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Abstract

Diffuson bonding, the joining of two surfaces by the diffuson of materid across the interface, has
the attractions of very high drength and minima digortion of the components. Recent
developments of the diffuson bonding process in the arrcraft industry has further exploited the
process by the diffuson bonding and superplastic forming of sheets of titanium to create cdlular
structura components.  Along with these developments has been the necessary research into
ingpection methods for quaity control during production. An important ingpection problem is the
detection of abrittle layer of a phase of the titanium aloy which can occur a the bondline if air is
present during bonding.

This thesis presents an evauation of the potentia of using ultrasonic plate waves for the detection
of the presence of such alayer. The principle is that differences in the acoustic properties of the
layer with respect to the adherends will affect the modal properties of wave propagation aong the
joint. Thus the presence of the layer could be detected by the measurement of a selected
propagating mode.

A theoreticad modd is developed for the prediction of the moda properties of wave propagation
adong a layered plate. The modd is gpplicable to plate systems of any numbers of layers of
isotropic viscodlastic materials and can describe either free wave propagation or lesky wave
propagetion, when the plate is assumed to be immersed in afluid or solid. The mode predicts
the velocities, frequencies and attenuations of the propagating modes as well as the distributions
of displacements and stresses.

The acoustic properties of the brittle phase are measured and the modd is used to predict the
plate wave properties in good and defective joints. Two approaches are considered, one
involving Lamb waves which occupy the full thickness of the joint and the other involving interface
waves which travel dong the brittle layer. The optimum modes and conditions for testing are
identified and their sengtivities are compared with conventional norma incidence testing. It is
found that both gpproaches show some sengitivity in principle to the presence of the layer but it is
concluded that in practice it is not likely that either will offer advantages over norma incidence
tesing.
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vector of wave amplitudesin alayer
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Abbreviation constants (Equation 2.43)
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Field matrix within alayer (Equation 2.48)

Y oung's modulus

Characterigtic function

Abbreviation congtants (Equation 2.43)
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Layer matrix (Equation 2.52)

Layer labd in layer modd
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Cartesian coordinate system
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CHAPTER 1

Background

11 Introduction

Diffusion bonding of metasis the joining of two surfaces by the diffuson of materia across the
interface. Thisis achieved by careful preparation of the surfaces followed by the gpplication of
pressure for a period of time a elevated temperature. It is a rdatively new joining method,
depending heavily on modern production equipment, high qudity maerids and extengve
research in the development of the process parameters.

A good diffusion bond offers many attractions to the engineer as ajoining process. It can have
the microstructure and mechanical properties of the parent materia so that there is no loss of
srength or toughness a thejoint. It involves minimal distortion of the components so that close
tolerances can be ensured. Loads can be spread evenly over the joint without stress
concentration and there are no sgnificant resdud stresses. Extremdy iff joints can be made
with minima additiond weight. Large areas of materid may be joined in a Sngle process,
reducing the required number of components and manufacturing operations.  Findly,
maintenance cods in many applications can be much lower than for dternaive methods
because of reduced needs for routine maintenance inspection.

The attractions of diffuson bonding have not been missed by the indudries which are
concerned with high performance safety-criticd mechanical components. In particular, in the
aerospace industry mgjor progress has been made in the diffusion bonding of titanium dloys, as
reported by Stephen (1986), Broomfield (1986) and Partridge (1987). The technology has
been developed in two categories, 'Massve DB' and 'Thin sheet DB'. Massive DB involves
the joining of thick section machined parts and is performed under relatively high pressures. It
has been usad for airframe components, including the joining of hollow section components on
the Space Shuittle, and for engine components, including blades for the Rolls Royce RB211-
535 engine for the Boeing 757 aircraft. Thin sheet DB involves the joining of larger areas and
has been used for panels, for example underwing access panels on the British Aerospace
Airbus A310 aircraft. A particularly exciting development of thin sheet DB is the combination
of diffuson bonding and superplastic forming which will be discussed further in the next section

-15-
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of this chapter. Current developments in the Aerogpace industry include the diffuson bonding
of duminium aloys and the diffuson bonding of dissmilar metas such as titanium to dainless
sed.

As with the introduction of any new material or manufacturing method, appropriate qudity
control and ingpection techniques must be developed for diffuson bonds before they can be
used with confidence for safety-critical components.  The requirements for ingpection are
strongly dependent on the gpplications and on the quality control but in generd it is necessary
to detect defects of known types above a threshold of size or digtribution. The types of defect
which could occur with a given bonding process have to be characterised and the threshold
Sze determined from destructive mechanicd testing.  Currently the favoured techniques for
nondestructive ingpection are ultrasonics and radiography.

Outline of this chapter

A destription of the diffusion bonding processis given in Section 1.2, introducing the particular
titanium dloy which was studied in the research programme, the form of diffuson bond of
interest here, and the defects which may potentialy occur during bonding.

The conventiond method of ultrasonic ingpection, normd incidence reflectivity, is introduced in
Section 1.3. Thisis the reference technique with which any new method of ingpection must be
compared.

The dternative ingpection techniques which will be investigated in the thesis rely on waves
which travel dong the diffuson bonded joint or dong the bondline of the joint. Much of the
thesis will be concerned with the development of a mode which can calculate the properties of
such plate waves and the gpplication of the modd to make predictions about the waves in
defective joints. A generd introduction to plate waves is therefore given in Section 1.4
followed by a summary of the proposed plate wave inspection methods, in Section 1.5, and an
introduction to the development of the model, in Section 1.6.

Much literature has been published both on plate waves and on nondestructive testing and, in
order to keep the introductions in Sections 1.2 to 1.6 as readable as possible, areview of the
literature is presented in its own section, Section 1.7, references being kept to a minimum
elsawhere in this chapter.
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The chapter is completed with an outline of the thesis, in Section 1.8, including a statement of
the objectives.

1.2  Thediffuson bonding process and potential defects

Good descriptions of the diffusion bonding process for titanium may be found in Partridge
(1987) and Stephen (1986).

Thin sheet diffuson bonding is normdly achieved by gpplying a farly low pressure to the
components, of just a few MPa, but a a high temperature. For titanium aloys the bonding
temperaure is typicaly about 950° C, higher then hdf of ther absolute mdting point
temperature. The time necessary to achieve the bond depends strongly on the compostion of
the aloy and in particular on the grain size but istypicaly of the order of one or two hours.

The diffuson bonding process can be described in two stages. In the first stage, which tekes a
relatively short time, the contacting surface asperities undergo plastic and creep deformations
50 that the contact area increases. The interface then conssts of regions of intimate contact
separated by smdl voids. This process is sendtive to gress, the creep drain rate for titanium
being described typicaly by a power law in stress of order 3-4, so that as the contact area
increases the deformation rate diminishes rgpidly. In the second stage, volume diffuson and
grain boundary migration mechanisms take place so that a the end of the process there is
idedlly no evidence of the interface. The grain boundaries at the bondline are no longer planar
and the smal voids have been diminated.

It is sometimes advantageous to use an interlayer of another materid between the two
adherends of ajoint. Thin layers of ameta with ardatively low meting point, such as copper-
nickel, may be dectroplated or sputtered onto the surfaces of the adherends prior to bonding.
During the bonding the interlayer mdts, forming a liquid a the interface and subsequently
diffusng into the adherends. The principa advantage with this method is that the bond may be
made with much lower pressures and temperatures. It can aso be beneficia for the bonding of
dissmilar metds. Bonding using an interlayer is usudly referred to as 'diffuson brazing, as
digtinct from 'diffusion welding when no interlayer is used.

The research which is reported here addressed the ingpection of diffusion bonds of thin sheets
of a paticular titanium dloy, joined without an interlayer. The dloy isthe 6 % duminium 4%
vanadium (Ti-6Al-4V) which is in widespread use in the aerospace industry.  As produced, it
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is a two-phase dloy condgting of ‘dpha and 'beta grains, of which the dpha grains are
relatively soft. The structure has been likened to grains of sand (beta) in a matrix of plagticene
(@pha). It has been found to be particularly amenadle to both diffuson bonding and
Superplagtic forming.

At temperatures in excess of 800° C the dloy is highly reactive, strongly absorbing both
oxygen and nitrogen. Thisis convenient to a certain extent because the thin oxide layer which
is naturaly present on the surfaces of the adherends is absorbed and the materia is said to be
sdf-cleaning. However it is very important that the materia does not absorb larger quantities
of oxygen or nitrogen because this can cause embrittlement. There are two aspects to this
mechanism. Firgt, the presence of these gases raises the beta transus temperature so thet at the
high bonding temperature the beta grains tend to trandform to dpha  This is a softening
process because the dpha is softer than the beta. Second, the gases cause interdtitial locking
of the apha grains. Concentrations of locked dpha grains, caled 'oxygen/nitrogen stabilised
apha, 'hard apha or ‘dpha case' are consderably harder than the parent adloy and are rather
brittle. Consequently the diffusion bonding of titanium is carried out with as little air present as
possble. This is achieved by evacuation of the bonding press followed by purging with an
inert gas such as argon.

An exciting development of the use of titanium has been to combine diffuson bonding with
superplagtic forming (‘SPFDB'), to form a highly structured materia, as discussed by Stephen
(1986). An illugration of the formation of one such structure, an X-braced pand, is shown in

Figure 1.1. In the example, the process starts with four flat shedts of titanium. A stop-off

agent which prohibits bonding is printed onto the surfaces of the sheets in a predefined pattern
and the sheets are put together and bonded, as illustrated in Figure 1.1(8). While maintaining a
high temperature, an inert gas is then injected into the unbonded regions so that the pack of

sheets expands, asillugrated in Figure 1.1(b). Thefind shape of the exterior of the sructureis

controlled by carrying out the process in a shaped mould. SPFDB gtructures can have a
consderable weight advantage over other forms of congtruction. Manufacturing and assembly

may aso be smplified because of large reductions in the numbers of components.

Clearly the successful production of bonds depends on the careful control of alarge number of
parameters, including pressure, temperature, time, quaity of materia, surface preparation and
cleanliness. Gross deviations may lead to totd failure of the bond or perhaps to localised
‘unbonded’ regions.  Other consegquences may be the embedding of particles of contaminants
or voids a the bondline. A particularly dangerous possbility however is the formation of a
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brittle layer of apha case, illugrated in Figure 1.1(c). This can hgppen if sgnificant quantities
of ar are present during the bonding process. The surfaces of the sheets absorb the oxygen
and nitrogen srongly as the materid is heated, forming a continuous layer of dpha case a the
bondline. The toughness of the whole joint is therefore reduced. This thesisis concerned with
the nondestructive detection of the presence of thisform of defect.

Figure 1.2 shows a micrograph of a section through a poor diffuson bonded joint where air
has been introduced during the bonding process. The etching solution which was used for the
section shows the presence of apha case as a lighter colour than the parent titanium aloy.
Here the apha case gppears to extend gpproximately 40 microns on each side of the bondline.
A didribution of very amdl voids with dimensions of the order of a few microns can dso be
seen on the bondline.

1.3  Conventional ultrasonic inspection

The conventiona ultrasonic technique for the detection of defects in plates is to send an
ultrasonic pulse into the materid and then to look for changes either in the tranamitted Signal on
the other side of the plate (‘through-transmission’) or in reflections from the plate on the same

Side as the tranamitter (‘pulse-echo’). The transducers are set up o that the path of the signa

is norma to the surfaces of the plate and in pulse-echo mode a single transducer is then used

for both transmisson and reception. Typically a broadband piezo-electric transducer with a
focused beam and a short duration pulse excitation is used for this form of inspection.

Pulse-echo inspection is usudly preferred when the am is to detect planar defects or planar
arrays of defects from which the direction of any reflected energy is predominantly towards the
sngle recaiver. The detection of an embedded layer of apha case clearly fdls into this
category. Also, pulse-echo inspection requires access to only one side of the component.
Through-transmission ingpection is attractive when random scattering mechanisms are involved,
for example due to grain boundaries. In such cases little energy is reflected back to the
trangmitting transducer but the transmitted signd may be affected sgnificantly.

Figure 1.3 illudrates the pulse-echo ingpection of a plate in which there is an embedded
'defect.  Pat (8) of the figure shows the defective joint and identifies schematicdly the
reflections from each of the interfaces of the joint. Part (b) shows the time trace which may be
seen on an oscilloscope when the joint is ingpected.  The data has been smulated for the
illugtration. In this example the defect could be a continuous layer of dpha case embedded a
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the bondline of a diffuson bonded joint, the thickness being exaggerated somewhat for the
illugtretion. In generd the defect may be any continuous or localised materid with surfaces
pardld to the plane of the plate. The key feature is that it must have different acoustic
properties from the remainder of the plate. The system is immersed in water in order to
provide good acoustic coupling between the transducer and the plate.

Each time the pulse is incident on an interface a which there is a change in acoustic impedance,
apatid reflection takes place and returnsto the transducer. Thefirst three reflections, |abelled
R1, R2 and R3 in Figure 1.3(a), can be seen in the typicd time trace in Figure 1.3(b).
Subsequently an infinite series of diminishing reflections will be receved as the pulse
reverberates in the plate. The presence or absence of the defect can be determined smply by
using an dectronic gate, portrayed as a dashed line in the figure, to limit the monitoring of
reflections to the time period when the firgt reflection would return from the bondline. If any
reflection can be detected within the gate then some change of acoustic impedance is inferred
at the bondline.

The norma incidence pulse-echo technique is very effective for detecting large changes in
acoudtic impedance such as voids or inclusons and it has the strong attraction of ease of
goplication. The results of one such case are shown in a C-scan image in Figure 1.4. This
shows the amplitude of the reflected pulse from the bondline, plotted over the area of a very
poor diffuson bonded plate. Large regions of the plate were not bonded in this case and they
can be identified by the strong reflections (black in the image). The plate conssted of two
gheets of titanium, each 4 mm in thickness The scan was performed using a broadband
transducer with a 10 MHz centre frequency, focused on the bondline.

Unfortunatdly the effectiveness of norma incidence ingpection is limited when the defects are
smdl or their properties are smilar to those of the plate, in which cases the amplitudes of the
reflections are smal. Embedded layers of dphacasefdl into both categories. It isdesrableto
be able to detect apha case with thickness down to some tens of microns yet its acoustic
impedance does not differ sgnificantly from that of titanium.
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1.4  Introduction to plate waves

An dternative gpproach to norma incidence ingpection is to consder some form of ultrasonic
wave which propagates dong the plate. Thisis very atractive in principle because the energy
in certain waves travelling along a plate may be concentrated at the bondline so that the wave
propagation properties may be sendtive to the properties a the bondline. An inspection
method based on plate waves may therefore offer grester sengtivity to defects than norma
incidence testing in some circumstances. However the drawback in devising such an inspection
method is that the waves propagating dong a plate are very much more complicated than the
bulk waves which are utilised in normd incidence testing.

Two waves may travd in an infinite eastic solid medium, a compresson wave and a shear
wave (the 'bulk waves). Each may travel in any direction but a a fixed speed which is
independent of frequency and is given by the physica properties of the medium. These wave
properties are anaogous to the natura frequencies of a vibrating structure and are the moda
properties of the system. In practice the moda properties are exploited in dl types of
ultrasonic testing because they describe the transfer of energy by ‘longitudind’ or 'shear’ wave
from one location to another when asignd is trangmitted. The fact that they are properly only
modd solutions for an infinite gpace is not a problem.  The received sgnd is usudly gated 0
that unwanted reflections from boundaries are neglected, thus smulating an infinite space.

If an interface is introduced into the medium then the moda properties are changed
dramatically. The smplest case is that of a free surface when the dastic medium extends to
infinity from one sde of the interface and the other sde is vacuum. Now only one wave, the
Rayleigh wave, exigts as amoda property and it can only travel dong the surface at a congtant
speed, independent of frequency. If the second side is not vacuum but another medium then it
may gtill be possble for awave to travel dong the interface. The nature of this interface wave
depends on the acoudtic properties of the two media; it may cary dl its energy dong the
interface (the Stoneley wave) or it may leak energy into the haf-spaces asit travels.

As a third step another, pardle, interface can be introduced. This provides the physica
description for a plate with a top and bottom surface which extends infinitely in width. If the
two half-spaces are vacuum then the moda properties of the plate are the Lamb waves.

Figure 1.5 shows a plot of the velocities of the first two Lamb wave modes for a 1 mm thick
titanium plate. These waves are clearly dispersve, tha is to say their velocities vary with
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frequency, and the plots are usudly referred to as digperson curves. Inset on the figure are
illugtrations showing the deformation shapes of the waves. At low frequency the two waves
can easly be understood as extensond and bending waves travelling dong the plate. The
deformation of the plate is symmetric about the centre line of the plate for the extendond wave
and antisymmetric for the bending wave. Accordingly the labels gy and gy denote them as the
zero order symmetric and antisymmetric waves. As the frequency is increased the wavelength
of the waves reduces in comparison to the thickness of the plate and the energy is concentrated
increasingly near the surfaces of the plate. At very high frequency the two curves converge
towards the Rayleigh wave speed, the limiting solution a infinite frequency being two
independent Rayleigh waves, one travelling on each surface of the plate.

In fact there is an infinite number of Lamb wave modes in aplate. There are dso families of
modda solutions for other plate sysems, including for multilayered plates in vacuum and for
plates which are immersed in a fluid or embedded in a solid. Further discusson and a variety
of examples will be given in Chapter 5. In the meantime it will be useful to introduce some of
the terms which are used to classfy plate waves:

Free waves. This description covers dl solutions in which the wave propagates indefinitely
without loss of energy. A Rayleigh wave, which travels dong the surface of a semi-infinite
elagtic haf-space adjacent to a hdf-space of vacuum is afree wave. Lamb waves, which are
the whole family of moda solutions for a Sngle layer of dagtic materid in a vacuum, are dso
free waves. In practice the modd solutions for the velocities of free waves are usualy very
reasonable approximations when the surrounding medium is not a vacuum but has a rdatively
low acoudtic impedance. Thisis the case for example when ametal plate isimmersed in water.
Note however that the influence of water can be sgnificant when the acoustic impedance of the
plate islow, asisthe case with carbon reinforced composites.

L eaky waves. Waves which lesk energy from the plate into the adjoining media are termed
leaky waves. Plate waves can only leak energy if & least one of the half-spaces is a solid or
liquid and the velocity of the wave is higher than a certain threshold. For example a lesky
Rayleigh wave can travel dong the surface of a semi-infinite dagtic half-gpace which is adjacent
to a hdf-gpace of water. Similarly a lesky Lamb wave can propagate in a plate which is
immersed in water. In both cases the wave legks energy into the water. In practice any form
of testing with fluid or solid coupling relies on the waves being leeky. Strict (free) Rayleigh or
Lamb modes could only be excited or detected by non-contact methods such as eectro-
magnetic sysems.
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Guided waves. The term guided waves describes free waves which travel dong plates or
layers of plates without leskage of energy into adjacent non-vacuum layers. For example a
guided wave may travel dong a soft layer (low vaues of longitudind and shear bulk veocities)
which is sandwiched between two hard layers, such as in an adhesive joint, without leaking
energy into the hard layers.

Surface waves. Surface waves travel along the surface of a plate and may be free or lesky.
The best known surface wave is the Rayleigh wave. The mgjority of the energy of the wave is
confined to a depth of approximatdy two waveengths in the solid medium and there is no
energy leekage away from the surface into the solid haf-space. The wave is dso non-
dispersve; its velocity is congtant for dl frequencies. Surface waves can exigt with other
geometries. For a soft layer on top of a hard haf-space a dispersve surface wave can exi,
its velocity decreasing with frequency. Again, no energy is lost through leskage as the wave
propagates. If the surface layer is harder than the haf-space then a dispersive wave can exist
for which the velocity increases with frequency and, a its higher velocities, energy can lesk into
the half-space.

Interface waves. Interface waves can exist a the boundary between two different media
The best known example of an interface wave is the Stoneley wave which can be considered
as a generdisation of the Rayleigh wave, where both half-spaces are solids rather than one
being solid and the other vacuum. The Stondley wave is afree wave, the energy being retained
at the interface without leskage into ether haf-space. The Stondley wave can only exist for
certain combinations of properties of the two media. For other combinations a leaky Stoneley
wave may propagate, in which energy leaks into one or both of the half-spaces. Waves which
travel dong very thin interface layers may aso be termed interface waves.

15  Approachesfor inspection using plate waves

Two plate wave gpproaches have been identified as possble techniques for ingpecting diffusion
bonded joints for embedded layers of dpha case. The feashility of each approach will be
examined separately in the thess. They will be referred to respectively as the Lamb wave
technique and the interface wave technique.
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Thefird ideaiis to exploit any changes which the layer may make to the properties of the Lamb
waves. For example if the velocity of a particular Lamb wave is dtered by the presence of the
layer then atesting system could be based on detecting a change in the velocity of thiswave.

Figure 1.6(a) shows one experimental arrangement which is used for the excitation and

reception of Lamb waves. Water is used in this arrangement for acoustic coupling between the

transducers and the plate. The transmitted signal may be used to excite wavesin the plate with
aparticular velocity by the choice of the angle of incidence of the transducer. The frequency of

excitation may aso be chosen to preferentidly excite waves a particular frequencies. Thus by
choosing the angle of incidence and the frequency it is possble to target the energy on a
particular location on the Lamb wave disperson diagram.

Precise measurements of the velocity of a Lamb wave may be made ether by receiving the
wave a some distance from the transmitter or by detecting the fact that a wave has been
excited, by employing a point measurement technique at the excitation location (Ma, Xu and
Bar-Cohen (1989)). In ether case the measurement relies on the detection of lesking or
reflected energy returning from the plate to the receiving transducer.

The second plate wave idea is to condder an interface wave which travels within the
embedded layer. Thisideaisillugtrated in Figure 1.6(b). The transmitting transducer is angled
such that the refracted wave within the top adherend arrives at the layer at the appropriate
angle to excite a particular wave in the layer. The wave propagates along the layer, lesking
energy back into the adherends asiit travels. A receiving transducer is used to detect the wave,
again either by detecting some of the leaking energy at an appropriate location downstream or
by detecting the fact that a wave has been excited at the excitation point. The presence of an
embedded layer is demongtrated if the interface wave can be excited and it may be possible to
characterise the layer from the properties of the wave.

16  Development of model

Both of the methods discussed above require careful examination of the moda properties of
good and bad bonds in order to sdlect the best testing conditions. Some modes will inevitably
be much more sendtive to the presence of an embedded layer than others and it is essentid
that such characterigtics are investigated carefully if the methods are to be assessed favourably.
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The Lamb waves for a single layer of materid in vacuum are well known but generd solutions
are not avalable for a three layer system in vacuum, which would be required for the first
method, or for alayer surrounded by another materia, which would be required for the second
method. A mgor pat of the research programme has therefore been to develop a
comprehensive modelling tool for calculating the modal properties of these systems.

The modd is generd in its capabilities. It can be used on plate systems of any numbers of
layers of different materias and thicknesses, the only limitation being that the interfaces must al
be pardld 0 that each layer is of uniform thickness throughout its width. The layers may be
solid or liquid and their properties may be eagtic or visco-dagtic, so that materia damping may
be taken into account if required. The plate sysem may be in vacuum o that propagating
waves in dagic materids travd indefinitdly without lesking any energy. Alterndively the
system may be 'immersed' in aliquid or in a solid so that energy may lesk into the half-spaces
causing the wave to decay asit travels. In dl cases plane drain is assumed, being the best two
dimensiond representation of a wide wavefront.

The modd caculates the disperson curves for the layer system and displays them in a number
of ways. Primarily the phase velocity curves can be plotted. Alternatively plots may be made
of group veocity, coincidence angle, red wavenumber or attenuation versus frequency. The
group velocity differs from the phase velocity in that it describes the velocity a which energy is
trangported rather than the velocity of wave crests - there is a difference between these
velocities when the wave is dispersive, which will be discussed in Chapter 5. The coincidence
angle is the angle of incidence of a bulk wave in a coupling medium being used to excite the
wave, as introduced in the previous section. The red wavenumber is smply the reciproca of
the wavelength. The attenuation is the decay of the wave due ether to leskage of energy into
the half-gpaces or to damping lossesin viscodagtic materias. It is expressed as an exponentia
decay per unit distance or per wavelength along the plate.

The modd aso calculates the fidd distributions through the thickness of the layers, the mode
shapes. Plots may be made of the didributions of al of the digolacement and stress
components and of the strain energy dendity which gives an indication of the distribution of the
energy of thewave.

The modd was implemented on a microcomputer and was validated againgt a number of cases
of published solutions and experimenta measurements.
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1.7  Higorical background

Materialsand diffuson bonding

The diffusion bonding of titanium dloys is a relaively new joining process, having been under
development for the last twenty years or so and in use for some components for around ten
years. In the UK. the mgor progress has been made by British Aerospace plc and by Rolls
Royce plc. Discussions about their bonding methods and applications have been published by
Stephen (1986) and Broomfield (1986). An excellent review of the bonding process has aso
been presented by Partridge (1987), including a wide survey of the literature. All three of
these authors include some discussion about the metalurgy of the materid. Good background
information can dso be found in the metalographic summary published by the RMI Company
(1981).

The mechanisms for the development of apha case, when the materid is exposed to oxygen or
nitrogen at high temperature, are well known by the metalurgists. It is dso understood from
the microscopic point of view that saturated apha case is likely to be somewhat differ than the
raw dloy. Reatively little has been published however on the actud measurement of the
acoustic properties of redistic concentrations of apha case or on the nature of its distribution
near an exposed surface. The mgor evidence comes from the researchers a lowa State
University who have measured some acoustic velocities (Thompson, Margetan, Rose and
Batra (1992), Brasche, Margetan and Thompson (1992)) with an interest in developing
ingpection methods for the detection of discrete inclusions of dpha case embedded in titanium.
They have adso investigated the changes to the attenuation and backscattering of bulk waves
due to the microgtructural changes which occur when titanium is converted to apha case,
publishing a number of papers. See Thompson et al. (1992) and Margetan and Thompson
(1992) for example.

NDT of diffusion bonds

The vast mgority of research on the NDT of diffuson bonds has addressed the detection of
voids or inclusons at the bondlines of joints. Fundamenta work was reported by Baik and
Thompson (1984) and Angel and Achenbach (1985) who developed equivaent static spring
models for the interfaces of joints in which there is assumed to be an array of penny-shaped
cracks. Their modds were developed to determine the reflection of ultrasound a normal
incidence from the bondline when the wavelength is large in comparison with the crack sze.
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Further developments have included the consderation of the resonant phenomena which can
occur when the wavedength of the ultrasonic sgnd is smilar to the dimensions of the crack
(Rose (1990) for example), thus extending the applicability of the modd to higher frequencies.
The am in these developments was to be able to determine crack sizes and digtributions from
measurements of reflection and transmisson. A number of successful gpplications of these
models have been reported, for example by Pamer, Rehbein, Smith and Buck (1988) and
Margetan, Thompson, Gray and Rose (1990).

Two other approaches for the NDT of diffuson bonds should be mentioned. The fird is the
idea that it may be possble to correate the qudity of diffuson bonds with the attenuation of
ultrasonic ggnds, atenuation a high frequencies being affected by grain dructure.  This
gpproach was proposed by Rose (1989) who demondgtrated that it has some potentid in
generd (using IN-100 materid). The second gpproach is the investigation of diffuson bonds
using acoustic microscopes, reported for example by Weglein (1988) and Bond, Som, Shiloh
and Taylor (1990). At present this work is limited to the examination of sections which have
been cut through diffusion bonds, using surface waves.

Theory of plate waves

The earlies theory for the modd properties of multilayered media was Lord Rayleigh's
derivation (1887) for waves travelling dong the free surface of a semi-infinite eastic half-space.
The derivation yields a third order expresson whose roots determine the velocity of the
propageting surface wave. A generdisation of the single interface problem was developed by
Stondey (1924) to describe waves travelling aong the interface between two different dastic
solids without leaskage into the haf-gpaces. An examination of the ranges of existence of free
wave solutions for these two wave equations has been conducted by Scholte (1947). An
examination of leaky wave solutions was published by Pilant (1972).

Lamb (1917) added another interface to introduce the notion of aflat layer of finite thickness.
His derivation was for plates in vacuum and the roots of his two equations (one for symmetric
modes and one for antisymmetric modes) yield the well known Lamb wave dispersion curves.
Love (1911) showed that transverse modes were dso possiblein layers of finite thickness. His
modes involve shearing mation in the plane of the layer. Note that this mode of deformetion is
outside the scope of the model which is developed here.
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The derivation of eguations for wave propagation in media consgsting of arbitrary numbers of
flat layers was started by Thomson (1950). He introduced a transfer matrix which described
the displacements and stresses at the bottom of a layer with respect to those at the top of the
layer. The matrices for any number of layers could be multiplied and modd or response
solutions could then be found by application of the gppropriate boundary conditions. A small
eror in his derivation was corrected by Haskdl (1953). The theory was developed
goecificaly for sasmologica applications where interest was in surface waves on media
congsting of multiple different rock layers.

Following Thomson's work, and aided by the availability of digita computers, there was an
increase in investigations into the moddling of wave propagation in multilayered media, dmost
entirdy for seismologica goplications. A number of papers over a long period of time have
addressed the practicalities of solving the response equations or modal equations by computer
with minimum loss of precison and maximum efficiency, for example Press, Harkrider and
Seafeldt (1961), Knopoff (1964), Dunkin (1965), Randal (1967), Schwab and Knopoff
(1972), Abo-Zena (1979). The most important problem is the loss of precision in the solution
when layers of large thickness are present and high frequencies are being consdered. Of
particular note in this context is the introduction in Knopoff's paper (1964) of a globa matrix
for the full system ingtead of trandfer matrices. A further improvement to the sability of the
globa matrix method was subsequently made by Schmidt and Jensen (1985) and Piducha
(1992), with which the problem of loss of precision has effectively been eradicated.

The mgority of developments have been confined to systems of equations whose modd
solutions describe free wave propagation only. However Gilbert (1964) considered the
problem of modelling leaky waves and developed a theory based on complex frequency and
real wavenumber which could describe the decay of propagating waves aong the layer system.
Alsop (1970) and Watson (1972) consdered dternatively the posshility of assuming red
frequency and complex wavenumber and concluded that either gpproach could be adopted,
the more gppropriate choice being basad on the application in mind.

Furthermore the mgority of gpplications of the multilayered plate theory have been to response
models, in which case the solution of the equations is sraightforward. Moda solution is more
difficult, and is particularly chalenging for atenuaing waves. Very little has been published on
methods of moda solution of attenuating waves, dthough clearly a number of researchers have
developed moddling tools which are capable of predicting at least some cases of disperson
curves for atenuating waves. One gpproach utilised in the NDT community has been to
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caculae disperson curves by identifying minima in the reflection coefficient response.  For
example Ma, Xu and Bar-Cohen (1989) and (1990) used this approach to caculate the
disperson curves for lesky Lamb waves in plates in water. Wheress this is a reasonable
gpproximation for mildly lesking waves, Chimenti and Rokhlin (1990) and Nagy and Adler
(1989) have pointed out that the minima of the reflection coefficient do not correspond to the
moda solution for lesky waves, and that the differences may be large when the leskage is
srong. Nagy and Adler (1989) provided solutions for leaky waves for a layer of adhesive
embedded in duminium haf-gpaces, commenting on the difficulty of the solution. A number of
authors have aso published solutions for other specific cases of layered media. For example
Chimenti, Nayfeh and Butler (1982) presented a moda analysis for leaky surface waves on a
thin layer on a half-space and Kushibiki, Ishikawa and Chubachi (1990) presented solutions of
the equations for leaky Sezawawaves.

Application of plate wavesto NDT

In recent years considerable work has been done on the gpplication of plate waves outside the
fidd of sailsmology, principaly for non-destructive testing.

A popular topic has been the application of Lamb waves for the ingpection and
characterisation of single layers of materid. Worlton (1957) proposed the use of Lamb waves
for the detection of defects in metd plates, identifying in particular the detection of interna
laminar flaws lying pardld to the surface of a plate. Subsequently Frederick and Worlton
(1962) proposed the use of Lamb waves for the measurement of the thickness of plates. Since
then a wide range of gpplications has been reported, covering many industries, including such
diverse gpplications as the on-line monitoring of the quaity of paper in paper mills (Habeger,
Mann and Baum (1979)) and the sizing of spot welds (Bendec, Peretz and Rokhlin (1984)).
A review of Lamb wave agpplications may be found in Alleyne's thess (1991) which is on the
use of Lamb waves for the long range detection of flawsin plates.

Lamb waves have dso been proposed for the ingpection of multilayered media, in particular
adhesive joints and composite materials. For example Bar-Cohen and Md (1990) and Mdl,
Xu and Bar-Cohen (1989 and 1990) suggested using Lamb waves for the measurement of the
cohesive properties of adhesvely bonded auminium. Dewen, Lowe and Cawley (1992)
subsequently investigated the sengtivity of Lamb waves to the properties of the adhesive and to
other parameters of the joints. The ddamination of layered media may aso be detected using
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Lamb waves. An investigation of the ingpection of composite plates for delamination has been
reported by Guo and Cawley (1992).

A number of investigators have studied surface waves in thin surface layers on half-gpaces,
with aview to developing systems for measuring the layer thickness and its materia properties.
Some examples of generic Sudies may be found in Adler & Sun (1971), Nayfeh, Chimenti,
Adler and Crane (1981), and Rose, Nayfeh, and Pilarski (1990). In practice the measurement
could be achieved on a smdl scae by measuring the surface wave velocity with a line-focus
acoustic microscope, as suggested for example by Kushibiki, 1shikawa, and Chubachi (1990).
The use of surface waves for the detection of delamination of the thin layer from the haf-space
has been addressed by Md and Kundu (1987) and Adler, de Billy and Quentin (1990).

Investigetions have adso been undertaken on utilisng lesky, interface and guided wave
propageation in internd layers in a olid for nondestructive testing. Rokhlin, Hefets and Rosen
(1980,1981) and Rokhlin (1986) demongtrated that a guided wave travelling dong a layer of
adhesive between two half-space adherends may be used to determine the materia properties
of the adhesive (the cohesion properties). Lee and Corbly (1977), Claus and Kline (1979),
Kumar (1983) and Pilarski (1985) investigated the use of an interface wave travelling aong the
boundary between two materids for the determination of the properties of the boundary. In
the case of an adhesive joint this gpproach would address the very difficult problem of
determining the qudity of the interface between the adhesve and the adherend (the adhesion
properties). Nagy and Adler (1989) and Nagy, Rypien and Adler (1990) proposed the use of
aleaky wave in the adhesive to detect both poor cohesion and poor adhesion.

1.8 Outline of thesis

This thes's presents an investigation into the potentia of using ultrasonic plate waves for the
ingpection of diffuson bonded titanium joints. The am of the ingpection is to detect the
presence of a layer of the oxygen-rich brittle phase of titanium, apha case, a the bondline of
thejoint. The principleis that differences in the acoustic properties of the layer with respect to
the adherends will affect the modal properties of wave propagation dong the joint. Thus the
presence of the layer could be detected by the measurement of a selected propagating mode.
The objective of the thessis to assess the feaghility of using plate waves for the detection and
characterisation of the layer and to determine whether they can offer any advantages over the
conventiona ultrasonic technique, the measurement of norma incidence reflectivity.
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The development of the moda theory for free wave propagation is presented in Chapter 2.
The chapter starts with the derivation of the equation of motion for isotropic materias and
concludes with the description of a solution which satisfies both the equation of motion and the
boundary conditions imposed by the interfaces between the layers. The solution is in the form
of a characterigtic function which must yield zero for amoda solution.

In Chapter 3 the moda theory is extended to include the possibility of the propagation of
attenuating waves dong the layer sysem. This enables the modd to include materid damping
and the leakage of energy from the plate into the half-spaces. This chapter is written as a
generdisation of the free wave theory of Chapter 2.

Chapter 4 covers the implementation of the theory into a computer model for the calculation of
digperson curves and mode shapes. Some of the difficulties of solving the characteristic
function are discussed and systematic numerical procedures are developed. Algorithms for the
generation of the dispersion curves and for the caculation of mode shapes are described.

The vdidation of the model is described in Chapter 5. Examples of the application of the
mode are presented and the modal solutions for a number of layered systems are discussed.
Comparisons are dso made with known andytica solutions, with solutions predicted by other
modds and with experimenta measurements.

The properties of the materids are investigated in Chapter 6. An experimental study is
reported in which apha case was grown on sheets of titanium by exposing them in air a high
temperature and the acoustic properties of both treated and untrested materids were
measured. The variation of the apha case contamination with depth from the exposed surfaces
was aso investigated by measuring hardness profiles.

Chapter 7 summarises a model study which was made in order to determine the limits of the
detectability of defects usng conventiond normd incidence ingpection.  Norma incidence
reflection measurements were Smulated, assuming a vaiety of apha case properties and
property profiles. The study aso includes a brief examination of the reflectivity from arrays of
voids at the bondline, voids frequently accompanying apha case in poor bonds.

The firg plate wave gpproach for inspection, the Lamb wave technique, is assessed in Chapter
8. Modd dudies are used to determine the sengtivity of the Lamb waves to defects and to
other parameters associated with the joints. The excitation and measurement of Lamb waves
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is discussed and the method is assessed in the light of the detectability which can be achieved
currently using the conventiond ultrasonic ingpection method.

The interface wave technique is assessed in Chapter 9. Two types of interface wave are
consdered: waves which travel dong a single interface between two materids and waves
which travel dong an embedded layer. Disperson curves are caculated and the nature of the
waves is andysed. Methods are assessed for the excitation and measurement of interface
waves and their potentia for ingpection is discussed.

The main conclusions of the thesis are presented in Chapter 10.
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Figure 1.4 C-scan of unbonded regions in very poor diffusion bonded joint
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CHAPTER 2

Free wave propagation along a multilayered plate

2.1 Introduction

A modal theory for free wave propagation in a multilayered medium is described in this
chapter. This theory, together with the theory for attenuating wave propagation in
Chapter 3, forms the basis for the predictive model which was used for the feasibility
studies. The implementation of the theories into the computer model will be described in
Chapter 4.

A free propagating wave is defined as one which travels indefinitely without change of
amplitude, without input of energy and without loss of energy. Free wave propagation in
multilayered plates is therefore necessarily limited to elastic materials without material
damping which would attenuate the waves. It is aso limited to waves which do not leak
energy into the surrounding media.

