk speed of water

as ω → ∞.
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Figure 6.7: Dispersion curves of the fluid-borne Franz modes in a leaky curved plate system of a
3mm thick, 40mm inner radius steel plate coupled with a water half space on the outside of plate.

Unlike the Sholte mode in the leaky straight plate system [150], the Franz modes propagate

circumferentially in the fluid at a certain distance away from the solid layer surface, and

have a large displacement component in the radial direction which leads to a large atten-

uation. Compared to the leaky Lamb-type curved plate modes, the Franz modes typically

have a much higher attenuation. Fig. 6.8 shows the displacement mode shapes of the 1st

and 4th order Franz modes. For a given Franz mode, the amplitude of the mode shapes
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increases with distance from the plate surface; this increase in amplitude is associated to

the curvature of the system, therefore a system with a large curvature would increase the

rate at which the displacement amplitude radiating out from the surface. Additionally, it

can be seen from Figs. 6.7 and 6.8 that the attenuation of the Franz mode increases with

distance away from the solid surface where it propagates.

In practise these modes can be very difficult to detect as they are damped out completely

in a very short distance compared to the typical Lamb-type curved plate modes, thus they

do not normally interfere during experimental measurements.
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Figure 6.8: Radial (Red) and circumferential (Blue) displacement field for Franz modes in a steel
curved plate (thickness: 3mm, inner radius: 40mm) coupled with a water half space on the outer
surface at 500kHz.

6.5 Curvature Effect on Propagation Properties in Loaded

Plates

In this section, the curvature effect on the phase velocity and the attenuation of the wave

modes in a loaded curved plate is investigated in a similar fashion to those investigated in

Ch. 4 for the unloaded case. First, the phase velocity and attenuation dispersion curves

may be compared visually between a straight (thickness: 3mm) and a curved steel plate

(thickness: 3mm, inner radius: 40mm), both of which are coupled with a water half space

on the outer surface, shown in Fig. 6.9. Only the first two fundamental Lamb-type wave

modes are compared in Fig. 6.9, however, in the frequency range of this figure, there are

other higher order plate modes as seen in Fig. 6.4(a), but for clarity these are not shown.

The prefix “Quasi” is used in the figure to distinguish the wave modes belonging to the

curved leaky plate system from those of the straight leaky system.
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lines) and curved (Solid lines) leaky plate systems (3mm thick steel plate coupled with a water
half space on the outer side of plate). The inner radius of the curved plate is 40mm.

Phase Velocity

As in the case of the non-leaky curved plate, the “quasi-A0” and “quasi-S0” modes do

not converge to a single Rayleigh wave speed, but to two distinctively different speeds

corresponding to the surface waves on the outer and inner surfaces respectively as ω → ∞.

The displacement field of these two wave modes at low frequencies are similar, and hence

their attenuation values are similar too. However, at higher frequencies, for example at

2.5MHz (shown in Figs. 6.5(b) and 6.6(b)) the displacement amplitude is confined to the

area close to either the inner or the outer surface. As a result, the “quasi-A0” mode can

be strongly coupled with the water half space, and it can be seen in Fig. 6.9(b) that the

attenuation becomes much larger than that of the A0 mode towards higher frequencies due
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to the increased leakage. On the contrary, as the energy distribution in the plate moves

towards the inner surface, away from the water-solid interface, the “quasi-S0” mode has a

much smaller attenuation at higher frequencies compared to the straight plate S0 mode.

Fig. 6.10 shows the normalised difference in phase velocity of the A0 and S0 modes between

the straight and curved plates, using Eqn. 4.1, for a range of frequencies and inner radii

of the curved plate. These figures have a striking resemblance to those analysed for the

unloaded plate case (see Fig. 4.2) in terms of the pattern and the amplitude. The difference

in phase velocity is typically less than a few percent even for a curved plate having a very

small inner radius. This clearly suggests that the curvature has little effect on the phase

velocity in both the leaky and the non-leaky systems.
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Figure 6.10: Percentage difference in phase velocity between straight and curved steel plates
(thickness: 3mm) as a function of frequency and inner radius of the curved plate. The plates are
coupled on one side with water.

Attenuation

Similar 3-D plots (Fig. 6.11) have been produced for the comparison of the attenuation

of the A0 and S0 modes over the same frequency and curvature radius range as those for

the phase velocity comparison. It can be seen that the curvature effect on the attenuation

varies over the range of frequencies in both cases, but most importantly, the curvature

effect on the attenuation is substantially greater than that on the phase velocity.

Additionally, it is worth noting that the “quasi-A0” mode has a greater attenuation which

increases with increasing curvature, and this phenomenon is completely opposite for the

“quasi-S0” mode due to the reasons discussed earlier. Note that the percentage difference

in attenuation of the S0 shown in Fig. 6.11(b) is negative; a greater attenuation is shown

as a positive percentage difference and vice versa. As Beard [2] reported, curvature can

become problematic for inspection, especially in a leaky system. Typically the changes in
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attenuation due to the curvature effect can increase and decrease by over 100% for the A0

and S0 modes respectively when the curvature radius is small.
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Figure 6.11: Percentage difference in attenuation between straight and curved steel plates (thick-
ness: 3mm) as a function of frequency and inner radius of the curved plate. The plates are coupled
with a water half space on the outer surface of the plate.

Since the amount of leakage from the plate is related to the energy available to couple

with the water half space at the surface of the plate, it would help to improve the under-

standing of the curvature effect on the attenuation by plotting the total energy density

distribution across the plate thickness for a range of inner radii. The total energy density

is a combination of the kinetic energy density (KED) and the strain energy density (SED).

For the Lamb-type circumferentially propagating waves, the displacement field (Sec. 6.2.1)

does not depend on the z direction, while uz = 0. Therefore the formulae of the KED

and SED (see for example Auld [5]), in terms of the relevant displacement and stress field

vectors, can be reduced to the following forms:

KED =
ρ

4

{(
∂ur

∂t

)2

+
(
∂uθ

∂t

)2
}
. (6.16)
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}
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where ur, uθ, σrr and σrθ can be expressed in terms of the displacement scalar potentials

ϕ and ψ using Eqns. 2.7 and 2.17 respectively, while the reduced version of σθθ can be

expressed as follows:

σθθ = λ

[
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1
r2
∂2ϕ
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. (6.18)

The through-thickness total energy density for the “quasi-A0” and “quasi-S0” modes at

500kHz is shown in Fig. 6.12, where the amplitude of the total energy density for a par-

ticular curvature radius has been normalised with the local maximum value. As expected,
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the energy distribution is shifted towards the outer and inner surfaces for the quasi-A0

and quasi-S0 modes respectively as the curvature increases. This changes the amount of

energy coupled with the water half space and consequently affects the attenuation value

in the same way as occurs with increasing frequency.
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Figure 6.12: Through-thickness normalised total energy density calculated at 500kHz for the
quasi-A0 and quasi-S0 modes in 3mm steel curved plates coupled with a water half space, over a
range of inner radii.

6.6 Summary

In this chapter, leaky systems using solution that either have the angular wavenumber

being real and the frequency being complex, or the angular wavenumber being complex

and the frequency being real, have been thoroughly examined. In addition, a detailed

literature review on these two kind of solutions has been performed.

For leaky guided circumferential wave propagation, the attenuation due to leakage can only

be correctly described using the combination of complex wavenumber and real frequency

roots. The general analytical solution for the circumferential guided waves of a loaded

curved plate based on this combination of roots have been derived, and the formulation

of a fluid-loaded case has been explicitly shown.
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The Bessel function of complex order is the most important component in the solutions of

leaky circumferential guided wave problems. However, few numerical schemes are available

for the evaluation of these complex functions. The most promising numerical schemes

include the robust Chebyshev Expansion Technique (CET), and the accurate Numerical

Integration Scheme (NIS); both of these schemes have been evaluated in this chapter.

The finding of roots from the dispersion relation in a leaky case with two independent pa-

rameters can be carried out using a steepest descent scheme in a two-dimensional optimi-

sation routine. This forms part of the global tracing routine, which has been summarised.

As an example, the phase velocity and attenuation dispersion curves, and the mode shapes,

have been presented for a fluid loaded case, all of which were calculated using the numerical

tracing routine. In general, there are two families of wave modes in the coupled plate case:

the plate guided wave modes and the fluid-borne Franz modes.

The curvature of the plate was found to have much more effect on the attenuation than

the phase velocity of the wave modes in the leaky case. The amount which the attenuation

changes can be related to the amount of shift in energy distribution through the thickness

due to the increasing in curvature. The shift of the energy distribution towards one surface

or the other is wave mode dependent. In general, a higher attenuation is obtained if the

energy shifts towards the half space-plate interface, and vice versa.
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Chapter 7

Validation of Curvature Effect in

Loaded Plates

The analytical solutions of a leaky system have been examined thoroughly in the previous

chapter; the system consists of guided waves propagating circumferentially in curved plates

that are coupled with either a solid or a fluid half space on the outer surface. The solutions

were subsequently used to study the curvature effect in such systems. Before one uses the

results, the validity of this solution must be established.

In this chapter, the analytical prediction of the curvature effect of the leaky curved plate

case is validated using both the numerical FE method and experimental measurements.

The model case for the validation in this chapter is a 3mm thick steel curved plate coupled

with an infinite fluid half space on the outer surface (illustrated in Fig. 6.1). These

geometrical dimensions are also the same as those investigated in Sec. 6.5 of the previous

chapter.

In the first part of this chapter, a FE model analysed in the time domain using elastic and

acoustic plane strain elements to represent the solid plate layer and the fluid half space

respectively, is presented. Using this method, the attenuation can be evaluated from FE

simulation results obtained over a range of curvature radii; the results are subsequently

compared to that of the straight case to evaluate the curvature effect.

In the second part of this chapter, an experimental technique to measure the amount of

attenuation due to the leakage into the surrounding medium is presented. Although the

experimental technique, used in Ch. 5, can sensitively measure the difference in phase

velocity due to the curvature effect, it would not be appropriate for the validation of the

leaky case. This is because the experimental technique cannot be easily set up to allow

only the outer surface of the metal plate to couple with a fluid half space. Nevertheless,

since we expect the curvature effect on the attenuation to be significant, we do not need
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such a sensitive setup as we did when studying the free case, as predicted in the previous

chapter.

Instead, sufficiently accurate experimental measurements can be taken from a set of trans-

ducers attached permanently on the surface of a series of pipes of the same thickness and

various curvature radii. The attenuation can then be measured by comparing the wave

signals when the pipes are surrounded by water and when they are in air.

7.1 Finite Element (FE) Modelling of the Leaky Case

The general concept of numerical modelling using finite elements was discussed in Sec. 5.1.1.

In this section, a FE technique to measure the difference in both the phase velocity and

attenuation between the curved and straight cases is presented.

For a leaky system of a curved plate coupled with an infinite fluid half space (see Fig. 6.1),

the dispersion curves cannot be extracted from the FE modelling technique in the same

way as for the layered case with a finite thickness studied in Sec. 5.1. This is because

for a non-leaky case, the FE calculation is based on a modal analysis where the natural

frequencies corresponding to the ascribed geometry and boundary conditions are extracted;

whereas for a leaky system, the geometry of an infinite half space is very difficult to model

using a modal extraction scheme in finite element modelling.

Since the fluid half space has a very different impedance to the main guiding medium of

the steel plate, and the wave modes of fluid and solid media can be considered as very

weakly coupled, a close approximation in phase velocity may be obtained when the infinite

half space is replaced with a thick finite layer. Although this idea of modelling the leaky

system may correctly approximate the phase velocity of the wave modes in the plate layer

by using the appropriate boundary conditions at the solid-fluid boundary, the model still

would not be representative of the leaky system, as the leaky energy can re-enter the

guiding medium after reflecting from the top of the fluid layer.

Alternatively, the wave mode propagation may be simulated in the time-domain, where

a wave mode is excited at one end of the plate model and is subsequently measured at

several locations along the plate before reflections from the top of the fluid layer appear.

The results of this time response signal can then be used to calculate the attenuation of

one particular wave mode.
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7.1.1 FE model of the Leaky Case

Lamb-type wave mode propagation in both the straight and the curved plate cases involves

polarisation only in the out-of-plane (uy, ur) and in-plane (ux, uθ) directions, as shown

in Figs. 4.5 and 7.1. Therefore the simulation can be performed using 2-D elastic and

acoustic plane strain elements to model a section through an infinitely wide steel plate

and a fluid half space respectively. The plane strain elements are utilised in the plane of

x− y or r − θ for the straight or curved case respectively.
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Figure 7.1: Schematic diagram of a two layered finite element model for the simulation of leaky
wave mode propagation in the time domain.

Fig. 7.1 shows a schematic diagram of the FE model used for the time-domain FE sim-

ulation. The simulations were performed using AbaqusTM but could equally have been

done using many commercial FE programs. The model consists of a layer of steel plate

(thickness: 3mm) coupled with a layer of water (thickness: 10mm). The two layers are tied

together by coupling the translational motion, in the direction normal to the interface as

expected for a perfect fluid. Additionally, absorbing boundaries are used on the external

edges of the water layer to absorb any energy radiating away from the solid-fluid interface,

hence simulating a fluid half space.

The material properties used are the same as those used in the previous chapter, and are

listed in Tab. 6.3. The model is divided into two sections comprising an initial straight

section and then a curved section of which the inner radius is fixed to a specific value
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corresponding to the curvature radius that is under investigation.

A 5-cycle Hanning windowed toneburst signal is excited at the straight end of the steel

plate by applying forces along the “line of excitation” with an appropriate amplitude

either in the normal or in-plane direction to excite the A0 or S0 mode respectively; the

“line of excitation” is the series of nodes along the free end of the straight section. To

avoid transferring energy to the fluid-borne modes directly during the excitation of either

the A0 or S0 mode, a 50mm long uncoupled single layered straight section is included to

allow the specific excitation mode to fully develop before entering the leaky double layered

section.