The multilayered medium considered here is a plate system consisting of an arbitrary
number of perfectly flat layers, stacked together. Each layer is an isotropic material,
with agiven uniform finite thickness and each is connected rigidly to the layer below and
the layer above, asillustrated in Figure 2.1. Above and below the plate system are semi-
infinite half-spaces of elastic material or vacuum. The system is assumed to beinfinitein
all horizontal directions.

A moda solution for wave propagation in multilayered plates is a frequency domain
solution for conditions under which waves may propagate along the plate. Just as bulk
waves can only propagate in an infinite medium at two velocities, either longitudinal or
shear, waves can only propagate along a multilayered plate under certain conditions.
These conditions are in general frequency dependent so that solutions are described, not
just by velocity, but by combinations of frequency and velocity. A moda solution for
wave propagation states that a wave may travel with a particular frequency and velocity.
The solution is atwo-dimensional eigensolution for the system, where the frequency and
velocity are an eigenvalue pair.

-39-



Chapter 2 40
Free wave propagation along a multilayered plate

Overview

The approach which is taken here is to build a moda description of free wave
propagation in a multilayered plate by the superposition of modal solutions for bulk wave
propagation in each layer and the application of suitable boundary conditions at the
interfaces between the layers. If all possible modal solutions are known for infinite
media then it is possible to construct all possible solutions in the multilayered plate by
their superposition in appropriate proportions.

The first task is to obtain solutions for bulk wave propagation in infinite media. It is
shown that exactly two such waves can exist in an elastic isotropic medium, a
'longitudinal’ wave in which motion consists of change of volume of the material and a
'shear’ wave in which motion consists of distortion of the material by displacement
normal to the direction of motion of the wave without change of volume. These two
types of wave are the eigensolutions for an infinite medium and each has its
characteristic propagation speed governed by the two elastic material constants and the
density. In an infinite medium only these two types of 'bulk’ wave can propagate in any
direction.

Next, the general examination of wave propagation in an infinite medium is reduced to
the special case of a two-dimensional infinite space in which plane strain and in-plane
motion only are considered. The bulk waves are therefore restricted to those which
propagate in directions lying in the plane and whose particle motion is also entirely in the
plane. For these waves there is no variation of any field variables in the direction normal
to the plane and so any plate wave which is described by their superposition will aso
have these properties. Particle displacements and stresses are derived for these waves.

The interaction of bulk waves with an interface is then examined. The theory is
developed for the case of two semi-infinite media which meet at an infinitely long
straight interface. In general four bulk waves can exist on each side of the interface, a
longitudinal and a shear wave arriving and a longitudinal and a shear wave leaving.
However there are four boundary conditions of displacements and stresses which must be
satisfied at the interface in order that combinations of these bulk waves can exist as
eigensolutions of the two-media system. This places the restrictions on the bulk waves
that they must have the same frequency and the same wavenumber in the direction
paralel to the interface. They therefore have the same velocity component in this
direction, as will any wave which is described by the superposition of these waves. It is
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aso shown that, in order to satisfy these conditions in some circumstances,
inhomogeneous longitudinal and shear waves can exist, propagating without diminishing
along the interface but decaying in the direction normal to the interface.

Finaly the analysisis extended to a multilayered plate by the consideration of a sequence
of these interfaces, paralel to each other and spaced apart according to the layer
thicknesses. An eigensolution will exist for wave propagation along this system when
the interface boundary conditions are satisfied smultaneoudly at all of the interfaces.
This means that for given geometry and material properties, suitable values of frequency
and wavenumber (or wavelength or velocity) have to be found. Two different strategies
are developed for the solution, each concluding with the definition of a characteristic
function whose result must be zero for amodal solution to exist.

2.2 Plane wavesin an infinite e astic medium

The development of the equations of motion for an infinite elastic solid has been covered
in many texts (see Brekhovskikh and Goncharov, 1985, for example). The usua
approach, presented here, is to start with an infinitesmal cubic element in an infinite
elagtic isotropic medium of density p. A Cartesian system is adopted, here with
displacements uq,u2 and ug in directions x1,X2 and x3 respectively. By application of
Newton's second law, equilibrium requires that:

Equilibrium:

92u1 _ 0611 . 9612 = 90613
Ptz = ox1 * X2 * X3

92u- _ 9691 N 0099 N 0023
Ptz = X1 X2 X3

02un _ 090731 N 0032 N 0033
P2 = X1 X2 X3

(2.1)

where 611,12 etc. are the stress components acting on the faces of the cube and t istime.

These are the fundamental stress equations of motion for the medium. It will be more
convenient if they are expressed in terms of displacements, by substituting the stress-
strain and the strain-displacement equations:
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Stress-strain:
011 =AA+2ueq) . 022 =AA+2uepp . 033 = AA+2Ue33
012 = HETD , 023~ €3, 013 = ME13 (2.2)

where A and p are Lamé's elastic stiffness constants and A = €11 + €22 + €33 is the
change in volume (dilatation) of the element. A and p are related to Young's modulus
(E) and Poisson'sratio (v) by the expressions:

2= _Bv
T (1+v)(2-2v)
__E
M= o1+v)
S
E= G (342
A
V7 200 23
Strain-displacement:
_au _au _au
811° ox1 ’ 22+ X2 337 0X3
_oug  dup _@2 L ou3 B_U1 L ou3 2.4)
8X2 ox1 ' 8X3 oxp 1 E)Xg ox1 '
Substitution yields the displacement equations of motion:
2
04Uy _ Jd 0duq BU7 Ju3 2
P2 = AT Gxg Toxy Toxg TRV UL
2
04U _ 0 0Jup Jduy  dJu3g 2
a2 = G0 G T oxg Taxg VR
2
04u3 _ d 0Jup Jduy  dJuz 2
Praz = oG g Taxg T oxg TV (29)
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where V2 isthe o erator ( i + i + 92 )
P ox12 ~ 9xp2 ' oxgz2”

These equations cannot be integrated directly. Therefore for any application, a form of
solution must be assumed and checked for suitability by differentiation and substitution.
Here it is assumed that the wavefront is an infinite plane which is normal to the direction
of propagation, asillustrated in Figure 2.2. It is aso assumed that, at any position in the
propagation direction and at any instant in time, al displacements are uniform over the
plane of the wavefront (this defines a homogeneous wave). Since the medium is
isotropic it is only necessary to consider a wave travelling parallel to the x1 axis without
loss of generality. Thus the wave is infinite and unchanging in the x» and x3 directions
and all variations are in the x1 direction only. In this case a solution of the following
form may be assumed:

up,Up,uz = A (2nx1/L - at) + B e (2nx1/L + o) (2.6)

where A and B are constants, L is the wavelength and w is the frequency in radians per
second. By recognising that velocity, c, is the product of frequency (in Hz) and
wavelength, the solution can also be expressed in the form:

Up,Up,uz = A eX1/C- 1) + B dax1/c+1) (2.7)
or in terms of the wavenumber, k = w/c, in the form:
up,Up,uz = A el(Kx1- at) + g el(kx1 + o) (2.8)

In each case the first term represents a harmonic wave travelling with amplitude A in the
positive x1 direction and the second term represents a wave of amplitude B travelling in
the opposite direction. The particle motion of the wave need not necessarily be parallel
to the direction of propagation and isin general some combination of uq,up,us.

Differentiation of (2.6), (2.7) or (2.8) and substitution into (2.5) yields two possible
expressions for the speed c,
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_ ol _o _M2u 2 _ E(@v) 120 _
=% "k U5 =Gy =0, sy
c=9=f =B s b @9

The first solution requires that the particle motion is entirely in the direction of
propagation. In this case the wave motion consists of change of volume of the medium
only (dilatation). The second solution requires that the motion is normal to the direction
of propagation and the motion consists of rotation of the medium without change of
volume.

Thus two types of homogeneous plane wave may travel through the medium in any
direction, dilatational waves with speed o and rotational waves with speed 3. These
(bulk waves) are the eigensolutions for the equation of motion in an infinite elastic
isotropic medium. Waves will propagate infinitely with these velocities, without
changing direction or amplitude.

Dilatational waves are often referred to as 'longitudinal’ waves and rotational waves as
'shear' waves. These terms can be a little mideading because 'longitudina’ and 'shear’
deformations are not uncoupled - ‘longitudinal’ deformation involves both extensional
and shear behaviour as can be seen from the presence of the Lamé constant u for
longitudinal waves in equation (2.9). However these terms are in very common use and
for simplicity they will be adopted from now on.

Before proceeding with the analysis a great deal of simplification will be achieved by
taking advantage of the principle of superposition and separating equations (2.5) into
these two displacement fields, one of ‘longitudinal’ waves and the other of 'shear' waves.
At the same time the specific coordinates x1, X2 and x3 and the displacements uq, up and
ug will be replaced in the equations by their general vector forms x and u.

A neat and general way to separate the fields is to use the Helmholtz method (Malvern,
1969, for example). This defines two wave potentials, a scalar function ¢ and a vector
function y, representing longitudinal (L) and shear waves (S) respectively and performs
the separation by the operations:



Chapter 2 45
Free wave propagation along a multilayered plate

L=Vo
S=VXvy (2.10)

where V is the vector operator ( 831 : 832 : 833 ) and X denotes the vector cross

product.
The total displacement field is then given by the superposition of these two fields:
u=L+S (2.11)

and equation (2.5) breaks down into the two parts:

92
p 53 =0+ 20) V20

and

92
pa—t\zll =uVay (2.12)

Now the solution equation (2.6) can be expressed as.

0=A() do(Nex/a. - t)
and

v =A(g) dANX/B-1) (2.13)

where N is a vector of unit length which defines the direction of propagation and A(L)
and A(g) are the longitudinal and shear wave amplitudes. The propagation vector N is
introduced for convenience, to simplify the derivation. It is illustrated in Figure 2.3
together with an expansion of equation (2.13) into its component parts. To generalise the
expressions the amplitudes may be taken as complex quantitiesA(L)ei(P, A(S)ei(P , Where
¢ isthe phase of the wave at the spatial and temporal originx =0, t = 0.

Wavenumber description:

These equations are often expressed in a more general form:
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0=A(L) d(kex - mt)
v =Ag) e (kex - o) (2.14)

where k is the wavenumber vector, describing the spatial distribution of the wave. K is
real and paralel to N for an elastic homogeneous plane wave and is given by:

k = NT? for longitudinal waves
Nw
k= F for shear waves (2.15)

The wave propagates with wavelength (L) and speed (c) in the k direction of :

21
L=<E
k]
c= ﬁ (2.16)

2.3  Planewavesin atwo-dimensional space

The analysis will now be restricted to the two-dimensional case of plane strain and the
displacements and stresses associated with the plane waves will be derived.

The application of the moddl is to the propagation of waves along plates of significant
width compared to the wavelengths. It is therefore appropriate to simplify the model to
two-dimensional plane strain such that al behaviour in the plane is assumed to be
identical in any other paralé plane. Thusthe plate isassumed to be infinitely wide.

The analysis so far has been independent of the orientation of the Cartesian coordinate
system. Any orientation of the coordinate system may therefore be chosen without
influence on the model.  An attractive one is that in which x3 is the direction normal to
the plane, as shown in Figure 2.4. For plane strain there is no variation of any quantity in
the x3 direction:

9 _
3 =° (2.17)
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With this limitation, all solutions will describe waves propagating in the plane, i.e. in a
direction consisting of components of xq and x» only. The direction xq1 will be
associated later with the direction of propagation of the modal solutions aong the plate
and x2 with the direction through the thickness of the plate. However for the moment
the x1 and xo dimensions are still considered to be infinite so that the two-dimensional
bulk plane waves can be defined.

At this stage one further restriction is voluntarily placed on the model by stating that
there isto be no displacement in the x3 direction:

uz=0 (2.18)
This latter restriction limits solutions such that, in addition to the waves propagating only
in the plane, the particle motion is aso only in the plane. In particular it requires that
shear waves (rotational motion) involve rotation about the x3 axis only. This excludes
'in-plane’ shear modes (L ove waves for example) from the model.

Displacements of longitudinal waves:

From equation (2.10) and (2.13) the displacement vector of a longitudinal wave of
potential ¢ is:

u=Vo=V(Aq)eoNexio-1)) (2.19)
Expressing thisin its component parts and re-scaling the (arbitrary) amplitude A :

ug = Np A(L) d O(N1x1/0 + N2x2/o - t)

U= No A(L) d O(N1x1/0 + N2x2/o - t) (2.20)
Displacements of shear waves:
Similarly the displacement vector of a shear wave of potential y is

S=VXy= VX(Ag) dANXp-1)) (2.21)



Chapter 2 48
Free wave propagation along a multilayered plate

Here the potential y is the vector of rotation about the x3 direction (note that equation
(2.18) limitsrotation to thisaxis). The cross product is therefore given by

C 9 ) )
ox1 0
wa:<a%2}x<o} (2.22)
_d_
\0X3 / kng

and the component displacement parts are

up = Np A(g) € AN1XV/B + N2x2/B - 1)

up=- N1 A(S) dO(N1x1/B + N2x2/ - t) (2.23)
Stresses of plane waves:

Substituting equation (2.4) into (2.2), the stresses can be expressed in terms of the
displacements as:

ouq BU7 Ju3
8X1 X2 * 8X3) *

BU1
axl

611 =2 (

ouq BU7 N ou3

8X1 X2 8X3)+2

ouo
X2

0622 =X (

ou3

ouq BU7 N Ju3
X3

8X1 X2 8X3)+2

033 =X (

_1@2)

012 = “(axz ox1

_2@3)

623 =1 ( oxz ¥ 9%y

_1@3)

013 = “(aX3 ox1

(2.24)
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According to the plane strain condition of equation (2.17) these equations reduce to

dug | dup dup
o11= “axl 8X2) 2

dug | dup dup
022= “axl 8X2) 2

dug | dup
033° k(axl 8X2)

_1@2)

012 = “(axz X1

023=013= 0 (225)
Stresses of longitudinal waves:

The stresses associated with longitudinal waves are found by differentiating equation
(2.19) with respect to x1 and x» and substituting into equation (2.25):

611 = (A N72+ A No2 +2u N7 2) i“’—o'?a—) do(Nex/o: - 1)

622 = (A N12+ A No2 +2u N»2) i“’—o'?a—) d(Nex/o: - 1)

533 = (A N12+ A No2 )i‘”—sﬂ—) d(Nex/o. - t)

612= (24 N1 Np) 2200 daXNexia -y (2.2

Taking advantage of the unit length of vector N and substituting equations (2.9), these
stress equations can be expressed in terms of the velocities o and B of the bulk waves:



Chapter 2 50
Free wave propagation along a multilayered plate

2 .
(511=(0c-g(iLN22) fopA(L) e (Nex/o - 1)

2 .
(522:(06-%N12) fopA(L) d(Nex/o - t)

2 .
Gggz(a-%)ia)pA(L)e'O)(N'X/OC't)

2 .
612 = (g(% NiN2) i wp A(L) do(Nex/o. - 1) (2.27)

Stresses of shear waves:

The stresses associated with shear waves are found similarly by differentiating equations
(2.23) with respect to x1 and x» and substituting into equation (2.25):

611 =(2uN1N2) i‘”—['?@ d(Nex/p - t)

022 =(-2u NlNz)m—[?('S)eiO)(N'X/B - = 011

033=0

612 =(N22-N1?) i‘”—BA@ g (Nex/B - 1) (2.28)

Again these stress equations can be expressed in terms of the velocities oo and 3 of the
bulk waves:

011=(2BN1N2) i wp A(s) d(Nex/p - t)
622=-011
033=0

612=(N22-N12)Biwp AS) e (Nex/B - 1) (2.29)
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24  Planewaves at the boundary between two media

The equations so far are sufficient to describe the behaviour and quantities of interest of
bulk plane longitudinal and bulk plane shear waves in an infinite elastic medium. Now
the derivation will be continued by examining the interaction of these waves with a plane
boundary. An analysis of the interaction of plane waves with a boundary may aso be
found in Kolsky (1963) or Brekhovskikh and Goncharov (1985). This analysiswill form
the basis of the assembly of propagating waves in a layered system by the superposition
of bulk wave components.

It is assumed now that there are two semi-infinite half-spaces in plane strain. The
interface between the half-spaces is an infinite flat plane defined by the origin of the
coordinate xp. Thus all points on the interface have xo = 0 and waves propagate in the
X1 and X2 plane, as shown in Figure 2.5.

Consider a longitudina eastic bulk wave travelling in medium 1 and arriving at the
interface (Figure 2.5). The wave isinfinitely wide, extending from - oo to + o< in the x1
direction, and is continuous in time. Its displacement in the x4 direction is described for
all positionsin the half-space of medium 1 by equation (2.20):

up =Ny A(L) d O(N1x1/0 + N2x2/o - t) ((2.20))

The intersection of this wave with the interface is described by this equation when the
coordinate xo is zero. This can be viewed as the projection of the wave onto the
interface or as the xq component of the wave at the interface. Now the equation reduces
to:

up = N7 A(L) d(N1x1/0c - 1) (2.30)
or, in terms of the wavenumber along the interface:
up =N1A(L) d(K1x1 - o) (2.31)

Similarly the uy displacement and all of the stress components for this wave will have
the same harmonic exponent and therefore the same wavenumber k1 along the interface.
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Next two different cases are considered. First, the simple case when medium 2 is
vacuum and, second, the general case when medium 2 is a different solid.

Case 1l: Medium 2isvacuum:

If medium 2 is vacuum then the displacements at the interface need not be constrained to
any particular value but the stress normal to the boundary (622) and the shear traction on
the boundary (612) must be zero in order to satisfy equilibrium. Therefore if this wave
is to exist without violating the conditions for propagation in an infinite medium then at
least one other wave must also be present, with equal and opposite stress components at
all times and positions along the boundary such that these stresses are always cancelled at
the boundary.

There are three other bulk waves which can exist in medium 1. a shear wave arriving at
the interface, a longitudinal wave leaving the interface, and a shear wave leaving the
interface. Their properties are constrained by Fourier's theorem which requires them to
have the same frequency in order to contribute to this harmonic process and Snell's law
which requires them to have the same spatial properties at the interface (i.e. the same kq
wavenumber). Thus alongitudinal wave leaving the interface (‘reflected’) will have the
same frequency as the longitudinal wave arriving at the interface (‘incident’) and the
angle of incidence will be the same as the angle of reflection. Similarly an incident shear
wave will have the same frequency and kq wavenumber (thus defining its angle of
incidence) as the longitudinal waves and a reflected shear wave will leave at the same
angle as the incident shear wave. In summary these constraints can be expressed for the
incident (1) and reflected (R) longitudinal (L) and shear (S) waves as.

ORL) = ARS) = XIL) = X1S)

k1(RL) = k1(RS) = Kk1(1L) = K1(1S) (2.32)

It follows that all of the waves have the same component of velocity along the xq
direction (the xq phase velocity), given by

®
Cph = k_l (2.33)

The unknowns in this system are now only the amplitudes of three of the waves and to
find them there are two stress equations to be satisfied (692 = 612 = 0 a x2 = 0). The
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system cannot therefore be solved unless one of the three waves is known. In a practical
analysis of reflections at such a boundary (a response analysis) it is probable that both
incident waves will be known, in which case the solution is evidently possible. Note that
the equations are all complex, as are the wave amplitudes, so that the solution must take
account of the phases ¢ of the waves (as defined in equation (2.13)).

Case2: Medium 2issolid:

The second case is the general case when medium 2 is not vacuum and has different
properties from medium 1. In the illustration in Figure 2.5, for example, the bulk
velocitiesin medium 2 are faster than those in medium 1.

As with the analysis of the first medium there are four possible bulk waves in the second
medium. Again these can combine harmonically and they are subject to the conditions
discussed above.

There are also four boundary conditions which may be used to link the two half-spaces:
normal stress (o9p), shear stress (c12), normal displacement (up) and tangential
displacement (uq). In a'welded' interface all of these components must be continuous
across the interface, in a dliding interface only 622 and up are continuous, and so on.

In this analysis welded interfaces are assumed and equations (2.32) apply to all eight of
the waves at the interface; the four in medium 1 and the four in medium 2. However it
should be noted that the continuity of only one of these boundary conditions across the
interface would be sufficient to apply this constraint. Thus equations (2.32) are extended
to link medium 1 (1) and medium 2 (2):

0(2) = X1

k1(2) =k1(1) (2.34)

With eight waves at an interface and four equations of boundary conditions at the
interface, a solution for the wave amplitudes is possible if any four of the waves are
known. This could be the case if the two incident waves on each side of the interface
were known and the amplitudes of the reflected and transmitted waves were required.
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Wave propagation in the xq direction

The eight waves at the interface each propagate at some angle to the x4 direction but it
has been shown that the conditions of equations (2.32) and (2.34) force them to combine
such that they all have the same velocity and wave number component in the x4 direction
at the interface. In fact inspection of equation (2.20) shows that this will be the case not
only at the interface where x» is zero but on any line where xo is constant, so that
eguations (2.32) and (2.34) apply to the whole system. It should therefore be possible to
express the wave equations for all waves and for all x1,x2 space in terms of their x1
components. This will be a useful progression towards the description of plate waves
where the interest is in the propagation in the x1 direction.

From equations (2.32), (2.20) and (2.23) the relationship between longitudinal (L) and
shear (S) wavesis given by

Nigy - Nys (2.35)
o p

This equality is a constant for the whole system and, following the notation of Pialucha
(1992), will be called s, the Snell constant. The wavenumber in the x4 direction (k1) and
the phase velocity in the x1 direction (cph), which are also constant for the system, can
be related to s and to the angles of incidence and reflection as follows:

_N _ N _ k1 _ 1 _s€n®) _ sn(6g)
R e T e

where 0| isthe angle of incidence and reflection for longitudinal waves and 6g for shear
waves, asillustrated for two of the wavesin Figure 2.5. The term "angle of incidence' is
generally used for all waves, whether incident, reflected or transmitted, and is the
absolute value of the acute angle between the propagation axis of the wave and the
normal to the interface.

So, from (2.35)

as

N1(L)

(2.37)

]
=
(9]

N1(3)
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Here it can be seen that a wave whose direction of propagation has a positive x1
component has a positive value of s, and a wave with a negative x1 component has a
negatives.

Since the vectors N() and N(g) are of unit length their components in the x> direction
can now be found:

No(L+) = £ (1-02s2)1/2
Np(st) = *(1-p2s2)1/2 (2.39)

Here (and from now on) a postive subscript denotes a wave whose direction of
propagation has some component in the positive xo direction and a negative subscript
denotes a wave whose direction of propagation has some component in the negative x»
direction. Thus the upward travelling waves in Figure 2.5 are + waves and the
downward travelling waves are - waves.

Now the displacement and stress equations (2.20), (2.23), (2.27) and (2.29), can be
expressed in terms of sas:

For longitudinal waves:

ul:aSA(LJr)eia)(lei(1-a252)1/2x2/oc-t)

Up=# (1-a22)U2 Ay 4 dASLE(1-022)12x0M- 1)

282

(04

o11=(a- +20€[32$2)iO)pA(Li)ei‘”(sxli(l'azsz)llzleoc-t)

o22=0(1- 2132s2)ipr(Li)ew)(Sm(l-oc2s2)1’2x2/oc-t)

2 .
Gggz(a_%)ipr(Li)elo)(sxli(l-oczsz)l/zxz/oc-t)

o12=+2p25(1- 22 )U2i @p Ay dASLE (1-022)V2x0/a 1)

(2.39)
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and for shear waves:
Up =+ (1-B22 U2 A gy dAXLE (1 B2s2)l2xo/B - t)

Up=- B SA(g) dH1E (1-B28)12xaB - 1)

611 =+2p2s(1- P22 )1/2ipr(Si)eia)(lei(l-[3252)1/2x2/[3-t)

622 = -011

612= B (1-2p22 )i wpA(sy) do(sxa = (1-p22)V2x9/-t)  (2.40)

2.5 I nhomogeneous waves

Consider a plane longitudinal wave incident at a free surface at an arbitrary angle 0|
between 0 and 90 degrees, asillustrated in Figure 2.6(a). Its velocity in its own direction
of propagation is o (bulk velocity) and its frequency is ®. From equation (2.36) the
Snell constant s can be calculated and, since sin(0) is less than unity, the product as is
less than unity. The phase velocity Cph is aso greater than the wave velocity o. In
genera a plane longitudinal wave is reflected at the same angle and a plane shear wave,
having a lower bulk velocity, is reflected at a smaller angle. No other waves are
present.

Now consider a shear wave incident at the free surface instead of the longitudinal wave,
as shown in Figure 2.6(b). For small angles of incidence, 6g the same behaviour should
be expected, with the reflection of shear and longitudina plane waves. The reflected
shear wave leaves at the same angle of incidence as the incident wave and the reflected
longitudinal wave leaves at a larger angle. However as the angle of incidence of the
incoming shear wave is increased, a critical point is reached when the shear angle is still
less than 90 degrees but the reflected longitudinal angle is equal to 90 degrees. At this
point alongitudinal plane wave propagates exactly paralel to the free surface, its product
asisunity and its phase velocity Cph isequal to its bulk velocity o.

At shear angles of incidence larger than this critical value, the shear wave behaviour is
unchanged but the longitudinal wave is inhomogeneous. Its product os is greater than
unity and its phase velocity Cph is less than its bulk velocity o.. Now equation (2.38)
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yields an imaginary value for N2(|_) rather than area value and equations (2.39) for the
displacements become:

ul:aSA(L+)eio)(S>(1+i(oc252-1)1/2x2/oc-t)

Up= i (@22 1)U2 A 4y dOSLHi(02S2-1 YY2 xolo - t) (2.41)
Separating the real parts of the exponents from the imaginary parts gives

Uy = asALs) (XL 0 (a22-1)V2 5o/

Up=i(a22-1)12 Ay ) dO(SL-1) o (022-1)V2xo/0 (2.42)

Both of these equations show, by their first exponents, propagation of a wave along the
X1 direction which satisfies the frequency and spatial requirements of the boundary
(equation 2.32), and by their second exponents, an exponential decay in the xo direction.
Thus the inhomogeneous (or 'evanescent’) wave is characterised by propagation along the
interface to satisfy the boundary conditions with the other wave(s) and by decay away
from the boundary. It can be seen also from equation (2.42) that this 'longitudinal’
inhomogeneous wave has a displacement component up normal to its direction of
propagation and out of phase with its up displacement.

In general, inhomogeneous waves, either longitudinal or shear, will exist under any
circumstances of reflection or transmission across interfaces where the phase velocity at
the interface is less than the bulk velocity in one of the adjoining media. They are
incapable of taking energy away from the interface because of their decay in the xo
direction but are valid propagating waves, carrying energy paralel to the interface.

The term 'critical angl€e' is often used to describe the conditions for the propagation of
inhomogeneous waves in a solid when excited by incident waves in a coupling liquid.
The longitudinal critical angle is the angle of incidence when the transmitted longitudinal
wave is (just) homogeneous and travels exactly parallel to the interface (the transmission
angle is 90 degrees); a smaller angle of incidence would result in a homogeneous
longitudinal wave with atransmission angle of |ess than ninety degrees and a larger angle
of incidence would result in an inhomogeneous longitudinal wave travelling parale to
the interface. The shear critical angle is the (larger) angle of incidence when the same
conditions exist for the shear wave component in the solid.
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Rayleigh wave

The Rayleigh wave is a specia and well known case of the combination of
inhomogeneous waves. It propagates along a free surface and consists of a combination
solely of an inhomogeneous longitudinal wave and an inhomogeneous shear wave. The
proportions, phases and wavelengths of these two wave components are such that their
normal and shear stresses 622 and 612 both cancel at the free surface, thus satisfying the
equilibrium requirement there.

The phase velocity of the Rayleigh wave depends on the material properties but for all
elastic bodies the range of possible values of Poisson's ratio limits the Rayleigh velocity
to the range 0.8741  to 0.9554 3. The velocity is therefore only just lower than the bulk
shear velocity for the medium. It is aso independent of frequency. Because both wave
components are inhomogeneous, all displacement and stress quantities for the Rayleigh
wave decay with distance from the free surface.

2.6  Assembly of layered system

The theory developed so far is sufficient to describe the characteristics of individual
infinite homogeneous bulk waves in an infinite elastic medium and the combination of a
set of these waves which is necessary for their existence when the medium is divided into
two half-spaces with different material properties.  With this development from
individual waves to a set of waves, the emphasis was changed from waves travelling in
their own individual directions to the idea of a compound wave, consisting of the linear
superposition of the individual waves, travelling in the direction parallel to the interface.
In addition the possibility was discussed of an inhomogeneous wave which may be
present along the boundary as a valid part of this compound wave.

The next stage will be to consider the addition of further paralel interfaces such that
layers of finite thickness are described. The addition of a second interface will describe a
single infinitely long plate in plane strain with a semi-infinite half-space on each side of
it. The addition of athird interface will extend thisto atwo-layer plate, and so on.

The description of wave propagation along the multi-layered system in terms of infinite
bulk waves relies on the satisfactory coupling of the wave componentsin each layer at all
of the interfaces. A valid solution for a propagating plate wave therefore consists of a
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frequency (), a wavenumber in the direction along the plate (k1) and a set of wave
amplitudes, A(L+), A(L-), A(s+) and A(s.) for each layer, such that all of the interface
boundary conditions are satisfied. Valid solutions cannot be found for all values of ®
and k1. The approach will therefore be to build a description of the full layered system
in terms of the wave amplitudes and then to find valid pairs of ® and kq such that al of
the interface conditions are satisfied.

The quantities necessary for the coupling of the waves at the interfaces are the two
displacements uq and up, the stress normal to the interface o2 and the shear stress 612.
The other stress components need not be continuous across a 'welded' interface nor need
they be any particular value at a free or fixed boundary. They therefore do not play a
part in the solution. The four necessary quantities come from equations(2.39) and (2.40).
They can be smplified by making the following substitutions:

Cy=(1-022)1/2 Cp=(1-p2s2)12

i 02 L\12
CZB:]_-ZBZSZ o = I('O(l o SZ) XZ/OC'

gB:ei‘”(l'BZSZ)mXZ/B, Ci=iop (2.43)

Thus for longitudinal waves travelling with increasing xo, the displacements at any
location can be expressed as:

Up = o Sgg € AL 1) AL+)

u2 = Co, Yot dasx1-t) AL+)

022 = 0. Gj Cop 0o, € AL 1) A

612=25B2 Gj Cp g dXFL-1) A (2.44)
For longitudinal waves travelling with decreasing x:

= &2 0ot p

_ ~Ca Jo(sxq-t) ALY

12 Jo
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022 = a—(:gla—CzB elO)(SX]_-t) A(L-)

(2.45)

-2sB2CiCy i ]
o610 = " L0 Jo(sxq-t) ALY

For shear waves travelling with increasing xo:

w1 =Cpog @Y AGsy)

Up=-Bsgg AL gy

020 =-25p2Cj Cgog €ASL-1) Agy)

c12=P Cj Cop 0 do(sx1-t) A(sh) (2.46)
and for shear waves travelling with decreasing xo:

ulz -?Eﬁ elO)(SXl-t) A(S_)

-PS j -
o 9T A

62 = 2_Sl3€_BCi_C|3 dOS1-1) pg)

o19= L'C;B—Czﬁei‘”(g(l't) AS) (2.47)

U =

Note that the term & ™1 - 1) is common for al of the equations. This is the
description for the harmonic propagation in the x1 direction. Since it applies equally to
al of the individual waves it is of no use in determining their contributions to the
compound plate wave. Therefore for convenience from now on it will be omitted from
the equations. However it should be assumed to be implicit in al expressions of
displacement or stress. Thus the solution will depend spatially only on variations in the
X2 direction and temporally only on any phase difference between components.
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In general it is useful to describe the superpositions of the displacements and stresses for
the four waves at any xo position. Thisis easily done by summing equations (2.44) to
(2.47) in matrix form:

( u ) — _ - (A A
1 oSy g_i Cp9p ECBQ ()
u2 Colo, o - Bsgg b AL
. } - ng ) SEC 3 } (2.48)
22 aCiCopte g P - 2BCiChop L‘—F’gﬁ AsH
. - 282CiCq o BCiCag
Lo10. _28[32C|Caga Jo, BCiC2p9p o - \A(S-))

The matrix in equation (2.48) is the field matrix, describing the relationship between the
wave amplitudes and the displacements and stresses at any location in any layer. Its
coefficients depend on the through-thickness position in the plate (xp), the materia
properties of the layer at this position (p, o and B), the frequency (w), and the Snell
constant (s). The Snell constant is determined from the wavenumber along the plate (k1)
and the frequency, according to equation (2.36). The field matrix will be abbreviated in
the analysisto [D].

Figure 2.7 shows the labelling system which will be used in the analysis of multilayered
plates. A five layer system isillustrated as an example, consisting of athree layer plate
with two semi-infinite half-spaces. The half-spaces are always included as layers in the

description of the model, even if they are vacuum. The layers of the system are labelled
¢ 1to¢ 5, and the interfaces, ¢ 1 to ¢ 4. Although the orientation of the plate in space is
arbitrary, it is convenient to refer to the layers and interfaces in terms of their vertical

positions in a stack and to the top and bottom surfaces, as in the orientation in the figure.
Accordingly the x» direction is defined as downwards, from the top to the bottom of the
plate. Each layer hasits own x2 origin, defined as the location of its top interface, except
for the first layer ( ¢ 1) which has its origin at its interface with ¢ 2 in order to avoid
having an origin a - . A single origin for the whole system is not necessary because
phase differences from interface to interface can be accounted for by the complex wave
amplitudes. A reference phase is aso not necessary for the modal solution but it will be
required for the calculation of mode shapes in Chapter 4. The reference phase is defined
by the positive longitudinal wave L+ in thefirst finite layer ¢ 1 which is given zero phase
¢ o that its amplitude is real. The directions of positive longitudinal and shear waves,
L+ and S+, and of negative waves L- and S- are also shown in the figure.
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Thus, for example, the displacements and stresses in layer ¢ 3 at its interface with layer
¢ 2 (interface ¢ 2) are expressed as.

o AL+

u2 _ A L-

o = [D], 5 t0p A((s+)) (2.49)
o, ¢ 3, top As)/¢3

2.7 Solution: transfer matrices method

Two different approaches for the solution of the multilayered system for free propagating
waves have been considered, a 'transfer matrices method and a 'global matrix' method.
The transfer matrices method will be described in this subsection and the global matrix
method in the next subsection. The transfer matrices method was the origina of the two
ideas but it was found to be numerically unstable under certain conditions, as will be
discussed in Chapter 4. The global matrix method was developed to avoid the numerical
instability and it is the method which was employed in the modal model which is
developed in thisthesis. The transfer method is presented here because it is intuitive and
is amenable to the examination of the modal properties.

The Transfer matrices method works by condensing the multilayered system into a set

of four equations relating the boundary conditions at the first interface ( ¢ 1) to the

boundary conditions at the last interface ( ¢ 4 in the illustration). In the process, the
equations for the intermediate interfaces are eliminated so that if the four final equations

are satisfied then all equations are satisfied.

The basic principle of atransfer matrix description for layered media should be attributed
to Thomson (1950). Haskell (1953) subsequently corrected an error in Thomson's
formulation and went on to demonstrate that the method could be used to find the modal
solutions for surface waves. The derivation of the theory for the solution of other classes
of free waves is a straightforward extension of Haskell's idea. Formulations which use
transfer matrix equations for multilayered media are frequently referred to in the
literature as 'Thomson-Haskell' formulations.



Chapter 2 63
Free wave propagation along a multilayered plate

Assume that the displacements and stresses are known at the first interface, ¢ 1. The
amplitudes of the four waves at the top of layer ¢ 2 can now be found by inverting the
matrix [D]:

A(L+) ul
A

“1 = ot 12 250
A(S+) D] ¢2,top |022 (2.50)
A ¢?2 012J ¢ 2, top

Sy

Now move to the next interface, ¢ 2. Knowing the wave amplitudes in layer ¢ 2, the
displacements and stresses at the bottom of the layer can be expressed:

ug u1

u2 _ -1 up

022 = (D] ¢ 2, bottom D] ¢2,top |022 (2.51)
612/} ¢ 2, bottom o12) ¢ 2, top

The matrix product in this equation now relates the displacements and stresses between
the top and bottom surfaces of asingle layer. This matrix will be referred to as the layer

matrix, abbreviation [L], which for layer ¢ 2 is:

[L1¢2 = [D]¢2 pottom (D1 2, top (2.52)

The displacements and stresses must be continuous across a ‘'welded interface.
Therefore:

up up up
u2 _Juw - 1L u2

= = 2.53
622 622 L2 622 (253)
o12)¢ 3,top Loq2) ¢ 2, bottom o12) €2, top

Equation (2.53) now gives the displacements and stresses at the top of layer € 3 in terms
of those at the top of layer ¢ 2. Clearly this process can be continued layer by layer for
all subsequent layers, resulting in the equation:

uy uy
up up

=[S 2.54
Pl [S] 6,0 (2.59)

012J €n,top o012J €2, top
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where n is the last layer ( ¢ 5 in the example illustrated in Figure 2.7) and [S] is the
system matrix consisting of the matrix product of the layer matrices:

(Sl = [Llg2[l g3 - [ ) (2.55)

A free wave travels along the plate without attenuation and without input of energy from
outside the system. There are two ways, illustrated in Figure 2.8, in which these
conditions can be met:

Solution for platein vacuum

If the plate isin vacuum then the stresses must be zero at the extreme interfaces¢ 1 and
¢ (n-1), where nisthe total number of layersin the system, asillustrated in Figure 2.8(a).
Now equation (2.54) reduces to:

ui ui
2 =[98 12 (2.56)
0J ¢n,top 0) ¢2,top

Expanding this equation for the two (zero) stress terms on the left hand side gives:

{8} ) Eﬂ giﬂ {ﬂi} ¢ 2, top (2.57)

where the two-by-two matrix is the bottom left sub-matrix of [S] (rows 3 and 4 and
columns 1 and 2). For this equation to be satisfied, the submatrix must be singular.
Thus, defining the determinant as the characteristic function (f) for the system:

f=S31*S42-541* S32=0 (2.58)

If a pair of values of frequency and kq wavenumber corresponding to a free wave are
used in the assembly of the system matrix then this equation will be satisfied.