The choice of element sizes for the elastic and acoustic plane strain elements in the FE

model follows the same criteria as those used in the modelling of the non-leaky cases

discussed in Sec. 5.1. The general rule is that there should be at least 6 elements for one

wavelength of the slowest propagating wave mode, including both guided and bulk wave

types. Using these basic ideas, the minimum number of elements in the solid and fluid

layers (S1 and S2) as illustrated in Fig. 7.1, can be determined using Eqns. 7.1 and 7.2.

Additionally, for simplicity an aspect ratio ≈ 1 is used for all elements.

S1 = Round

[
ds

6
V̇ph

fex

]
, (7.1)

S2 = Round
[
df

6
CLfluid

fex

]
. (7.2)

where V̇ph is the phase velocity of the wave mode under investigation, CLfluid
is the bulk

translational velocity of the fluid, fex is the excitation frequency of the wave mode, and

ds and df are the thickness of the solid and fluid layers respectively.

The excitation signal can be reflected at any locations where there is a sharp change of

impedance in the propagation direction; the impedance is dependent on both the material

properties and the geometry. Therefore a reflection is expected to occur at location where

the plate couples with the water layer, hence the initial straight section provides delay to

separate the reverberating signals. Additionally, propagation velocities of the “quasi-A0”

and “quasi-S0” modes vary little over the range of curvature radii in this study, therefore

the length of the straight section (shown in Fig. 7.1) works well as a filtering length in all

models.

As an illustration, the total energy density field of the system with a curvature radius

of 40mm, at several time instances, is shown in Fig. 7.2. The fields were collected from

the results generated from the time-domain simulation in AbaqusTM , and subsequently

plotted using MatlabTM . The total energy density fields, which are the sum of the kinetic

and potential energy density fields stored in the system (see for example pp.142-146 of

Auld [33]), are plotted at four time instances corresponding to the propagation of the
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A0 wave mode in different sections of the FE model at times of 0.4 × 10−5, 1.8 × 10−5,

2.8 × 10−5 and 6.8 × 10−5 seconds respectively. The colour scales of the field amplitudes

are different in all four time instances; the amplitudes of the energy level in the field are

normalised to the maximum value for clarity. Therefore these images are illustrative but

do not directly indicate the degree of attenuation.

Fig. 7.2(a) shows the A0 mode being generated along the “line of excitation” at 500kHz

to propagate in the non-leaky straight section of the model (Fig. 7.2(b)). As the wave

packet enters the double layered straight section (Fig. 7.2(c)), the non-leaky A0 wave mode

converts into a leaky A0 mode where some of its energy leaks into the fluid layer, and is

subsequently absorbed by the absorbing boundary. The amount of this leakage is governed

by the attenuation characteristic of the wave mode at the excitation frequency. Finally,

the A0 leaky wave mode enters the leaky curved sections, as shown in Fig. 7.2(d), where

more energy is expected to leak into the surrounding medium for the reasons explained in

Sec. 6.5 of the previous chapter. In this section of the model, the wave fronts of the leaky

bulk waves appear to be curved in the fluid layer; the arc of the wave fronts has the same

curvature as that of the outer surface of the plate.

A drawback with this approach is that the absorbing boundary condition works best

when the radiating waves strike the boundaries at 90 degrees (details can be found in, for

example, Engquist et al. [151]). As a result, the absorbing boundaries of the fluid layer do

not absorb all the wave energy that reaches them; a small amount of the energy may be

reflected back and re-enter the plate. However, the fluid layer acts as a delay line so any

such re-incident waves are delayed with respect to the wave mode of interest.

Additionally, the propagation of the fluid-borne Franz modes can be observed in the fluid

layer in Fig. 7.2(d). It can be seen that as the energy of the “quasi-A0” mode leaks into

the fluid layer, some of this leaky energy is converted continuously into the Franz modes,

which are represented by the circular wave fronts in the fluid layer.

AbaqusTM outputs the time response signal of the displacement only in the directions

along the principal axes of the cartesian coordinates, x and y, in Fig. 7.2(a). For the

investigation of the curvature effect on the attenuation of the leaky “quasi-A0” mode, two

time response signals are required, and they are measured at nodes located at the mid-

point through the thickness of the steel plate in the out-of-plane direction at positions

along the principal axes, indicated by the “monitoring points” 1 and 2 of Fig. 7.2(d).

The typical time response signals of the leaky “quasi-A0” mode, measured in the out-of-

plane direction at the “monitoring points” 1 and 2, for a 3mm thick steel plate with a

40mm curvature radius, are shown in Fig. 7.3.

In addition to the leaky “quasi-A0” mode, a small amount of the leaky “quasi-S0” mode
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can also been seen ahead of the “quasi-A0” mode. Since the excitation is asymmetric, there

should not be any “quasi-S0 mode excited at the “line of excitation”. However, as the wave

packet enters the coupled section (see location “A” in Fig. 7.1), the symmetry condition

is destroyed. At this location, some of the energy for the “quasi-A0” mode is converted to

that of “quasi-S0” mode; this is also know as the mode conversion phenomenon.

The same phenomenon occurs when exciting the S0 mode where some of its energy is

converted to that of the A0 mode. However, it was found that a substantially higher

amount of the A0 mode is generated in this case, compared to the amount of S0 mode

generated during the excitation of the A0 mode.
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Figure 7.3: Typical FE time-response signals taken from the first (a) and second (b) monitoring
points shown in Fig. 7.2(d). The wave signal is excited at 500kHz.

Furthermore, some signals that cannot be correlated to any of the excited wave mode can

be observed in Fig. 7.3 at times later than the first arrival of the leaky “quasi-A0” mode;

these signals are likely to be caused by the reverberations of the excitation wave mode

or other converted wave modes at the initial straight section, or they can be caused by

the re-incident leaky waves after being partially reflected from the absorbing boundaries.

As these waves arrive later than the main signal, they should not affect the accuracy in

calculating the attenuation of the targeted wave mode.
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7.1.2 Results of the FE Validation

The calculation of the attenuation in dB/m of a particular wave mode, due to the energy

leakage into the surrounding medium in the curved section of the FE model, can be

evaluated easily using the amplitudes of the time-response signals taken at the “monitoring

points” 1 and 2. the typical time signal measurements at these monitoring points are shown

in Figs. 7.3, and the formula of the attenuation calculation is:

Atten(dB/m) =
20
l

log
(
Amp1

Amp2

)
. (7.3)

where Ampi with i = {1, 2} corresponds to the peak to peak amplitude of the received sig-

nal at the “monitoring points” 1 and 2 (illustrated in Fig. 7.2), and l is the circumferential

distance between the two monitoring points (shown Fig. 7.1).

A limitation of using this FE method to calculate the attenuation is that when the curva-

ture radius becomes large, the distance between the two monitoring points increases. This

would also increase the amount of energy leakage of the “quasi-modes” as it travels be-

tween the two monitoring points. In the limiting case, the amplitude of the “quasi-mode”

may not be distinguishable from the reverberative noise mentioned above, and thus the

calculation of attenuation would not be possible. For this reason, attenuations of the

wave modes in a 3mm steel curved plate due to the energy leakage into the surrounding

material are calculated for a range of curvature radii that are restricted to values between

10mm and 110mm if the results are taken only from the principle axes. Alternatively, if

the results are to be taken from the curved section, the wave signals may be resolved in

directions to obtain the normal amplitude (i.e. Ax cos(θ) + Ay sin(θ) where Ax,y are the

motion amplitude along the principle axes x and y).