Solution for guided waves

Free waves may aso travel in systems in which one or both of the half-spaces are not
vacuum, but only under the condition that no energy leaks from the plate into the half-
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gpaces. For this condition to be satisfied, any wave components in the half-spaces ¢ 1
and ¢ n must be inhomogeneous so that they may carry energy along the plate but are
unable to carry energy away from the extreme interfaces¢ 1 and ¢ (n-1). Waves which
meet this condition are known as guided waves.

If ahalf-space is not vacuum then the stresses at the extreme interface are not necessarily
zero. The formulation based on stresses is therefore not applicable and is replaced by a
formulation based on wave amplitudes.

Taking first of al the case in which neither half-space is vacuum, equation (2.54) can be
expanded, using equations (2.49) and 2.50) to describe the system in terms of the wave
amplitudes in both half-spaces:

P . AL+)
L- _ - L
A(s)/en Ay €1

The condition for free wave propagation is that there should be no energy coming into
the system. Therefore the incoming waves in the two half-spaces must be zero (Figure
2.8(b)) and equation (2.59) reducesto

A%+) 0
_ -1 A(L-

Denoting the matrix product in equation (2.60) as [S]' and expanding this equation for
the two (zero) wave amplitude terms on its left hand side gives:

{8} - Efé giﬂ {228} /1 (2.61)

where the two-by-two matrix is the appropriate sub-matrix of [S]' (rows 2 and 4 and
columns 2 and 4). For this equation to be satisfied, the determinant of the submatrix
must be zero. Thus the characteristic function (f) for this system is:

f=S90* Syq-Sgp*S24=0 (2.62)
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Similarly, characteristic functions can be expressed for the two hybrid cases where one
half-gpace is vacuum and the other supports an inhomogeneous wave. In summary, for
vacuum as the top half-space the equations are:

[S" = [D] ¢, top [S] (2.63)

f=S21*S42-S22*S41=0 (2.64)
and for vacuum as the bottom half-space:

[SI' =[S] [D] ¢ 1,(x2=0) (2.65)

f=S30% Sg4-Ss2* S34=0 (2.66)
Natur e of the characteristic functions

Solutions of the characteristic functions can only be found for cases of free wave
propagation. Zeroes of the functions cannot be found for cases where one of the half-
gpaces is not vacuum and homogeneous waves leave the layered system (leaky waves).
Furthermore, the solution of a characteristic function does not strictly prove the existence
of a modal solution, only that a sub-matrix of the transfer matrix is singular. However
examination of the coefficients of the sub-matrix show that singularity can only occur in
unreaistic cases, for example if the materia has zero density or zero bulk wave
velocities.

The characteristic functions consist of complex quantities and in general they should be
expected to yield complex results. However it can be shown, as follows, that for all
cases of free wave propagation the characteristic function is always real. This genera
proof has not been found elsewhere, the only other proof known to the author is for the
specific case of free surface waves by Haskell (1953).

Consider the layer matrix [L] introduced in equations (2.51) and (2.52) and consisting of
a[D] matrix at the bottom of the layer postmultiplied by an inverted [D] matrix at the top
of the layer. It would be useful, both from the analytical point of view and to reduce
computational effort when calculating solutions, to find an explicit expression for the
inverted matrix and then to perform the multiplication to give an explicit expression for
the layer matrix.
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An explicit expression for an inverted matrix at the top of the layer (coordinate xo = 0)
was presented by Haskell (1953). However the Thomson-Haskell matrix formulation
was dightly different from that presented here because Thomson chose to derive the field
eguations in terms of sums and differences of wave amplitudes rather than smply the
four wave amplitudes. An explicit expresson for the inverson of the matrix [D]
discussed here was found by the author and his colleague T. Piducha. The inverted
matrix is:

~ Bs Cop _1 s ]
o 2Cy 20C] 2C4Ci
B2s -Cog _1 -s
oy o 2Cy 20C; 2C4Ci .
| e - . (2.67)
2Cg p 2CaCi 2BC;
-C2|3 ) S 1
|25 S 2cyci 2 top

Premultiplying this matrix by the [D] matrix gives the layer matrix [L] explicitly. Its
coefficients are:

1 C 1
L11 = BZSZ (ga+£) +—%B(gB +g_B)

le:ziﬁ(ga-iwcgﬁs(-gwi)

1 1
L13=5¢; Qa* -gg-g—B)
os? 1. C 1

L2 =3P (o + ) + B22lg + g—lﬁ)

_C 1., B 1
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Log=L13

1 1
L31=CiCopP?s(ga+ 5 - 9p- 9%

Cor?
L3 = Q'%li—a (90 - i) +2CiCpPp3s? (g - g—lﬁ)

L33z=L22
L3g4=L12

_ 2C,Cis?p4 1
Lar=""

2
(o o) + 2B (g5 -

_) + i C
Jo 2C[3 98

Lap=L31
Laz=L21

Lgga=L11 (2.68)

Since the layer matrix isindependent of the wave amplitudes, relating only displacements
and stresses, it could also be found in this form from Haskell's matrices. Haskell did not
go so far as to perform the multiplication but it has been reported, subsequent to the
derivation discussed here, by Hosten (1991).

Examination of the term Lqq shows that it is real for al input values, including
inhomogeneous cases where g, and/or gp ae imaginary. Similarly the term Loo is
alwaysimaginary. Infact all termsin the layer matrix [L] are either rea or imaginary, in
the following pattern, where 'R' denotes areal value and 'l' denotes an imaginary value:

R 1 I R
| R R |

L=, R r | (2.69)
R 1 I R

It can readily be seen that multiplication of two matrices of this form results in a matrix
also of thisform. Thus the system matrix for any number of layers, [S], always has this
pattern of real and imaginary coefficients. The characteristic function for a plate in
vacuum, equation (2.58), is therefore of the form:
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f=I*1-R*R (2.70)
from which it can be seen that it must alwaysyield area vaue.

If one or both of the semi-infinite half-spaces is not vacuum, then the system matrix is
further modified for guided waves according to equations (2.59), (2.63) or (2.65). The
modifications involve the [D] matrix evaluated at xo=0 and the [D]'1 matrix evaluated at
X2=0. In general these two matrices have the patterns respectively:

R R RB RB

_ Ry Ry R R

[D] = R | (2.71)
B 'B

I PR PR |

[ R Ry | g

R Ry | g

RB R IB |

| RB R lB |

[D]-1 (2.72)

where Ry, means that the term is real if C, is rea (else imaginary), RB means that the
termisred if CB isreal (elseimaginary), and so on. However for guided waves in either
or both half-spaces C, and CB must both be imaginary so that the wave components are
inhomogeneous and no energy leaks from the plate. The patterns of (2.71) and (2.72)
are therefore simplified to:

[D] = (2.73)

O — —

R |
Il R
Il R
R |

[D]-1 (2.74)

[ R | R
R Il R
I R |
I R I |

o 0 — —

Construction of the system matrices [S]' for guided waves results in the following
patterns and characteristic functions:
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For solid or liquid in both half-spaces:

R R I |
S = RR 2.75
Il I R R
f=R*R-1*1=0 (2.76)
and for solid or liquid in the bottom half-space and vacuum in the top half-space:
R I | R
g = R I | R 077
S =1, R R | (2.77)
|l R R |
f=R*R-1*1=0 (2.78)

In both cases it can be seen that the characteristic function must alwaysyield areal value.
Due to symmetry it is not necessary to consider the third case, where the top half-spaceis
solid or liquid and the bottom half-space is vacuum.

2.8  Solution: global matrix method

The approach with the global matrix method is to assemble directly a single matrix which
represents the complete system. The system matrix consists of 4(n-1) equations, where n
is the total number of layers. The equations are based, in sets of four, on satisfying the
boundary conditions at each interface. Thus no assumption is made a priori about any
interdependence between the sets of equations for each interface. The solution is carried
out on the full matrix.

The originator of the global matrix description for layered media was Knopoff (1964)
who wished to avoid the problem of numerical instability which can occur with the
Thomson-Haskell method. This problem will be examined further in Chapter 4. He also
showed that the method could be used to solve some cases of free waves. Subsequently
an important improvement was made independently by Schmidt and Jensen (1985) and
Pialucha (1992), in both cases with an interest in developing robust response models.
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The general method for the modal solution using the global matrix method was
developed by the present author.

Consider a single interface, for example the second interface ( ¢ 2) in Figure 2.7. The
displacements and stresses at the interface can be expressed as a function of the

amplitudes of the waves at the top of the third layer ( ¢ 3). This was shown in equation
(2.49). They may also be expressed as a function of the amplitudes of the waves at the

bottom of the second layer (¢ 2):

0 A

_ L-
69 = Bl 5 pottom A(sH) (2.79)
G612) ¢ 2, bottom As)/ €2

For continuity of displacements and stresses at the interface, these two equations should
give equal results. Therefore

/:\(L+) /:\(u)

L- _ L-

D] ¢ 2, bottom A((s+)) = [D] ¢ 3, top A((S+)) (2.80)
As)/ €2 As)) ¢3

This equation can be expressed in asingle matrix as.

(A(L+)2\
A(L-)2
A(SH)2
A
102030 | ) 12
A(L-)3
A(s+)3
\A(S-)3/

-

= {0} (2.81)

where the subscripts 2 and 3 refer to layers¢ 2 and ¢ 3 and t and b to the top and bottom
of each layer. This equation describes the interaction at interface ¢ 2 of the wavesin the
adjoining layers¢ 2 and ¢ 3.

Before proceeding, a modification can be introduced here to improve the numerical
performance of the method. This is the modification which was proposed independently
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by Schmidt and Jensen (1985) and Pialucha (1992). Instead of defining the origin for al
of the wavesin alayer to be the top of the layer, the origin of all wavesis defined to be
at their entry to the layer. Thus downward travelling waves (L+, St+) have their origin at
the top of the layer and upward travelling waves (L-, S-) have their origin at the bottom
of the layer. No change is made for the semi-infinite half-spaces. With this
modification, and referring to equation (2.48), the [D] matrices for the top and bottom of
alayer can be expressed, respectively as:

os oSy, CB -CBgB
_ Co, Color -Ps -Bsog
[D4 = : . 2c. 2c.
OCC|C2B OCC|C2Bga -2 CICB 253 CICBgB
| 2932CiCq, -25B°CiCo0o. BCiCop  BCiCopgp -
[ osgy os Cp9p -Cg ]
CoQo Co, '1399[3 -Ps
Dyl = 2.82
Dyl aCiCopde  0CiCop -2932CiCpgp 2s8°CiCp (282)
L 2532CiCy g, -292CiCyy BCiC2pog BCiCop -

A similar equation to (2.81) can now be written for the interface ¢ 3 and ssmply added to
the global matrix so that interfaces¢ 2 and ¢ 3 and layers¢ 2, ¢ 3 and ¢ 4 are described:

{A2}
[D2bl [-D3tl _
[ [Dap] [-D4t]} {Eﬁﬁ} =10} (2.83)

where the wave amplitudes in each layer, A(_+).A(L-).A(S+)A(S). have been
abbreviated smply to a layer wave vector {A}. The process is continued for all
interfaces, resulting in amatrix of 4(n-1) equations and 4n unknowns. In the case of the
examplein Figure 2.7 the matrix equation is:

{A1}
[D1p] [-D2il
{A2}
[D2p] [-D3i] _
[D3p] [-Dag LI =t (284

[D4p] [-Dsil {Ag}

As it stands this system cannot be solved for the 20 wave amplitudes because in this case
there are only sixteen equations, and in general for any system there will always be four
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more unknowns than there are equations. In order to progress further, either for response
or modal solution, four of the wave amplitudes must be known and removed from the
system.

For the modal solution of plate waves it is convenient to select as the four known waves
the incoming waves in the two half-spaces, that is to say A(L+)1, A(S+)1. A(L-)n ad
A(S,)5. These can be moved to the right hand side of equation (2.84) to give:

[D"1b] [-D2d {A'}) [-D1pl (A"}
[D2p] [-Da a2 o
[D3p] [-Dag] nah ‘o
[Dap] [-0*5 | o4 e
{A"5} [Dst] 1 U{A 5}
(2.85)

where the superscripts + and - denote those parts of the matrices or vectors corresponding
to + and - waves respectively. Thus the vectors {A+} and {A"} each consist of half of
the vector { A} and the matrices [D+] and [D7] are four-by-two partitions of the matrix
[D]. The partitioning isasfollows:

-

w1t

'811 813 ]
p+1- D21 D23
(D] D31 D33
L D41 D43 -

'812 814
-1_| D22 D24
[D7]= D3y Dag (2.86)

| Dgo Dyg -

The matrices on both sides of equation (2.85) are square and of dimension 4(n-1). A
solution for any set of waves on the left hand side can now be calculated for known right
hand sides.
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Solution for guided waves

The modal solution for guided waves is straightforward because the system is aready
described in terms of the wave amplitudes. For a free wave travelling along the plate
without input of energy from outside the system, there are no incoming waves, as
discussed in Section 2.7 and illustrated in Figure 2.8(b), and so the right hand side of
eguation (2.85) must be zero. Thus, denoting the matrix on the left hand side as the
system matrix [S]:

K{A'l} A
{A2}
{A3}
[S]§ - } ={0} (2.87)

\{A'l"n})

For this equation to be satisfied, the system matrix must be singular, so its determinant
must be zero. This yields the characteristic function for the solution of guided wave
propagation in multilayered plates using the global matrix method:

f=]9=0 (2.88)
General solution

If the top and bottom half-spaces are vacuum then the [D+ ] and [D” ] matrices cannot
be evaluated. Modification istherefore required to the system matrix to account properly
for the absence of waves in vacuum and for zero stresses on the free surfaces. This can
be done by reformulating the problem, resulting in a smaller system matrix. The sub-
matrices and wave amplitudes associated with the half-spaces are removed from equation
(2.79) and the remaining top and bottom sub-matrices are partitioned into their stress and
displacement rows. The stress partitions are then taken onto the right hand side as
knowns, leaving a square system matrix again, and the solution is then possible.
However a much ssimpler alternative, which leaves the solution completely general, isto
retain the full system matrix and to modify the layer constants for the vacuum half-
gpaces in such a way that the [D+] and [D’] matrices can be evaluated, hence solution is
possible and the resulting surface stresses are zero. This is achieved by setting the bulk
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velocities oo and 3 of the vacuum to arbitrary non-zero values and the density p to zero.
With these modifications, the matrix assembly and solution isidentical to that for guided
waves.

Nature of the characteristic function

The characteristic function of the global matrix method yields a complex vaue, in
generd, for al inputs. Furthermore, as with the transfer matrices method, zeroes of the
function can only be found when any waves in non-vacuum half-spaces are
inhomogeneous (guided waves).  Solutions cannot be found for cases where
homogeneous waves |eave the layered system (leaky waves).

It was explained in Section 2.7 that the solution of the characteristic function for the
transfer matrices method does not automatically prove the existence of a modal solution,
a further condition being that any other (trivial) causes of singularity of the sub-matrices
are avoided. Similarly it is evident that the solution of the characteristic function for the
global matrix method does not strictly prove the existence of a mode. However in this
case there is one non-trivia circumstance in which the matrix is singular. This is when
the wavenumber of the propagating wave is equal to the wavenumber of either of the
bulk wavesin any of the internal layers of the system. Here the system matrix has two or
more identical columns and is singular. Physically the explanation for this is that the +
and - waves in this layer both travel paralel to the layer and are therefore
indistinguishable in their effect on stresses and displacements at the adjacent interfaces.
Consequently a solution for these wave amplitudes is not possible and the matrix is
singular.

2.9 Phaseproperties of free waves

Further analysis by the author of the modal equations for free wave propagation in
multilayered plates has revealed that there are consistent phase rel ationships between the
field quantities in free waves. Relationships can be identified between the displacement
and stress componentsin a plate and it can be shown that the wavefront of afree waveis
always normal to the propagation direction.

Platein vacuum

The analysisismost easily performed using the theory of the transfer matrices method of
section 2.7. It was shown in equation (2.57) that a two-by-two submatrix of the system
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matrix [S] must be singular for a solution to exist in a plate in vacuum. The expansion of
this sub-matrix into its two constituent equations gives.

Sg1* up+ Sg2* u2=0
Sq1* U1 +S42* Uup=0 (2.89)

where uq and us are the displacements at the free surface at the top of the plate. It was
also shown, in equations (2.69) and (2.70), that the coefficients S31 and Syp are aways
imaginary and the coefficients Sgo and Sg4q are always real, regardiess of the number of
layers in the system. For non-trivial solutions, the system matrix is aways fully
populated and the displacements are not zero. It follows therefore from equation (2.89)
that the displacement components uq and uo at the free surface at the top of the plate
must have a phase difference of 90 degrees.

Suppose that the in-plane displacement at the top surface uq is real so that the normal
displacement at the surface up isimaginary. This assumption is permissible because the
absolute phases of the displacements and stresses are arbitrary. Now the displacements

and stresses may be calculated at any location (x2) in the top layer of the plate (¢ 2) using
the layer matrix [L] defined in equation (2.51):

u1 u1

u2 — u2

50 = [L] ¢2 Yo (2.90)
012) €2, %2 0J ¢2 top

It was shown in equation (2.69) that the layer matrix always has a fixed pattern of real
and imaginary coefficients, denoted 'R' and 'I' respectively in the equation. Continuing
with this description, the phase pattern of equation (2.90) can be written:

uy R I I R

up 1 R R

50 | R R | (2.91)
R I I R

012J € 2, %2

o o — 21

Multiplication of the coefficients on the right hand side of this equation shows that the
displacements and stresses are all either real or imaginary, and this holds for any depth in
the layer:
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up
u2
622

R
= : (2.92)
612) € 2,Xx2 R

The uy displacement and the 612 stress are always real and the ua displacement and the
622 stress are always imaginary. Thus in general the phase differences between the two
displacement components and between the two stress components are always 90 degrees,
and the normal stress 699 is aways in phase (0 degrees) or in opposite phase (180
degrees) with the in-plane displacement uq. It follows also that the wavefront of the
plate waveis parallel to the xo axis, normal to the plane of the layers and the propagation
direction.

Continuing to a second finite layer (¢ 3) in a multilayered plate, the displacements and
stresses at any depth are given by the product of the layer matrix for this layer and the

vector of displacements and stresses at the interface between the layers:

u1 u1

u2 _ u2

o0 = [L],3 o0 (2.93)
612/} ¢ 3, %2 612/ ¢ 2, bottom

The phase pattern of the displacements and stresses is known at the interface from the
above analysis and it is not changed by the premultiplication by [L]. The phase pattern

in the second layer (¢ 3) is therefore the same as that in the first layer (¢ 2). Clearly the
same istrue for any further layersin the system.

Plate with solid or liquid in both half-spaces

The two-by-two submatrix of the system matrix [S]' for a plate with two solid or liquid
half-spaces was shown in equation (2.61). Expanding it into its two congtituent
equations gives:

S22* A(L-) *S24* As) =0
Sg2* A(L-) +Sas* A(s)=0 (2.94)

where A(L-) and A(s) are the amplitudes of the longitudinal and shear waves 'leaving'
the top interface of the system (Actually these waves must be inhomogeneous for a
guided wave solution so they do not |eave the interface but travel along it). It was shown
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in equation (2.75) that the coefficients S92 and Sy4 are aways real and the coefficients
So4 and Sy are always imaginary so, again for non-trivia solutions, the wave
amplitudes must have a phase difference of 90 degrees.

The stresses and displacements at any location (xp) in the top finite layer of the
multilayered plate (¢ 2) are given by the equation:

up 0

u2 _ A(L-

it = [L1¢2[D], 1 (4,0 ¢ (2.95)
012J € 2,x2 A(s) ¢1

The phase patterns for both of the matrices in this equation are fixed (equations (2.69)
and (2.73)). Assuming area longitudinal wave amplitude A(L-) and an imaginary shear
wave amplitude A(S): the phase pattern for equation (2.95) is found from:

uy R I | RT[R R I 17 (0
U T RRI||1 1T RR|JR
69 =1t RR 1|1 1 RR|[)O (2.96)
o ¢2x0 LR 1 1 RILR R 1 1] 1

This evaluates once again to a vector of displacements and stresses which are al either
real or imaginary. With the assumption which was made here of real longitudinal wave
amplitude and imaginary shear wave amplitude, the phase pattern of the displacements
and stressesisidentical to that for the plate in vacuum. The analysis for additional layers
then follows that for the plate in vacuum.

Therefore the relationships between the phases of the displacements and stresses in
guided waves where both half-spaces are solid or liquid are the same as in the case of the
plate in vacuum, and the wavefront is again normal to the xo axis.

Plate with solid or liquid in one half-space and vacuum in the other

Due to symmetry it is only necessary to consider one of the two cases in which one half-
gpace is solid or liquid and the other is vacuum. If the top half-space is chosen to be
vacuum then the analysis of the system equation (2.63) and its phase pattern (2.77)
reveals immediately that there is a phase difference of 90 degrees between the two
displacement components uq and up at the free surface at the top of the plate. The
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remainder of the analysis and the conclusions are then identical to those for a plate in
vacuum.

2.10 Conclusions

The moda theory has been developed for the propagation of free plate waves in
multilayered systems. The theory is applicable to plates consisting of any number of flat,
parallel layers of elastic material, rigidly connected together. The plates may be assumed
to be in vacuum or to be embedded in semi-infinite elastic half-spaces. In the latter case
the solution is restricted to guided waves in which no energy leaks from the plate into the
hal f-spaces.

Two different methods of solution have been developed. In the first method, the transfer
matrix method, the equations for the system are condensed to a matrix which simply
relates the boundary conditions at the top of the plate to those at the bottom of the plate.
In the second method, the global matrix method, a large matrix is assembled containing
the equations for all of the layers of the plate. In both cases a characteristic function has
been found which has to be solved to find the conditions for free wave propagation. The
function takes asitsinput the material and geometric descriptions of the layers, avalue of
frequency and a value of the wavenumber in the plane of the plate. For free wave
propagation the characteristic function must yield zero as its result. For the first method
the function has been shown to be real in al ranges of solutions which are relevant for
free waves. For the second method the function is complex.

It has been shown that the phases of the stresses and displacements of free plate waves
bear the same relationship to each other for all solutions. The wavefront of free wavesis
also always normal to the plane of the plate.

The implementation of the characterigtic function in the computer model will be
described in chapter 4.
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Figure 2.1

Wave propagation along multilayered plate



Chapter 2 81
Free wave propagation along a multilayered plate
Wave propagation
direction
Wavefront, normal to wave propagation 00
direction and infinitely wide b2
00 o _ — o0

Displacements uniform over wavefront at any instant in
time and at any location along propagation direction

Figure 2.2

Propagation of a plane wave in an infinite elastic medium
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(Unit length vector,
normal to wavefront)

Wavefront

_ Al%(N-xloc - 1)

Aiog(lelloc + Ny, /oo + NX/o - t)

_AlQ (Nex/B - 1) :Amé(lel/B + NXG/B + NX/B - t)

(Equation 2.13)

Figure 2.3 Unit length wave propagation vector, N, in 3-D space
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Longitudinal wave crests

Shear wave crests

Figure 2.5 Plane waves at the boundary between two semi-infinite media
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Figure 2.8

Boundary conditions for free wave propagation in plates
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Attenuating wave propagation along a multilayered plate

3.1 Introduction

A modal theory for attenuating wave propagation in a multilayered medium is described
in this chapter. The theory is developed as a generaisation of the theory for free wave
propagation which was presented in Chapter 2. The implementation of the theory into
the computer model will be described in Chapter 4.

Attenuation of a wave is smply loss of energy with distance travelled. Two causes of
attenuation of waves in plates can be observed in practica applications. The first is
material damping. Media in genera are not perfectly elastic, but exhibit some form of
damping which absorbs the energy of mechanical waves. This can be seen and measured
directly with bulk waves and must be expected to occur too with plate waves. The
second cause of attenuation of plate wavesis known as leakage. If the plate is immersed
in a liquid or solid then the plate wave may emit bulk waves into the surrounding
medium, thus losing its own energy and decaying asit travels.

The idea with the development of a modal solution for attenuating wave propagation is to
extend the formulation for free wave propagation such that each modal solution includes
some description of the manner in which the wave decays. The basic philosophy is not
changed, a solution still describes the modal properties of the system in terms of a
frequency and a velocity at which a wave can travel indefinitely without further input of
energy. However the amplitude of the wave may diminish with distance travelled and
the rate at which the wave decays has to be found as part of the modal solution. The
attenuation description is independent of the value of the amplitude of the wave, it
simply describes a fixed rate of decay which is relevant for any wave amplitude at any
location along the plate.

Since the theory for attenuating wave propagation is a generaisation of the theory for
free wave propagation, it is not necessary to classify waves before attempting the
solution of the equations. The general theory is equally applicable to al classes of plate
wave propagation: free waves (including guided waves), damped waves and leaky

-88-
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waves. In cases of attenuating waves the rate of decay is evaluated as part of the
solution; in cases of free waves the rate of decay isfound during the solution to be zero.

Overview

In order to extend the analysis to include the possibility of attenuating wave propagation,
the key element is to generalise the equations at their basic levels. If this is done
effectively then the development of the formulation for free waves which was presented
in Chapter 2 remains relevant for all types of waves and a free wave becomes smply a
gpecial case of the general theory. Thus material damping is introduced by generalising
the stress-strain relationship to include visco-elagticity and Snell's law is generalised to
describe the attenuation of the waves along the plate.

The first task is to obtain solutions for bulk wave propagation in infinite visco-elastic
media. It is shown that two bulk waves can exist in a viscoelastic medium, a
'longitudinal’ wave and a 'shear' wave. Each has its propagation characteristics governed
by the two elastic constants and two visco-elastic constants. The propagation of an
attenuating wave is described by a complex vector, the real part representing the
harmonic properties and the direction of propagation, and the imaginary part representing
the rate of decay and the principal direction of decay. The descriptions reduce to those of
the elastic theory of Chapter 2 when the visco-€elastic constants are set to zero.

The analysis is reduced to a two-dimensional space and the interaction of bulk waves at
the boundary between two semi-infinite mediais examined. It isfound that the rules for
interaction still apply but that a complex form of Snell's law is required, the real part of
the wavenumber along the plate describing the harmonic properties of the waves in this
direction and the imaginary part describing the decay of the waves in this direction. All
waves on both sides of the interface must have the same harmonic properties and the
same rate of decay along the interface, whether elastic, viscoelastic, homogeneous or
inhomogeneous.

The congtruction of a plate wave from the component waves in the layers, as developed
in Chapter 2, is consistent with the generalised theory except that now the wavenumber
for the plate wave is complex, the imaginary part adding the rate of decay to the spatial
description. The characteristic functions for the modal solution are now complex for
both solution techniques. Furthermore the zeroes of the characteristic functions can only
be found when appropriate sets of frequency, real wavenumber and imaginary
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wavenumber (attenuation) are input. Thus the moda solution is extended from a
function taking two real variables, frequency and wavenumber, to a function taking one
real variable and one complex variable.

3.2 Plane wavesin an infinite viscoelastic medium

Material damping may be modelled in a number of ways. A convenient and valid
congtitutive model for small-displacement dynamic behaviour is the Kelvin-Voigt
viscoelastic description in which a velocity-dependent damping force is added to the
equation of motion for an infinitesmal element of the material. Symbolically the model
consists of a dashpot representing the damping in parallel with the spring representing the
elastic stiffness. A thorough discussion of severa alternatives, including this model, may
be found in Malvern (1969). He also presents a completely general derivation of the
wave equations for infinite media. A specific analysis of viscoelastic wave propagation
may also be found in Pialucha (1992).

To implement the model in a three-dimensional isotropic solid, the Lamé constants A and
u are replaced by the operators:
A d

A becomes; k+6 5

er=
¥l

u becomes. u + (3.1

where the constants A' and p' are the viscoelastic material constants and o is the
frequency. The model clearly reducesto elasticity if the viscoelastic constants are zero.

Now the stress-strain relationship can be expressed:

Stress-strain:
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d
612 = (M +%§j €12

' 9
623 = (M +%§j €23

' 9
613= (M +%§) €13 (3.2)

Substitution of equation (3.2) and the strain-displacement relationship (equation (2.4))
into the equilibrium equation (equation (2.1)) gives the displacement equation of motion
for viscoelastic materials, shown here in vector form:

92u R TR MY du
088 = (rV(veu) +uv2u + (M pvadly (K] y2 9l @3)

This equation can be separated into the dilatational (‘longitudinal’) and rotational (‘shear’)
fields by the Helmholtz method to give:

02 A+2u' 9
p a_tg = (7#2 o j V2¢

p LY =k 2] v2y (34)
where ¢ and y are the scalar and vector wave potentials for the two fields respectively.
Now solutions are assumed for ¢ and y in the same form asin equations (2.13):

0=A() do(Nex/o. - t)

y=A(g) dANx/B-1) (3.5)

Differentiating these and substituting into equations (3.4) shows that they are suitable
assumptions when N isacomplex vector of unit length and the constants o. and 3 are:
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A+2u - i(V+2u
o= up( u))1/2

p=( Mt

Characteristics of the waves:

Equations (3.5) may also be expressed in terms of the wavenumber vector k:

o= A(L) d(kex - mt)
Y= A(S) ei(k.x - O)t)

k isnow a complex vector given by:

k= o for longitudinal waves
k = N—;) for shear waves

=Kreal *ikimag s
Separating the real and imaginary parts in equations (3.7) for ¢ or y gives:

¢,\|I = A(L,S) ei(krealox - O)t) e—kimagox

(3.6)

(3.7)

(3.8)

(3.9)

Here the first exponential term, which is wholly imaginary, describes the harmonic
propagation of the wave in the direction of the vector kygg and the second, real, term
describes the exponential decay of the wave with distance in the direction of the vector

Kimag- The decay istherefore described in a spatial manner.

The harmonic term shows that the wave propagates in the Kkygg direction with

wavelength (L) and speed (c) in this direction of :
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21
L=
|kreal|
0)
c= |kreal| (3.10)

If a'plane’ wave is propagated into a viscoelastic medium from the face of an unfocused
transducer then a reasonable assumption is that the attenuation vector is parale to the
propagation direction. For the strict analysis of plane waves discussed here we must
assume that the transducer is infinitely wide and that the motion of the transducer is
identical at all locations on its face. For such a wave with parallel krgg and Kimag
vectors, the attenuation term Kjmag describes the residual amplitude of the wave after
each unit distance of propagation. Thus a wave of unit amplitude is reduced to an
amplitude of e'Kimag after travelling one unit of distance. When attenuation is expressed
in this form the units of the attenuation kjmag are said to be Nepers per unit distance.

The complex material constants oo and 3 can be related to the (measurable) decay of
plane bulk waves by equation (3.8). Since the propagation vector N has unit length, its
sguare (NeN) is unity and the squares of equation (3.8) are:

k2=kek =5 forlongitudina waves
o
2_ _ ﬁ
ke=kek = l32 for shear waves (3.11)

Expanding the wavenumber vector into itsreal and imaginary parts:

o o .
o2 B2 " Kreal*Kreal - Kimag®Kimag * 2i Kreal*Kimag (312

If Kreal @nd Kjmag are paralel, as with the plane wave leaving the transducer in the
discussion above, then this equation will be satisfied by the following expression for the
material constants o and 3:

- ()
lkreal| + i|kimag|

o, P (3.13)

This can also be expressed in terms of the wave speed ¢ by substituting equation (3.10):
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C _ C

o, B =  + ilkimag T 1+iK(2n)

|kreal|

(3.14)

where x is the attenuation in Nepers per wavelength, so that a wave of unit amplitude is
reduced to an amplitude of € ¥ after travelling one wavelength. Note from the equation
that for a given material the attenuation per unit distance increases linearly with
frequency but the attenuation per wavelength is constant.

It has been shown therefore that there are two bulk waves which can exist in an infinite
viscoelastic medium, a longitudina wave and a shear wave, and that they can be
described by a generalisation of the equations for the bulk waves in an elastic medium.
The only modification to the input to the material description is the extension of the two
congtants oo and B to include imaginary parts which describe the attenuation of the
propagating waves. It has also been shown how the complex constants can be related to
measurements of the speed and attenuation of bulk waves. The mode reduces to
elasticity when the imaginary parts of the material constants are zero.

Restriction of the model to atwo-dimensional space follows exactly the theory for elastic
waves which was presented in Section 2.3 of Chapter 2. Thus the displacement and
stress fields are given by equations (2.19) to (2.29), in which the wave propagation
vector N and the material constants o. and 3 are now complex.

33 Plane waves at boundaries

The derivation for the interaction of viscoelastic waves at a boundary differs from that
for elastic waves by the addition of further constraints which describe the relationships of
the attenuations of all of the waves. Analyses of the interaction of viscoelastic waves at
plane boundaries may aso be found in Pialucha (1992) or Deschamps and Roux (1991).

Consider two semi-infinite half-spaces in plane strain, one on each side of an infinite flat
plane. The half-spaces are joined at the interface and its location is defined by the origin
of the coordinate x», asin the system of Section 2.4 and Figure 2.5 of Chapter 2.

Consider a longitudinal viscoelastic wave travelling in medium 1 and arriving at the
interface. Its uq particle displacement at the interface was given in terms of its
wavenumber by equation (2.31) as:
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up = N7 A(L) el (k1x1 - t) ((2.31))

Now the wavenumber k is complex and so, separating the real and imaginary parts:
up=N1AQ) el (K1real X1 - ot) g-k1imag X1 (3.15)

Here it can be seen that the component of the wave in the xq direction consists of a
harmonic part and an exponential decay. This is to be expected because it smply
represents the projection of the decaying bulk wave onto the interface.

Similarly it can be seen that the up displacement and the stress components al share
exactly the same harmonic and attenuation functions along the interface.

Now in order for the stress and displacement boundary conditions to be satisfied between
this wave and any other waves at the interface, all waves will have to have the same
attenuation in the x1 direction in addition to having the same frequency and wavelength.
Thus the conditions for elastic waves are extended by stating that the kq wavenumber,
which must be the same for all waves, is now complex rather than real. Now the Snell
constant s iscomplex, given by:

oo ki _ Nigy _ Nigg) _ sin®) _ sin(0s) (3.6)

® o B o B
The phase velocity (cph) isrelated to the real parts of sand k1 by:

1 o
Seal  Kireal

Cph (3.17)

and the attenuation of all of the waves along the interfaceiis:

Loss per unitlength = 1- e’Klimag = 1 - g @Simag

1-eK = 1-eg2nklimag/Klred = 1 - g2nSimag/Sred
(3.18)

L oss per wavelength

On first inspection this description of the interaction of viscoelastic waves at an interface
appears to run into difficulty if the attenuation of the bulk waves is not the same on both
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sides of the interface. Thisis not the case however because the reflected and transmitted
waves at the interface need not necessarily have their attenuation vectors parallel to their
propagation directions. The limitations are only that the boundary conditions be satisfied
along the interface and that the attenuation normal to the interface be such that the
eguations of motion (3.4) are satisfied.

For the boundary conditions to be satisfied, the complex k1 wavenumber for a reflected
or transmitted wave is required by equation (3.16) to be governed by the value of the
Snell constant:

k1 = s (3.19)

For the equations of motion to be satisfied, the full wavenumber vector (k) must satisfy
equations (3.8). Recaling the expansion of these equations in equation (3.12) and
expanding the dot products fully gives:

o o?

o _ 2
o2’ B2 k

Kirea? + Koreal? - k1imag2 - k2imag2
+ 21 (K1real K1limag * K2real k2imag) (3.20)

Thus from equations (3.19) and (3.20) the complex wavenumber for any participating
wave in either of the mediais defined.

The coupling conditions are illustrated in Figure 3.1. Part (a) of the figure shows the
coupling of the harmonic terms. The real part of the wavenumber along the interface,
K1regl, must be the same for al waves. Part (b) shows the coupling of the attenuations.
The imaginary part of the wavenumber along the interface, k1; mag: Must be the same for
all waves, even if it means that the attenuation vector for a wave is not paralel to its
propagation vector.

As examples consider three cases of wave interactions at an interface. For smplicity
only longitudinal waves are considered although the principles apply to al waves at the
interface. In al cases there is an incident wave arriving at the interface in medium 1, a
reflected wave leaving the interface in medium 1 and a transmitted wave leaving the
interface in medium 2. Cases 2 and 3 are illustrated in Figures 3.2(a) and 3.2(b)
respectively.
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Case 1: Both media are elastic

If both media are elastic then the incident wave is not attenuative, o is real and so sis
real (equations 3.14 and 3.16). Now for the reflected wave and the transmitted wave, kq
is real (equation 3.19) and, since these waves are aso elastic, their k vectors are real.
Their ko components are therefore real and all behaviour is elastic and non-attenuétive.
Thus the model reduces to the description of elastic wave interaction.

Case 2: First medium iselastic, second medium isviscoelastic

If the incident wave arrives in an elastic medium (Figure 3.2(a)) then s is real, even
though the second medium is attenuative, because it is defined here by the incident wave.
The reflected wave is therefore elastic according to the arguments of the first case. The
transmitted wave is attenuative but has no component of attenuation in the x4 direction,
according to equation (3.19). Its attenuation vector is therefore paralel to the xo
direction (normal to the interface) with magnitude given by equations (3.20). In other
words the attenuating wave is constrained not to decay along the interface and has to
have a sufficient decay component normal to the interface to satisfy the equations of
motion in the medium.

Case 3: First medium isviscoelastic, second medium iselastic

Finally, consider the case where the incident wave arrives in a viscoelastic medium but
the second medium is elagtic, illustrated in Figure 3.2(b). Assuming that the attenuation
vector for the incident wave is parallel to the propagation direction, s is complex and is
evaluated from equation (3.19). The reflected wave is aso longitudinal in this case and
travels in the same medium o it shares the same o, k2, kyeg and Kimag- It follows from
equation (3.20) that its attenuation vector is also parallel to its propagation direction.
The transmitted wave now is constrained to attenuate in the x4 direction even though it is
travelling in an elastic medium. Thusitskq iscomplex but itsk isreal. If k isreal then
the right hand side of equation (3.20) must be real so that the imaginary part must be
zero:

21 (Kireal kK1imag + koreal k2imag) = O (3.21)

The attenuation vector for the transmitted wave must therefore have the component
normal to the interface of :
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K1real
K2imag = -Klimag (erealj (3.22)

Thus the transmitted wave has negative attenuation in the direction norma to the
interface.

The term in brackets in equation (3.21) is the dot product of the real and imaginary parts
of the wavenumber. For this to be zero the attenuation vector must be normal to the
direction of propagation of the wave. There istherefore no attenuation in the direction of
propagation. In genera for all elastic waves the attenuation vector is either zero or
normal to the direction of propagation of the wave.

Concluding the analysis of the interaction of viscoelastic waves at an interface, it has
been shown that the relationships between the waves can be described by a complex
generaisation of Snell'slaw. The real part describes the harmonic coupling in the same
manner as for elastic waves and the imaginary part is added to describe the coupling of
the attenuations of the wavesin the direction parallel to the interface.

The displacements and stresses in viscoelastic waves can be expressed in terms of the
Snell congstant in an identical fashion to the derivation for elastic waves, given in
equations (2.39) and (2.40), utilising the complex values of the material constants o and
B and the Snell constant s.

34  Assembly and solution

It has been shown that the descriptions of the displacements and stresses in viscoelastic
waves and their relationships at an interface are identical to those for elastic waves,
except that the material constants oo and B and the vectors N and k are now complex.
Consequently the development of the equations for the assembly of a layered system as
discussed in section 2.6 of Chapter 2 apply equally here, with these same generalisations.

Continuing the development of the equations, the transfer matrices method or the global
matrix method may be used for the modal solution of multilayered viscoelastic systems.
Furthermore the introduction of the complex form of Snell's law also enables solutions to
be found, in general, of attenuating wave propagation even when the materials are all
elastic. This would be the case for example when an elastic wave propagates along an
immersed plate, leaking bulk waves into the adjacent material. The model is therefore



Chapter 3 99
Attenuating wave propagation along a multilayered plate

not restricted to free and guided waves but may be used to solve any type of propagating
plate wave provided that a zero value of the characteristic function can be found.

The characteristic function for either solution method now requires as input a complex
value of the wavenumber and a (real) value of frequency and both methods yield, in
general, acomplex result. If azero value of the characteristic function can be found then
a modal solution has been found. In this case the imaginary part of the wavenumber
describes the attenuation of the wave along the plate (equation 3.18). Physicaly it
should be expected that systems involving material damping or leakage of energy from
the plate into the half-spaces should require complex values of the wavenumber for their
solution.  Systems consisting of elastic materials without |eakage reduce the model to
the free wave descriptions of Chapter 2 when solutions are found with real values of the
wavenumber.

Finally it should be noted that the analysis of the phase properties of free plate wavesin
Chapter 2 does not hold for attenuating waves. The coefficients of the matrices in the
transfer matrix method are no longer wholly real or wholly imaginary and so the analysis
of the phasesis not valid.

35 Conclusions

The modal theory for free waves in multilayered plates which was developed in Chapter
2 has been extended to include attenuating wave propagation, either due to material
damping or to leakage of energy from the plate into the half-spaces. The extension of the
theory was achieved by generalising both the material model and the coupling constraints
for the interaction of waves at an interface. The generaisation of the material model
incorporates viscoelastic material constants which describe the attenuation of bulk waves
in an infinite elastic solid. The generaisation of the coupling constraints allows for
attenuation of waves in the direction along the plate and constrains all wave components
in the plate to share the same attenuation in this direction.

The transfer matrices method and the global matrix method remain valid approaches for
the solution of the equations. In either case the characteristic function now requires as
input an imaginary part of the wavenumber, corresponding to the attenuation of the plate
wave, in addition to the real wavenumber and the frequency. The functions both yield
complex results.
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The generalised theory may be used to solve all types of attenuating wave, whether due
to material damping or leakage, in addition to free waves. It is not necessary to classify
waves prior to the solution.

The implementation of the characteristic function in the computer model will be
described in chapter 4.
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Figure 3.1 Conditions for spatial coupling of viscoelastic waves at an interface



Chapter 3
Attenuating wave propagation along a multilayered plate

102

Wave Wave
incident reflected
kreal kreal
Medium 1 Kimag Z€70 iN
(elastic) elastic medium
Medium 2
(viscoelastic) \
Wave Krea kimag = k2imag
transmitted K
limag — 0

(@ Incident and reflected waves in elastic medium, transmitted wave in
viscoelastic medium

Wave Wave K K
incident reflected imag imag
kreal kreal k2i mag
Medium 1 \ / K.
(viscoelastic) ! 't limag
Medium 2 i l
(el aStI C) \ : ki mag
| k2i mag
k
real k1i mag
Wave
transmitted

(b) Incident and reflected waves in viscoelastic medium, transmitted wave in

elastic medium

Figure 3.2  Wavenumber and attenuation vectors at interfaces between elastic and

viscoelastic media



CHAPTER 4

Development of numerical model

4.1 Introduction

This chapter covers the implementation of the theory of Chapters 2 and 3 into a general
purpose computer model for the prediction of the moda properties of multilayered
media. The model predicts the dispersion curves for plate waves and their mode shapes.

A dispersion curveisaplot describing the variation of velocity with frequency for a plate
wave. From the theoretical point of view it is a plot of the locus of solutions of the
characteristic function (equation 2.58, 2.62, 2.64, 2.66 or 2.88). Any point on a
dispersion curve represents conditions of frequency and velocity (or wavenumber) for
which the characteristic function yields a zero value. Under these conditions a
propagating wave continues to travel without requiring any input of energy from outside
the layered system. In the case of a free plate wave, the wavenumber is real and the
wave continues indefinitely without diminishing and without leaking any energy from
the layered system. In the case of an attenuating plate wave the wavenumber is complex
and the wave continues indefinitely but with an exponential decay in its amplitude caused
by damping losses in viscoel astic materials or leakage into the half-spaces.

A mode shape is the distribution of a displacement or stress component through the
thickness of the plate. Mode shapes are calculated at a particular location on a dispersion
curve and are used to revea the physical nature of a mode. They are also used to
determine the positions through the thickness of the plate where the energy of a wave is
concentrated.

Overview

The core task of the dispersion curve model is to find the solutions (zeroes) of the
characteristic function. Each point on a dispersion curve is found numericaly by
repeatedly evaluating the function whilst varying the input (frequency and wave number)
according to a robust search algorithm. A dispersion curve is generated by finding a
sequence of such solutions, using a trace algorithm to extrapolate from the end of the

- 103 -
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curve to each new point. The global matrix method is selected for the definition of the
characteristic function.

A coarse search is conducted first in order to locate approximately all modes of interest
at a particular frequency or wave number. The coarse search steps with constant
increments through a range of one of the input parameters, identifying minima in the
function as approximate solutions. A fine search then starts from one of the approximate
solutions and locates each of these modes accurately. It uses an unconditionally stable
bisection algorithm.  For attenuating modes, where the imaginary part of the
wavenumber must be found in addition to the frequency and real wavenumber, the fine
search aso involves a sequence of aternate searches of the real variable (frequency or
real wavenumber) and the imaginary variable (attenuation).

The curve tracing algorithm generates a dispersion curve for each mode by starting from
each of these solution points and incrementing the wave number dowly. A further fine
search is performed at each point on its path by varying the frequency. The first estimate
of each new point is obtained by quadratic extrapolation from three of the preceding
solution points. The process continues for each curve until the maximum frequency of
interest is reached. Dispersion curves are plotted as phase velocity, group velocity, rea
wavenumber or incident angle in the coupling medium versus frequency. Attenuation is
plotted in Nepers per wavelength or Nepers per unit distance along the plate versus
frequency.

Mode shapes are calculated at any solution point which has been identified by the search
algorithms. An arbitrary amplitude of one of the wave components is assumed and all of
the other component wave amplitudes are evaluated with respect to this. The
displacement and stress equations are then evaluated at a discrete number of locations
through the thickness of the plate. Mode shapes are plotted for the displacement and
stress components and for the strain energy density.

4.2 Sdlection of characteristic function

The theoretical development of Chapter 2 ended with two different procedures for the
solution, both resulting in characteristic functions for which zero values must be found.
Both of these methods are mathematically correct but in practical applications the
transfer matrices method suffers from a fundamental numerical weakness under certain
conditions. It has therefore been rejected in the implementation described here in favour
of the global matrix method. Thisis unfortunate because the transfer matrices method is
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the more intuitive idea, is more amenable to examination of the properties of the modal
solution and has the convenience of always being real when calculating solutions for free
waves. It is aso computationally more efficient, particularly as the number of layersis
increased.

The difficulty with the transfer matrices method comes from its requirement for the
displacements and stresses at each interface to be expressed in terms of those at the next
interface. It can be seen in the assembly of the layer matrix [L], given explicitly in
equation (2.68). Look for example at term Lq1. This value gives the relationship of the
up displacement at the bottom of the layer to that at the top of the layer. The terms g,
and 9B (defined in equation 2.43) are exponential expressions of imaginary quantities for
homogeneous waves or real quantities for inhomogeneous waves. When the exponents
are imaginary the evaluation of L1 is straightforward. However if either exponent is
real then the expression contains, in brackets, the sum of area positive exponential term
and a rea negative exponential term. There is no problem if the exponents are
reasonably close to unity but if the exponents are very large or very small then each of
the expressions in brackets consists of the sum of a very large number and a very small
number. Similarly the other coefficients of the [L] matrix also consist of sums or
differences of large and small numbers. Clearly therefore the matrix becomes ill-
conditioned if the exponents are very large.

The condition for the exponent of gy or g to be real is when a2s? or 322 in equation
(2.43) is greater than unity, corresponding to the condition for an inhomogeneous wave.
The exponent can also be seen in this equation to be linearly dependent on the product of
the frequency and the distance x» from the top of the layer. Physically now it can be
seen that the problem is associated with large exponential decays of inhomogeneous
waves through the thickness of the layer. The small exponential terms relate the
displacements and stresses at the bottom of the layer to those at the top, due to an
inhomogeneous wave at the top of the layer. The large exponential terms relate the
displacements and stresses due to an inhomogeneous wave at the bottom of the layer.

Practical implementation of the transfer matrices method has shown indeed that the
solution becomes unstable for high values of the product of frequency and layer thickness
when inhomogeneous waves are present. A study made by the author using the transfer
matrices method and utilising 64 bit precision for real numbers and 128 bit precision for
complex numbers has shown that the practical limit for the analysis of the first two
modes in a titanium plate in vacuum is about 15 MHz-mm. At high frequencies these
two modes consist of inhomogeneous longitudina and shear waves and are both
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asymptotic to the Rayleigh wave solution. The largest exponent is associated with the
shear wave because the bulk shear velocity is lower than the bulk longitudinal velocity
(see equation (2.43)). Assuming atypical value for the bulk shear velocity for titanium
and that the product [3252 is just less than unity, the magnitude of the exponent at 15
MHz-mm is about 30 and so the large and small exponential terms are about 1013 and
10-13 respectively. The coefficients in the [L] matrix are therefore composed of the
sums and differences of numbers which differ by 26 orders of magnitude.

Stable solutions for higher frequency-thickness products using transfer matrices have
been achieved by other researchers, often for specific applications, by further
manipulations of the formulation or in some circumstances by monitoring and re-scaling
of variables. A number of papers have been published on this matter with specific regard
to geophysical applications, for example Dunkin (1965), Abo-Zena (1979) and Evans
(1985). However it was decided during the development reported here that the best way
to avoid the risk of instability in the general purpose model is to adopt the global matrix
formulation which is inherently stable so that the risk can be dismissed entirely.

The fundamental attraction of the global matrix method is that it does not involve the
expression of displacements and stresses at one interface with respect to those at any
other. Each equation in the matrix is formed at an interface and the solution of the
characteristic function smply implies that all of the equations have been satisfied
independently. This does not mean that the interfaces are completely independent,
because the equations at an interface are influenced by the arrival of waves from the
neighbouring interfaces. However, as the frequency-thickness product is increased, the
influence of an inhomogeneous wave travelling along one interface on the displacements
and stresses at the next interface simply reduces. The extent of the influence is
determined by the exponential terms in the global matrix. These terms are aways
decaying functions for inhomogeneous waves if the modification of Schmidt and Jensen
(1985) and Pialucha (1992) is made to the origins of the waves (see equations 2.82).
Thus in the limit these terms vanish and an inhomogeneous wave travelling along one
interface has no influence on the waves at the next interface. The method therefore
remains perfectly stable for any frequency-thickness product because it does not rely on
the coupling of waves from one interface to another.

4.3 Evaluation of characteristic function

Examination of the characteristic equations of Chapter 2 shows that they describe both
the layered system and its boundary conditions. Specificaly any evaluation of the
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function yields a result which is determined by the material properties and thicknesses of
al of the layers, and the frequency and wave number. Additionally if the evaluation of
the function yields zero then the function represents a solution to the equation, implying
that the desired boundary conditions have been satisfied.

The material properties and thicknesses are input to the model as constant descriptions.
A sequence of layers is defined, each with a thickness, a density, a longitudinal bulk
wave velocity and attenuation and a shear bulk wave velocity and attenuation. For ease
of discussion these properties will be treated as constants in the evaluation of the
characteristic functions because typically they do not vary significantly, if a al, over the
frequency and wave number solution space. In general however any variation of these
properties with frequency is permissible, provided that it is sufficiently sow not to upset
the search algorithm, because each solution of the equation exists only at its single
frequency and wavenumber. Any such variations are assumed to be accommodated by
re-sampling the 'constant’ data at each evaluation of the function.

The theory has now been condensed to a function which requires as input a value of
frequency and a value of wave number and whose output indicates whether or not these
inputs are appropriate for wave propagation. The frequency is real in all cases and the
wave number is real for free waves and complex for attenuating waves (see section 3).
Strictly speaking the wavenumber is a vector but the analyses of Chapters 2 and 3
showed that the characteristic function is expressed in terms only of its components (real
and imaginary) in the direction parallel to the plane of the layers. All references to the
wavenumber in this chapter therefore refer to this component (kq) of the wavenumber.
Referring to equations (2.36), (3.16) and (3.17), the input can be further generalised for
practical applications by relating the real part of the wave number to the phase velocity
of the plate wave or to the angle of incidence (6) of a bulk wave with velocity ¢j in one
of the half-spaces, if present:

[0 .S N6

Cph G

Kreal = (4.1)

The significance of relating the wavenumber to the angle of incidence of bulk wavesin a
half-space is that the excitation and reception of plate waves is often achieved using the
coincidence principle, which will be described in Chapters 5 and 8, in which the
transducers must be oriented at this angle. The imaginary part of the wavenumber, if
present, describes the attenuation of the wave along the plate:
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Loss of amplitude per unit length = 1- e'kimag
Loss of amplitude per wavelength = 1-¢e¥
= 1- e 2nkimag/Kreal (4.2)

To evaluate the function, the global system matrix is assembled according to section 2.8
using the input values of frequency and wavenumber and its determinant is calculated
(equation 2.88). Sincethe am isto find zero values of the determinant, the matrix which
isassembled isfrequently close to being singular. Nevertheless for the search algorithms
to converge successfully the determinant must be calculated accurately. Furthermore, the
generation of a dispersion curve typically requires many thousands of evaluations of the
function. A very important part of the development therefore was the implementation of
arobust algorithm for the calculation of the determinant of the complex global matrices.

The ideal approach for the calculation of the determinant would be to use repeated
Laplace expansions, because this would involve multiplications, additions and
subtractions only and would be totally robust. However this method would be extremely
inefficient for large matrices and it has been found that in practice it is not necessary to
be so cautious. The fact that the determinant can be found by L aplace expansions has its
use however because it demonstrates ssmply that the characteristic function is analytic
within the desired solution space. The coefficients of the system matrix are anaytic in
all space with the exception of the square root expressions in the exponents of g, and 98
in equation (2.43). Each square root expression has two possible evaluations in general,
corresponding to awave arriving at the interface and a wave leaving the interface. These
possihilities are identified separately in the analysis and the signs of the roots are
constrained so that there is no discontinuity in their evaluations. Therefore, with this
constraint, the coefficients of the system matrix are analytic. The sums, differences and
products of analytic functions are themselves analytic. Therefore the characteristic
function is analytic. This property is useful because it means that it is valid to assume
that the characteristic function is continuous and smooth.

There are many published algorithms for the calculation of the determinant of a matrix.
An introductory discussion, an implementation and further references may be found in
Press, Flannery, Teukolsky and Vetterling (1986). Commercial library program routines
may also be utilised, for example the routines of the Numerical Algorithms Group (Ref.
NAG Ltd). However in order to address the specific demands of the application
discussed here, with maximum efficiency, it was considered preferable not to rely on
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such general purpose routines. An algorithm was therefore developed, based on a
complex form of Gaussian reduction. It has been found to perform perfectly. The global
system matrix is reduced systematically to upper diagonal form and the determinant is
then evaluated as the product of all of the diagonal elements. Partial pivoting of rows is
employed so that the best possible condition is achieved on each reduction. The banded
nature of the global matrix is also exploited as far asis possible with the partia pivoting.
Divisions are monitored when pivoting so that if the absolute value of the denominator
drops below a small tolerance of 10-20 then a zero determinant can be declared rather
than the solution fail due to zero divison. In practice however the iteration of the
solution has always been found to converge to an acceptable accuracy without a zero
determinant being declared.

4.4 Sear ches

The task of the search algorithms is to find input values to the characteristic function
which are acceptably close to yielding zero results. The searches are carried out in two
stages, a coarse search is used to find the approximate locations of modes over a wide
range of solution space and a fine search is used to improve the accuracy, as required, of
any of these approximate solutions. The fine search algorithm is also used repeatedly for
the generation of dispersion curves.

Coarse search

The coarse search involves sampling the function over a range of one parameter whilst
holding the other independent parameters constant. Thus a frequency search consists of a
sweep of frequency by constant increments over a selected range at a fixed phase velocity
and attenuation, and a velocity search consists of a sweep of velocity at fixed frequency
and attenuation. A frequency search and a velocity search are illustrated in Figure 4.1.
Also shown as an example in the figure, in dotted lines, are the Lamb wave dispersion
curves for a 1 mm thick sheet of titanium. The coarse searches should identify
approximately the locations where these dispersion curves cross the sweep lines. Thisis
achieved by examining the array of complex values (the results of the sweep) and
identifying the minima of their amplitudes.

Typical results of a coarse search for a free wave problem are shown in Figures 4.2 and
4.3. The exampleisthe 1 mm thick sheet of titanium, introduced above. The materia is
assumed to be perfectly elastic and the plate is in vacuum. The sweep line is shown in
Figure4.1. The sweep isof 101 samples at 20 kHz intervals over arange of frequency of
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1.5 MHz to 3.5 MHz, at a constant velocity of 8 km/s and a constant attenuation of zero.
Figure 4.2 shows the results of the sweep in complex space, revealing the existence of the
two modes in this range. These can be seen where the path of the sweep passes through
the origin of the plot. The frequencies of the modes can also be identified by the
locations of the minima in the amplitudes of the function, shown in Figure 4.3. Since the
solutions are for free waves the choice of attenuation of zero is correct. It can therefore
be assumed that further refinement of the sampling interval would improve the accuracy
with which the frequencies of the modes are known and that in the limit the minima
would be zeroes of the function.

Figures 4.4 and 4.5 show the same plots for an attenuating wave propagation problem
when the same plate isimmersed in water. Here it can be seen that the path of the sweep
does not pass through the origin. Therefore zeroes of the function can not be found by
refining the sampling interval, only minima can be identified. For the path to pass
through the origin for either of the modes it would be necessary for the sweep to be
performed at the appropriate value of attenuation corresponding to the leaky solution for
the mode.

The coarse search does not aways reveal minima for attenuating waves. The minima are
clearly identifiable in Figure 4.5 but they tend to be much blunter when the value of
attenuation which is used in the sweep is very different from the value which is
appropriate to the leaky solution. Thisis normally the case when zero attenuation is used
in the sweep but the wave is very leaky. In fact in many cases of strongly attenuating
waves it is necessary to perform the sweep a number of times with a range of different
attenuations in order to detect the minima.

Fine search

Having identified the approximate input values for a modal solution, the fine search is
used to improve the values to acceptable accuracy. Thiswould be straightforward if only
free modes were required but it is rather difficult when the possibility of attenuating
modes is to be considered, for two reasons. The first difficulty is evident aready: in
genera there are three values of input to be considered, real wavenumber, imaginary
wavenumber and frequency, so that simple refinement of the sweep method is not
sufficient. The second difficulty is that modes can exist at very close or even coincident
locations (note the crossing of the dispersion curves at some locations in Chapter 5).
This means that the fine search algorithm may be influenced by more than one mode. It
is therefore extremely risky to employ any fast-converging methods based on dopes or
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extrapolations, such as Newton's method. Such methods may be beneficial for specific
problems where modes are well separated - Clayton and Derrick (1977) clam to have
had success with a complex Regula Falss method which resorts to a Monte Carlo
technique for restarting when awild extrapolation occurs. However, a study made by the
author using complex Regula Fals indicated that wild extrapolations are extremely
frequent when modes are close. It was therefore decided to develop a robust algorithm
which is not dependent on the evaluation of gradients and which does not involve any
extrapolations.

The scheme works by performing an alternating sequence of searches of one of the real
inputs to the function and the attenuation. First, a single-variable search of areal input
(frequency, rea wavenumber or velocity) is performed to find the minimum of the
function to a high degree of accuracy. The other real input and the attenuation (in
Nepers per wavelength, k) are kept constant. A check is then made to determine whether
the minimum is acceptably close to a zero of the function and, if so, the search is
complete. If not, the single-variable search is repeated with the attenuation as the
variable so that an accurate minimum of the attenuation is found. Again the check is
made to determine whether the minimum is acceptably close to a zero. If not, the red
input isvaried again, and so on until convergence is achieved.

The single-variable search is itself carried out in two stages. The first stage is smply a
refinement of the coarse search technique. The sign of the gradient of the amplitude of
the function is found by taking a very small arbitrary step of the input variable. This
determines whether the input variable should be increased or decreased to find a lower
function amplitude. The input variable is then incremented (or decremented) in fixed
small steps until aminimum is passed.

At this point the strategy is changed and a robust bisection method is employed, still
retaining the same input parameter as the variable. This method is similar in approach to
the 'Golden Section Search' discussed by Press et al. (1986). An iteration cycle of this
method starts with three samples: a current minimum, a sample obtained with a lower
value of the variable and a sample obtained with a higher value of the variable. These
are the 'centre’ sample, the 'left' sample and the ‘right' sample respectively. The size of
the sampling interval between left and centre is the same as between centre and right.
The function is then sampled at the two mid-points of these intervals so that a total of
five equi-spaced samples are known. For the next iteration cycle, the sample with the
lowest absolute value out of these five becomes the new centre, and its neighbours
become the new left and right. Examination of each of the possibilities during a cycle of
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the algorithm shows that this process must converge unconditionally. Convergence on
the minimum is deemed to have been achieved when the sampling interval has been
reduced to an acceptable tolerance. Typically atolerance of 10 Hz is used for frequency,
the tolerance for the real wavenumber is such that a 0.01 m/sec tolerance is achieved for
phase velocity and the tolerance for attenuation is 0.001 Nepers/wavelength.
Convergence on the minimum is normally achieved in about 10-20 iterations when
starting from an approximate value given by a coarse search.

After each iteration of the single-variable search the result is examined to see whether it
is a valid solution. Since the gradient of the function varies significantly over the
solution space it is not advisable to decide whether the minimum is a solution smply by
comparing its magnitude with an arbitrary tolerance. This would result in large
variations of the accuracy of the solution over the solution space and different levels of
accuracy for different plate systems. Instead the angle is calculated between the vectors
in complex space from the origin to the sampling points just before and just after the
converged minimum, as shown in Figure 4.6. Since the function is smooth, an exact
solution in the limit should have an angle of 180 degrees. A solution is considered to
have been found if the angle is greater than 90 degrees.

An illustration of the application of the fine search algorithm is shown in Figure 4.7.
The example is of the 1 mm titanium sheet in water whose coarse search was shown in
Figures 4.4 and 4.5. In fact part of the coarse search plot of Figure 4.4 isincluded in the
figure, from which it can be seen that the fine search in this example starts from the
second minimum of the coarse search. The fine search starts with the variation of the
frequency to find an accurate minimum, which in this case is very close to one of the
sampling positions of the coarse search. The attenuation is then varied, then the
frequency, then the attenuation and so on. Only three applications of the single-variable
search are shown; a further five were required before the solution converged. The
attenuation in this case was found to be fairly large, at 0.462 Nepers per wavelength.
The frequency was calculated as 2.866 MHz, some 13 kHz lower than that for the plate
in vacuum.

The speed of convergence of the fine search algorithm depends on the accuracy of the
starting values, the proximity of modes and the degree of attenuation (large numbers of
iterations are often necessary for very leaky solutions). When searching for free modes
the solution is always rapid, provided that the coarse search has been performed with
zero attenuation, because the algorithm detects each solution in one application of the
single-variable search.
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45  Curvetracing

The task of the curve tracing algorithm is to generate a dispersion curve by finding a
smooth sequence of solutions for a given mode. The agorithm works on one mode at a
time, starting from a user-selected position (found by a coarse search) and finishing at a
selected upper limit of frequency. An illustration of the generation of a dispersion curve
isshown in Figure 4.8(a).

The curves could be generated as either phase velocity dispersion curves or wavenumber
dispersion curves. For convenience, wavenumber curves are generated because they are
closer to straight lines and are therefore easier to predict with extrapolation agorithms.
Any other dispersion curves (phase velocity, group velocity or angle of incidence) can be
caculated from the wavenumber curves. A constant wavenumber increment, Ak, is
chosen and solutions are found by performing a fine search for a sequence of
wavenumbers with this spacing. Each fine search uses frequency as the real variable,
keeping the real wavenumber constant.

The algorithm starts by performing a fine search to obtain an accurate first point in the
frequency - wavenumber space. A very small increment (one thousandth of AK) is then
added to the wavenumber and a new solution is found by a fine search. This pair of
solutions gives the gradients of frequency and of attenuation of the dispersion curve at
this location and enables a linear extrapolation to be made to a position exactly Ak from
the first point, where another fine search is performed. A second linear extrapolation
yields the third point and so on.

After six points have been found the algorithm switches to a quadratic extrapolation
scheme. For a polynomial where solutions yq, y1 and y2 are known for equally spaced
inputs xp, X1 and X, it can be shown that the extrapolation

y3=Y0-3y1+3y2 (4.3)

for the next equally spaced input X3, is exact for the constant, linear and quadratic terms.
This extrapolation is employed with 2Ak as the equally spaced input and is used to
extrapolate both frequency and attenuation, as illustrated in Figure 4.8(b). Thus,
following the solution at point n, the predictions for frequency fp+1 and attenuation kn+1
are;
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fn+1=fn-5-3fn-3+3fn-1

Kn+1 = Kn-5 - 3Kn-3 + 3kn-1 (4.4)

The use of a quadratic extrapolation scheme improves the estimate of the prediction
enormoudly over a linear extrapolation. This reduces the number of iterations required
by the fine search after each extrapolation but, more importantly, it minimises the risk of
following the wrong curve when two dispersion curves cross (see examples of crossing
curves in Chapter 5). In practice it is extremely rare for this error to occur with this
scheme. The spacing for the input is chosen to be 2Ak rather than ssimply Ak in order to
reduce the influence of errors in the individual solutions on the extrapolation. Two
possibilities can occur. Firstly, if solution fp, is incorrect because it converges on the
wrong mode (perhaps one which is about to cross the one of interest) then extrapolation
to point n+1 using the solution at point n risks following the other mode. With the
spacing increased to 2Ak the erroneous result at point nis not used until a step later when
the danger is reduced. Secondly, the influence of any error at a point (some small error
must always be expected even after convergence) on the extrapolation is dependent on
the spacing, as with any numerical differentiation process. As the spacing is increased,
the extrapolation error for any given set of three solution errorsis reduced.

Having traced the wavenumber dispersion curve, the phase velocity and angle of
incidence dispersion curves are easily calculated from equation (4.1). Additionaly the
group velocity (the velocity at which energy is carried along the plate) is calculated from
the differential expression:

do
Cor= ok (4.5)

Any of these real quantities or the attenuation of the plate wave, in Nepers per
wavelength or Nepers per unit distance, may be plotted using the model.

4.6  Mode shapes

A mode shape of a plate wave is the distribution of one of the field variables through the
thickness (x2 direction) of the multilayered system. Thus a uq displacement mode shape
shows the variation of the uq displacement with depth through the plate, and similarly
with the other displacement and stress components. The variation in the x1 direction is
not of interest because it is always sinusoidal for all components, with wavelength equal
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to the wavelength of the plate wave. Mode shapes may be calculated at any location on a
dispersion curve. Some examples of mode shapes will be shown in Chapter 5.

The calculation of mode shapes starts with the calculation of the amplitudes of the four
component waves A(L+), A(L-), A(S+), A(S) in each of the layers of the system at a
chosen position on a dispersion curve. Idedly this would be done by inverting the
system matrix [S] on the left hand side of equation (2.85) and using this to pre-multiply
both sides of the equation to give:

(A [-D¥ 1) {AT1}

{A2} 1 {0}

{Ag} ¢ = [S] {0} (4.6)
{Ag) _ {0}

{A"5} [D7st JL{A5}

However the inversion of [S] at a position on a dispersion curve is not possible because
by definition it issingular for any modal solution. It is not surprising that thisis the case
because the modal solution describes the conditions for the existence of plate waves but
it does not describe their amplitudes. Propagating waves of any amplitude are therefore
permissible.

The problem is solved by assuming an amplitude of one of the wave components in one
of the layers and scaling the others accordingly. Incidentaly, by this assumption the
amplitude of the plate wave is adso assumed. The choice is arbitrary; in the
implementation described here a unit real amplitude is assumed for the downward
longitudinal wave ( A(L+) ) in thefirst finite layer of the plate (layer € 2). The assembly
of the system equation (2.85) is therefore modified dightly. Instead of moving the
equations for &l four of the incoming waves (A(L+)1, A(S+)1, A(L-)5 and A(s)s) to
the right hand side, as described in Chapter 2, only three of them are moved and the
place of the fourth is taken by the assumed unit component A(L+)2- The modified
system matrix is still square and is in general non-singular and the right hand side of the
system equation is non-zero. The equation can therefore be solved for the array of wave
amplitudes. The solution yields the amplitudes of all of the layer wave components for
unit real A(L+)2-

The modified system matrix is in general non-singular but there is a condition when it
becomes singular. As discussed in Chapter 2, Section 2.8, the system matrix is singular
when the wavenumber of the plate wave is equa to the wavenumber of either of the
component waves in one of the layers. However this singularity is not a problem.
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Firstly, the existence of the singularity is due to the fact that the + waves and the - waves
with this wavenumber are indistinguishable in their influence on the displacements and
stresses.  Any error in the evaluation of the relative amplitudes of these + and - waves
will therefore have no effect on the calculated mode shapes. Secondly, failure of the
solution algorithm due to zero division is unlikely because of numerical rounding. A
practical investigation conducted by the author has shown that, even if the matching
wave numbers are specified exactly to full precision, sufficient precision is lost in the
calculation of the exponential functions to avoid the trap for zero division in the solution
routine.

Having found the wave amplitudes, the stress and displacement components can be
calculated at any position through the thickness from equations (2.39) and (2.40),
remembering to adjust the xo values for upwards travelling waves in order to account for
the location of their origins at the bottoms of the layers (Chapter 2, Section 2.8). Thus
plots can be made of the through-thickness variations. In the implementation described
here, plots may be made of any of the stress or displacement components, or of the strain
energy density , given by half of the sum of the stress-strain products:

12t +52) @7

SED =5 (Gllax 6228X2
The displacements and stresses do not in general share the same phase in the x1 direction
(or time). For convenience when comparing plots, all of the mode shapes are therefore
plotted with phases such that in each case the value at the top of the first finite layer of
the plate isreal and positive. Also, the displacement components are scaled such that the
Euclidean norm of the two arrays of displacement values through the thickness of the
plate is unity. The choice of scaling is arbitrary but it is useful to be able to compare
different displacement components of a mode on the same scale and to maintain a
reasonably consistent scale for all modes. Similarly the stress components are scaled to
the Euclidean norm of the stresses.

4.7  Conclusions
The theory for free waves and attenuating waves of Chapters 2 and 3 has been

implemented into a general purpose predictive tool for calculating the modal properties
of multilayered plates.
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The two possible solution methods which were introduced in Chapter 2 were examined
and the global matrix method was chosen for the implementation. An algorithm based
on complex Gaussian reduction with partia pivoting was developed for the evaluation of
the characteristic function and a robust scheme was developed for searching for the
complex roots. The generation of dispersion curves is achieved by repeated applications
of the search scheme, employing quadratic extrapolation for the prediction of each new
point. A procedure for calculating the mode shapes of propagating waves was devel oped
by modification of the system matrix.

The model calculates disperson curves as phase velocity, group velocity, real
wavenumber or incident angle, versus frequency. The attenuation of the plate waves
may aso be plotted. Mode shapes are plotted for the displacement and stress
components and for the strain energy density. They may be plotted at any location on a
dispersion curve.
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CHAPTER 5

Validation of model

51 Introduction

The purpose of this chapter is to demonstrate that the model which was developed in
Chapters 2 to 4 is a suitable tool for the modal analysis of a wide range of plate systems
and waves and that it is capable of making accurate predictions of dispersion curves and
mode shapes.

Large numbers of modal solutions have been calculated with the dispersion curve model,
initially to confirm its accuracy and subsequently in the course of research. A few
examples of its application are described in Section 5.2. They have been selected to
show the versatility of the model, covering a range of plate systems and wave types,
including the well known cases of Rayleigh, Stoneley and Lamb waves, and both free
and attenuating solutions. The different forms of plotting dispersion curves are
demonstrated and illustrations are given of displacement and stress mode shapes.

Section 5.3 is devoted to the verification of the model by comparison with analytical
solutions. There are known analytical solutions for particular cases of the simpler plate
systems and these can be used to check the accuracy of the model to a high degree of
precision at specific locations in the solution space.

In Section 5.4 some predictions which were made using the model are compared with
measurements and with predictions made by other models. These include measurements
of surface waves made by the author, published measurements and predictions of Sezawa
waves and predictions of near-field reflections when waves are being excited, made using
aresponse model.

The material propertiesfor all of the examples are givenin Table 5.1.

- 126 -
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5.2  Examplesof applications of the model

Rayleigh wave on titanium half-space

Figure 5.1(a) shows the mode shapes for a Rayleigh wave in titanium. The geometry
required for a Rayleigh wave is a semi-infinite half-space of the solid, adjacent to
vacuum, as illustrated in the inset diagram in the figure. The energy of the wave is
retained close to the surface and in an elastic material it does not attenuate. The Rayleigh
wave velocity was caculated by the model to be 2996.342 m/sec (independent of
frequency). The modes were plotted for a frequency of 10 MHz and so the wavelength
in this case was about 0.3 mm. Thus it can be seen that the depth in the plate in which
the stresses and displacements are significant is approximately two wavelengths. Thisis
the case for al frequencies because the wavel ength and the depth axis of the mode shapes
both scale inversely with frequency. It can also be seen that the stress normal to the
surface and the shear stress are zero at the surface, as required by definition for a free
surface, but that they build up sharply just below the surface. The third stress
component, that paralel to the surface, is not constrained by the boundary conditions at
the surface and indeed it peaks at this location.

If the half-space of vacuum next to the titanium is replaced by a half-space of water then
the Rayleigh wave becomes a leaky Rayleigh wave. Its speed is faster than the speed of
bulk longitudinal waves in water and so it leaks a homogeneous longitudinal wave into
the water. It therefore attenuates as it travels. The velocity of the leaky Rayleigh wave
in titanium was calculated by the model to be 3001.051 m/sec, some 5 m/sec faster than
the free Rayleigh wave. Its attenuation is 0.114 Neperswavelength for all frequencies.
Its attenuation per unit distance is therefore linearly proportional to the frequency,
exactly as with viscoelastic bulk waves. In the example discussed here the frequency is
10 MHz and so the attenuation is 0.381 Nepersmm and the wave loses 32 % of its
energy per mm travelled.

The mode shapes for leaky Rayleigh waves are amost identical to those for free
Rayleigh waves, with the exception of the normal stress close to the surface. Figure
5.1(b) shows a detailed plot of the stresses for both waves very close to the surface, the
depth scale being magnified by 20 compared to the previous figure. The solid lines are
for the free wave and the dashed lines for the leaky wave. It can be seen that the normal
stress is not zero at the surface for the leaky wave; the small value of stress here is
associated with the transfer of energy from the titanium into the water. There is no shear
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stress at the surface because the water is assumed to have no shear stiffness. (Actualy
the water is given avery small shear stiffness, implied by the very small shear velocity in
Table 5.1. This is a convenience to avoid a singularity in the solution; it has no
significant effect on the results.)

If the half-space next to the titanium is vacuum but the material has viscoel astic damping
properties then again the wave attenuates as it travels. If the attenuation per wavelength
for bulk longitudinal waves is the same as that for bulk shear waves then it is evident
from the formulation that the Rayleigh wave must also have this value of attenuation.
Furthermore the velocity of the attenuating Rayleigh wave in this case is identical to that
of the free wave. If the attenuations of the two bulk waves are different then the
attenuation of the Rayleigh wave is dominated by the value of attenuation of the shear
bulk wave because Rayleigh waves consist mainly of shear wave components. For
example if the attenuations of the bulk longitudinal and bulk shear waves are 0.01 and
0.02 Neperswavelength respectively, then the attenuation of the Rayleigh wave in
titanium is 0.019 Nepers/wavelength. In general the attenuation of any non-leaking plate
wave in viscoelastic material lies somewhere between the maximum and minimum
values of the attenuations of bulk wavesin the layers.

Stoneley wave at the interface between titanium and steel

The second example is the next smplest case of plate wave propagation, the Stoneley
wave. A Stoneley wave, by original definition (Stoneley (1924)), is a free wave which
can propagate along the interface between two solids. The energy of the wave is retained
close to the interface in both media and it does not attenuate as it travels. In fact
Stoneley waves can only exist between certain pairs of materias, as observed by
Stoneley (1924) and defined rigoroudly by Scholte (1946). A general condition for their
existence is that the shear velocities of the two materials must be very similar and in
some cases must be identical. The Stoneley wave travels at a velocity dightly lower than
the bulk shear velocity(ies).

Figure 5.2 shows the mode shapes for a Stoneley wave at the interface between steel and
titanium. These materials have similar bulk shear velocities; for convenience they were
given identical shear velocities in the calculation (Table 5.1) so that it was possible to
find a free solution. The wave was found to have a velocity of 3221.329 m/s, dightly
lower than the bulk shear velocity, as expected. The displacements and stresses can be
seen to decay as the distance from the interface is increased, as was observed with the
Rayleigh wave. None of the components is zero at the interface but it can be seen that
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the requirement for the two displacement components and the normal and shear stresses
to be continuous across the interface has been satisfied. The third stress component, the
stress paralel to the surface, is unconstrained at the interface and a step change can be
observed here.