Figs. 7.4(a)-(d) show the normalised percentage difference in attenuation of the A0 and

S0 modes calculated using both the analytical method and the FE simulations at 500kHz

and 1000kHz, where the results were compared with those of the straight case obtained

using Disperse [148]. A greater attenuation compared to the straight case is shown as a

positive percentage difference in the y axis, and vice versa.

It can be seen in Fig. 7.4 that the FE simulations predict the percentage difference in

attenuation fairly accurately. Nevertheless, a noticeable increase in the level of error can

be detected as the curvature radius reduces. This can be linked to the fact that some of

the energy reflected from absorbing boundaries in the fluid layer re-enters the plate layer,

supplying extra energy to the guiding system. Additionally, this extra supply of energy

also provides an explanation for the percentage difference in attenuation of both the A0

and S0 modes calculated using the FE simulations always being lower than those predicted

analytically.
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In general, marginally more energy is expected to re-enter to the plate after reflecting from

the edge of the fluid layer, as the curvature radius reduces. This extra energy interferes

with the amplitude of the measured signal. A model with a small curvature radius has a

short circumferential distance, l, between the two monitoring points, thus allowing a short

distance for the re-incident signals and the wave mode of interest to separate in time.

Thus the error is believed to be due to the presence of these unwanted re-incident signals.

7.2 Experimental Validation of Curvature Effect in Leaky

Cases

In this section, an experimental technique to measure the attenuation of the “quasi-A0”

mode is presented; this technique is applied to fluid loaded pipes with a range of curvature

radii, and subsequently used to validate the curvature effect on the attenuation due to the

energy leakage into the surrounding material.

7.2.1 Experimental Samples

The experiment was performed using commercially available carbon steel pipes of various

sizes. Typical material and acoustical properties of the carbon steel are assumed, and are

the same as those used for the analytical solution of the fluid loaded case, investigated in

the previous chapter; the material properties of both the carbon steel and the water are

listed in Tab. 6.3. To eliminate the dependence of thickness of the pipes when investigating

the curvature effect, all pipes were machined in a lathe to the same wall thickness.

The dimensions of commercially available carbon steel pipes of various sizes (i.e. the thick-

ness to radius ratio) are roughly determined by the amount of pressure which the pipes

are designed to withstand; typically a large safety factor is also utilised to ensure safety.

Therefore these pipes are not required to be manufactured to a high geometrical accuracy.

According to the API-51 standard by American Petroleum Institute, pipes with diameter

> 23
8 and < 20 inches, the diameter (as a percentage of specified outer diameter) is to be

within ±1%.

A total of six pipe sizes, labelled from A to F, were investigated, all of which have been

carefully machined down to a wall thickness that is as close to 3mm as possible; their

dimensions, and the measured maximum and minimum thicknesses around the circumfer-

ence, which are the positive and negative percentage changes compared to the nominal

wall thickness, are listed in Tab. 7.1. In general, the tolerance of the wall thickness in-

creases with the pipe diameter, hence a large pipe is less axially symmetric than one with

a smaller diameter, as shown in Tab. 7.1. Every care has been taken to ensure that the
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finishing of the pipes is close to perfect, but tiny circumferential grooves can be clearly

observed on the machined surfaces due to the turning in the lathe. However, the size of

the grooves is much smaller than the wavelength of the excitation mode, and therefore the

grooves should have minimal effect on the propagation properties.

Measured min. thickness Measured max. thickness

Inner/Curvature Thickness (% change (% change

Pipe diameter (mm) (mm) in thickness) in thickness)

A 53.4 3.0 -2.12 4.91

B 70 3.0 -5.31 7.18

C 80.4 3.0 -2.59 8.83

D 104 3.0 -9.90 6.15

E 156 3.0 -7.75 12.02

F 207 3.0 -5.13 16.12

Table 7.1: Dimensions and their tolerances of pipes of various curvature radii used in the exper-
imental measurement of attenuation due to leakage.

7.2.2 Experimental Technique

To evaluate the attenuation due to leakage into the surrounding medium, the experiment

compares the amplitude of wave signal propagating around the circumference of a pipe

between the unloaded and loaded cases directly. As a result, it is very important that

the positions where the wave mode is excited and detected are fixed for both cases. Com-

pressional PZT circular disc elements were used for the excitation of the wave mode. The

material properties of the PZT (see Tab. 5.2) is the same as those used in the validation

of the unloaded case; they provide an excellent means of exciting the A0 mode.

The PZT elements have a diameter of 3mm and thickness of 1mm, and are attached per-

manently on the outer surface aligned around the circumference as illustrated in Fig. 7.5;

these disc elements were subsequently encased in a small amount of silicon to stop any con-

tact with the water when immersed during the second part of the experiment. Typically,

more than two PZT elements were placed along the circumference to monitor the signal

at several locations as the wave propagates around the circumference. The experimental

measurements were taken in a “pitch-catch” configuration.

The pipes are typically cut to a length of approximately 150mm, while the PZT elements

are attached on the outer surface of the pipe approximately halfway across the length.

Since the A0 mode propagates in all directions, the length of the pipe above and below

the PZT element can act as a “filter length”, separating the wave modes reflected from

the ends of the pipe from the first arrival of the A0 mode.
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curvature
radius

steel
pipe

silicon
sealant

Bottom plate

PZT circular disc
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150mm

Figure 7.5: Schematic diagram of experimental setup (dry case) where a pipe is attached with
PZT circular disc elements for the excitation and detection of the A0 wave mode that propagates
around the circumference.
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As demonstrated in the FE simulation earlier, many other wave modes might be simul-

taneously excited when simply forcing purely in the radial direction on the surface of the

pipe. To minimise the number of excitation modes, hence reducing the complication of

the received signals, the experiment was carried out at an excitation frequency below the

cut-off frequency of the A1 mode so that only the A0 and S0 modes could be excited.

Additionally, the PZT elements were carefully positioned in such a way that the arrival

times of the wave packet under measurement were not overlapping with those of the other

wave packets when it was received using any of the receiver PZT elements.

To carry out the measurement, a 5 cycle toneburst signal, excited using one PZT disc,

generated both the A0 and S0 modes. These propagated in both directions around the

circumference, and were received by all the other PZT elements in turn. Then the sealed

pipe was immersed in a water tank (540mm × 540mm × 400mm) filled with de-gased tap

water, as illustrated in Fig. 7.6. The bottom end of the pipe was sealed with a piece of metal

plate to prevent any water from entering the inside of the pipe when immersed; therefore

only the outer surface of the pipe was coupled with the water in the tank. Furthermore,

the sides of the water tank were laid with acoustical absorbing rubber sheets to prevent

any of the leaky signal from re-entering the guiding system. The electronics to drive the

toneburst signals were the same as those used in the unloaded validation, illustrated in

Fig. 5.26. Once the immersed setup was ready, a second set of measurements was recorded.

Transmitter
element

Steel pipe
(thickness: 3mm)

Guided Wave
propagation
direction

Leaky wave
mode propagation

Water tank

Acoustical
Absorbing
Rubber

540mm

540m
m

Receiver
element

Path 1

Path 2

Figure 7.6: Schematic diagram (top view) of experimental setup (wet case) showing a sealed
pipe immersed in a water tank, where absorbing rubber was used to prevent reflection of the leaky
waves (Diagram is not to scale).
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7.2.3 Experimental Results

The attenuation is calculated by dividing the amplitude of the quasi-A0 time signal of the

wet case by that of the dry case. By doing so, the effect of material damping in the steel

and beam spreading of the energy can be cancelled out, and any reduction in amplitude

is solely attributed to the energy leakage.
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Figure 7.7: Typical experimental measurements obtained in “pitch-catch” configuration, where
the excitation wave packet propagates in both directions around the circumference along path 1
and 2 shown in Fig. 7.6. These measurements were made on pipe C with a 500kHz signal.

Fig. 7.7 shows two time responses taken from pipe C at 500kHz measured in dry and

wet conditions. The first and second arrival wave packets correspond to the propagation

of the A0 mode along the shorter and longer arcs of the circumference respectively (see

Fig. 7.6). Knowing the separation distance between the transmitting and receiving PZT

disc elements (l), the attenuation value of the A0 mode of a specific curvature can be

calculated using Eqn. 7.3, where Amp1 and Amp2 are the peak-to-peak amplitudes of a

wave packet measured in the dry and wet cases respectively.

Although the first and second wave packets were both excited and received using the

same set of PZT elements, the second received signal (path 2), despite travelling a longer

distance, has an unexpectedly higher amplitude than the first (path 1), as shown in
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Fig. 7.7(a). This indicates that the sensitivity of the wave mode detection using these

PZT disc elements is directional. This may be due to an uneven coupling condition be-

tween the PZT elements and pipe surface as discussed before for the unloaded experimental

technique in Sec. 5.2.4.

Unfortunately, the wave packet corresponding to the A0 mode could not be interpreted

easily in many of the other measurements. This is generally because of the overlapping of

the various wave packets in time, as a result of both the positioning of the PZT elements

and the strong excitation of the S0 mode. The problem is illustrated in Fig. 7.8. This shows

that there are numerous propagation paths of different lengths. Nevertheless, since the S0

and A0 modes are travelling at different velocities, it can be seen that their corresponding

wave packets can eventually separate over a long period of time after travelling around

the circumferential more than once. Thus, knowing the length of each of these paths, the

attenuation can still be calculated.

The attenuation of the six pipe samples was measured experimentally, using signals at

500kHz and 700kHz; their curvature radius is listed in Tab. 7.1, ranging from 26.7mm to

103.5mm, while the thickness was 3mm. The results are shown in Fig. 7.9, plotted together

with those obtained analytically and by the FE method discussed earlier in Sec. 7.1.1.

The average values of the experimental measurements are plotted while the distribution

of measured values at a particular curvature radius is shown with the vertical error bars.

It can be seen that the curvature effect on the attenuation simulated by the FE models is

in generally good agreement with the analytical predictions. The measurements in general

match well with the analytical predictions, except for results of pipes with a large radius

where they appear to be more inconsistent. One possible reason is that the pipes with a

large radius have a high tolerance in axially symmetry as discussed earlier in Sec. 7.2.1,

therefore a wider distribution of measured values can be observed as a result of waves

propagating along paths with inconsistent thickness.

7.3 Summary

In this chapter, the analytical prediction of the curvature effect has been validated using

both FE numerical simulations and experimental measurements.

A two layered leaky FE model with appropriate boundary conditions, simulated in the

time-domain, has been used to evaluate the attenuation in a leaky curved plate system.

Although it would be impossible to evaluate the attenuation dispersion of each individual

mode directly, the model has provided means of validating the amount of energy which

leaks into the surrounding medium for a particular wave mode at a given frequency. The

curvature effect on both the leaky “quasi-A0” and “quasi-S0” modes have been investigated
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Figure 7.9: Attenuation of the leaky quasi-A0 mode in steel pipes (thickness: 3mm) of various
curvature radii, obtained using the analytical model (Blue solid line), FE method (Red dotted line)
and experimental measurements (Black dashed line where the dots show the average values while
the vertical bars show the distribution of results measured). The pipes are coupled with a water
half space on the outer surface.
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using this FE method. The FE results generally match well with the analytical predictions,

and are very accurate when the curvature radius of the pipes is large. The results become

less accurate when the pipes are small. This is caused by the phenomenon of re-incident

leaky waves in the fluid layer as a result of imperfection of the adsorbing boundaries used

in the FE model.

In the second part of this chapter, a relatively simple experimental technique to validate

the curvature effect on the attenuation using pipes with a range of different curvature

radii and a fixed wall thickness, has been introduced. PZT elements attached to the wall

of the pipe were used to send and receive circumferential guided waves. The attenuation

was measured directly by comparing propagated signals between the dry and immersed

cases. Despite the difficulty in setting up this experiment, the average attenuation values

of these measurements follow the same trend as those predicted by the analytical and FE

models over a range of pipe curvature radii.

179



Chapter 8

Conclusions

This research work focused on the investigation of the curvature effect on the wave prop-

agation properties of guided waves. The findings of such effects are very important for

improving the understanding of guided wave inspection techniques in curved embedded

engineering structures, such as the original motivation: rockbolts embedded in rock.

In the beginning of this concluding chapter, a general review of this thesis is presented, in

which the main findings are highlighted. Secondly, the main contributions to knowledge

in this study are summarised. Finally, the future work of this project will be suggested.

8.1 Review of Thesis

The motivation of this research work was presented in Ch. 1; this motivation emerged as

a result of unresolved problems in understanding guided wave techniques when inspecting

curved structures. A specific example was embedded rockbolts that are curved by the

surrounding rock movements. The inspection technique was developed by Beard [2], using

an excitation mode and frequency that are chosen in such a way that propagation with low

attenuation is obtained. Thus any “breaks” or corrosion of the rockbolt might be identified

by the echo signals which reflect from them. However, when the rockbolt is curved, the

amplitudes of these signals reduce dramatically due to an increase in the energy leakage

which makes the detection of these defects impracticable. Therefore it was important to

understand the physics of this observation; the reason for the change of attenuation with

curvature.

The exact analytical formulae to calculate the propagation properties of acoustic or elas-

tic waveguides in a curved circular section bar were not developed in this thesis due to

their complexity. Nevertheless, many other authors have tried to obtain solutions using
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alternative approximation methods. A detailed literature review on these methods was

given in Ch. 1.

The main objectives of this work is to improve the understanding the curvature effect on

the propagation properties, in particular, where the attenuation of the propagating mode

increases after the guiding structure is bent. Since the dispersion relations of plates and

circular cross section beams are very similar to each other, the nature of the effects of

curvature can therefore be studied using a simpler curved plate geometry, and this was

developed in this thesis.