If the conditions for Stoneley waves are not satisfied then a free wave solution can not be
found. However in many cases attenuating solutions can be found. These are for leaky
Stoneley waves, in which the velocity of the interface wave is higher than one or both of
the bulk shear velocities. In these cases energy leaks into the half-spaces and the waves
attenuate as they travel. A theoretical examination of leaky Stoneley waves is given by
Pilant (1972).

Lamb wavesin titanium sheet

If a second interface is added to the system and the simplest case is taken, of vacuum
half-spaces, then the geometry is appropriate for the propagation of Lamb waves. Lamb
waves are free waves which travel indefinitely in elastic plates in vacuum. From a
practical engineering point of view there is no difference between the solutions for Lamb
waves for a metal plate in air and those for a plate in vacuum because the acoustic
impedance of air is negligible in comparison with that of the plate. For the same reason
the Lamb waves are also good approximations in most cases when the half-spaces are
water. Asan example of Lamb waves, the modes for a 1.0 mm thick titanium sheet have
been calculated and are shown in Figures 5.3to0 5.5 and 5.7.

Figure 5.3 shows the phase velocity dispersion curves for the full set of Lamb modes for
frequencies up to 10 MHz and phase velocities up to 10 km/sec.

The two modes which can exist at very low frequencies, labelled ag and sg as is the
convention for Lamb waves, are those which were introduced in Chapter 1 and were
illustrated in Figure 1.5. Figure 1.5 aso showed the shapes of the waves at the low
frequency limit from which it could be seen that sq is an 'extensional’ mode and &g is a
'bending’ mode. At the low frequency limit sq is often called the 'Young' wave, its
velocity being determined simply from Y oung's modulus and the plane stress boundary
conditions in the plane of the plate (plane strain till applies in the section through the
plate, as discussed in Section 2.3 of Chapter 2). At al frequencies the deformations and
stresses of sp are entirely symmetric with respect to the centre line of the plate and those
of ag are entirely antisymmetric. Their respective labels 's and 'a refer to these
properties and the subscript '0" indicates that they are the first modes in series of
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symmetric and antisymmetric modes. In fact al Lamb modes are either perfectly
symmetric or perfectly antisymmetric throughout their frequency ranges.

Both ag and sp can be seen to be dispersive, that is to say their velocities vary with
frequency, and as the frequency is increased they converge on each other. At the high
frequency end of the plot, ag and sp appear to have the same phase velocity but still exist
as separate modes. They only converge to the same phase velocity at infinity, when they
are both asymptotic to the Rayleigh wave solution. As the frequency is increased the
ratio of the wavelength to the plate thickness decreases. The deformation is also
increasingly confined to the material adjacent to the top and bottom surfaces of the plate.
Thus at very high frequencies two identical Rayleigh-like waves travel along the top and
bottom surfaces of the plate, as was shown for the top surface in the inset diagram in
Figure 1.5. Both Rayleigh-like waves share the same phase for the sg solution
(symmetric) and are in opposite phase for the ag solution (antisymmetric).

The other modes in Figure 5.3 are the higher order symmetric modes (s1, Sp, S3,....) and
antisymmetric modes (a1, a, ag,....). These are the first few modes of two infinite sets
of symmetric and antisymmetric modes. Modes continue to be introduced to the diagram
asthe frequency rangeisincreased, to infinity. All of these modes extend upwards in the
plot to infinite phase velocity. Note that thisis physically possible because energy is not
transported at the phase velocity but at the group velocity, as will be discussed shortly.
At the high frequency limit al of these modes converge on the bulk shear velocity of the
plate material.

Figure 5.4 shows the real wavenumber dispersion curves for the same modes. This plot
describes the spatial distribution of the waves, the number of wavelengths per unit
distance along the plate. In fact the imaginary part of the wavenumber is zero in all of
these cases because there is no attenuation of the modes. Here it can be seen that for the
most part the wavenumber varies very smoothly with the frequency and that any curve
can be described over its full length by steadily increasing or steadily decreasing the
wavenumber, without change of sign. It is for these reasons that it was decided in
Chapter 4 to generate the dispersion curves by incrementing the real wavenumber.

Figure 5.5 shows the group velocity dispersion curves. When a narrow band signal is
used to excite a dispersive plate wave then a'packet’ or 'envelope’ of waves is observed to
travel along the plate. Although the phase velocity measured at any frequency complies
with the phase velocity dispersion curves, the wave packet itself may not travel along the
plate at the same velocity. It can be shown (Brekhovskikh and Goncharov (1985) for
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example) that the velocity of the packet is the velocity at which the energy is propagated
aong the plate. This velocity is caled the group velocity and it may be calculated
directly from the gradient of the wavenumber dispersion curves by equation (4.5). If the
mode is not dispersive then the group velocity is equal to the phase velocity.

The group velocity dispersion curves provide useful information for understanding the
long range propagation of waves. If a narrow band packet of waves is propagated under
conditions where the group velocity varies with frequency then there is atendency for the
wave packet to spread as it travels along the plate. Much larger propagation distances
can be achieved if the wave packet is chosen such that the group velocity is steady (i.e. a
maximum or a minimum on the group velocity dispersion curve), when the packet retains
its shape. The long range propagation of Lamb wavesis discussed by Alleyne (1991).

It is interesting to note in Figure 5.5 that mode s has negative group velocity at its
lowest frequencies. This implies that the energy of a narrow band packet of sq waves
travels in the opposite direction to the phase velocity. This strange behaviour of sq has
received some attention from other researchers. For example, Wolf, Ngoc, Kille and
Mayer (1988) predicted and measured negative group velocity for the s mode in a brass
plate over a short frequency range. Furthermore, close examination of the data of Figure
5.5 revedls that mode ap also has negative group velocity over a very small range of
frequencies. In the plot this can only be seen as a dight extension of the end of the curve
below the axis but when expanded this region of the curve has the same shape as that for
mode s1.

The excitation of Lamb waves is often achieved by using water as a coupling medium
and positioning a transducer at an angle to the plate, according to the coincidence
principle. The coincidence principle, illustrated in Figure 5.6, states that an incident
wave in a coupling medium may be used to excite a plate wave if the component of its
wavenumber in the direction along the plate matches the wavenumber of the plate wave.
By the same analysis, a transducer positioned to receive a leaking signal from the plate
would be set at the same angle from the normal. This means that waves with high phase
velocities are excited and received using transducers at small angles of incidence and
waves with low phase velocities, using transducers at large angles. Clearly it is not
possible to excite waves with velocities lower than the bulk velocity in the coupling
medium. The application of the coincidence principle to the measurement of Lamb
waves will be discussed further in Chapter 8.
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Figure 5.7 shows the dispersion curves for the titanium plate in terms of the angle of
incidence of alongitudinal wave in water. The vertical axis therefore shows the angle at
which the transducer should be set in order to excite the modes. Now the significance of
infinite phase velocity can be seen. Infinite phase velocity corresponds to zero angle of
incidence. In the infinite phase velocity limit, the Lamb modes cease to propagate and
become through-thickness vibration modes in the plate (standing wave solutions). All of
the vibration modes consist of multiple half-wavelengths of either longitudinal bulk
waves or shear bulk waves. The shear modes (a1, sp, ap, s3 and a4) and the longitudinal
modes (s1, ag and s4) are each symmetric for even numbers of half-wavel engths through
the thickness and antisymmetric for odd numbers of half-wavelengths. Thus the shear
modes and the longitudina modes are each spaced at constant intervals along the
horizontal axisin the figure at zero angle of incidence.

Strictly speaking the angle of incidence dispersion curves in Figure 5.7 are incorrect
because the solution was obtained for a plate in vacuum whereas the calculation of the
angle of incidence required at least one of the half-spaces adjacent to the plate to be
water. However in practice dispersion curves for plates in vacuum may usually be used
for plates which are immersed in water because the presence of the water has only a
small influence on the velocities and wavenumbers of the modes. Furthermore, Lamb
waves are sometimes excited and received using only local immersion at the locations of
the transducers while the mgjority of the plate is in air, in which case it is perfectly
appropriate to use these angle of incidence dispersion curves.

The phase velocity dispersion curves for a plate in water are shown in Figure 5.8. These
curves were calculated for the same 1 mm thick titanium plate but with both half-spaces
consisting of water instead of vacuum. The plate waves are now in genera attenuative
and are classed as leaky Lamb waves. Within the solution space which is plotted, the
velocities of the modes are amost identical to those of the free Lamb modes, with two
exceptions. The first is the break in the ag mode at low velocity and the second is the
discontinuity of the s; mode at high velocity.

The velocity of the bresk in ag is the bulk velocity of longitudinal waves in water. For
the region of the curve below this critical velocity, any waves in the water must be
inhomogeneous. The low-velocity plate wave is therefore a free wave, with zero
attenuation, guided between the two half-spaces of water. As the velocity increases this
part of the mode becomes asymptotic to the bulk velocity of the water. In calculating the
curve, the solution was terminated arbitrarily at about 1.5 MHz, at which frequency the
value of the velocity was indistinguishable from that of the water. Above the critical
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velocity the wave leaks homogeneous waves into the water and attenuates. It is
interesting to note that there is some frequency overlap of the two parts of the mode.
This behaviour of ag has been studied both theoretically and experimentally for steel
plates by Osborne and Hart (1946 and 1947). They made the same observation about the
nature of the curve.

The discontinuity in the s mode occurs because there is a singularity in the solution for
the attenuation of the wave. As discussed previously, the s1 mode has negative group
velocity where the curve has high phase velocity, but positive group velocity elsewhere.
When calculating the modal solutions for leaky modes with negative group velocity, the
model predicts a negative value of the attenuation. This is a perfectly reasonable result
because the energy of the wave travels in the opposite direction to the phase. The
singularity exists at the point where the group velocity is zero, when the wave is non-
propagating and the attenuation isinfinite. In generating the curve, the attenuation of the
s1 mode increases rapidly as the velocity approaches the critical value. In this case the
mode was generated by constant decrements of wavenumber (i.e. from right to left in the
figure) and the solution was stopped when the attenuation started to rise sharply. Mode
ap also has a discontinuity but it is at a much higher velocity. In genera most modes
have high values of attenuation at high phase velocities and their calculation can be
difficult.

The attenuations of the leaky Lamb waves are plotted in Figure 5.9, in Nepers/mm,
plotted for the ranges of the dispersion curves which are shown in Figure 5.8. Here it
can be seen that all modes other than the low velocity part of ag (which has zero
attenuation and is not shown in Figure 5.9) are attenuative to some extent and that most
modes have regions which are quite strongly attenuative. At 0.1 Neperdmm a wave
loses 10 % of its amplitude per mm travel and at 0.2 Nepersdmm, 18 %. The other
notable feature is that the sg and ag modes both have strongly increasing attenuation with
frequency and that above about 5 MHz they and the Rayleigh wave are generally more
attenuative than the other modes. In the high frequency limit the ag and s modes
converge on a steady gradient of attenuation per mm or constant attenuation per
wavelength, given by the leaky Rayleigh wave solution. The sharp gradient of the
attenuation of sq at itslow frequency end can also be seen in the figure.

Finally, note that the horizontal axis of all of the Lamb wave and leaky Lamb wave plots
may be scaled linearly by the thickness. Thus for example the plotted velocity of a mode
at 1 MHz for the 1 mm thick plate would be appropriate for a 2 mm thick plate at 0.5
MHz. Lamb wave dispersion curves are often plotted with the horizontal axis as the
frequency-thickness product (MHz-mm).
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Surface wave on thin epoxy layer on aluminium half-space

Figure 5.10 shows the phase velocity dispersion curve for a surface wave on a system
consisting of athin layer of epoxy adhesive on a half-space of aluminium, as illustrated
in the inset diagram. Four different thicknesses of epoxy were modelled, from 50
microns to 400 microns.

It can be seen that the phase velocity of the surface wave is dispersive and is aso
extremely senditive to the layer thickness. At very low frequency the depth of influence
of the wave is large compared to the layer thickness and so the wave solution is
dominated by the aluminium half-space properties. The low frequency limit therefore
corresponds to the Rayleigh wave velocity in auminium, as indicated by a dashed line in
the figure. At very high frequency the depth of influence of the wave is small compared
to the layer thickness and so the wave solution is dominated by the epoxy properties.
The solution is therefore asymptotic to the Rayleigh wave velocity in epoxy as the
frequency is increased, again indicated by a dashed line in the figure. The solution is
free for al frequencies and thicknesses because the velocity is aways lower than the bulk
velocities in the aluminium and so it is not possible for energy to leak into the half-space.

Surface wave on thin layer of alpha case on titanium half-space

Figure 5.11(a) shows the phase velocity dispersion curve for a surface wave on a system
consisting of athin layer of alpha case on a half-space of titanium, as illustrated in the
inset diagram. For the purpose of this example the alpha case material was assumed to
be 10 % faster in both its longitudinal and shear velocities but to have the same density
as titanium. The actual properties of alpha case will be discussed further in Chapter 6.
The system is therefore qualitatively different to that of the epoxy layer on aluminium,
the layer material properties being faster than the half-space. Three different thicknesses
of alpha case were modelled, from 25 microns to 100 microns.

Again it can be seen that the phase velocity of the surface wave is dispersive and is aso
extremely sensitive to the layer thickness. At low frequency the wave solution is
dominated by the titanium half-space properties and at high frequency, by the alpha case
layer properties. The trend therefore is for the velocity to increase with frequency. The
low frequency limit corresponds to the Rayleigh wave velocity in titanium and the high
frequency limit to the Rayleigh wave velocity in alpha case, as indicated by the top and
bottom dashed linesin the figure. The third dashed line shows the velocity of bulk shear
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waves in the titanium, at which each curve shows a change in slope. The reason for this
is that the mode isin two parts. Below this velocity the wave is free because no energy
can leak into the half-space and above this velocity a shear wave leaks into the half-
gpace. This threshold can be seen clearly in the plots of attenuation in Figure 5.11(b)
where non-zero attenuation only exists for the high velocity regions of the modes.

5.3 Comparisonswith analytical solutions
Rayleigh wave velocity

Solutions for the Rayleigh wave velocity may be calculated from Rayleigh's third order
equation (Rayleigh (1887)) and may also be found in Timoshenko and Goodier (1970),
for example. For Poisson'sratio of 0.25 the Rayleigh wave velocity is given by the latter
authors to four decimal places to be 0.9194 times the shear bulk wave velocity.
Veocities calculated by the model agree exactly with this expected figure when the
appropriate value of Poisson'sratio isused. As an example the velocity of the Rayleigh
wave for steel was calculated, using steel properties of Young's modulus of 200 GPa,
Poisson's ratio of 0.25 and density of 8000 kg/m3. The Rayleigh wave velocity was
calculated to be 2907.403 m/sec, a factor of 0.919402 times the shear bulk wave velocity.

Stoneley wave velocity

Solutions for the Stoneley wave velocity may be calculated from his paper of 1924. The
formulation is presented as a real characteristic function whose result must be zero for
the solution to exist. The example discussed in the previous section, of a Stoneley wave
at the interface between steel and titanium half-spaces, was checked with this function.
The prediction, of a velocity of 3221.329 m/sec, was found to be correct to al three
decimal places.

Lamb waves

The low frequency cut-off value of the Young wave (sg) can be found from simple
stiffness calculations on a small element. For very low frequencies the wavelength is
very long compared with the plate thickness and the plate behaves in plane stress in its
own plane. Of course it is gtill in plane strain in the plane defined by the wave
propagation direction and the through-thickness direction. The stiffness (K) in the
direction of wave propagation (the x direction, say) can therefore be calculated as:
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_ Ay o B
Oxx =K &xx = Ty o Bxx T T2 8xx (5.2)

and the velocity of propagation isthen given by:
K
c= ()Y (5.2)

Again, velocities calculated by the model agree with this expected figure to three decimal
places in m/sec. For example, the Young wave velocity in titanium was calculated by
eguation (5.2) to be 5465.891 m/sec. The same value was predicted by the dispersion
curve program for low frequencies, of lessthan 1 kHz.

The cut-off frequencies of the higher order Lamb modes at normal incidence can be
compared with the solutions for through-thickness vibration of the plate. These modes
consist of multiples of half-wavelengths of shear or longitudinal bulk waves and so their
frequencies can be shown (for example, see Pialucha, Guyott and Cawley, 1989) to be
given by

Frequency (Hz) = % (5.3)

where n is the mode number (1,2,3....), c is the shear or longitudina bulk wave velocity
and d is the plate thickness. The model can not be used for perfectly normal incidence
because the phase velocity is infinite. However predictions at a phase velocity of
1,000,000 km/sec showed perfect agreement with the solutions obtained using this
equation.

Surface wave on thin layer

The low frequency and high frequency limits of the examples of the surface waves on
thin layers can be checked by comparison with the Rayleigh velocities in the layers and
half-spaces. The curves are considerably more dispersive than the Young mode
discussed above and so it is necessary to calculate the low frequency values at much
lower frequencies. It was found that calculations at 10 Hz were sufficient to demonstrate
agreement in both cases. At the high frequency limit agreement was obtained in both
cases by calculations at 100 MHz. The Rayleigh velocities in the four materials were
calculated to be:
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Rayleigh wave Velocity (m/sec)
Epoxy 1035.184
Aluminium 2957.100
Alphacase 3295.976
Titanium 2996.342

Multipleidentical layers

Finally, a useful verification is to compare the dispersion curves for a single plate with
those for the same thickness of plate divided into two or more layers with identical
properties, and to make sure that there are no differences. Reference to the theory of
Chapters 2 and 3 shows that thisis not atrivial case. Tests have been performed on two,
three and four layer systems for free and leaky solutions and have shown perfect
agreement.

54  Comparisonswith measurementsand other predictions

M easur ements of surface waves

The results of two experiments are shown in Figure 5.12. Both involved measurements
of the phase velocity of surface waves. The waves were excited and received by a pair of
broadband plane-wave piezo-€electric transducers with a 4 MHz centre frequency. The
plates were immersed in water and the transducers were set at the appropriate angle for
the excitation of the waves according to the coincidence principle, as was illustrated in
Figure 5.6. Pulse excitation was employed and two signals were captured by the receiver
for each measurement, one a known distance downstream from the other. The phase
velocities over the range of frequencies of the broadband received signal were calculated
using the amplitude spectrum method (Pialucha, Guyott and Cawley (1989)).

In the first case a leaky Rayleigh wave was excited on the surface of a 13.0 mm thick
aluminium plate. The measured velocities are shown as discrete points in Figure 5.12(a).
The maximum frequency at which measurements were obtained was about 4 MHz
because of attenuation of the wave at high frequencies. Also shown in the plot, as a
continuous horizontal line, is the solution predicted by the model. The prediction was
made using elastic properties of the aluminium which were determined by measuring the
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through-thickness times-of-flight of ultrasonic pulses. A plane wave transducer was used
to measure the bulk longitudinal velocity and a shear wave transducer to measure the
bulk shear velocity. The measurements are consistently lower than the predicted
velocity, perhaps due to an overestimate of the bulk velocities. The shear velocity in
particular israther difficult to measure accurately. However the difference islessthan 10
m/sec so agreement has been achieved to an accuracy of better than 0.3 %.

Note that the measurements should be expected to differ from the Rayleigh wave
calculations at very low frequencies because separate sg and ag Lamb waves should be
excited rather than Rayleigh waves. Examination of Figure 5.3 indicates that the lowest
frequency-thickness product at which these two waves are indistinguishable from each
other and from the Rayleigh wave is about 8 MHz-mm for titanium. The same is found
to be true for duminium. Therefore any surface wave measurements made above about
0.6 MHz in the 13.0 mm plate should be representative of Rayleigh waves. The lowest
frequency of measurement was 0.8 MHz.

In the second case athin layer of epoxy adhesive was cast onto the surface of a 13.0 mm
thick aluminium plate. Spacers were used to hold a glass sheet on top of the epoxy with
a separation distance from the aluminium of 0.2 mm so that the epoxy cured as a
consistent 0.2 mm thick layer. The glass sheet was coated with release agent so that it
could be removed easily after the curing. A separate specimen of epoxy was cast at the
same time so that its bulk wave velocities and density could be measured.

The measurements are shown in Figure 5.12(b) with the model prediction.
Measurements were only taken up to 2.7 MHz because of the strong attenuation of the
waves and the practical difficulty of making measurements when the transducers are at
large angles of incidence. As the frequency is increased the phase velocity of the surface
wave decreases and the transducer angle required to excite it increases. At angles greater
than about 40 degrees it was found that the excitation and reception were weak and prone
to crosstalk between the transducers. However the results show good agreement with
the predictions, the accuracy achieved being similar to that obtained in the Rayleigh
wave measurements.

Lamb waves
A number of careful comparisons was made between the predictions of the model and the

predictions of Lamb wave solutions made by a model developed by Alleyne (1991).
Alleyne's model has the advantage that its formulation is completely different from the
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model presented here. This is because it is restricted in its applicability to single layer
plates in vacuum and accordingly it calculates the Lamb wave solutions directly from
Lamb's equations (see Lamb (1917) or Viktorov (1970)).

Comparisons were made between the phase velocities, group velocities and wavenumbers
at arbitrary locations on the dispersion curves. Comparisons were also made between
displacement mode shapes at a number of discrete locations. Perfect agreement was
found in all cases.

Sezawa waves

Figure 5.13 shows predictions of dispersion curves for Sezawa and leaky Sezawa waves
in a system consisting of a layer of gold on a half-space of fused quartz. The properties
of the system were chosen to match a theoretical and experimental analysis which was
performed by Kushibiki, Ishikawa and Chubachi (1990). Following the sources of their
analysis, the acoustic properties of the gold were taken from Anderson (1965) and those
of the fused quartz from Mason (1958). Two cases were considered, one in which the
system was assumed to be in vacuum and the other in which it was immersed in water.
The geometry of the systemsis shown in inset diagramsin the figure.

The Sezawa wave is a free surface wave which can propagate in a system consisting of a
solid elastic layer on a solid elastic half-space. A genera theoretical analysis may be
found in Tolstoy and Usdin (1953). In the case considered here the Sezawa wave gtrictly
exigts only in the system in vacuum and only at high frequencies. Under all other
conditions the wave |eaks energy from the layer and is aleaky or 'pseudo’ Sezawa wave.

Consider first the system in vacuum. The phase velocity of the wave, shown as a solid
line in Figure 5.13(a), decreases steadily with frequency throughout the range of the
solution. At zero frequency it is equal to that of the bulk longitudinal wave in the quartz
half-space and at the high frequency limit it tends to the bulk shear wave velocity in the
layer. At low frequenciesits velocity is higher than the bulk velocity in the quartz and it
leaks a bulk shear wave into the half-space. This leaky region is characterised by non-
zero attenuation, shown in Figure 5.13(b). In the higher frequency region the wave is
non-attenuating.

The phase velocity curve for the system in water, shown as a dashed line in the figure,
differs only dightly from that for the system in vacuum. However there is a marked
increase in the attenuation because the wave additionally leaks a longitudinal bulk wave
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into the water throughout the frequency range. The sharp drop in attenuation at about
120 MHz corresponds again to the threshold when the wave stops leaking energy into the
half-gspace.

Kushibiki et al. (1990) performed measurements and predictions of the velocities and
attenuations of the immersed system over a range of frequencies, including both regions
of the solution. Their measurements agreed very closely with their predictions. The
predictions presented in the figures here also matched their published graphs.

Incidentally, another mode was also found for this system during the calculations which
is qualitatively similar to the surface wave which was predicted for the epoxy layer on
aluminium. It lies below the Sezawa wave on the phase velocity dispersion curve
diagram. Its phase velocity is equal to the Rayleigh velocity in quartz at zero frequency
and drops to the Rayleigh velocity in gold at high frequency.

Near-field model predictions of Rayleigh and Lamb waves

The final comparison to be presented here is between some modal predictions of leaky
waves made using the dispersion curve model and predictions of the near-field responses
when the waves are excited by a plane wave transducer, made by a response model. Two
cases are considered, one of a leaky Rayleigh wave and the other of a leaky sg Lamb
wave. The cases are intended to demonstrate the accuracy of the calculation of
attenuation of leaky modes.

The response predictions were made using a model which was developed by T.
Pialucha (1992). The model calculates reflection and transmission from multilayered
plates consisting of any number of layers of arbitrary thickness with arbitrary elastic or
viscoelastic properties. The calculations are made in the frequency domain so that
reflection and transmission coefficients can be studied as a function of frequency.
Infinite plane waves are assumed and any angle of incidence is permitted. However the
model can incorporate the spatial behaviour of a readlistic finite sized transducer by
performing a Fourier decomposition of the finite field in front of the transducer into
infinite plane wave components, solving separately for each of the plane waves, and
summing the results. Furthermore, an inverse Fourier transform may be applied to the
frequency domain solutions, yielding predictions of the time domain signal which would
be seen on an oscilloscope.
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In the study which is presented here the model was used to predict the frequency domain
solution for the reflected field when a plate is excited at a single frequency by a finite
transducer. The solution for the reflected field is therefore the summation of a set of
frequency domain solutions for plane waves. The smulation is illustrated in Figure
5.14(a).

A 5 mm diameter unfocused transducer was modelled for al of the predictions. A
Gaussian variation was assumed for the amplitude of the field in front of the transducer,
asillustrated in Figure 5.14(a) and plotted in Figure 5.14(b). The field was decomposed
into 1024 infinite plane waves for the solution. Following the solution, the reflected
plane waves were summed along a line normal to the reflected beam, as illustrated in
Figure 5.14(a). Thus the predictions which were made were of the reflected field in the
region of the point reflection from the surface of the plate.

In general a specular reflection may be expected from the plate. However, if the angle of
incidence of the transducer and the frequency are appropriate for the excitation of a plate
wave then the reflection changes. The point reflection along the axis of the beam is
modified, and more significantly, a signal is received downstream of the beam due to
leakage of energy from the plate wave. The leaking signal on the downstream side of the
received field isillustrated in Figure 5.14(a).

In the first case a leaky Rayleigh wave was modelled on a half-space of titanium in
water. A transducer frequency of 50 MHz was assumed and the transducer was
simulated at the appropriate angle of incidence (29.6 degrees) for the excitation of the
wave. Thereflected field is shown (on alinear scale) in Figure 5.15(a) from which it can
be seen that the reflection is not specular but is weighted on the downstream side of the
centre line of the beam. The calculations were then repeated for three other cases with
different values of the density of the water in order to observe different rates of leakage
of the wave. The reflected fields are plotted in Figures 5.15(b) to 5.15(d) in decreasing
order of water density. Now the leakage from the waves can be seen clearly on the
downstream sides of the fields and it is evident that the rate of attenuation of the leaking
waves decreases as the density is decreased.

The fields of Figure 5.15 have been re-plotted in Figure 5.16 using a natural logarithm
scale for the amplitude. The variations of the amplitudes on the downstream sides of the
fields are extremely linear on this scale, indicating that the amplitudes decay
exponentially with distance. The average rate of decay of each field was calculated from
the results and is shown in the Figure in Nepers/mm.
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Moda solutions were calculated for these four leaky Rayleigh wave cases and the
attenuations were compared with the decays of the leaking fields. In order to make the
correct comparisons, the decays of the fields, which are normal to the reflected beam
direction, were projected onto the plane of the plate by multiplication by the cosine of the

angle of incidence. The comparisons showed excellent agreement, as follows:

Normal water | Light water: | Light water: | Light water:
1/2 /10 1/50

density density density
Rayleigh velocity (m/s) 3000.9 2997.5 2996.4 2996.3
Angle of incidence (deg) 29.616 29.653 29.665 29.666
Attenuation calculated by
modal model (Nepers'mm) 1.907 0.955 0.191 0.0382
Attenuation calculated from
field (Nepers/mm) 1.900 0.951 0.191 0.0382

Finaly, a smilar comparison was made between the predicted near-field response and
the modal solution for a leaky s Lamb wave in a 100 micron thick plate. A strongly
dispersive location on the leaky Lamb wave dispersion curve was selected, where the
attenuation is high, as shown in the two plotsin Figure 5.17. The selected phase velocity
was 4500 m/sec corresponding to an angle of incidence of 19.242 degrees. The modal
model predicted a frequency of 23.172 MHz and attenuation of 0.170 Nepersmm. The
field predictions are shown on linear and log scales in Figure 5.18 from which the
attenuation normal to the reflected beam was calculated to be 0.180 Nepers/mm. When
projected onto the plane of the plate the attenuation was found to agree exactly with the
modal solution.

55  Conclusions

A number of modal solutions has been presented in this Chapter in order to demonstrate
the validity and accuracy of the dispersion curve model.
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Predictions of Rayleigh waves, Stoneley waves and Lamb waves have shown that the
model is capable of reproducing the familiar published solutions. The versatility of the
program in its capabilities of plotting different forms of dispersion curves and mode
shapes has also been demonstrated. Additionally, predictions for more advanced cases of
leaky waves and multiple layers have demonstrated that the program has the capacity for
the genera purpose modelling of all classes of plane strain plate waves and is therefore a
suitable tool for the research which isto be conducted on waves in interface layers.

A number of numerical comparisons with analytical solutions have been performed and
have shown in all cases that the model predicts the modal solutions with an extremely
high degree of accuracy. Predictions made using the model have also been shown to
agree with measurements, with published solutions and with predictions made with two
other models.



Chapter 5
Validation of model

144

Longitudinal Shear Densit
Material velocity (m/s) velocity (m/s) (kg/m9)
Titanium 6060 3230 4460
Alphacase 6666 3553 4460
Steel 5960 3230 7930
Aluminium 6370 3170 2700
Epoxy 2610 1100 1170
Gold 3217 1195 19488
Fused quartz 5968 3764 2197
Water 1483 0.01 1000

Tableb.1 Material propertiesused in the validation calculations

All materials assumed to be perfectly elastic.
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Plate wave velocity = _
sin(o)

(Equation 4.1)

Figure 5.6 The coincidence principle for the excitation of plate waves
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Figure 5.14 Simulation of near-field response using finite transducer model
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CHAPTER 6

Characterisation of defectivejoints

6.1 Introduction

Any ultrasonic method for the detection of a layer of apha case embedded at the
bondline of a diffuson bonded joint must rely on some variation of the acoustic
properties of the alpha case with respect to the adherends. This chapter reports the
results of a practical investigation of the material properties of apha case, which will be
needed for the model studiesin Chapters 7 to 10.

In the introduction of this thesis the formation of alpha case was described as a
combination of two mechanisms: first the presence of oxygen or nitrogen increases the
beta transus temperature so that hard beta grains tend to transform to relatively soft alpha
grains and second, the gases cause interstitial locking of the alpha grains, increasing their
hardness. These mechanisms are contradictory in their effect on the hardness of the
material so that it is not immediately evident whether alpha case material should be
harder or softer than the uncontaminated material. This must depend on the degree of
softening and hardening associated with the two mechanisms and on the proportions of
alpha and beta grains in the alloy. For instance, the formation of alpha case is more
likely to increase the hardness of the material if the alloy is naturally dominated by alpha
grainsthan if it is dominated by beta grains.

This contention seems to have been observed in practice. Weglein (1988) reported two
cases of measurements of bulk longitudinal velocitiesin titanium alloys, one in which the
velocity increased by 3 % and the other in which the velocity decreased by 0.7 %. The
specification of the material which was used in the former case was not stated but the
latter measurements were made in the aloy Ti-6211. In his own preliminary
measurements, which he made across a section of a Ti-6Al-4V diffusion bonded joint
using an acoustic microscope, he aso found a reduction of the surface wave velocity at
the bondline. In contrast, Thompson, Margetan, Rose and Batra (1992) and Brasche,
Margetan and Thompson (1992) found that the acoustic velocities of their Ti-6Al-4V
gpecimens increased substantially when the material was contaminated with oxygen.
They measured surface wave velocities on contaminated plates, finding increases of
around 7-8 %.

- 163 -
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It seems therefore that the material properties of the apha case materia must not be
considered to be absolute but to depend on the specifications of the titanium alloy.
Furthermore, since the growth of the apha case is a diffuson process, it is quite
reasonable to expect that the properties of the alpha case may vary gradually with depth
unless saturation takes place. This is an important consideration because the ultrasonic
response from a discrete layer of alpha case with homogeneous material properties may
be rather different than that from alayer with gradually changing properties.

An important aspect of the research programme therefore has been to measure the
acoustic properties of apha case in the specific material being utilised for the diffusion
bonds.

6.2  Preparation of specimens

In order to measure the acoustic properties of alpha case it was decided to grow thick
layers of alpha case by exposing titanium sheets in air at high temperatures. Two sheet
thicknesses were used, nominally 1 mm and 4 mm. Both sheets had the specification of
the stock which is used for the diffusion bonding. The intention with the 1 mm sheet was
to grow alpha case throughout the thickness so that through-thickness velocity
measurements could be made directly to determine representative acoustic properties of
the material. The intention with the 4 mm sheet was to grow a thick layer on each
surface. Note that the word ‘'layer' is used to refer to a zone where the alpha case
contamination is significant; it does not imply that the properties are constant throughout
the thickness of the layer.

The treatment of the sheets was undertaken by British Aerospace. The sheets were
exposed in air at 900 °C for 12 hours and 120 hours respectively. During exposure,
considerable flaking of material occurred at the surfaces of the sheets. This was grit
blasted from the surfaces afterwards. Consequently the 1 mm sheet reduced in thickness
from 1.1 mm to approximately 0.8 mm and the 4 mm sheet reduced from 3.9 mm to
about 3.7 mm.

Figure 6.1 shows micrographs of sections through the heat treated sheets. The sections
were etched with a solution which was developed specifically by British Aerospace to
show the presence of alpha case. It shows titanium as a dark colour and alpha case as a
light colour. It is the same etch which was used to expose the apha case in the poor
diffuson bond which was discussed in Chapter 1 and illustrated in Figure 1.2. In
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Figure 6.1(a) there appears to be some alpha case throughout the thickness of the 1 mm
sheet but its intensity varies, the surfaces being affected considerably more than the
interior. In Figure 6.1(b) the central region of the 4 mm sheet seems not to have been
affected, the alpha case apparently extending about 1 mm from each surface.

It was intended also to include a range of diffusion bonded joints with different degrees
of apha case contamination as test specimens. British Aerospace have had considerable
success in developing the bonding process so that they are able to produce high quality
joints consistently. The plan therefore was that they would deliberately reduce the
quality of the bonds by exposing the sheets to air prior to bonding. However the
deliberate production of poor diffuson bonds was fraught with difficulties,
predominantly associated with the selection of the appropriate degree of exposure. The
result was that the 'defective’ bonds were generally contaminated (or disbonded) much
too severely to be used in the research, and only one suitable specimen was made
available. This is the poor bond which was introduced in Chapter 1 and mentioned
above. It was cut from a diffusion bonded and superplastic formed (SPFDB) specimen.
It is considered to be rather heavily contaminated.

6.3 M easur ements of hardness

Hardness measurements were made across the thicknesses of the heat treated specimens,
the untreated material from which the heat treated specimens were made, and the poor
diffuson bond. The results are plotted in Figures 6.2 to 6.4. In al cases the
measurements are Vickers microhardness made using a 200g weight.

In figure 6.2 it can be seen that the hardness of the untreated 1 mm material is about
300 HV at al five test locations across the sheet. The hardness of the treated sheet varies
with depth but is greater at all locations than the untreated sheet, the minimum hardness
being 340 HV near the centre of the sheet and the maximum about 540 at the edges of
the sheet. On average the hardness of the treated sheet is about 400 HV, 30 % greater
than for the untreated material. There is no evidence of saturation of the apha case, the
hardness rising sharply at the edges of the sheet without reaching a limiting plateau.

The hardness of the untreated 4 mm sheet, in Figure 6.3, is also about 300 HV except at
the two extreme test locations where it is considerably lower, presumably because the test
positions were immediately adjacent to the edges of the sheet. The hardness of the
treated sheet is also about 300 HV in its interior, rising to nearly 700 HV at the edges,
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again without evidence of saturation. The average hardness of the treated sheet is about
365 HV.

Note that the peak hardness values at the edges of the treated 4 mm sheet are higher than
at the edges of the treated 1 mm sheet. There are two possible explanations for this. One
is that a greater proportion of the hard material was lost by spalling from the thin sheet
than from the thick sheet. The other is that a greater concentration of apha case
developed at the surface of the thick sheet during itslonger period of exposure.

The hardness of the bulk of the poor diffusion bonded joint is again about 300 HV,
consistent with the untreated material, but a spike of 420 HV is clearly evident in the
single measurement which was made at the bondline, as indicated in Figure 6.4. This
bondline hardness value is dightly higher than the average value across the thickness of
the treated 1 mm sheet. It must also be considered as a lower bound value; it is quite
possible that the single hardness measurement which was made at the bondline was not at
the location of the peak hardness. Furthermore the Vickers hardness measurement is not
made at a point but over asmall area. Therefore if there was a steep gradient of hardness
at the measurement location then the measured hardness would be an underestimate of
the peak hardness at that location.

The hardness measurements indicate strongly that the alpha case is not a discrete layer of
homogeneous material but is a varying layer as may be expected from the gas diffusion
process. They also suggest that in no case has sufficient oxygen or nitrogen been
absorbed to saturate the material. Even after 120 hours exposure there is a steep hardness
gradient at the edges of the 4 mm sheet. Comparing the hardness distributions with the
micrographs it seems that the etch is very successful in identifying contaminated
material, even at relatively low levels. The threshold for detection appears to be about
350 HV, 50 HV higher than the hardness of uncontaminated titanium.

6.4  Measurementsof acoustic properties
M easurements of bulk longitudinal and shear wave velocities
Acoustic velocity measurements were made through the thicknesses of the untreated

titanium sheets, the treated titanium sheets, and the poor diffuson bonded joint. The
results are summarised in Table 6.1(a).
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The longitudinal velocity measurements were made using an unfocused broadband
transducer with a 10 MHz centre frequency, in an immersion tank. The shear velocity
measurements were made using a broadband 8 MHz centre frequency shear transducer
attached to the specimens with a strongly viscous coupling agent. Two shear velocity
measurements were made at each location. The shear velocity 'parallel’ to the rolling
direction was measured with the transducer positioned so that the shear motion of the
pulse was parallel to the rolling direction of the plate. The shear velocity 'normal’ to the
rolling direction was then made with the transducer rotated 90° so that the shear motion
was normal to the rolling direction. The amplitude spectrum method (Pialucha, Guyott
& Cawley (1989)) was used, giving the velocity at a number of frequencies within the
bandwidth of the transducer in each case. Each tabulated value is the average of these
measured velocities. In no case was there any significant variation of velocity with
frequency.