8.1.1 Non-Leaky Circumferential Waves

The historical background of the study of guided waves propagating circumferentially

around pipes or curved plates, and their potential engineering applications were reviewed

in Ch. 2. Prior to this thesis, the studies of these circumferential plate waves were mostly

restricted to those of the non-attenuative nature in the regime of low frequency and small

curvature radius. For the attenuative cases, published in few papers, solutions were ob-

tainable only with those that are subjected to heavy assumptions.

In Ch. 2, the analytical formulae for the non-attenuative circumferential case, containing

complicated Bessel functions, were generalised to include the multilayered curved plate

model for both the SH and the Lamb-type plate wave propagation. In addition, the

conditions of the numerical stability of these solutions were evaluated. It was found that

the solution becomes unstable when either the frequency or the curvature radius is very

large; these numerical instabilities were linked to conditions known as the “large f − d”

problem and the breakdown of the Bessel functions. The nature of these two numerical

instabilities was subsequently investigated thoroughly.

These numerical instabilities were identified and addressed in Ch. 3. Three alternative

asymptotic analytical methods: Uniform Asymptotic Method (UAM), Regional Asymp-

totic Method (RAM) and Simplified Regional Asymptotic Method (SRAM), were derived

by the project collaborators at the Mathematics Department, Imperial College, where

the specific terms in the solution are either removed or replaced with stable asymptotic

equivalent terms. These three schemes were examined and summarised in Ch. 3 by the

author.

The UAM replaces the normal Bessel function expression with an asymptotic expression

that is uniform for all parameters; although this particular scheme cannot improve the

stability of the solution, it significantly increases the robustness of the calculation in the

region of frequency-wavenumber domain where the exact solution is stable. On the other

hand, the RAM and SRAM express the analytical solution explicitly in individual regions
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that depend on the relationship between parameters such as the material and geometrical

properties of the system.

All three asymptotic schemes were proven to be extremely accurate except at the very

low frequencies, and at the boundaries between analytical regions in the case of RAM and

SRAM. Nonetheless the accuracy of these schemes generally increases dramatically with

increasing frequency. Therefore, using a combination of the exact and asymptotic methods

where the asymptotic solutions are used when the exact solution becomes unstable, the

overall accuracy and robustness in obtaining the numerical solutions of a non-leaky case

can easily be obtained.

The curvature effect on the propagation and physical properties was investigated in Ch. 4,

where the phase velocity and mode shapes of the curved plate wave modes were compared

to those of the straight case at a range of curvature radii and frequencies. The results of

the phase velocity difference were illustrated in a 3-D landscape plot for each individual

mode. The curved plate modes of the lowest four order, “quasi-A0”, “quasi-S0”, “quasi-

A1” and “quasi-S1” modes, were investigated over a frequency range of 0 - 6MHz, and over

a curvature radius range of 0 - 0.1m, showing in general a rapid increase with decreasing

curvature radius, and non-linearly dependence on the frequency. An optimal frequency,

at which the curvature of the structure in the propagation direction has the minimum

effect on the propagation properties in the frequency range investigated, was successfully

identified from each of these 3-D plots. Nevertheless, the changes in phase velocity are

very small, typically with less than 1% for curvature radius that is larger than 0.01m.

In addition, the mode shapes of several curved plate modes were compared directly with

those of the straight case using a “dot-product” method, revealing the similarity of mode

shapes between the curved and straight cases, which was termed the “S-factor”. It was

found that the “S-factor” can in general be related to the difference in phase velocity for a

particular curvature radius. The through-thickness energy density of a wave mode shifts

towards either the inner or the outer surface, a property which can be exploited to increase

the sensitivity of the detection of defects that are situated close to either of these surfaces.

The dispersion curves of curved plates were analysed using the “method of bounds”; a

method that provides a visual tool to characterise the major features in the dispersion

curves. The dispersion curves of the Lamb-type elastic curved plate waves were shown

to be characterised by two sets of so-called “bounds”, which simply are dispersion curves

corresponding to the uncoupled purely longitudinal and shear plate modes of the same

geometry. Unlike the “mode-crossing” phenomenon in the dispersion curves of the straight

case, none of the neighbouring modes of the curved plate case cross each other, but instead,

after they come close to each other, they subsequently repel at the typical “intersection”

points of the straight case.
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In Ch. 5, a finite element eigen-modal modelling method to calculate the dispersion curves

of the curved plate case was considered. The method, based on a simple axially sym-

metric model, extracts the natural frequencies corresponding to a pre-ascribed number of

circumferential cyclic order which is identical to the angular wavenumber. Additionally,

the through-thickness mode shapes can be evaluated using the eigen-vectors of the solu-

tion. The curvature effect were investigated using the FE method and presented in the

similar 3-D landscape plots as the analytical case, showing the difference in phase veloc-

ity as a function of frequency and radius. The FE method was overall found to be very

accurate with the level of error typically better than 0.01% in all frequency and curvature

ranges for the A0 and A1 modes. The only exception is where the curves are close to the

cut-off frequency. The FE modelling in general offers an alternative method to evaluate

the curvature effect, it is especially useful where the infinitely long structure with a cross

section that is too complicated to be formulated analytically.

The effect of curvature on the propagation properties was examined experimentally in the

second half of Ch. 5. The experiment involved comparing the arrival times of a toneburst

wave packet between the straight and curved cases. The measurements were taken from

the end reflection of a thin aluminum strip. A specific curvature of the strip along the

propagation direction was achieved by physical bending and held in place by a set of

plastic fixtures, while permanently attached PZT elements were used to ensure that the

same reference signal was retained for all curvature radius cases. Despite the use of strips

with a high “thickness to width” ratio, a significant number of section modes corresponding

to those bounded by the width edges, were excited, resulting in both the “width-edges”

effect and the excitation of rectangular wave modes. These effects were examined, and

the dispersion curves of the rectangular cross section were modelled using finite elements,

while their mode shapes at specific frequencies were extracted. Using these dispersion

curves and a 2D-Fast Fourier Transform (2DFFT) technique on the experimental results,

the type of wave modes being excited in the aluminium strip were successfully identified.

It was found that the type of mode which was excited depended on the frequency. In

the case of a 0.97mm thick, 30mm wide aluminium strip, an almost pure A0 wave mode

excitation was achieved at 450kHz, 1MHz, 1.1MHz and 1.3MHz, at which the experimental

measurements were taken to evaluate the curvature effect. Since the excitation conditions

vary greatly from one strip to another, these frequencies are specific to this case and cannot

be taken to apply universally.

It was found that the experimental measurements do not agree well with the preliminary

analytical predictions. This can be explained by the fact that the differences in phase

velocity due to the curvature effect are on average very small. For this reason, any external

factors, such as the local changes of stress and density that are introduced during bending,

can significantly affect the experimental results, and must be taken into consideration.

The experimental results agree well with the analytical prediction when these additional
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external factors are included; this improved analytical model contains 9 layers, each of

which is assigned with material properties that is relevant to those affected by the external

factors at the local position. Furthermore, the phenomenon, where the energy distribution

of the A0 mode shifts towards the outer surface, was validated using two 2mm PZT element

cubes attached on opposite sides of the plate surfaces to measure the relative out-of-plane

displacement amplitude ratio between the two surfaces. Good agreements were obtained

between the analytical prediction and experimental measurements.

8.1.2 Leaky Circumferential Waves

Ch. 6 described the development of an analytical model for a leaky system in which

guided waves propagate circumferentially in a curved plate coupled with a half space on

the outer surface. A general literature review of these leaky circumferential waves was

given. Although the analytical formulation is exactly the same for roots of either complex

wavenumber or complex frequency, where the attenuation due to the energy leakage into

the surrounding medium can be expressed in terms of the imaginary part of either of these

complex parameters, the two cases are in fact associated with completely different physical

problems. In this thesis, the leaky guided wave problem was correctly described by the

roots composed of complex wavenumber and real frequency.

The analytical characteristic matrix of a leaky curved plate system was assembled using the

Global Matrix method and suitable boundary conditions; the characteristic matrix consists

of many complicated Bessel functions with complex order that rarely arise in engineering

problems. Various numerical methods to solve these Bessel functions were examined, from

which a suitable scheme, using a combination of Chebyshev Expansions Technique (CET)

and recurrence relations of the Bessel function, was chosen for the numerical calculation

of the roots. The roots of this leaky system comprise two independent parameters which

can be located using an effective 2-D tracing routine based on a steepest descent method.

The numerical tracing routine was illustrated and summarised.

In the leaky curved plate case, although the phase velocity dispersion curves are extremely

similar to those of the straight case, the attenuation dispersion curves were found to be

dramatically different. The “quasi-A0” and “quasi-S0” modes propagating in curved plates

that are coupled with an infinite half space were studied in detail. In the leaky curved

plate case, the through-thickness energy distribution of the “leaky quasi-A0” mode shifts

towards the outer surface, allowing more energy to be coupled with the half space; thus

a higher value of attenuation than that of the corresponding straight case was expected.

On the other hand, the “leaky quasi-S0” mode has its energy distribution shifted towards

the inner surface, resulting in less energy available on the outer surface to be coupled with

the half space. The shift in energy distribution increases with increasing frequency, and at
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very high frequencies, the “quasi-A0” and “quasi-S0” modes become the Rayleigh wave on

the outer and inner surfaces respectively. It was concluded that the amount of attenuation

of a particular mode is typically linked to the concentration of the energy density at the

layer-half space interface.

Likewise the same phenomenon was observed with the change of curvature radius of the

plate; the shift of the energy distribution towards one surface increases with increasing

curvature. Overall, in the ranges of frequency-thickness: 0-3300Hz − m and curvature

radius: 0-0.13m, the absolute maximum percentage difference in attenuation of the A0

and S0 modes in comparison to a straight plate were calculated to be 157% and -98%

respectively, where the negative value indicates a reduction in attenuation.

The inspection range of an embedded structure is determined by the total attenuation

experienced by the wave as it propagates. It is therefore important to choose the mode and

frequency according to knowledge of the curvature and the attenuation. For example the

quasi-S0 mode would be advantageous for detecting internal surface cracks in a cylindrical

structure which is surrounding by fluid. In this case the wave is concentrated near the

inner surface which reduces its leakage attenuation. Furthermore its leakage reduces with

increase frequency.

In addition to the Lamb-type leaky curved plate modes, a family of highly attenuative

fluid-borne wave modes, also known as the Franz modes, that propagate circumferentially

at a certain distance away from the curved plate surface, was also investigated in Ch. 6.

There is in theory an infinite number of these Franz modes, all of which converge to the

bulk speed of the fluid in the half space at high frequencies.

The curvature effect on the attenuation in leaky curved plates was validated numerically

and experimentally in Ch. 7. The finite element (FE) modelling comprised a solid metal

curved layer of a specific curvature radius, which coupled with a thick fluid layer where

absorbing boundary conditions were applied on the free-edges of the layer to eliminate

most of the leaking bulk waves. Accurate results of the attenuation due to leakage into the

surrounding medium were obtained for both the “quasi-A0” and the “quasi-S0” modes.

Due to the limitation of the FE model, the curvature radius at which the attenuation

was possible to be evaluated, was restricted to a range between 0.01m and 0.11m. The

results were compared between the analytical prediction and those measured from the FE

models; in general, the FE results predicted well the trend of the curvature effect on the

attenuation, but agreement was weaker when the curvature radius considered was small,

due to the inefficiency of the absorbing boundaries.

A simple and effective experiment, based on pipes of various diameters and the same

thickness, was used to validate the curvature effect on the attenuation of the “quasi-A0

mode. Using a “pitch-catch” configuration, the amplitudes of the out-of-plane displace-
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ment measured from a set of PZT circular disc elements permanently attached on the

surface around the circumference of these pipes were measured. The measurements were

taken in both the dry condition and when the pipes were immersed in water. Based on

these measurements, the attenuation of the “quasi-A0” mode propagating in pipes of a

range of curvature radii was evaluated. The average values of attenuation from roughly

10 measurements of each pipe size, agreed well with the analytical predictions and those

obtained using the FE method.

8.2 Main contributions to Knowledge

This work has made a contribution to the understanding of an aspect of guided wave

propagation that can be commonly found during NDT guided wave inspection. Although

this work does not address the problem which arose directly from the curvature effect

in the rockbolt inspection, it deals with the fundamental concept of this curvature effect

using a simpler plate system. Using asymptotic methods, it has been demonstrated in this

thesis that dispersion curves of an unloaded curved plate can be obtained in the normally

unstable region when the frequency and the curvature radius are large.

A thorough assessment of the suitability of the asymptotic methods to eliminate certain

types of numerical instabilities was carried out, which led to a novel scheme to trace

dispersion curves effectively in all ranges of frequencies and curvature radii. Investigation

into the effect of curvature along the propagation direction on the lower order plate modes

has established that the difference in phase velocity between the straight and curved cases

are both frequency and curvature radius dependent. The curvature effect has been shown

to be the same for plates with the same “thickness to curvature radius” ratio.

A novel analysis to relate the changes in the propagation properties to the changes in the

through-thickness mode shapes has made the curvature effect more comprehensible. As a

rule, the curvature along the propagation direction shifts the energy distribution of a wave

mode to either the inner or the outer surface. Although this shift in energy distribution

has little effect on the phase velocity of the wave mode in both non-leaky and leaky cases,

it has a significant effect on the attenuation in the leaky case, due to a change in the

amount of energy available at the guiding medium-half space interface. In general, the

same concept can be used to predict the change in attenuation due to leakage of wave

modes propagation in beams of any cross section geometry.

An extension of the “method of bounds” has been successfully adapted to analyse various

features on the dispersion curves of wave modes in a curved plate. The so-called “bounds”

which are asymptotic barriers to the dispersion curves in terms of purely longitudinal or

purely shear wave modes satisfying individual boundary conditions, provide a useful tool
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to visualise the behaviour and the composition of the wave types at different parts of the

curves.