The accuracy of the velocity measurement was limited mainly by the accuracy of the
measurement of thickness of each specimen. Thus the velocity measurements for the
thin specimens were considerably less accurate than for the thick specimens. Also, the
treated sheets suffered some distortion during their exposure so that their thickness
measurements were not as accurate as those of the untreated sheets. In general greater
confidence can be held in the measurements of longitudina velocity than in those of
shear velocity because of the quality of the received signals. It is more difficult to obtain
a clean strong signal with the shear test arrangement than with the longitudinal test
because of the difficulty of coupling the transducer reliably to the test specimen.

Comparing the two untreated sheets, there appears to be some variation in the properties
of the raw material. The longitudinal velocity through the 1 mm sheet is some 2 %
higher than that through the 4 mm sheet. The shear velocity normal to the rolling
direction is aso dightly higher in the 1 mm sheet than in the 4 mm sheet but the shear
velocities parallel to the rolling direction are almost identical. The difference between
the two shear velocity measurements in the thin sheet, indicating the degree of
anisotropy, is about 4 % and in the thicker sheet, 2 %. The shear velocity is lower in the
rolling direction than in the normal direction in both cases. The differences in properties
between the two thicknesses of sheet are presumably due to differences in the extent of
working of the material.

The fact that the shear velocity is faster in the direction normal to the plate than in the
direction parallel to the plate is rather surprising at first because the stiffness is normally
expected to increase in the direction in which a plate is rolled. However the plate
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material which was used in these studies is not rolled solely in one direction
(Bottomley (1992)). Prior to the final cold rolling of the sheets which defines the 'rolling
direction’, the material is hot rolled in the normal direction and it is at this stage that the
microstructure is developed. Thus the elongation of the grains and the stiffening tends to
be normal to the 'rolling direction'.

A significant increase of some 6 % can be seen in the longitudinal velocity in the treated
1 mm sheet over that in the untreated 1 mm sheet. The shear velocities are aso
increased, by 4 % and 5 %. These increases agree qualitatively with the measurements
of surface wave velocities on alpha case reported by the researchers at lowa State
University (Thompson et al. (1992), Brasche et al. (1992)). It seems aso that the
stiffness anisotropy of the sheet has not been removed by the heat treatment, the variation
of shear velocity with polarisation remaining at about 3 %. This is in agreement with
metallurgical studies of the material made by British Aerospace (Bottomley (1992)).
Heat treatment on its own does not affect the anisotropy of the material. However
stiffness anisotropy may be reduced during superplastic forming because of the tendency
for the grains to become equi-axed as the material flows.

The velocities through the treated 4 mm sheet are approximately mid-way between the
velocities through the 4 mm untreated sheet and those through the 1 mm treated sheet.
Again the treated sheet has retained its anisotropy, the variation of shear velocity with
polarisation remaining at 2 %.

Two sets of velocities are given in the table for the poor diffusion bond, one for each
adherend. Each adherend test piece was isolated from a piece of the joint by grinding off
the unwanted adherend down to the bondline. As can be seen, small differences were
found between the velocities in the two adherends, the longitudinal velocities differing
by about 1 %. The shear velocity measurements also indicate that the anisotropy of the
material is considerably lower than in the raw or heat treated sheets. The anisotropy in
the first adherend is about 1 % while no anisotropy is evident in the second adherend.
This observation is consistent with the loss of gtiffness anisotropy during superplastic
forming. The small differences between the velocities of the two adherends could be due
to different degrees of straining during the superplastic forming.

Comparing the velocity measurements in the 1 mm sheets with the hardness distributions
it seems that an average increase in longitudinal velocity of 6 % can be associated with
the average hardness increase to 400 HV. If the velocity varies with the degree of
contamination as does the hardness then much higher velocities should be expected at the
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surfaces. A first linear approximation for the longitudinal velocity, obtained using the
hardness and velocity data for the 1 mm untreated and treated sheets, is given by the
expression:

cL =6280 + 3.7 (HV - 300) m/sec (6.1)

where ¢ is the longitudinal velocity and HV is the Vickers hardness. If this
approximation is accurate then the velocity at the surfaces of the sheet would be some
10-12 % higher than in the untreated material.

The expression in eguation (6.1) was aso modified for the 4 mm sheet in order to
account for the small variations in the properties of the two thicknesses of untreated
material. Accordingly the velocity in the expression was reduced by 2 %, giving:

cL =6154 + 3.63 (HV - 300) m/sec (6.2)

This equation was then applied to the 4 mm treated sheet where the average hardness is
about 365 HV. The resulting prediction for the average velocity through the sheet was
6390 m/sec, about 1% higher than the measured value of 6350 m/sec. This good
agreement indicates that the simple linear approximation for the variation of the
properties is reasonably representative.

An assumption of 6 % increase in longitudinal velocity for severely contaminated apha
case istherefore rather conservative. Of course the key question is the realistic degree of
contamination to be expected at the bondline of a poor joint. Currently the only evidence
comes from the single poor bond where a local hardness value of 420 HV implies an
increase in velocity of more than 6 %.

Attempt to detect reflection from alpha case boundary

In addition to the through-thickness velocity measurements, an attempt was made to
detect whether a discrete reflecting boundary existed in the interior of the treated 4 mm
sheet. If the alpha case exists as a discrete homogeneous layer then at normal incidence a
significant pulse should be reflected from the interface between the alpha case and the
parent titanium. Both focused and unfocused transducers were employed over a range of
frequencies from 10 MHz to 50 MHz but no discrete reflection could be found other than
grain boundary reflections when testing at high frequencies.
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M easur ements of Lamb wave velocities

Lamb wave velocity measurements were made in the untreated and treated 1 mm sheets
as a further study of the anisotropy of the material. For ease of testing, the first
symmetric mode (sp) was used, excited by five cycles of a 1 MHz tone burst in a
Gaussian window. Coupling to the sheet was achieved by a par of broadband
unfocused transducers set in perspex angle blocks and clamped to the sheet, asillustrated
in Figure 6.5. Two signals were received: the first arrival of the Lamb wave at the
receiving transducer (the reference signal), followed by the arrival some time later of the
same signal after it had traversed the full length of the sheet twice, reflecting from both
ends (the delayed signal). The velocity was then calculated by dividing twice the length
of the sheet by the difference between the arrival times of the two signals. Velocity
measurements were made in the rolling direction and normal to the rolling direction.
The measurements are summarised in Table 6.1(b). Also shown are the predicted Lamb
wave velocities, calculated using the measured values of the through-thickness velocities
and the dispersion curve model.

The measurements show once again that there is strong anisotropy in both the untreated
and the treated materials. In the untreated sheet the Lamb wave was some 5 % slower in
the rolling direction than in the normal direction. After treatment it seems that the
anisotropy remains in the material, a difference of 3 % being evident between the
velocities in the two directions. The measurements also show again significant increases
in velocity in the treated material compared to the raw material. Furthermore, the
predictions of the sp velocity which were made using the measured through-thickness
acoustic properties are faster than the measured sg velocities, indicating that material is
gtiffer in the through-thickness direction than in either direction in the plane of the sheet.

M easurement of density

Density measurements were made using the 4 mm untreated and the 4 mm treated sheets.
A small piece of each sheet was ground on all sides so that its dimensions could be
measured accurately. In the case of the treated sheet, care was taken to remove only a
few tens of microns from the exposed surfaces in order to achieve flathess without losing
any significant quantity of the alpha case. The densities were then calculated from
precise measurements of dimension and weight.

The densities of the two specimens are shown in Table 6.1(c). As can be seen in the
values, no difference in the density of the treated sheet could be detected within the
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0.2 % measurement tolerance. It was therefore concluded that there is no significant
difference in density between alpha case and titanium. This conclusion is consistent with
the measurements which were reported by Weglein (1988), Thompson et al. (1992) and
Brasche et al. (1992), who observed differencesin density of 1 % or less.

6.5 Conclusions

An investigation has been conducted in order to determine the acoustic properties of
apha case and of titanium. Sheets of titanium have been exposed in air a high
temperatures and measurements of their properties have been compared with those of
untreated material and of a poor diffusion bond. The study included visual examinations
of etched micrographs, hardness measurements across the thicknesses of the sheets,
through-thickness velocity measurements, Lamb wave velocity measurements and
density measurements.

The measurements which were made on the treated sheets of titanium show that the
acoustic velocity in the material increases significantly when the material is exposed to
air at high temperature. It appears from the hardness measurements that saturation does
not occur even when the materia is heavily exposed and it is concluded that the acoustic
velocity must be assumed to vary with the degree of exposure. Comparison of the
micrographs with the hardness measurements shows that the etch is very effective in
reveaing the extent of contamination. Comparison of the hardness and through-
thickness velocity measurements indicates that a peak increase in acoustic velocity of
more than 6 % should be expected at the bondline of the poor diffusion bond which was
used for the hardness measurements. No difference in density could be detected between
untreated titanium and alpha case.
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Longitudinal Shear velocity with Shear velocity
Specimen velocity rolling direction normal to rolling
(m/sec) (m/sec) direction (m/sec)
Untreated 1 mm 6280 = 30 3150+ 30 3290 =+ 30
Untreated 4 mm 6160 + 10 3140+ 20 3200 + 20
Treated 1 mm 6650 = 50 3310+ 50 3420 + 50
Treated 4 mm 6350 + 15 3210+ 30 3280 = 30
DB joint, first
adherend 6250 + 30 3170+ 30 3240 = 30
DB joint, second
adherend 6170+ 30 3180+ 30 3160 = 30
(&) Bulk wave velocities
Measured Measured Predicted Predicted
) velocity in velocity normal velocity in velocity normal
Specimen rolling direction to rolling rolling direction to ralling
(m/sec) direction (m/sec) (m/sec) direction (m/sec)
Untreated 1 mm 5110 5370 5340 5520
Treated 1 mm 5310 5490 5690 5820
(b) Lamb wave velocities
Specimen Density (kg/m3)
Untreated 4 mm 4407 +£ 10
Treated 4 mm 4403+ 10
(c) Dendities

Table6.1 Measured acoustic properties of titanium sheets
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Figure 6.1 Micrographs of sections through treated titanium sheets
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CHAPTER 7

Nor mal incidence inspection

7.1 Introduction

In order to assess the potential of any new plate wave inspection technique it is important
to have a measure of what can be achieved using the conventional approach. This
chapter presents the results of two model studies which were conducted in order to
determine the limits of the detectability of defects in diffusion bonded titanium using
conventional normal incidence ultrasonic inspection.

The conventional ultrasonic technique for the detection of defectsin plates, as introduced
in Chapter 1, isto send an ultrasonic signal into the material and then to look for changes
either in the transmitted signa on the other side of the plate or in reflections from the
plate on the same side as the transmitter. The inspection is carried out at normal
incidence, that is to say the transducers are aligned normal to the surface of the plate.
For the detection of planar defects embedded in a joint whose adherends have the same
acoustic properties it is clear that the latter approach, the pulse-echo method, is the
preferred option. It has therefore been employed for the model studies.

The model studies each consisted of a series of simulations of normal incidence pulse-
echo inspections, in which a range of inspection parameters and descriptions of the
defects was employed. The ssimulations yielded predictions of the reflected time domain
signal which would be detected by the receiving transducer. A redistic frequency
response of the transmitting transducer was modelled and water coupling between the
transducer and the joint was assumed.

Two model studies are reported, the first on the detection of alpha case at the bondline
and the second on the detection of aplanar array of voids at the bondline. The latter case
is gtrictly outside the scope of this thesis but it was an important study because small
voids are invariably present in poor bonds. It was therefore decided to include it in the
presentation here.

-178 -
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7.2  Modédling approach

All of the response predictions were made using a model which was developed by T.
Pialucha (1992). His response model was introduced and discussed in Section 5.4 of
Chapter 5 where it was used as part of the validation of the modal model. It calculates
the frequency domain reflection and transmisson of plane waves from multilayered
plates consisting of any numbers of layers of arbitrary thickness and arbitrary elastic or
viscoelastic properties. An inverse Fourier transform may be applied to the frequency
domain solution to yield predictions of the time domain signal which would be seen on
an oscilloscope. In addition to the plane wave solutions the model may be used to
simulate the response of afinite sized transducer.

In most cases a four layer model was used, as illustrated in Figure 7.1(a). The top layer
was a semi-infinite half-space of water, representing the immersion coupling. The
second layer represented the top adherend of the joint and the third layer, the defect at the
bondline. The final layer represented the bottom adherend and was specified as a semi-
infinite half-space because there was no interest in predicting any reflections from the
bottom surface of the joint; indeed in practice any reflections following the bondline
reflection would be gated out. The only exception to this geometry was when the defect
was not described as a single layer but as multiple layers. This ideaisation will be
discussed in Section 7.3. In al cases the top adherend in the model was 4 mm thick.
This thickness was chosen to be sufficiently large to give good separation in time of the
top face echo and the bondline echo. However the materials were modelled as perfectly
elastic, ignoring attenuation of the signal, so that the predictions are equally applicable to
joints with other adherend thicknesses.

When simulating normal incidence response, Pialucha (1992) has shown that it is
generaly not necessary to include the finite dimensions of the transducer in the model
(note however that it is important at certain large angles of incidence). The computation
time for the finite transducer option is increased enormously over that for the plane wave
model, so it was fortunate that all of the modelling reported here could be performed
using the smplified infinite transducer model. This means that the predictions are for an
infinitely wide plate with an infinitely wide transducer. The only significant limitation
which may result from this assumption is that the predictions, which are a close match to
an unfocused transducer, may underestimate the reflectivity achievable with a focused
transducer.
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Broadband excitation was chosen in order to give a short pulse in the time domain. The
transducer response was simulated by asin® frequency response over the range from zero
frequency to twice the centre frequency. Figure 7.1(b) shows the assumed frequency
response for a 10 MHz centre frequency transducer, plotted on a linear amplitude scale.
This distribution function was chosen because it is representative of the typical
broadband transducer frequency response to pulsed excitation.

The reflection coefficient was defined as the amplitude of the reflection from the
bondline normalised with respect to the amplitude of the reflection from the top surface
of the joint. Referring to Figure 7.1(a) it istheratio |Rp| / [R1]. The paths of the pulses
in the figure have been drawn at oblique angles for clarity; in all cases the predictions
simulated normal incidence measurements.

7.3  Predictionsof reflectivity from alpha case

In the first instance a single homogeneous layer of apha case material was modelled at
the bondline of atitanium joint. Typical acoustic properties of titanium were assumed, a
longitudinal bulk velocity of 6100 m/s and a density of 4400 kg/m3. The shear bulk
velocity was not needed because it plays no part in the normal incidence response to
longitudinal waves. The longitudinal velocity in the apha case was assumed to be higher
than in the parent titanium and the density was assumed to be unchanged, in accordance
with the study of the material reported in Chapter 6. Two sets of results were cal cul ated,
one assuming the velocity increase to be 5 %, to 6400 m/s, and the other 10 %, to
6700 m/s. Predictions of the reflectivity from the joint were made over a range of
thicknesses of the alpha case, in all cases employing a 50 MHz centre frequency
transducer. Figure 7.2 shows the simulated time domain signal from one such prediction.
Here the layer is 30 microns thick, the velocity of the alpha case is assumed to be 10 %
higher than that of the titanium and the resulting bondline reflection is 35 dB lower than
the top face reflection. Clearly a reflection of this magnitude would be detected very
readily in practice.

The full sets of reflection coefficient results for the single homogeneous layer of apha
case with a 50 MHz transducer are plotted in Figure 7.3. Note that the reflection
coefficient for other transducer frequencies can be deduced from the graphs because the
horizontal axis is scaleable with the frequency-thickness product. Thus for example the
plotted result for a 40 micron layer with a 50 MHz centre frequency transducer is
applicable to an 80 micron layer with a 25 MHz centre frequency transducer.
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As expected, the reflectivity vanishes when the thickness of the layer of apha case
approaches zero so that at the left of the graph the coefficient for both curves drops to
minus infinity on the log scale. At the high thickness limit the response tends to that
from a single interface between titanium and alpha case, the layer thickness becoming
large enough so that the separate reflections from its front and back faces can be
resolved. The peak of reflectivity is at about 30 microns layer thickness for both velocity
assumptions. The trough at about 65 microns corresponds to resonance of the layer.
Resonance of a layer occurs when standing waves can be set up in the layer, when the
layer thickness is a multiple of the half wavelength of the signal. In this case the layer
thickness is half of the dominant wavelength in the broadband signal of about 130
microns. Comparing the two sets of predictions it can be seen that the reflection
coefficient for the 10 % faster alpha case is about 5 dB higher than for the 5% faster
alpha case for all frequencies. For percentages between 5 % and 10 % it is a very good
approximation to interpolate linearly on the plot.

Following these predictions two further sets of calculations were performed, assuming
smoothly varying acoustic properties with depth of alpha case. The layer of alpha case
was divided into a number of equal thickness sub-layers, each homogeneous. The
acoustic properties of the sub-layers were specified according to a sinusoidal variation
with depth, as illustrated in Figure 7.4(a). Thus the profile varied smoothly across the
whole of the alpha case and blended smoothly with the adjacent adherends. In the first
case the peak longitudinal velocity at the centre of the bondline was 10 % faster than in
the parent material, falling gradually on each side of the bondline to the parent value at
the 'edge’ of the alpha case. In the second case the same profile was used but the peak
velocity at the centre of the bondline was only 5 % faster than in the titanium. All of the
results for the graded alpha case which are reported here were obtained using a 13 sub-
layer idealisation; a convergence study using different numbers of layers confirmed that
this number of sub-divisions was sufficient for the range of frequencies and thicknesses
considered here.

The predicted reflection coefficients are plotted in Figure 7.5. As expected, the response
from the smoothly graded alpha case is somewhat weaker than from the single layer.
Now there is no upper thickness asymptote and in fact it becomes more difficult to detect
the presence of the layer asits thickness increases. At first sight this observation seems
surprising but it must be remembered that the peak acoustic velocity at the centre of the
layer isthe same for all thicknesses on each curve so that the acoustic impedance gradient
decreases as the layer thickness is increased. Again the reflection coefficient for the
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10 % faster apha case is consistently higher than for the 5% faster alpha case, this time
by about 6 dB.

A final study was made to examine the influence of the grading profile on the reflection
coefficient. In addition to the smooth profile on each side of the bondline, a triangular
profile and an intermediate profile were considered. The profiles are illustrated in Figure
7.4, in parts (b) and (c) respectively. For the triangular profile, the velocity is assumed to
vary linearly with distance between the boundary with the titanium and the centre of the
bondline. The intermediate profile gives a smooth blend at the interface between the
titanium and the alpha case but a sharp gradient adjacent to the centre of the bondline. In
reality the profile of the velocity in exposed sheets of titanium may be expected to follow
the hardness profile, shown in Chapter 6, and would therefore best be modelled by the
intermediate profile. However, in making a joint the surfaces of the sheets are not
exposed after the bonding process has started. The diffusion of the oxygen during
bonding is therefore likely to smooth out the profile so that the smooth profile would be
most appropriate.

The results show that the grading profile has some influence on the reflection coefficient,
particularly for large thicknesses of apha case. At low thickness, the region of greatest
interest, the largest difference between the predictions is about 2 dB. In genera the
reflectivity for low thicknesses is determined by the volume of the alpha case material
(the area under the profile) because the wavelength is large compared to the thickness.
For high thicknesses the reflectivity is governed more by local changes of acoustic
impedance. Thus the reflectivity from the intermediate profile is low at low thickness
because its area is relatively small but high at high thickness because of the very sharp
change of gradient at the centre of the bondline.

Regarding the practical detection of an embedded layer of alpha case, the lower limit of
detectability of defects will be governed by the degree and profile of the material
stiffening of the alpha case, by the transducer characteristics, by the noise threshold and
by any difference which may exist between the material properties of the two adherends.
For small thicknesses the degree of material stiffening is extremely significant while the
profile is relatively unimportant. Ideally the transducer and associated el ectronics should
be selected to transmit a signal with a dominant quarter-wavelength which is as close as
possible to the effective thickness of the alpha case. This should be possible for
thicknesses down to about 20 microns using high frequency equipment, up to 60-80
MHz. Tedting at higher frequencies will be limited by the grain scattering and
attenuation in the adherend and so lower thicknesses of alpha case will be considerably
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harder to detect. Significant levels of grain noise have been observed in the titanium
sheets which have been studied in this research programme, and have also been reported
by the researchers at lowa State University (see Margetan and Thompson(1992)). In
practice it seems that the noise threshold will be somewhat higher than -50 dB in high
frequency measurements. Alpha case of 10-20 microns thickness would therefore be
detectable only if the material stiffening was high. Finaly, the reflection from a defect
will be masked by a background reflection from the bondline if there is a difference
between the properties of the two adherends. Fortunately the background reflection is
relatively small for small differences in properties. A difference in longitudinal velocity
of 1 % between the two adherends, such as was measured in the adherends of the poor
diffusion bond in Chapter 6, results in a background reflection coefficient of only -59 dB.

7.4  Predictionsof reflectivity from voids

The second study concerned the detection of voids at the bondline. Examination of a
small number of micrographs of sections of the bondline of the poor diffusion bonded
joint (one of them is shown in Figure 1.2 for example) suggests that the voids which can
occur with the formation of low levels of alpha case are small, typicaly afew micronsin
diameter in the plane of the bondline and 1-2 microns normal to the bondline. These
dimensions are one or two orders of magnitude lower than the wavelength in any
practical normal incidence measurement of ajoint.

The effect of the voiding was incorporated in the layer model by modifying the
homogeneous properties of a 1 micron thick layer of material at the bondline. The
stiffness across the bondline was calculated according to the 'Distributed Spring' model
for penny-shaped cracks, proposed by Baik and Thompson (1984). This model gives a
stiffness across the interface between two adherends corresponding to the stiffness across
a layer of voids. It also predicts that even when the voids are small compared to the
wavelength the stiffness is dependent not only on the area fraction of the voids but also
on the void diameters in the plane of the bondline. The interface stiffness from this
model was used to define the stiffness of the thin layer and the density of the thin layer
was reduced from that of titanium according to the area fraction of voiding. Note that it
is important to take the mass characteristics of the layer into account, even for very thin
layers, when the impedance of the layer is of the same order as that of the adherends.
This was shown in a theoretical analysis of interface models by Pialucha, Lowe and
Cawley (1992). In this case the omission of the mass description would result in
overestimation of the reflectivity. Alpha case was not included in the model.
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Figure 7.7 shows the variation of the predicted reflection coefficients with the centre
frequency of the broadband unfocused transducer, assuming a void diameter of 1 micron
in the Distributed Spring model. Three curves are shown, each for a different area
fraction of voiding. It can be seen that the reflectivity is strongly related both to the
area fraction and to the transducer centre frequency. The sensitivity of the reflection
coefficient to area fraction is aso largely independent of frequency, the three curves
being separated by about 6-8 dB over the whole frequency range. The nature of the
response here is somewhat simpler than that of the embedded layer of alpha case. The
layer thickness is much smaller than the wavelength of the signal (the first resonance of
the layer would occur at about 3 GHz) and significant reflectivity is achieved only
because the acoustic impedance of the layer differs strongly from that of the adherends.

A further set of calculations was made in order to show the influence of the void
diameters on the reflectivity, in al cases assuming a 25 % void area fraction. The
results, plotted in Figure 7.8, show a strong sensitivity of the reflectivity to the void
diameter, with the 5 micron voids reflecting about three times as strongly as the 1 micron
voids over the whole range of frequencies.

As with the embedded alpha case the practical limit of the detectability of voiding will be
determined ultimately by the grain scattering noise threshold. Above this threshold the
detectability will depend strongly on the void diameters and the best testing policy will
simply be to work at the highest frequency which is practicable. Assuming a void
diameter of 1 micron it seems that it should be possible to detect voiding down to about
20-25 % area fraction with high frequency equipment. However this assumption is
probably rather conservative, the voids appearing to be elongated to some considerable
extent in the plane of the bondline in the micrographs. Furthermore, unlike the
embedded alpha case, there may be some variation in the extent of contamination on the
scale of the spot size of the transducer so that local strong reflections may be found from
concentrations of voiding even when the mean level of voiding islow.

7.5  Comparison with experimental measurements

If suitable well-characterised specimens had been available it would have been useful to
make measurements of the reflectivity from bonds with a range of alpha case
contaminations and a range of void sizes and distributions, for comparison with the
predictions. This could also have enabled more to be discovered about the nature of the
alpha case layers at the bondlines. However, as discussed in Chapter 6, the attempts to
make a suite of test specimens have not been successful (to date).
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M easurements on good bonds have shown no reflections whatsoever other than scattering
from grain boundaries at high frequencies. Measurements on the only poor bond gave a
reasonably strong reflection coefficient of -44 dB. The transducer was focused and had a
nominal centre frequency of 80 MHz, athough in practice the effective centre frequency
was about 50-60 MHz after attenuation in the water and the adherend. Examination of
micrographs of the bondline (Figure 1.2 for example) indicates that the alpha case is
about 80 microns thick and that there is considerable voiding, covering between 20 %
and 40 % of the bonded area. The voids are typically afew micronsin diameter.

Assuming the smooth profile for the alpha case and a peak apha case velocity
somewhere between 5 % and 10 % higher than titanium, the predictionsin Figure 7.5 are
consistent with the measurement. Similarly, agreement is obtained between the
measurement and the predictions for voiding (Figures 7.6 and 7.7) if a mean void
diameter between 2 and 5 microns is assumed.

Of course these comparisons are rather approximate and are included here solely to
indicate that the predictions of measurable reflectivity are consistent with the limited
experimental evidence. If a range of specimens had been available for a full
experimental study it would have been necessary to take into account the attenuation of
the signal in the adherend (ignored in the model), the gain in reflectivity which is
achieved by using a focused transducer rather than plane waves and the effects of
combined alpha case and voiding.

7.6 Conclusions

Model studies based on normal incidence pulse-echo inspection have been used to
simulate the reflection of ultrasonic pulses from alpha case embedded in titanium and
arrays of voids in titanium. The latter case was included because of the tendency for
voids to be present in poor bonds. Both types of defect present a challenge to ultrasonic
testing methods. The alpha case is thin and has acoustic properties which are similar to
those of the adherends and the voids, athough contrasting well, are extremely small.
However the fact that both of the adherends are always the same is enormously helpful
because it provides the best possible testing conditions for normal incidence pulse-echo
ultrasonic ingpection. 1n agood bond there is no reflection from the bondline because the
parent material is continuous across the joint. The detection of any reflection from the
bondline therefore indicates the presence of a defect. Consequently it is possible to
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detect features with dimensions which are more than an order of magnitude smaller than
the dominant wavelength of the test signal.

Model predictions for apha case embedded at the bondline of titanium joints have shown
that it should be possible to detect layers of alpha case with thicknesses down to 20
microns or less using high frequency equipment (60-80 MHz) if the acoustic velocity of
the alpha case differs from the titanium by at least 5 %.

Predictions for voiding at the bondline of titanium joints, assuming conservative void
geometries, have indicated that it should be possible to detect voiding down to 25 % area
fraction. The reflectivity is strongly sensitive to the diameter of the voids and so
detection should be sensitive to spatial variations in void geometry.
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CHAPTER 8

L amb wave technique

8.1 Introduction

This chapter presents the results of model studies which were made in order to assess the
feasibility of using Lamb waves to detect the presence of apha case at the bondline of a
diffusion bonded joint.

The objective with the Lamb wave technique is to exploit any changes which an
embedded layer of apha case may make to the properties of the Lamb waves. For
exampleif the velocity of aparticular wave is atered by the presence of the layer then an
ingpection system could be based on detecting a change in the velocity of that wave. The
plate waves in the defective joint are still loosely referred to as Lamb waves, although
strictly speaking Lamb waves exist only in single-layer plates in vacuum, because they
occupy the whole of the plate and they differ only dightly from true Lamb waves.

Clearly it isimportant to identify those waves which are most sensitive to the presence of
the layer in order to assess the technique favourably. It is also important to take into
account the sengitivity of the modes to possible variations of other parameters of the
joint. Unless the other parameters of the joint are known accurately, the sensitivity of the
detection of apha case using any of these modes may be reduced or lost.

Overview

The investigation starts with a model study of the influence of alpha case and of other
parameters of the joints on the dispersion curves. The modal model is used to predict the
dispersion curves for a number of cases and the sensitivities of the modes to each
parameter are quantified. The cases include the presence of alpha case at the bondline,
both as a discrete layer and as a graded layer, alpha case offset from the centre of the
joint and joints with different properties and thicknesses of adherends. The sensitivities
of the modes to differences in each of the acoustic properties of the embedded layer are
also predicted.

-195-
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Following the parametric study, the excitation and measurement of Lamb waves is
addressed. Two methods are reviewed, both involving the excitation of the waves by
immersion coupling using the coincidence principle. In the first method the velocity of
the wave is measured at some location downstream of the excitation point. In the second
method, the 'null zone' method, the velocity or frequency of a mode is measured at the
point of excitation.

The study is completed with a discussion of the implications of the model predictions.
The most attractive modes for inspection are identified and the senstivity of the
technique is assessed by comparison with the sengtivity of the conventional normal
incidence technique which was presented in Chapter 7.

8.2  Predictions of dispersion curvesfor defectivejoints

The reference case for the parametric study was a perfect diffusion bond with identical
adherends, no embedded layers and a total thickness of 1.0 mm. The longitudinal
velocity of the titanium was 6060 m/sec, the shear velocity 3230 m/sec and the density
4460 kg/m3. The joint was assumed to be in vacuum. The reference case is therefore
identical to the Lamb wave case for a single sheet of titanium which was presented in the
examples in Chapter 5 and whose dispersion curves were shown in Figures 5.3 to 5.5
and 5.7.

The parametric study involved a series of calculations of the dispersion curves for
variations of the parameters of the joint. In each variant case only one parameter was
varied with respect to the reference case so that the influence of each parameter could be
studied separately. The details of each case will be discussed in turn.

The results of the study are summarised in Figures 8.1 t0 8.10 and Tables 8.1t0 8.4. The
majority of the figures are plots of the dispersion curves of the joints, each showing the
results of one variant and the reference case, the perfect bond. In al cases the solid lines
are the dispersion curves for the perfect bond and the dashed lines for the variant case.
For convenience al of the modes have been labelled with the conventional Lamb mode
labels, ag, sp etc., which were introduced in Chapter 5. Table 8.1 gives the values of
selected velocities and frequencies of al of the cases and Table 8.2 repeats this
information in the form of the percentage change of the parametric cases with respect to
the reference case. In a similar fashion Tables 8.3 and 8.4 show the predictions of the
through-thickness vibration frequencies of the joints. These are the frequencies of the
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Lamb modes at infinite phase velocity, which would be excited using a transducer at
normal incidence to the plate.

The dispersion curves may be scaled with the thickness of the joint, as discussed in
general for Lamb waves in Chapter 5. Thus the predicted velocity of a mode at 1 MHz
for the 1.0 mm plate would be appropriate at 0.5 MHz in a2.0 mm plate. However all of
the layer thicknesses must be scaled together. Therefore if the curves for a 1.0 mm plate
with a 0.1 mm thick embedded layer are to be used to study a 2.0 mm plate then the
implicit assumption is that the thickness of the embedded layer is aso doubled, to
0.2 mm.

All of the predictions were made with the assumption that the plate was in vacuum and
so dl of the solutions are for free waves. However, as discussed and demonstrated in
Chapter 5, the leaky Lamb wave velocities and frequencies for a titanium plate immersed
in water are practically identical to those for the plate in vacuum, with minor exceptions.
The parametric study is therefore applicable to inspection arrangements in which water is
used as a coupling medium between the transducers and the plate. For completeness the
solutions for leaky Lamb waves in a 1.0 mm plate are included in the tables in this
chapter.

Single discrete layer of alpha case ('bad' bond)

For this set of predictions it was assumed that there was a layer of apha case at the
bondline of the joint. The layer was 0.1 mm thick and it was centrally positioned in the
joint. The total thickness of the joint remained 1.0 mm so the two equal adherends were
each 0.45 mm thick. The layer was assumed to be homogeneous with both longitudinal
and shear velocities 10 % faster than in the titanium. The density was unchanged. The
idealisation is therefore broadly in line with the results of the material study of Chapter 6
but is arather severe case. The apha case isfairly thick, is assumed to be discrete rather
than graded and has a relatively high variation of its acoustic properties from the raw
material. In a sense this case is adso a reference case, being the basic idedisation of a
poor diffusion bond. Inthe comparisonsit will be referred to as the ‘bad’ bond case.

The dispersion curves for the reference case and for the variant are shown in Figure 8.1.
Here the sengitivities of each of the modes to the presence of the layer can be seen
immediately.



Chapter 8 198
Lamb wave technique

The first symmetric mode, S0, shows some senditivity to the presence of the layer at low
and medium frequencies in the figure, the change to the mode being an increase in
velocity. At the low frequency limit the increase in velocity is to be expected from the
nature of the mode. The wave is characterised by uniform stresses through the thickness
of the plate, according to the plane stress analysis which was discussed in Chapter 5. Its
velocity is therefore governed by an average value of the stiffness of the plate across its
thickness. Indeed reference to Tables 8.1 and 8.2 shows the velocity increase of the
wave to be 57 m/sec, about 1 %, which is consistent with such an analysis.

Asthe frequency isincreased, the sy mode shows increasing sensitivity to the presence of
the layer. At intermediate frequency-thickness products of 2-3 MHz-mm, it shows its
greatest sengitivity, when the deformations of the plate are concentrated around the
bondline. The deformations can be seen in the plots of the mode shapes in Figure 8.2
which have been calculated for a frequency-thickness product of 2.5 MHz-mm. At this
location on the dispersion curve (indicated in Figure 8.1) the component of the
displacement in the direction along the plate is no longer constant across the section, as it
would be at the low frequency limit, but is much larger at the centre of the plate than
elsawhere. The most useful revelation however is the peak in the strain energy density at
the centre of the plate, indicating that the energy of the wave is concentrated in this
region. The velocity of the mode is some 4 % higher than that of the reference case at
this frequency-thickness.

As the frequency is raised further the sy mode is increasingly Rayleigh-like, the energy
concentrating near the surfaces of the plate. It istherefore no surprise that the sensitivity
of the mode to the presence of a centrally positioned layer diminishes. Clearly in the
high frequency limit the mode must be completely insensitive to the properties at the
centre of the plate.

In contrast, the first antisymmetric mode, ag, shows no sensitivity to the layer at the low
frequency limit and in genera it shows very little sensitivity throughout its frequency
range. This is consistent with the antisymmetric nature of the wave. At very low
frequency it is characterised by bending of the plate and is therefore largely insensitive to
the apha case because of the location of the layer in the region of the neutral axis where
thereisvery little strain. At intermediate frequencies the velocity of the mode is dightly
higher than in the reference case but the mode is still antisymmetric and is still dominated
by bending behaviour. At high frequencies the arguments which applied to the
symmetric mode s apply equally to the antisymmetric mode and in the limit the wave is
completely insensitive to the embedded layer.
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The higher order modes also show variations in their sengitivity to the layer. In generad
the mode shapes of a Lamb mode vary considerably along the length of the dispersion
curve and, whereas they can be described in terms of integer multiple half-wavelengths at
the normal incidence limit (infinite phase velocity), their compositions are much more
complex at other locations. Indeed the number of 'haf-waves in the shapes of each
mode increases as the frequency is increased. Consequently it is not surprising that the
modes tend to have sensitive regions and insensitive regions, corresponding to relatively
strong and relatively weak deformations near the bondline.

Of the higher order modes, mode sy shows the strongest sensitivity to the embedded
layer within the range of velocity and frequency in the figure. At 6 MHz the presence of
the layer causes an increase in velocity of 240 m/sec, about 4 % of the velocity of
6700 m/sec. On the frequency axis the difference is about 340 kHz, a 6 % increase, at
this velocity. The mode shapes of sy at this location for the plate with the embedded
layer are shown in Figure 8.3 and the location on the dispersion curve is indicated in
Figure 8.1. As should be expected, the mode shapes show that the strain energy density
isrelatively high at the centre of the plate.

It is interesting to observe aso that mode sp can be extremely insensitive to the presence
of the layer. At normal incidence it is the least sengitive of the first four of the higher
order modes, showing less than one tenth of a percent variation from the reference case.
The normal incidence cut-off frequencies are tabulated in Table 8.3 and the percentage
changes with respect to the reference case, in Table 8.4. The reason for its insensitivity
is that it consists of two half-wavelengths of a shear wave through the thickness of the
plate so that the stress at the centre of the plate is zero. The other three modes in the
table consist of odd numbers of half-wavelengths through the thickness and do not have
zero stresses at the centre. Mode a; consists of half awavelength of a shear wave, mode
s1 of half a wavelength of a longitudinal wave and mode a of one and a half
wavelengths of a shear wave.

Graded layer of alpha case

In the context of the influence of the presence of apha case on the Lamb waves in a
plate, the variation of the alpha case properties across the layer is considered to be a
detail. The Lamb waves are likely to be influenced by the volume of the alpha case
material and by the average material properties; the profile is amost certainly of
secondary importance. The majority of the parametric study was therefore based on
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single embedded layers of homogeneous alpha case material. However in order to
demonstrate the secondary nature of the profile it was decided to make one set of
predictions using a graded layer.

A rather simple idealisation was chosen, in which the 0.1 mm thick layer was divided
into three sub-layers of equal thickness. The central sub-layer was given 10 % faster
longitudinal and shear velocities and the two adjacent layers were given 5 % faster
longitudinal and shear velocities. The profile was therefore the simplest case of the
triangular distribution which was modelled in the normal incidence reflectivity studies of
Chapter 7.

The dispersion curves for this system are shown in Figure 8.4. Comparison of the curves
with those of the reference case reveals again the sensitivity to the presence of the layer
and, as was expected, the modes vary from the reference case in the same manner as they
did for the single embedded layer in Figure 8.1. Furthermore, the variations are
consistent with the assumption that the Lamb modes are influenced by the average
material properties of the alpha case. The average acoustic velocities over the three sub-
layers are 6.7 % faster than in the titanium, two thirds of the value for the 'bad’ bond.
Comparison of the velocities of s at low frequency, in Table 8.1, shows that the effect of
this case on the velocity is exactly two thirds of that of the 'bad’ bond case. Similar ratios
are aso found when comparing all of the other resultsin the tables.