Finally, the development of the analytical solution for the leaky curved plate, based on the

Helmholtz decomposition and Global Matrix methods, is novel. As part of the solution, an

efficient numerical scheme has been chosen to solve the complicated Bessel function with a

complex order. These solutions have subsequently enabled the evaluation of the curvature

effect in this kind of leaky system. This is a generic result which has applicability to all

sorts of multilayered curved plate structures.

8.3 Project Outlook

Although a substantial amount of work has been done in this thesis to understand the

curvature effect on guided wave properties, the entire work has been based on the plate

structures. An extension of this study to include the cylindrical geometry is undeniably

needed. This would subsequently allow issues, caused when the rock bolts are curved, to

be properly addressed.

Again, the study should be carried out in stages, starting with the easier case of a non-

leaky system, and then a leaky system. As with the plate case, the analytical solution of

the curved cylindrical geometry must first be developed. However, this solution as dis-

cussed earlier, is extremely difficult, and thus a close collaboration with the Mathematics

Department, Imperial College, would certainly be beneficial.

Using a toroidal geometry, eigen-solutions in a Finite Element (FE) modelling can be

effectively used to obtain the dispersion curves of a non-leaky system. Nevertheless, much

work is still needed to obtain solutions for the leaky case. The main challenge is to find a

method with which the infinite leaky medium can be simulated correctly.

From this study, it is clear that the attenuation of a wave mode is directly linked to the

amount of energy available on the interface between the guiding and surrounding mediums.

Therefore, once the analytical model for the curved cylindrical geometry is attained, it

would allow the mode shapes of the propagating modes to be studied in relation to various

frequencies and curvatures.

Ultimately, the aim is to identify a suitable wave mode that contains appropriate properties

to carry out inspection on rock bolts which may or may not be curved.
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Appendix A

Basic Equations of Elasticity in

Cylindrical Coordinates

A.1 Equations of Motion

The equations of motion shown below correspond to the principal directions r, θ and z as

defined in figure 2.3.

ρ

(
∂2ur

∂t2

)
=
∂σrr

∂r
+

1
r

∂σrθ

∂θ
+
∂σrz

∂z
+
σrr − σθθ

r
. (A.1)

ρ
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1
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. (A.2)
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1
r
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∂θ
+
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+
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r
. (A.3)

A.2 Strain Tensor Formulation

The strain tensor can be expressed in terms of the displacement vector ū in the polar

coordinate system r, θ, z.

εrr =
∂ur

∂r
. (A.4)

εθθ =
1
r
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+
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. (A.5)

εzz =
∂uz

∂z
. (A.6)
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1
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Exact Dispersion Relations for an

Unloaded Single Layer

The elements given here are for an eigen-problem matrix (2.18), D, that satisfies the stress-

free boundary conditions at the inner and outer surfaces for the Lamb-type circumferential

waves in a single layer curved plate. The elements given here are in their most general form

so that they are consistent with those used in the leaky cases given in Ch. 6. However,

it is worth noting that a more elegant expression can be obtained using a recurrence

relationship of the Bessel functions [63].

d11 = 2µiν
r1

[ − 1
r1
Jν(ω̂1) + kLJ

′
ν(ω̂1)],

d12 = 2µiν
r1

[ − 1
r1
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′
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TJ
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J ′
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1
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where ω̂1 = kLr1, ω̂2 = kLr2, ω̂3 = kT r1, ω̂4 = kT r2.
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Appendix C

Supplements of Asymptotics

Solutions

C.1 Asymptotics of the Bessel Function in Various Regimes

[99]

Regime I: γ < x

Jγ(x) ∼
√
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where α = (x2 − γ2)1/2 − γ cos−1(γx) − π/4.

Regime II: γ ≈ x
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where Ai and Bi are the Airy functions.

Regime III: γ > x

Jγ(x) ∼ 1√
2π
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where β = (γ2 − x2)1/2 − γ cosh−1(γ/x
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C.2 Asymptotics for Cross-Products of the Bessel functions

[99]

Case γ < x1, γ < x2
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Case γ > x1, γ > x2
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where αi and βi are defined in 3.17.

C.3 Lamb Dispersion Relation: Transitional Regions of the

Regional Asymptotic method [63]
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( cosα4Y
′
ν(ω̂3) − sinα4J

′
ν(ω̂3))

}
+ c3 = 0. (C.7)

Region VIII: ν ≈ ω̂4

−
√
π

2
sinh(β1 − β2)

{
f2
5 f

2
6

f̃1f̃2f̃3

(Jν(ω̂4)e−β3 + Yν(ω̂4)
e−β3

2
)

+16ν4ω̂4f̃1f̃2f̃3(J ′
ν(ω̂4)e−β3 − Y ′

ν(ω̂4)
e−β3

2
)
}

−4
√
π

2
ν2 cosh(β1 − β2)

{
f2
6 ω̂4f̃2

f̃1f̃3

(J ′
ν(ω̂4)e−β3 + Y ′

ν(ω̂4)
e−β3

2
)

+
f2
5 f̃1f̃3

f̃2

(Jν(ω̂4)e−β3 + Yν(ω̂4)
e−β3

2
)
}

+ c3 = 0. (C.8)

where fi, f̃i, ω̂i, αi, βi are defined in 3.17.

C.4 Lamb Dispersion Relation: Transitional Regions of the

Simplified Regional Asymptotic method [63]

Region IV: ν ≈ ω̂2

−
√
π

2
sin(α3 − α4)

{
f2
5 f

2
6

f̃1f3f4

Jν(ω̂2) − 16ν4ω̂2f̃1f3f4J
′
ν(ω̂2)

}

−4
√
π

2
ν2 cos(α3 − α4)

{
f2
6 ω̂2f4

f̃1f3

J ′
ν(ω̂2) +

f2
5 f̃1f3

f4
Jν(ω̂2)

}
= 0. (C.9)
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C. Supplements of Asymptotics Solutions

Region VI: ν ≈ ω̂3√
π

2

{
f2
5 f

2
6

f̃1f̃2f4

( cosα4Yν(ω̂3) − sinα4Jν(ω̂3)) + 16ν4ω̂3f̃1f̃2f4( sinα4Y
′
ν(ω̂3)

+ cosα4J
′
ν(ω̂3))

}
− 4

√
π

2
ν2
{
f2
6 f̃2f4

f̃1

( sinα4Yν(ω̂3) + cosα4Jν(ω̂3))

+
f2
5 ω̂3f̃1

f̃2f4

( cosα4Y
′
ν(ω̂3) − sinα4J

′
ν(ω̂3))

}
= 0. (C.10)

Region VIII: ν ≈ ω̂4

−
√
π

2
(f2

6 − 4ν2f̃2
1 f̃

2
3 )

f̃1f̃2f̃3

[f2
5Jν(ω̂4) − 4ν2ω̂4f̃

2
2Jν(ω̂4)] = 0.

where fi, f̃i, ω̂i, αi, βi are defined in Equation 3.17.
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[137] G. Maze, F. Léon, and H. Überall, “Repulsion Phenomena in the Phase-Velocity Dis-

persion Curves of Circumferential Waves on Elastic Cylindrical Shells,” The Journal

of the Acoustical Society of America 105, 1695–1701 (1999).
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