Alpha case offset from centre of joint

Figure 8.5 shows the dispersion curves for an asymmetric joint in which there is an
embedded layer of alpha case and the two adherends are not of equal thickness. The
0.1 mm layer of alpha case is identical to that for the 'bad' bond except that it is offset
from the centre line of the joint by 0.05 mm. One adherend is therefore 0.4 mm thick
and the other is 0.5 mm thick. This case addresses the possibility that dight thinning
may occur in one of the adherends, perhaps during superplastic forming, even though the
adherends were expected to be the same thickness. Clearly if the two adherends are
markedly different then any trends which are identified here would be much exaggerated
but of course in such cases the asymmetry would be anticipated.

The dispersion curves show practically the same sensitivities to the presence of the offset
layer as they did for the central layer. Comparing the tabulated velocities of sy at low
frequency for this case and the 'bad' bond (Table 8.1), there is no difference at all within
the given precision of 1 m/sec. Comparing the frequencies at 10 km/sec phase velocity,
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in the same table, the two cases can be seen to agree to within a few kHz. At normal
incidence the cut-off frequencies (Table 8.3) again agree to within afew kHz, the largest
difference being 16 kHz for the ap mode. In conclusion therefore it appears that a small
offset of the apha case from the centre line of the bond has an insignificant effect on the
dispersion curves.

Good bond with thicker adherends

In a sense this case is trivial because the frequency axis of the Lamb wave dispersion
curves is known to scale linearly with the thickness of the plate. A 1 % increase in the
thickness of the plate must therefore result in a 1 % reduction of the frequency for every
point on each dispersion curve. However it is useful to plot this variant because it
illustrates the strong sensitivity of the modes to the thickness of the plate. The changes
of the dispersion curves can be seen to be of asimilar order to those of the 'bad' bond, yet
they are brought about by avery small change to the adherends.

Good bond with different acoustic properties

There are two further variants of the acoustic properties of a perfect bond which are also
trivial cases. They have not been plotted here but their results can be summarised very
simply. In the first case, if the bulk longitudinal and shear velocities of a single layer
plate in vacuum are increased by a certain percentage then both the velocities and the
frequencies of each mode are increased by that percentage. In the second case, if the
density of a single layer plate in vacuum is changed then there is no change at al to the
dispersion curves. These two deductions can be made without recourse to numerical
analysis, by examination of Lamb's equations (see Lamb (1917) or Viktorov (1970)).

Good bond with unmatched adherends

One of the redistic possbilities with diffusion bonds is that there may be small
differences between the properties of the adherends. In fact the measurement of the
properties of the two adherends of the poor diffusion bond in Chapter 5 revealed a 1 %
difference between their acoustic velocities, arising perhaps from differences in their
strain histories during superplastic forming. Another possibility isthat the two adherends
may be anisotropic and may be bonded such that their rolling directions are not parallel.
Whereas a small degree of anisotropy is unlikely to affect the validity of the anaysis,
provided that the appropriate material properties are used, the difference in the properties
between two adherends may be quite significant. A set of dispersion curves was
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therefore calculated for a good bond in which one of the adherends had 1% faster
longitudinal and shear velocities than the reference values. The adherends were of equal
thickness and there was no embedded layer.

The results are shown in Figure 8.7. They show ageneral trend of an increase in velocity
for al of the modes, as would be expected if the bulk velocities of the whole of the plate
were increased. Indeed, the velocity of sp at low frequency is increased by exactly
0.5 %, consistent with the average values of the properties of the plate. Thereis aso an
increase in frequency which can be seen clearly in the norma incidence cut-off
frequencies in Tables 8.3 and 8.4. The frequencies al increase by exactly 0.5 %, again
consistent with the average properties of the plate. In conclusion it seems that the modes
are rather sensitive to the properties of the adherends, as revealed in the previous case,
but that they have no particular sensitivity to a small degree of asymmetry.

Layer with faster longitudinal velocity

The final three cases of the parametric study have been included smply to show
independently the influence of the three acoustic properties of the layer on the dispersion
curves. In all three cases a 0.1 mm thick layer was assumed to be embedded centrally in
the joint, so that the geometry was identical to that of the 'bad' bond.

In the first case the longitudinal velocity of the layer was increased by 10 %, the shear
velocity and density being identica to the adherends. The results are plotted in
Figure 8.8. The trends in the dispersion curves reflect the modes which are sensitive to
the presence of the alpha case and whose composition is dominated by longitudinal wave
components. This can be seen very clearly in the values of the cut-off frequencies. The
shear modes a1, Sp and ay are completely insensitive to the change whereas the
longitudinal mode s is quite strongly affected. Of particular interest are the relatively
small changesto the lowest order modes ag and sp.

Layer with faster shear velocity

In the second case illustrating independently the influence of the acoustic properties of
the embedded layer, the shear velocity of the layer was increased by 10 %, the
longitudinal velocity and density being identical to the adherends. The results are plotted
in Figure 8.9. Now a different pattern of influence can be seen in the curves, revealing
those modes whose composition is dominated by shear waves. Amongst them can be
seen the low order modes ag and 5.
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Layer with higher density

In the final case illustrating independently the influence of the acoustic properties of the
embedded layer, the density of the layer was increased by 10 %, the longitudina and
shear velocities remaining identical to the adherends. The results are plotted in
Figure 8.10. There is no change to the velocity of sy at low frequency but in general
most modes show some senditivity to the increase in density. The direction of change is
also not uniform, some modes showing increases in frequency (or velocity) and some
showing decreases. For the problem being addressed here, the detection of alpha case, it
seems that the density of the layer is no different from the density of the adherends and
so this information is not required. However, in generd, if an embedded layer has a
different dengity it is clear that this influences the dispersion curves even though the
density plays no part in the true Lamb wave solutions.

The increase in frequency of a curve when the density of the layer is increased seems
surprising when considered in the context of the principles of vibration theory, the
frequencies of vibrating structures decreasing when masses are increased. However, the
analogy is not strictly correct in the case of Lamb waves. Consider the Lamb wave
dispersion curves for asingle layer. The curves depend only on the bulk velocities of the
material and the thickness. On the other hand vibration frequencies depend on density
(or mass) and stiffness. The stiffness and density of the material are accounted for
implicitly in the dispersion curves because they define the bulk velocities, according to
equation (2.9), but they are not prescribed separately. An increase in density, without
changing the bulk velocities, is therefore accompanied by an increase in stiffness.
Accordingly, in the case considered here, both the stiffness and the mass of the layer of
alpha case are increased.

83 The measurement of Lamb waves

If Lamb waves are to be used to exploit any of the sensitivities which have been observed
in the model study it isimportant to be able to measure the velocities and frequencies of
the waves in a selective manner. There are two aspects to this. First, a method of
excitation should ideally be employed in which the energy can be focused on a particular
location on the dispersion curve diagram so that particular waves can be launched.
Second, a method of measurement should be used which can determine accurately the
velocities and frequencies of the modes.
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The excitation of Lamb waves

The selective excitation of Lamb waves can be achieved with considerable success using
the coincidence principle which was discussed in Chapter 5, Section 5.2 and was
illustrated in Figure 5.6. The principle states that an incident wave in a coupling medium
may be used to excite a plate wave if the component of its wavenumber in the direction
along the plate matches the wavenumber of the plate wave. This means that waves with
high phase velocities are excited and received using small angles of incidence and waves
with low phase velocities using large angles.

Ideally the coincidence principle could be used to excite a wave at a precise location on a
dispersion curve by using an infinitely wide plane wave transducer and a single
frequency signal. In practice of course thisis not possible. Waves do not leave the face
of afinite transducer solely in the normal direction but are spread over arange of angles.
The transducer cannot therefore be aligned to excite plate waves of a single velocity, its
energy can only be centred on a particular velocity. Similarly it is not possible to work
with asingle frequency, only with arange of frequencies.

However it is possible to direct the energy into a small zone of the dispersion curve
diagram by controlling the angle of the transducer and the frequency of the signal. The
practical excitation of plate waves using the coincidence principle is illustrated in
Figure 8.11. Typicaly an unfocused transducer is used, with water coupling to the plate.
The velocity of the centre of the excitation zone is defined by the angle of incidence of
the transducer and the velocity range of the excitation zone results from the beam
spreading characteristics of the transducer. The frequency of the excitation zone is
determined by the frequency characteristics of the signal. Clearly by selecting the angle
of incidence and the input signal it is possible to place the excitation zone at the desired
location on the dispersion curve diagram.

The frequency range of the excitation zone may be minimised by using along tone burst.
Additionally, at alater stage in the measurements, when a signal is received, windowing
in the frequency domain may be used to limit the examination of the received signal to
the frequency of interest. The velocity range of the excitation zone decreases as either
the test frequency or the transducer diameter is increased. Additionally, an array of
paralel ‘fingers, like acomb, may be used to partially shade the ultrasonic beam in the
coupling medium in order to limit the transmission of energy to a particular wavelength
(see Viktorov (1970)).
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Remote measurement of velocity

The obvious way to measure the velocity of a plate wave is to measure the time it takes
to travel aknown distance. A typical schemeisillustrated in Figure 8.12(a). A receiving
transducer is set a the same angle to the plate as the transmitter, some distance
downstream, so that it detects a leaking signal from the plate. A second signal is then
recorded at a known distance further downstream and the velocity is calculated from the
separation distance and the time difference between the two signals.

If the wave is dispersive then the shape of the signal changes as it propagates and the
calculation of the time difference is not so straightforward. However, measurements can
be made by comparing the two signals in the frequency domain, using for example the
amplitude spectrum method (Pialucha, Guyott and Cawley (1989)). Indeed this
technique can usefully be employed to determine the velocity of a dispersive wave at a
number of frequencies within the range of frequency of the signal.

A second difficulty arises if the excitation zone covers more than one mode, in which
case more than one wave may propagate along the plate. Alleyne (1991) discussed the
difficulties associated with multimode signals and developed a method of measuring the
modes separately in the received signal. A general discussion of the long range
propagation and measurement of Lamb waves may a so be found in histhesis.

A third consideration is the attenuation of the waves. As was discussed in Chapter 5,
Lamb waves can exhibit considerable attenuation in water, so that it may not be possible
to detect them at remote locations. One technique to avoid this difficulty is to use local
immersion only, at the positions of the transducers (Alleyne (1991)). An adternative of
course is to receive the signal as close to the transmitter as possible. In the extreme, a
signal may be received by another part of the transmitting transducer, asis the case when
a defocused acoustic microscope is used to measure surface wave velocities (see
Weglein (1985) for example).

The accuracy of the measurement of the velocities of plate waves using such techniques
is generally determined by the mechanical considerations such as the precision of the
positioning of the transducers and the degree of flatness of the plate. Accuracies of better
than 1 % can typically be achieved (Alleyne (1991)).
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Point measurement of velocity or frequency

An dternative approach, one which is extremely attractive for the inspection of diffusion
bonds, is the 'null zone' technique. With this technique the fact that a wave has been
excited is detected by a measurement at the location of excitation. Proponents of the
application of this technique to plate waves have included Mal, Bar-Cohen and co-
workers who have successfully measured Lamb waves over a wide range of the
dispersion curves for adhesive joints and have demonstrated excellent agreement with the
theoretical curves. See Mal, Xu and Bar-Cohen (1989) for example.

The technique works by exploiting the interference of the specular reflection of the
excitation signa from the plate with the leaking field immediately downstream of the
transmitter, which occurs when plate waves are excited. The mechanism isillustrated in
Figures 8.12(b) and 8.13. Figure 8.12(b) shows the arrangement of a pair of transducers
with their centre lines meeting at a point on the plate. Figure 8.13(a) shows the
dispersion curves for the sy mode for a good bond (the reference case) and for the 'bad'
bond. Figure 8.13(b) shows a prediction of the reflected field from the good bond using
a 10 mm diameter transducer, at a frequency of 2.5 MHz (infinite tone burst) and an
angle of incidence of 21.119 degrees. The prediction was made in exactly the same
manner as was described in the validations in Section 5.4 of Chapter 5, using the
response model which was developed by Pialucha (1992). Since the angle and frequency
correspond to a position on the dispersion curve, in part (a) of the figure, a wave is
excited in the plate and it leaks energy downstream of the centre line of the reflected
beam. The leakage is out of phase with the specular reflection and so causes some
cancellation of the received signal, the extent of the cancellation clearly depending on the
size of the receiver.

If the transducers are swept through a range of angles, as shown in Figure 8.12(b), and
are excited with a narrow band signal, then the angles at which modes exist can be
determined by detecting the minima in the reflection amplitude, corresponding to the null
zones when the cancellations occur. Simulations of the amplitude of the received signal
from such a sweep are shown for the good bond and for the bad bond in Figure 8.14(a),
for a single frequency of 2.5 MHz (infinite tone burst), assuming a pair of 10 mm
diameter transducers. The difference between the locations of the minima for the two
joints corresponds to the difference between their velocities at this frequency, which can
be seen in Figure 8.13(a). Similarly, if the angles of the transducers are fixed and a
frequency sweep is performed then the frequencies of the modes may be located, as
illustrated for the same cases in the simulation in Figure 8.14(b). Again the difference
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between the locations of the minima can be seen to correspond to the difference between
the frequencies of the dispersion curves.

8.4 Discussion

The idea of using Lamb waves for the inspection of the material at the bondline in
bonded plates is not new. As was discussed in Chapter 1, a number of researchers have
worked in this field, in particular with regard to adhesively bonded aluminium joints.
Reviews may be found in Dewen (1991) or Dewen, Lowe and Cawley (1992). The
problems which the researchers have addressed are the evaluation of the thickness and
acoustic properties of the adhesive and the properties of the interfaces between the
adhesive and the adherends. The acoustic properties of the adhesive give an indication of
its strength (the cohesive properties) and the interface properties reveal the quality of its
attachment to the adherends (the adhesive properties).

The main progress in this field has been achieved by Mal, Bar-Cohen and co-workers.
Mal, Xu and Bar-Cohen (1989) generated dispersion curves for adhesive joints and
compared them with measurements. Karim, Ma and Bar-Cohen (1990) and Xu, Ma and
Bar-Cohen (1990) reported the development of an inversion algorithm which could be
used to determine the cohesive properties and the adhesive thickness of a joint from the
Lamb wave dispersion curves. Bar-Cohen and Ma (1990) used the algorithm to
determine these properties from experimentally constructed dispersion curves. Mal, Xu
and Bar-Cohen (1990) also calculated dispersion curves for joints in which one of the
interfaces between the adhesive and the adherends was assumed to be unbonded and they
suggested that the inversion of measured Leaky lamb wave data may be used to detect
this extreme case of poor adhesion.

The developers of the inversion technique have achieved some success in the detection of
the cohesive properties of joints when the other parameters are well characterised.
However a parametric study by Dewen, Lowe and Cawley (1992) indicated that the
dispersion curves for realistic aerospace joints are rather sensitive to small changes in the
properties of the adherends. They concluded that Lamb waves are unlikely to offer any
significant advantage over normal incidence inspection techniques.

The task of inspecting diffusion bonded joints differs from that of adhesive joints because
of the nature of the objective. In an adhesive joint the adhesive layer is known to be
present and the primary objective is to detect its homogeneous properties. In a diffusion
bonded joint the primary objective isto detect whether alayer is present at all. The latter
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task is clearly ssimpler in principle. However the layer thickness of the alpha case to be
detected is likely to be much smaller than the thickness of the adhesive in an adhesive
bond and, furthermore, the acoustic impedance of alpha case differs only dightly from
the titanium adherends. Therefore, athough Lamb waves have been studied quite
extensively in the context of adhesive joints, it is not immediately evident from such
results what level of sengtivity may be achieved if the technique is applied to diffusion
bonds.

Considering the modelling study which is presented in this chapter, the implications for
the development of an inspection technique are not promising. The dispersion curves
show some sensitivity to the presence of a centrally embedded layer of apha case so in
principle the inspection should be possible. The curves are also insensitive to a small
offset of the layer from the centre of the joint which would be an advantage in practice
because of the redlistic possibility of dight differences between the thicknesses of the two
adherends. They are also insensitive to the profile of the acoustic properties of the alpha
case, depending only on the average properties and the thickness of the layer. Thisisan
advantage when the objective is to detect the presence of the layer but proves clearly that
the method could not be used to characterise the layer. However the serious drawback
which was demonstrated by the predictions is that, as was found in the studies of
adhesive joints, the dispersion curves are much more sensitive to the bulk velocities of
the adherends and the overall thickness of the joint than they are to the properties of the
embedded layer.

In identifying the best modes for an inspection scheme it is important therefore to
consider the nature of the sendtivities of the modes to the bulk velocities of the
adherends and to the thickness of the joint. In the former case the dispersion curves are
affected in both the frequency and velocity axes and in the latter case, solely in the
frequency axis. In generd it is to be expected that the material properties of the
adherends are likely to be known more precisely than the thickness of the joint.
Consequently in practice the frequency axis of the dispersion curves for a good bond will
be lesswell known than the velocity axis. It follows that the best testing locations on the
dispersion curve diagram are the regions of modes which show strong sensitivity to the
embedded layer and have low dispersion.

Following this argument, the obvious candidate is the first symmetric mode, s, at very
low frequency. It shows some sensitivity to the presence of the layer and is insensitive to
small variations in the thickness of the joint. However the sengitivity is not strong, the
velocity increasing by only 1 % when a 0.1 mm thick layer of apha case is embedded in
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a 1.0 mm thick joint. This percentage is typica of the error margin which can be
achieved in careful velocity measurements on ideal specimens in the laboratory.
Furthermore if the adherends were thicker but the alpha case remained a 0.1 mm
thickness then the senditivity would be reduced, roughly in linear proportion. Thus the
increase in velocity would be 0.1 % for a 10 mm thick joint.

Thereis greater sensitivity to the presence of the layer in the sy mode and in the sp mode
at the two locations marked in Figure 8.1 at which the mode shapes were calculated. In
both cases the sengitivity is about 4 % for a 0.1 mm thick layer in a 1.0 mm thick joint,
four times that of the sy mode at low frequency. However unfortunately the modes are
strongly dispersive at these locations and so they are very sensitive to the thickness of the
joint. Any inspection method which utilised them would therefore have to include a
separate, extremely accurate, measurement of the thickness of the joint. This presents a
serious difficulty, as discussed in the context of adhesive joints by Dewen (1991). In
order to detect the layer in the joint considered here, it would be necessary to know the
thickness of the joint to an accuracy better than 1 %. Worse still, in order to detect the
same thickness of layer in a 10 mm joint it would be necessary to know these quantities
to an accuracy of better than 0.1 %.

By comparison, the use of normal incidence ultrasonics is considerably more attractive.
The case of the 0.1 mm thick layer in a 1.0 mm thick joint is very much an upper bound
description of a poor joint, the layer being relatively thick and the joint relatively thin.
According to the analysis of Chapter 7 such alayer would be detected rather easily using
the conventional pulse-echo inspection technique.

85 Conclusions

Model studies have been conducted to investigate the potential of utilising Lamb waves
for the detection of an embedded layer of alpha case in a diffusion bonded joint.

A parametric study was undertaken using the modal model in order to determine the
sengitivity of the Lamb waves to the presence and properties of the layer and also to other
parameters associated with ajoint. Although the sensitivity to the presence of the layer
was not strong, the study revealed the modes which are most sensitive and led to the
identification of the most suitable locations on the dispersion curves for the inspection. It
also revealed however that the modes are strongly sensitive to the properties of the
adherends, specifically to their bulk acoustic velocities and to the total thickness of the
joint.
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The practical potential of utilising Lamb waves is further ill-fated by the success of the
conventional normal incidence method. Comparing the two methods, the best sensitivity
which could be achieved using the Lamb wave technique falls far short of that which is
possible using the normal incidence technique. Furthermore, the Lamb wave technique
would be more complicated to implement in practice than the conventional method.

It was therefore concluded that the Lamb wave inspection scheme could work in
principle but its sensitivity to the presence of the embedded layer falls short of normal
incidence testing and it suffers from unwanted sensitivity to other properties of the joint.
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Velocity

at zero Frequency at velocity of 10 km/sec
frequency (MH2z)
(km/sec)

Mode Mode Mode Mode Mode
Case 0 al S1 2 a

Good bond (Reference case) 5.466 1.975 2.814 4.353 4.970

Layer of alphacase
(‘bad' bond) 5.523 2.012 2.853 4.413 4.996

Graded layer of aphacase 5.504 2.000 2.841 4.393 4.988

Alpha case offset from

centre of joint 5.523 2.011 2.853 4.417 4.998
Good bond with thicker

adherends 5.466 1.955 2.786 4.309 4.920
Good bond with unmatched

adherends 5.493 1.989 2.828 4.385 4.997
Layer with faster

longitudinal velocity 5.485 1.975 2.841 4.415 4.970
Layer with faster shear

velocity 5.496 2.012 2.828 4.341 4.996
Layer with higher density 5.466 1.994 2.831 4.318 4.959
Good bond in water 5.466 1.975 2.649 4.351 4.970

Table8.1 Predicted Lamb mode velocities and frequencies at selected locations
on dispersion curves
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Change of
velocity at | Change of frequency at velocity of 10 km/sec
zero
frequency
(%)
Mode Mode Mode Mode Mode

Case SO al S1 S2 a
Good bond (Reference case) 0 0 0 0 0
Layer of alphacase
(‘bad' bond) 1.04 1.87 1.40 1.40 0.53
Graded layer of aphacase 0.69 1.29 0.96 0.93 0.36
Alpha case offset from
Good bond with thicker
adherends 0.00 -1.00 -1.00 -1.00 -1.00
Good bond with unmatched
adherends 0.50 0.72 0.51 0.75 0.56
Layer with faster
Layer with faster shear
velocity 0.54 1.87 0.48 -0.27 0.53
Layer with higher density 0.00 0.95 0.59 -0.79 -0.21
Good bond in water 0.00 -0.01 -5.88 -0.03 0.00

Table 8.2

Percentage change of selected velocities and frequencies of Lamb
modes with respect to reference case
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Frequency at normal incidence
(MHz)

Case

Mode Mode Mode Mode
al s1 2 ag

Good bond (Reference case)

1.615 3.030 3.230 4.845

Layer of alphacase
('bad' bond)

1.643 3.083 3.232 4.926

Graded layer of aphacase

1.635 3.067 3.231 4.901

Alpha case offset from
centre of joint

1.643 3.082 3.237 4.910

Good bond with thicker
adherends

1.599 3.00 3.198 4.797

Good bond with unmatched
adherends

1.623 3.045 3.246 4.869

Layer with faster

longitudinal velocity 1.615 3.083 3.230 4.845
Layer with faster shear

velocity 1.643 3.030 3.232 4.926
Layer with higher density 1.630 3.057 3.200 4.884

Good bond in water

1.615 3.030 3.230 4.845

Table8.3 Predicted frequenciesof Lamb modes at normal incidence
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Change of frequency at normal incidence

(%)

Mode Mode Mode Mode
Case a s1 2 =V,
Good bond (Reference case) 0 0 0 0
Layer of alphacase
(‘bad' bond) 1.76 1.76 0.06 1.67
Graded layer of aphacase 1.21 1.21 0.03 1.16
Alpha case offset from
Good bond with thicker
adherends -1.00 -1.00 -1.00 -1.00
Good bond with unmatched
adherends 0.50 0.50 0.50 0.50
Layer with faster
Layer with faster shear
velocity 1.76 0.00 0.06 1.67
Layer with higher density 0.90 0.90 -0.92 0.80
Good bond in water 0.00 0.00 0.00 0.00

Table8.4 Percentage change of frequencies of Lamb modes at normal incidence
with respect to reference case
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Figure 8.11 Selective excitation of Lamb modes using the coincidence principle
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CHAPTER 9

I nter face wave technique

9.1 Introduction

This chapter presents the results of model studies which were made in order to
investigate the possibility of usng some form of interface wave for the detection and
characterisation of alpha case at the bondline of a diffusion bonded joint.

The objective with the interface wave inspection technique is to excite and detect a wave
which travels along the bondline. In principle there are two major attractions of this
technique when compared to the Lamb wave technique. First, if there is no alpha case at
the bondline then there is no interface and so it will not be possible to excite the wave.
The existence of the apha case is therefore determined simply by the existence of the
wave, not by small variations in its properties as was the case for the Lamb wave
technique. Second, an interface wave whose energy is concentrated at the bondline is
likely to be much more sensitive to the properties of the embedded layer and less to the
properties of the adherends. |If alayer of apha case isfound to exis, it may therefore be
possible to characterise it by measuring the properties of the interface wave, even if the
properties of the adherends are not known precisely.

It is well known that waves can exist at the interface between two semi-infinite half-
gpaces, for example the Stoneley and leaky Stoneley waves which were discussed in
Chapter 5. It is possible that such an interface wave could be utilised for the inspection
of the interface between an adherend and the embedded layer if the layer was very thick
or if the frequency was very high, so that the depth of penetration of the interface wave
was much smaller than the thickness of the layer. However the smallest wavelengths of
acoustic waves which could be propagated through the thickness of an adherend in
practice (about 40 microns for a shear wave at 80 MHz) are not significantly smaller than
the thickness of an embedded layer of alpha case, even in a very poor bond. It is
therefore unreasonable to expect that an interface wave with a sufficiently small depth of
penetration could be generated for the inspection of alpha case. A second type of
interface wave must therefore be considered in which the wave travels along the layer of
alpha case, in principle rather like a Lamb wave. In this case the wave is strictly not an
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interface wave because it is not confined to a single interface. However it will be
referred to as an interface wave because it propagates along the interface layer.

Overview

The study starts with the examination of the excitation and measurement of leaky
interface waves. If the rate of leakage of the wavesis mild then the coincidence principle
and the null zone technique may be used successfully. However it is shown that if the
waves leak strongly then such methods may not be valid.

Next, the study addresses the smplest form of interface wave, that at a single interface
between two different materials. Modal predictions are made for several pairs of
materials and are compared with near-field response simulations.

The investigation then proceeds to the much more difficult case of the interface waves
which travel along an embedded layer. Dispersion curves, attenuation curves and mode
shapes are predicted for a layer of apha case embedded in titanium. The moda
predictions are analysed and compared with predictions of plane wave reflection
coefficients and with simulations of the near-field response.

A fina set of predictions shows the influence of variations of the properties of ajoint on
the dispersion curves. The variant cases include different acoustic properties of the alpha
case and of the adherends.

The study is completed with a discussion of the implications of the model predictions.
The potential for the practical use of interface waves for inspecting diffusion bonded
jointsis examined and conclusions are drawn.

9.2  Approach for the excitation and detection of interface waves

If the rate of leakage of a plate wave is mild then the coincidence principle may be used
to excite and receive the wave and the null zone technique may be used successfully to
measure its velocity and frequency. However if the leakage is strong then considerable
complications emerge, based on fundamental differences between the modal and the
response characteristics of the system. The excitation and detection of interface wavesis
therefore presented in two parts. First the case of the mildly leaking waves is examined
and it is shown that the basic principles which were introduced for the measurement of
Lamb waves may be applied to an embedded interface or layer. Then the complications
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of the strongly leaking waves are addressed and the implications for the measurements
are discussed. These discussions are followed by a model illustration of strongly leaking
plate waves and the section is completed with the overal conclusions about the
measurement of interface waves.

Mildly leaking interface waves

Mildly leaking interface waves at an embedded interface or in an embedded layer in a
joint may be excited and received using the coincidence principle, in a ssimilar manner to
the method which was discussed for Lamb waves in Section 8.3 of Chapter 8. The
approach isillustrated in Figure 9.1, using an embedded layer as an example.

The excitation of a particular wave is achieved by the selection of the angle of incidence
of the transmitting transducer and the frequency characteristics of the ultrasonic signal.
The angle of the transmitting transducer in the coupling medium (water in the
illustration) must be such that the refracted beam, either longitudinal or shear, within the
top adherend arrives at the layer at the appropriate angle to excite the wave. The wave
propagates along the layer, leaking energy back into the adherends as it travels. Some of
the energy subsequently leaks back into the water and can be detected by the receiving
transducer.

As with the Lamb wave method, two approaches are possible in principle for the
measurement of the interface wave. A long-range measurement may be made at some
distance downstream of the point of excitation, as illustrated in part (a) of the figure. In
this case the velocity of the wave may be determined by receiving two signals a known
distance apart. Alternatively, a point measurement may be made at the location of
excitation, as shown in part (b) of the figure. In this case the velocity or frequency at
which the mode is excited may be measured using the null zone technique, as discussed
in Section 8.3 of Chapter 8.

Clearly the method is restricted to interface waves whose phase velocity is faster than the
bulk shear velocity in the adherend material and which leak energy as they travel.
Interface waves whose velocity is dower than the bulk shear velocity in the adherend
could only couple with inhomogeneous waves in the adherend so they could not be
excited using the coincidence principle and, furthermore, they would not leak energy into
the adherends.
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Strictly speaking, the study of any wave propagation properties of a multilayered plate
should take account of al of the layers of the system. In general it is not valid smply to
identify those layers in which there is a particular interest. The investigation of the
modal properties of a joint in which there is an embedded layer of alpha case should
therefore include the finite dimensions of the adherends and the presence of the coupling
medium. However, the influence of the parts of the joint which are remote from the
embedded layer are only significant in practice if reflections of the signals from such
boundaries are taken into account. Referring to Figure 9.1(a), the dashed line shows a
reverberating signal within the top adherend. If the signal which is detected at the
receiving transducer includes some part of this reverberation then any relevant modal
predictions of the system would have to include the finite dimensions of the top
adherend. However if it is possible to resolve the response from the bondline, gating out
any other reflections, then it is valid to idealise the system as the embedded layer
surrounded by semi-infinite half-spaces of the adherend material. The behaviour of the
layer, and indeed the received leaking signal, is then independent of the thickness of the
adherends. Thisisavery attractive feature of interface waves when applied to bondline
inspection.

Strongly leaking interface waves

In the description of the measurement of leaky Lamb waves in Chapter 8 it was
demonstrated that the minima of the reflection coefficient may be used to determine
accurately the frequency and velocity at which mildly leaking plate waves propagate,
according to the null zone technique. Indeed some researchers (Mal, Xu and Bar-Cohen
(1989) and (1990) for example) have used the reflection coefficient minima in order to
measure the dispersion curves for leaky Lamb waves.

The leaky Lamb wave dispersion curves for a metal plate in water differ only dightly
from the true Lamb wave curves, and the rate of leakage of energy into the water is
relatively small. In this circumstance good agreement may be expected between the
response measurements and the modal predictions. However if the acoustic impedance
of the half-spacesis much closer to that of the layer then the dispersion curves may differ
greatly from the Lamb modes. Furthermore, as observed by Nagy and Adler (1989) and
Chimenti and Rokhlin (1990), the same good agreement between the response
measurements and the modal predictions cannot necessarily be assumed. The work by
Chimenti and Rokhlin is particularly interesting in this context. They analysed the
behaviour of platesin water and demonstrated the divergence of the loci of the reflection
coefficient minima from the Lamb wave dispersion curves as the density of the water



Chapter 9 233
Interface wave technique

was increased. They aso showed theoretically that the conditions for plane wave
reflection coefficient minima are fundamentally different from the conditions for plate
wave propagation, and that exact agreement is only achieved in the zero density limit.

The principal reason for lack of agreement between the plane wave reflection coefficient
minima and the modal predictions is that they are based on quite different boundary
conditions. A reflection coefficient minimum occurs when the transmission of the
energy of an incident wave through the plate is a maximum. The boundary conditions
for the system therefore are that there is an incoming wave in one half-space and an
outgoing wave in the other half-space, the other wave components in the half-spaces
being zero or small. On the other hand the boundary conditions for the existence of a
mode, which were shown in Figure 2.8, are that there are no incoming waves in either
half-space athough outgoing waves may occur in both half-spaces, corresponding to
leakage of the plate wave.

Mathematically, as discussed by Chimenti and Rokhlin, the plane wave reflection
coefficient may be described by a complex function whose zeroes yield the response
minima and whose poles (given by zero values of the denominator), yield the modal
properties. Specifically, in their example of a plate immersed in water, they defined the
complex function in the form:

-y2

R=Ts ﬁ(uAi\S(‘)(X -)iY) @1
where R is the reflection coefficient, the terms A and S relate to symmetric and
antisymmetric Lamb waves, and Y is linearly dependent on the density of the water.
Clearly when Y is zero, corresponding to the case of the plate in vacuum, the numerator
and the denominator are identical and consequently there is no difference between the
conditions when the poles and the zeroes of the function occur. However when' Y is not
zero then the conditions for the poles may be different from those for the zeroes.

The plane wave reflection coefficient minima may be predicted using an infinite plane
wave response model. The minima will also be revealed in finite transducer simulations
and in practice because the finite field consists of the summation of infinite plane waves
over a range of angles of incidence, much of the energy being concentrated in the
‘central’ waves of the field, those whose angle of incidence is approximately that of the
transducer. Thus the ‘central’ waves of the field will be transmitted through the plate and
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the peripheral waves will be reflected, the result being an overall reduction of the
amplitude which is measured by the receiver.

The reflectivity may also be perturbed when the conditions are appropriate for plate wave
propagation. In general aleaky plate wave emits a plane wave at a specific angle on both
sides of the plate, the angle being determined precisely by the velocity of the wave. The
plane wave reflection coefficient may therefore be affected at this angle. In practice
however, when the field is finite, the plate wave is detected by a mechanism which
occurs in the near-field. The mechanism, as discussed in Section 8.3 of Chapter 8, isthe
interference of the leaking plate wave with the specular reflected beam, the result again
being an overal reduction of the amplitude which is measured by the receiver. Clearly
the simulation of this mechanism requires a finite transducer response model.

There is aso a difficulty with the excitation of strongly leaky waves, concerning the
coincidence principle. The coincidence principle is based on the coupling of the incident
wave in the half-space to the plate wave, the angle of the incident wave being selected so
that the wavenumbers match in the plate wave direction. However the coupling is
limited to the real part of the wavenumber and makes no allowance for the imaginary
part of the wavenumber which describes the attenuation of the plate wave. The correct
coupling of the complex wavenumbers across the interface, as discussed in detail in
Section 3.3 of Chapter 3, is therefore not achieved. If the attenuation is weak, for
example in the case of a meta plate in water, then reasonable coupling may be achieved
and the omission of the imaginary part of the coupling can be ignored. However if the
attenuation is strong then the coupling may be very poor and in extreme cases it may not
be possible to excite very leaky modes with any significant amplitude by this method.

In summary, there are two possible causes of minima of the reflection coefficient.
Minima may exist either when the transmissibility of the plate is a maximum or when a
plate wave is excited and its leaking field interferes with the point reflection of the beam.
If the attenuation of the wave is weak then these mechanisms occur under practically
identical conditions of frequency and angle of incidence, and their distinction is
unnecessary. If the attenuation is strong then each of these mechanisms may occur under
different conditions. Furthermore, the excitation of a plate wave depends on the coupling
of the incoming wave in the half-space with the plate wave, poor coupling occurring
when the attenuation is strong. It may therefore not be possible in practice to excite very
leaky waves using the coincidence principle.
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The practical implication of this analysisin the context of embedded layersis that it may
not be possible to make direct measurements of strongly leaky waves. The first problem
is that the excitation of the waves is likely to be very weak because of poor coupling.
Then, even if a wave is successfully launched, the remote measurement technique will
not be possible because of the rapid rate of decay of the wave. Measurements will
therefore have to be made at the point of excitation. The difficulty hereis that the other
mechanism, the reflection minimum due to the strong transmission of plane waves, is
likely to dominate the response. In principle the conditions for the strong transmission
mechanism and for the mode are expected to be dightly different so that ideally it should
be possible to measure the two effects separately. In practice however the influence of
the strong transmission will be detected over a finite range of angle and frequency
because of the spatial and frequency spread of the beam. It may not therefore be possible
to identify the comparatively weak influence of a propagating wave. Furthermore, under
conditions where there is good separation of the frequencies or angles of the minima of
the two mechanisms, the attenuation of the mode is expected to be particularly strong.
Consequently the mode will be particularly difficult to excite.

It is therefore concluded that if the modes are strongly leaky then the measurement
technique should address the response behaviour rather than the modal behaviour.
Measurements should be made of the minima which are associated with the strong
transmission of energy through the layer, in the knowledge that these are related
indirectly to the modal properties and are likely to be equally sensitive to the parameters
of the system.

Example: influence of water density on leaky s;p Lamb wave

Some calculations have been performed in order to illustrate the significance of the
density of the water on leaky Lamb waves. The sp mode in a 1 mm thick sheet of
titanium was studied, at its most dispersive region, shown in Figure 9.2(a). Thisis the
same location on the dispersion curve as was chosen for the null zone smulation study in
Section 8.3 of Chapter 8. Modal solutions and near-field response predictions were
calculated for a range of densities. In al cases a constant angle of incidence of 21.119
degrees (constant velocity of 4116 m/sec) was assumed and the frequency was varied.
The response model developed by Pialucha (1992) and described in Section 5.4 of
Chapter 5 was employed for the response calculations.

Figure 9.2(b) shows the variation of the modal frequency and of the frequency of the
minimum of the plane wave reflection coefficient for a range of densities. At very low
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dengity the two predictions agree closely but divergence is evident as the density is
increased, the modal frequency rising and the response frequency falling. For the normal
density of water of 1000 kg/m3, the separation is about 10 kHz, some 0.4% of the modal
frequency of 2.5 MHz. For a density of water of 5000 kg/m3, the separation is about
80 kHz, 3 % of the modal frequency.

Figure 9.3(a) shows the near-field response for the 5000 kg/m3 '‘heavy' water case. A
10 mm diameter transmitting transducer was modelled and the reflected field was
calculated at a total water path length of 10 mm. The amplitude of the field in front of
the transmitting transducer was assumed to have Gaussian variation across the beam, as
discussed in Chapter 5 and illustrated in Figure 5.14(b). Three cases are shown, one for
the response at the modal frequency, one at the frequency of the plane wave reflection
coefficient minimum and one at a 'remote’ frequency, about 50 kHz higher than the
modal frequency. In each case the transducer was excited by a single frequency tone (an
infinite toneburst).

In all three fields, a non-specular reflection is evident, the strongest distortion of the
beam occurring at the frequency at which the plane wave reflection coefficient is
minimum. The dominant mechanism in the distortion of the field therefore appears to be
the strong transmission (and consequent weak reflection) of the 'central’ plane wave
components of the finite beam, those whose angle of incidence is approximately that of
the transducer. The modal calculations predicted the attenuation of the leaky wave to be
2.38 Neperswavelength which corresponds to a loss of amplitude of about 80 % per mm
travelled, or 99.9 % over 5 mm. It isclear therefore that if there is any significant modal
contribution to the field, it is restricted to the region within the beam, where the point
reflection is strong. The fact that the distortion of the field due to strong transmission
occurs over a range of frequencies is not surprising because of the beam spreading
properties of the transducer.

Finally, Figure 9.3(b) shows the results of simulations of null zone measurements in
which the excitation frequency was varied, the angle of incidence remaining fixed. Two
cases of finite transducers were considered, one in which the receiver was 10 mm in
diameter and the other in which it was 2 mm in diameter. In each case the receiver was
placed on the centre line of the reflected beam, shown by the dashed line in
Figure 9.3(a), at a total distance in water of 10 mm from the transmitter. The same
10 mm diameter transmitter, described above, was employed in both cases. For
completeness, the plane wave reflection coefficient is aso included in the plot and the
frequency of the modal solution isindicated.
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The results show again the significant difference between the frequency of the reflection
coefficient minimum and the modal frequency. They also show small differences
between the minima for the three response predictions. These differences arise because
each of the finite receivers covers a different extent of the reflected field. Referring to
Figure 9.3(a), it is apparent that the reflection amplitude which is detected by a finite
receiver may vary significantly with the transducer's diameter. Furthermore, in practice,
the location of the transducer with respect to the centre line of the reflected beam is aso
likely to be influential on the measurements.

Conclusions concer ning the measurement of interface waves

It is concluded that if the rate of leakage of a plate wave is mild then the coincidence
principle may be used to excite and receive the wave and the null zone technique may be
used successfully to measure its velocity and frequency, just as with the measurement of
Lamb waves which was discussed in Chapter 8.

However if the modes are strongly leaky then the behaviour is much more complicated.
It may be very difficult to excite the waves using the coincidence principle and it may
not be possible to detect them because of their strong attenuation and the presence of the
separate transmission mechanism dominating the near-field. In this circumstance the
measurement technique should therefore address the response behaviour rather than the
modal behaviour. Measurements should be made of the minima which are associated
with the strong transmission of energy through the layer, in the knowledge that these are
related indirectly to the modal properties and are likely to be equally sensitive to the
parameters of the system.

9.3 Wavesat asingleinterface between titanium and alpha case

Before tackling the case of the modal properties of an embedded layer, it isinstructive to
examine the modal properties of the smpler geometry, the single interface between two
different materials. This geometry would be relevant in practice if tests could be
performed at sufficiently high frequencies that the different reflections from the top and
bottom surfaces of the embedded layer could be resolved separately in which case any
waves travelling along either interface could be studied. It would also be directly
appropriate if interface waves were to be used to inspect bonds between different
materials.
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The geometry which was modelled was the interface between a semi-infinite half-space
of titanium and a semi-infinite half-space of alpha case. The longitudina velocity of
titanium was assumed to be 6060 m/sec, the shear velocity 3230 m/sec and the density
4460 kg/m3. The alpha case was assumed to have 10 % faster longitudinal and shear
velocities (6666 and 3553 m/sec respectively) but to have the same density as the
titanium. Both of the materials were assumed to be perfectly elastic.

For interest, three cases were considered, with varying values of the density of the
titanium. In the first case the titanium was modelled with one tenth of its density, in the
second with half of its dendity, and in the third with its correct density.

In the first case, where the density of the titanium was one tenth of its correct value, an
interface wave was predicted with a velocity of 3360 m/sec and an attenuation of
0.0056 Nepers'wavelength. These properties are independent of frequency. At 10 MHz
the attenuation per unit distance is 0.0168 Nepers/mm, corresponding to a 2 % loss of
amplitude per mm travelled. Since the velocity of the wave is dower than the
longitudinal bulk waves in both media and dower than the shear bulk wave in the alpha
case, al three of these bulk wave components of the interface wave are inhomogeneous,
retaining energy at the interface like a Rayleigh wave. However the fourth component,
the shear wave in the titanium is homogeneous. The interface wave may therefore be
excited by an incoming shear wave in the titanium and may also leak a shear wave into
the titanium. This leakage explains the predicted non-zero attenuation of the wave. The
angle of incidence of the excitation wave and of the leaky wave is 74 degrees.

When the density was increased to half of its correct value the properties of the interface
wave were found to change. The velocity of the wave increased by 4 % to 3496 m/sec
and the attenuation increased by amost an order of magnitude, to
0.0535 Neperswavelength, indicating that the leakage of energy is strongly sensitive to
the density. In this case a 10 MHz wave would decay at 0.153 Nepersmm,
corresponding to a 14 % loss of amplitude per mm travelled. However the nature of the
wave has not changed, all of the components remaining inhomogeneous with the
exception of the leaking shear wave in the titanium. The angle of incidence of an
excitation wave and of the leaky wave is now 67.5 degrees.

Mode shapes for the half-density case are plotted in Figure 9.4, for a frequency of
10 MHz. The plots show the variations of the displacements and stresses in the alpha
case material only. Shapes have not been plotted for the titanium side of the interface
because there is no identifiable wavefront propagating paralel to the interface on this
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sde. Although there is an inhomogeneous longitudinal wave in the titanium, its
contribution to the field is minimal. The field in the titanium is therefore dominated by
the leaking shear wave whose amplitude is constant with distance from the interface,
only the phase varying spatially. The mode shapes show that the effective depth of the
wave in the alpha case is approximately 1 mm, three times the wavelength of 0.35 mm at
thisfrequency. This depth-to-wavelength ratio is similar to that of a Rayleigh wave.

When the density of the titanium is increased to its correct value, it is no longer possible
to find a propagating wave solution. Pilant (1972) reported the conditions for the
existence of all types of plane strain interface waves between pairs of half-spaces and
observed a 'hidden' region in the solution space for which the solution of Stoneley's
interface wave equation is imaginary and there is no propagating wave. The hidden
region covers materials whose densities are amost equal and whose shear velocities are
amost equal. The case which is considered here falls in the hidden region. There is
therefore no propagating interface wave between titanium and alpha case hal f-spaces.

Near -field response predictions

Near-field response calculations were made for the three cases considered above, for
comparison with the modal solutions. The predictions were again made using the
response model which was developed by Pialucha (1992) and which was described in
Section 5.4 of Chapter 5. A modification was made however, to introduce an idealised
finite shear wave transducer, so that the interface wave could be excited from within the
titanium half-space. The smulation is illustrated in Figure 9.5. The finite transducer is
embedded in the titanium half-space and it emits a shear wave beam rather than a
longitudinal wave beam. In reality an embedded transducer, either shear or longitudinal,
would propagate a complex field of both shear and longitudinal waves into the titanium.
In the model however, the interest is smply to generate a finite width shear beam in
order to observe the excitation of the interface wave. Therefore the modelling of the
transducer has not been developed to simulate the more complex field which would be
associated with areal embedded transducer. A 10 mm diameter transducer was assumed
in all cases, operating at a single tone of 10 MHz.

The results for the first two cases are plotted in Figures 9.6 and 9.7 respectively. In each
figure, part (a) shows the reflected shear field (as shown schematically in Figure 9.5)
when the angle of incidence of the transducer is appropriate for the excitation of the
interface wave, and part (b) shows the amplitude of the reflections received by a 10 mm
diameter finite transducer, as a function of the angle of incidence. The receiver was
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placed on the centre line of the reflected beam, shown by the dashed line in part (a) of
each figure, at a total distance in the titanium of 10 mm from the transmitter. The
infinite plane wave reflectivity has been included in the plots too, for comparison.

In the first case, in which the density of the titanium is one tenth of its correct value, the
leakage of the interface wave is rather small and the leaky shear wave can be seen clearly
on the downstream side of the reflected beam, in Figure 9.6(a). The attenuation of the
leaky signal was calculated from the dlope of the log of the field amplitude, in the same
manner as was described in Section 5.4 of Chapter 5, giving an attenuation of 0.061
Nepersmm in the plane of the field. When projected onto the plane of the interface, by
multiplying by the cosine of the angle of the beam (74 degrees), this value agrees exactly
with the modal prediction of 0.0168 Nepersmm.

Note also that the distortion of the reflected beam can be attributed entirely to the
excitation of the interface wave. Plane shear waves at angles of incidence greater than
the critical angle for shear waves in the alpha case substrate are reflected totally. Since
the angle of the transducer of 74 degrees is significantly greater than the critical angle of
65.4 degrees, the vast mgjority of the energy of the field in front of the finite transmitter
is reflected from the interface. The transmission mechanism which was discussed in
Section 9.2 in the context of leaky Lamb waves is therefore not present and cannot be
responsible for the distortion of the field.

Looking at the amplitude of the reflected signal as a function of angle of incidence, in
Figure 9.6(b), a minimum can clearly be identified at 74 degrees, in agreement with the
modal solution. As discussed above, the infinite plane wave reflectivity shows no
evidence of the existence of the mode because al of the energy of plane waves is
reflected when the angle of incidence is greater than the shear wave critical angle of 65.4
degrees (shown on the plot). The identification of this mode is therefore not possible
with infinite plane waves but requires the finite transducer smulation in order to generate
the near-field interference between the specular reflection and the leaking wave.

In the second case, in which the density of the titanium is half of its correct value, the
attenuation of the interface wave is much larger and consequently the field, shown in
Figure 9.7(a), does not extend significantly on the downstream side of the beam.
However considerable distortion of the beam is evident. The minimum of the reflection
coefficient, in Figure 9.7(b), is now at 67.5 degrees, again in agreement with the modal
prediction. Note that the plane wave reflectivity at sub-critical angles of incidence is
considerably lower than in the previous case, in Figure 9.6(b). This is because the
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acoustic impedances of the two materials are better matched in this case and so there is
greater transmission of energy into the alpha case.

Figure 9.8 shows the predictions for the third case, in which the titanium was given its
correct density. Part (a) of the figure shows three reflected fields, for different angles of
the transducer. Part (b) shows the amplitude of the reflections received by a 10 mm
diameter finite transducer, as a function of the angle of incidence, and the infinite plane
wave reflectivity.

The first observation is that there is no longer a minimum in the reflection amplitude,
indicating that no interface mode is excited within this angular range. This is in
agreement with the modal analysis of the system. The second observation is that,
although specular reflections may be expected when there is no interface wave, some
distortion of the reflected fields is evident, particularly at the angle of incidence of 65
degrees. The obvious explanation for this behaviour is that the reflectivity of plane
waves varies strongly with the angle of incidence, as shown in part (b) of the figure, so
that plane wave components of the finite field with large angles of incidence are reflected
much more strongly than those with small angles of incidence. It should therefore not be
expected that the composed field will reflect perfectly. The strongest distortion of the
field, at a transducer angle of 65 degrees, occurs when the gradient of the reflectivity is
largest. The variation in the reflectivity can also be seen in the magnitudes of the
reflected fields. The strengths of the fields increase substantially as the angle of the
transducer isincreased, as does the plane wave reflectivity.

9.4 Wavesin alayer of alpha case embedded in titanium

This section examines the second type of interface wave, waves which travels along an
embedded layer. These interface waves are likely to be much more relevant to the
ingpection of the embedded layer of apha case than the waves at a single interface
because the layer is very thin and consequently in practice it will not be possible to
propagate waves separately along each of the two interfaces.

The system which was chosen for the study of the modal properties of an embedded |ayer
was a 0.1 mm thick layer of apha case between two semi-infinite half-spaces of titanium.
The longitudinal velocity of titanium was assumed to be 6060 m/sec, the shear velocity
3230 m/sec and the density 4460 kg/m3. The alpha case was assumed to have 10 %
faster longitudinal and shear velocities (6666 and 3553 m/sec respectively) but to have
the same density as the titanium. The embedded layer was therefore identical to that
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which was studied in the context of Lamb waves in Chapter 8. As discussed in Section
9.2, the external boundaries of the adherends do not need to be included in the modal
model because of the judicious gating of the ultrasonic signals. The modal properties
will therefore be independent of the dimensions of the joint and of the properties of any
medium which is used for coupling between the transducer and the joint.

Figure 9.9 shows the predicted dispersion curves for the system for frequencies up to
100 MHz. For convenience the modes have been labelled 1 to 9. As with the Lamb
wave dispersion curves there is an infinite number of modes, further modes being
introduced to the diagram as the frequency is increased. However it is apparent
immediately that the shapes of the dispersion curves for the embedded layer differ
strongly from the Lamb wave curves which would be generated if the half-spaces on
either side of the layer were vacuum rather than titanium. It is therefore not appropriate
to think of the modes smply as leaky Lamb modes, as can be done when a plate is
immersed in water; the addition of the stiff, solid half-spaces transforms the curves
radically.

Besides the shapes of the dispersion curves, the first important difference between the
interface modes and the Lamb modes is that al of the interface modes leak energy
strongly into the surrounding material as they travel along the layer. Their amplitudes
therefore diminish rapidly with distance travelled. The rate of decay is shown in
Figure 9.10 in Nepers/mm travelled along the layer, from which it can be seen that the
lowest leakage within the diagram is of mode 1 at its lowest frequency. The attenuation
here is 1.3 Nepers/mm, corresponding to a loss of about 70 % of the amplitude of the
wave in each mm travelled. The second least leaky mode is mode 6 which attenuates at
3.2 Nepers/mm at its lowest frequency in the diagram, losing about 95 % of its energy in
each mm travelled. There is also a genera trend for the attenuation of the modes to
decrease with frequency, the main exceptions being modes 1 and 2 which have relatively
low attenuation at both low and high frequencies. This trend can be seen clearly in the
plots of attenuation in Nepersmm in Figure 9.10 and is even more pronounced if the
attenuation is assessed in Nepers/wavelength.

The second important difference is that the dispersion curves for the interface waves have
been plotted with ends which are not necessarily at the boundaries of the diagram or at
infinity. In calculating the curves, each mode was identified by a velocity sweep at
100 MHz and the curve was generated by decreasing the wavenumber (decreasing
frequency direction in Figure 9.9). Modes 1 and 6 were found to have clearly identified
low frequency limits. In both cases the velocity at low frequency decreases with
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decreasing frequency and the limit is reached when the velocity drops to the bulk
velocity of the titanium half spaces. For mode 1 this is the bulk shear velocity in
titanium and for mode 6, the bulk longitudinal velocity. The curves have therefore been
calculated close to these values, down to 11 MHz and 29 MHz respectively. No
propagating solutions could be found for these modes at lower frequencies. For al of the
other modes the limit is practical. The solution of the modal equations can be extremely
difficult and time-consuming when the attenuation is very high. Furthermore, the results
are of dubious practical worth when the attenuation is of the order of tens of Nepers/mm.
The curves were therefore generated only for their regions of lowest attenuation. The
generation of each curve was terminated arbitrarily when the solution became slow as the
attenuation became very large. To give an indication of the strength of the attenuation at
these termination points, the lowest attenuation is 12 Nepers/mm, for mode2. This
corresponds to aloss of 99.9994 % of the amplitude of the wave in each mm travelled.

The mode shapes of mode 1 are shown in Figure 9.11. Part (a) of the figure shows the
shapes near the low frequency end of the curve, at 12 MHz, and part (b) shows the
shapes at very high frequency, at 1 GHz. The shapes have been plotted through the
thickness of the 0.1 mm thick layer of alpha case. For clarity, the displacement mode
shapes have been plotted as solid lines and the stress mode shapes as dashed lines.

The mode shapes show that mode 1 is essentially a shear wave travelling along the layer.
The predominant motion is normal to the layer and the shear stress is much larger than
the other stress components. The wave would therefore appear, like a bending wave, as
an undulation propagating along the layer. The wave can also be seen to change with
frequency. At low frequency the dominant displacement and stress components are
approximately uniform across the thickness of the layer whereas at high frequency they
each develop a peak at the centre of the layer, decreasing towards the interfaces with the
titanium. The motion of the low frequency wave therefore involves the whole of the
layer but as the frequency increases the motion becomes concentrated at the centre of the
layer. Thisis consistent with the variation of the velocity of the wave. At the lowest
frequency the velocity is equal to the bulk shear wave velocity in the titanium adherends.
The shear wave motion in the whole of the layer can therefore couple, in the low
frequency limit, with bulk shear waves travelling along the two half-spaces. At very
high frequency the velocity of the mode tends to the bulk shear velocity in the alpha case.
This is consistent with the concentration of the motion of the wave at the centre of the
layer. The increasing concentration of the motion at the centre of the layer as the
frequency increases is also consistent with the predicted reduction of the rate of leakage
of the wave.
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The mode shapes of modes 2 and 3 are shown in Figure 9.12, in parts (@) and (b)
respectively, at their lowest frequencies. Mode 2 has a high value of displacement
paralel to the layer throughout the thickness of the layer. Its two direct stress
components are also approximately constant across the layer. It istherefore afirst order
extensional mode, rather like an sy Lamb mode which is constrained by the adjacent
half-spaces. Mode 3 is clearly a second order mode, fitting in perfectly as the next mode
in the series after mode 2. Each of its displacement and stress components shows an
increase in the order of its shape, the constant shapes being replaced by half-wavelengths
and the haf-wavelengths by full wavelengths. Although not presented here, the
progression of the series was found to continue with modes 4 and 5.

The mode shapes of mode 6 are shown in Figure 9.13. As with mode 1, the shapes are
plotted for two frequencies, part (a) near the low frequency end of the curve, at 30 MHz,
and part (b) at very high frequency, at 1 GHz.

The mode shapes show that mode 6 is essentially alongitudina wave travelling along the
layer. The predominant motion is paralée to the layer and the direct stress in this
direction is much larger than the other stress components. The characteristics of the
mode are very similar to those for mode 1, except that the wave is a longitudinal wave
rather than a shear wave. At low freguency the dominant displacement and stress
components are approximately uniform across the thickness of the layer whereas at high
frequency they each develop a peak at the centre of the layer, decreasing towards the
interfaces with the titanium. The motion of the low frequency wave therefore involves
the whole of the layer but as the frequency increases the motion becomes concentrated at
the centre of the layer. Thisis again consistent with the variation of the velocity of the
wave. At the lowest frequency the velocity of the wave is equal to the bulk longitudinal
wave velocity in the titanium adherends and at very high frequency the velocity of the
wave tends to the bulk longitudinal velocity in the alpha case.

The mode shapes of modes 7 and 8 are shown in Figure 9.14, in parts (a) and (b)
respectively, at their lowest frequencies. These two modes appear to be the next in a
series of modes of increasing order following mode 6, each of the displacement and
stress components showing an increase in the order of its shape with respect to the
previous. Indeed, although not presented here, the series is continued with mode 9 and
with further modes which can be found at higher frequencies.
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Finaly, it appears that the categorisation of the modes according to symmetry and
antisymmetry or shear and longitudinal motions, as is applied to Lamb waves, is not the
most appropriate approach here. The analysis of the plane wave components of the nine
modes indicates that they can be categorised very clearly into two groups according to
the manner in which they leak energy. The amplitudes of the plane shear waves leaving
the layer for modes 1 to 5 are considerably larger than the amplitudes of the plane
longitudinal waves. Furthermore, the plane longitudina waves are inhomogeneous
below the phase velocity of 6060 m/sec. The leakage of energy from these modes is
therefore entirely by shear waves. In contrast, the amplitudes of the longitudina waves
leaving the layer for modes 6 to 9 are much larger than the amplitudes of the shear
waves. Accordingly, athough in principle both longitudinal and shear waves could leak
in this region of the solution space, these modes are characterised by leakage of
longitudinal waves.

Comparison of interface modeswith Lamb modes

For interest a few cases were studied in which the density of the titanium was varied, in
order to see how the dispersion curves develop between the Lamb wave curves and the
interface wave curves. Some of the results are plotted in Figure 9.15. Part (a) of the
figure shows the curves for the case in which the density of the titanium is one hundredth
of the correct density, part (b) for one tenth of the correct density and part (c) for half of
the correct density. Part (d) shows the case for the correct density, already shown in
Figure 9.9, for reference.

As expected, the curves for the case with the lowest density of titanium are extremely
close to the Lamb wave curves for a plate in vacuum. The only significant difference is
in the 'ag’ mode at low frequency, a region of the curve which was aready known to be
particularly sensitive to the presence of non-vacuum half-spaces (see discussion about
leaky Lamb wavesin Chapter 5).

Following the ag mode through the three low density cases, it seems that the mode is
modified progressively as the density is increased. Itslow velocity region becomes less
pronounced but it remains continuous across the whole frequency range of the plot.
When the titanium has the correct density however, there is no propagating mode at zero
frequency, the nearest mode to ag being interface mode 1 which only exists above a
threshold frequency. At first sight it seems that there may be an inconsistency here
because smooth changes may be expected when the density is varied yet discrete
differences are evident. However, recalling the investigation of Section 9.3 of the
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interface wave a a single interface, a mgjor change was found when the density of the
titanium was varied. It was found that an interface wave may exist when the density of
the titanium is low but does not exist when the density of the titanium is identical to that
of the alpha case. Indeed, returning to the present study, the ag mode converges on the
interface wave velocity at high frequency in al three of the low density cases. However
when the correct density is used, mode 1 is asymptotic to the bulk shear velocity in the
apha case. It must be accepted therefore that discrete and fundamental changes may
occur in the nature of the curves as the densty is varied and consequently that the
interface wave modes cannot be categorised simply as extreme forms of leaky Lamb
modes.

Examination of the other modes shows further discrete changes in the nature of the
curves. Thisisparticularly clear in case (b) in which breaks are just apparent in three of
the modes. Following the progression of these 'breakaway' modes through from this case
to case (c) and then to case (d), it seems that they develop ultimately into the high
velocity group of interface modes. Finally, it seems that the interface wave mode 2 is
most closely related to the Lamb mode sy, an observation supported by the similarity in
their mode shapes.

Comparison of interface modes with minima of reflection coefficients

A study was made of the plane wave reflectivity from the embedded layer in order to
determine whether minima of the reflection coefficient would occur at the angles of
incidence and frequencies of the modes or would differ, as discussed in Section 9.2.
Furthermore, if the loci of the major reflection minima differed significantly from the
modes, indicating strong transmission of energy through the layer, then it was important
to determine whether any separate, perhaps minor, minima could be identified with the
excitation of the modes.

Two sets of plane wave reflection coefficients were calculated, one in which a shear
wave was incident and the reflected shear wave was measured, and the other in which a
longitudinal wave was incident and the reflected longitudinal wave was measured. In
each case a sweep of frequency from 0 to 100 MHz was performed and the minima were
identified from the resulting spectrum. The process was repeated for a range of angles of
incidence of the waves, up to 90 degrees. Thus the complete area of the dispersion
curves of Figure 9.9 was covered in both cases, for all velocities above the bulk
velocities in the titanium. For the shear wave case the bulk velocity is 3230 m/sec and
for the longitudinal wave case it is 6060 m/sec. The results are shown for shear waves in
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Figure 9.16 and for longitudinal waves in Figure 9.17, together with the dispersion
curves. The angles of incidence of the shear and longitudinal waves are indicated on the
right hand sides of the plots.

Before discussing the results, it should be mentioned that the quality of the minima was
found to vary considerably over the solution space, the minima being sharp in some cases
and rather vague in others. An example of very good minimais shown in Figure 9.18(a)
and an example of poor minima, in Figure 9.18(b). The good minima in the figure were
found using shear waves at a large angle of incidence of 40 degrees, when there are no
homogeneous longitudinal waves present. The poor minima in the figure were
encountered at 22 degrees (about 9000 m/sec phase velocity), again with shear waves. In
this example the five minima can just be identified, although the frequencies of al but
one of them are indistinct. However in some cases in this angular region the minima
were found to vanish as the angle of incidence of the sweep was advanced. This resulted
in discontinuities of the loci of the minima, evident in Figure 9.16.

One reason for the complication of the reflection coefficient spectra is that at velocities
above the bulk longitudinal velocity of the titanium, both shear and longitudinal waves
may be reflected from the layer. Minima in the shear wave reflection coefficient, for
example, may therefore be associated either with maximain the reflection of longitudinal
waves or with maxima in the transmitted energy. The former case is of course not of
interest here; it relates to another aspect of the behaviour, the balance of the longitudinal
and shear wave components in the response. In many cases confirmation of the
frequency was therefore found by examining the transmission coefficient. This of course
has its complications too because both shear and longitudinal waves may be transmitted.

A second reason for complication of the spectra is the interaction of adjacent minima
when the loci (or dispersion curves) are close together. This was particularly evident at
the lowest phase velocities in Figure 9.16 where two of the loci appear to converge at
about 30 MHz. The loci are sharp at lower frequencies but vague at frequencies above
thisvalue.

The results for the shear wave minima show that their loci differ significantly from the
dispersion curves. A pattern can be seen however, in which four of the loci of the
minima converge on four of the low velocity modes, modes 2 to 5, as the frequency
increases. The remaining locus is relatively close to mode 1 but convergence is not
demonstrated, the locus appearing to converge instead on mode 2. As discussed above,
the result is rather inconclusive however because the minima for this locus were poorly
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defined at al frequencies above about 30 MHz. The convergence of loci on modes is
consistent with the reduction of the attenuation of the modes with frequency. The
association of the shear wave minima with the low velocity modes is also consistent with
the fact that the leakage of these particular modes occurs entirely by shear waves.

The loci of the longitudinal wave minima also differ significantly from the dispersion
curves. Here it appears that the minima may converge on two of the high velocity group
of modes, modes 6 to 9. Indeed, further calculations of both the modal solutions and the
reflection coefficients at frequencies up to 200 MHz confirmed that this is the case, the
minima converging on modes 6 and 7. Furthermore, additional longitudinal reflection
coefficient minima appear at the higher frequencies, converging on the other high
velocity modes. Again the association of the longitudinal wave minima with the high
velocity modes is consistent with the fact that the leakage of these modes occurs
predominantly by longitudinal waves.

Near -field response predictions

Near-field response predictions were made for two locations in the solution space, one in
the shear-dominated region and the other in the longitudinal-dominated region. The
locations are identified in Figures 9.16 and 9.17 respectively. The predictions were made
using a spatialy realistic smulation of a joint, including a finite thickness adherend and
water coupling.

The geometrical arrangement for the simulations is shown in Figure 9.19. The upper
adherend was 10 mm thick, the alpha case 0.1 mm thick and the lower adherend was a
semi-infinite half-space of titanium, there being no interest in predicting the reflections
from the lower surface of the joint. The finite transducer was located in a semi-infinite
half-space of water above the joint.

Figure 9.19 also shows a schematic illustration of the paths of the finite ultrasonic beams
and the received field. The general case is shown, in which both the longitudinal and the
shear waves in the adherend are homogeneous and both a shear and a longitudinal wave
are reflected and transmitted each time a beam encounters an interface. The reflected
field which isillustrated therefore contains four contributions in addition to the front face
reflection R1. Thefirst reflection to be received, R2, is the shear-shear contribution from
the bondline, involving shear beams only. The fina reflection, R4, is the
longitudinal-longitudinal contribution, involving longitudinal beams only. Between
these two are two other combinations, the shear-longitudinal and the longitudinal-shear
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beams which contribute at the same location in the field to make the reflection R3.
Although not shown in the illustration, additional contributions to the field would be
received further downstream due to subsequent reverberations of the signal in the upper
adherend and reflections from the lower boundary of the lower adherend. In practice
such reflections would be ignored by gating the signal, as discussed in Section 9.2.

A 10 mm diameter transducer was modelled in the first ssmulation, operating at a single
tone of 25 MHz. Two cases were considered. In the first case the transducer was placed
at an angle of incidence of 23.7 degrees in the water so that the refracted shear wave in
the titanium was incident on the bondline a an angle of 61.1 degrees. This angle
corresponds to the locus of the reflection coefficient minimum at the location shown in
Figure 9.16. In the second case the angle in water was reduced by one degree to 22.7
degrees, resulting in a reduction of the angle in the adherend by 3.9 degrees to 57.2
degrees. The intention of the second case was to provide a reference reflection, when
there is no minimum, for comparison.

The field predictions are presented in Figure 9.20. The full fields are shown in part (a)
of the figure and enlargements of the bondline reflections in part (b). The solid line is
for the first case when the angle was appropriate for the reflection coefficient minimum
and the dashed line is for the 'off-angle’ case. The distortion of the reflected beam can be
seen very clearly in the first case, corresponding to the transmission of much of the
energy of the beam through the layer. In the off-angle case however the reflected beam
is specular. The positions of arrival of the bondline reflections agree perfectly with
trigonometric calculations of the beam paths, the off-angle reflection whose angle was
smaler arriving dightly closer to the front face reflection. There are no other
contributions to the field because in both cases the transducer angle is larger than the
critical angle for longitudinal waves and so there are no homogeneous longitudinal waves
in the adherend.

The second simulation used a 5 mm diameter transducer, operating at a single tone of
100 MHz. Again two cases were considered, one corresponding to the locus of the
reflection coefficient minimum at the location shown in Figure 9.17, and the other at a
half-degree smaller angle. The angles in water were 12.1 and 11.6 degrees respectively
and the longitudinal anglesin the adherend were 59 and 55.3 degrees respectively.

The field predictions for the second ssimulation are presented in Figure 9.21, again using
solid lines for the first case and dashed lines for the off-angle case. All of the possible
contributions to the field are now present in both cases and their positions again agree
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with calculations of the beam paths. In the first case the shear-shear contribution to the
field is specular but the contributions involving longitudinal waves are distorted. All of
the off-angle contributions are specular.

According to the discussion in Section 9.2, minimain the reflected field may occur either
when the transmissibility of the plate is a maximum or when a mode is excited. The
simulations which have been presented here were made at locations on the loci of the
plane wave reflection coefficient minima, shown in Figures 9.16 and 9.17, and therefore
addressed the former category. The distortion is strong because the 'central’ plane wave
components of the finite beam, those whose angle of incidence is approximately that of
the transducer, are transmitted through the layer whereas there is significant reflection of
the plane wave components at other angles. In both cases the plane wave reflection
coefficient minima were sharp (asin the 'good' case in Figure 9.18(a)) and so the contrast
between the reflection amplitudes of the 'central’ and the 'off-angle’ components was
strong.

An important question is whether separate near-field minima can also be found at
frequencies and angles which match locations on the dispersion curves. The presence of
such minima may then indicate the excitation of modes. Of course it should be expected
that the minima may be very weak because of the strong attenuation of the modes and the
consequent poor coupling of the incoming waves with the modes.

An attempt was made to find such minima, using embedded shear wave transducers,
introduced in Section 9.3 and illustrated in Figure 9.5, and, similarly, embedded
longitudinal wave transducers. The reflected fields were predicted at several frequencies
and angles which matched locations on the dispersion curves and which were remote
from the loci of the plane wave reflection coefficient minima. Pairs of transducers were
also used to predict the measurement of the amplitude of the received signal, performing
frequency sweeps in the same manner as for the infinite plane wave study. However no
evidence was found of the excitation of the modes. It was concluded that, as discussed in
Section 9.2, there was insufficient coupling between the incident wave and the
attenuating mode for significant energy to be transferred to the mode. Perhaps thisis not
surprising when it is considered that the attenuation of the modes is typically greater than
10 Nepers/mm at the locations on the dispersion curves where there is good separation
from the loci of the plane wave reflection coefficient minima. This rate of attenuation
corresponds to more than 99.99 % loss of amplitude per mm travelled.
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9.5  Sengtivity of interface wavesto the properties of thejoint

One of the potential attractions of interface waves which was stated at the start of this
chapter was that they may be particularly sensitive to the properties of the embedded
layer and insensitive to the properties of the adherends. They could therefore be used,
not solely to detect the layer, but to characterise it.

Unfortunately it is clear at this stage in the investigation that it will not be possible to
excite and measure the interface waves because of the extreme attenuation of the modes.
The analysis of the variant cases in which the influence of the different parameters of a
joint are studied would therefore appear to be futile. However it seems that the reflection
coefficient minima which are associated with the transmission of plane waves through
the layer may be measurable and could in principle be used to characterise the layer.
Since the minima are related indirectly to the modal properties of the system, the
parameters of the joint which affect the dispersion curves are likely to affect the loci of
the reflection coefficient minima.  For this reason, and for the completeness of the
investigation, it was therefore considered useful to conduct the parametric study.

Considering the cases which were assessed in Chapter 8, some of the results are evident
immediately. The dispersion curves are completely insensitive to the total thickness of
the joint because of the proposal to gate the ultrasonic signals in practice and the
consequent nature of the system which was modelled. For the same reason they are
completely insensitive to the location of the layer within the joint and would even be
insensitive to tapered adherends.

The curves are rather sensitive however to the thickness of the embedded layer, the
frequency axis of the dispersion curves scaling linearly as with Lamb waves. Thus for
example, referring to the curves in Figure 9.9, the cut-off frequency of 11 MHz for
mode 1 in the 100 micron thick layer would be at 22 MHz in a 50 micron layer.

Alpha case with dower bulk velocities

Figure 9.22 shows the effect of varying the values of the acoustic velocities of the apha
case material on the dispersion curves. The solid lines show the dispersion curves for the
reference case, originally plotted in Figure 9.9, of the 0.1 mm thick layer of apha case
with 10 % faster longitudinal and shear bulk velocities. The dashed lines show the
curves for the same system but with only a 5% increase in the bulk velocities of the
alpha case.
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All of the modes show substantial reductions in their velocities, indicating their strong
dependence on the properties of the layer. Indeed in the cases of modes 1 and 6, the
reduction could have been foreseen because of the bounded nature of the curves. The
velocity of mode 1 must always lie between the shear velocity in the adherend, at low
frequency, and the shear velocity of the layer, at high frequency. Similarly the velocity
of mode 6 must lie between the longitudinal velocities of the two materials. A second
important observation concerning these two modes is that their cut-off frequencies have
approximately doubled.

Graded layer of alpha case

Figure 9.23 shows the dispersion curves for a graded layer of alpha case, the solid lines
again showing the reference curves and the dashed lines, the variant curves. The graded
layer was exactly that which was studied in the context of Lamb waves, in Chapter 8.
Thus the 0.1 mm thick layer was divided into three sub-layers of equal thickness. The
central sub-layer was given 10 % faster longitudina and shear velocities and the two
adjacent layers were given 5 % faster longitudinal and shear velocities. The profile was
therefore the smplest case of the triangular distribution which was modelled in the
normal incidence reflectivity studies of Chapter 7.

In genera the curves lie between the reference case and the first variant case (the apha
case with dower bulk velocities), as would be expected if a single layer was modelled
using the average properties of the three sub-layers. There are some exceptions however,
modes 7, 8 and 9 being ailmost the same as the first variant case and the divergence of
mode 3 from the reference case actually increasing very dightly. This suggests that these
modes are dominated by the material near the surfaces of the layer and are not sensitive
to the central portion of the layer. Indeed the mode shapes of the strain energy density
for these four modes (not shown here) support this observation, the energy being strongly
concentrated at the edges of the layer.

Adherendswith faster bulk velocities

Figure 9.24 shows the effect of varying the values of the acoustic velocities of the
adherend material. The dashed lines in this plot show the dispersion curves for the
system with a 1 % increase in the bulk longitudinal and shear velocities of the titanium.
An uncertainty of this order in the bulk properties of the titanium is consistent with the
variations in the measurements of the material which were reported in Chapter 6.
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The curves show some changes from the reference case but the differences are small,
particularly in the low velocity modes. The variant curve for mode 1 is present but is
completely obscured by the reference curve. In fact it differs dightly at its low
frequency end, the cut-off frequency and velocity both being dightly higher than in the
reference case.

The case of a layer between unmatched adherends has not been calculated, the present
variant case sufficiently demonstrating the genera insengtivity of the modes to the
properties of the adherends. If the adherends are unmatched and there is no embedded
layer, in agood bond, then there is no mode at the interface, as discussed in Section 9.3

9.6 Discussion

Previous work

Previous work in the application of interface waves to nondestructive testing has
addressed both single interface geometries and embedded layers.

In the category of single interface geometries, Lee and Corbley (1977) made predictions
and performed calculations for interface waves travelling along the boundaries between
pairs of different metals, including aluminium, steel and titanium, with a view to
characterising the boundary conditions at the interfaces between such materials in
interference-fit components. In the perfect contact cases they found free wave solutions
with some materials and leaky solutions with others, the leaky solutions having low
values of attenuation, and they obtained good agreement between theory and experiment.
Kumar (1983) was aso interested in characterising the interface boundary conditions
between components, in this case of the same material. He studied the interface between
two half-spaces of steel for different boundary conditions, finding free wave solutions
when the contact was imperfect. In the context of adhesively bonded joints, some
researchers have investigated the possibility of using an interface wave at the boundary
between the adhesive and the adherend, operating at sufficiently high frequencies and
bondline thicknesses to be able to ignore the second adhesive-adherend boundary. Claus
and Kline (1979) found an experimental correlation between the attenuation of true
Stoneley waves and the surface roughness of the adherend. Pilarski (1985) proposed the
use of such interface waves to inspect the adhesion quality.
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In the category of embedded layers, a number of researchers have investigated the use of
guided waves which travel along a flexible layer between two stiff half-spaces without
leaking energy, a particular interest again being the inspection of adhesive joints. Such
waves have the advantage that they can propagate over long distances but are only useful
if access is possible to the ends of the layer because they can neither be excited nor
received through the adherends. Rokhlin, Hefets and Rosen (1980 and 1981) and
Rokhlin (1986) demonstrated experimentally that a guided wave travelling aong a layer
of adhesive between two half-space adherends may be used to determine the material
properties of the adhesive (the cohesive properties) at various states of cure.

Nagy and Adler (1989) and Nagy, Rypien and Adler (1990) additionally considered other
modes of the adhesive joint system, including both leaky shear and leaky longitudinal
modes which could in principle be excited and received through the adherends. Their
ultimate interest was to detect both poor cohesion and poor adhesion in joints. They
predicted and measured transmission coefficient maxima through the adhesive layer,
obtaining generally good agreement. They also anticipated divergence of these maxima
from the modal solutions at locations where the predicted leakage was strong.  Such
divergence was discussed in Section 9.2 of this chapter and by Chimenti and
Rokhlin (1990).

Interface waves at a singleinterface

In the present investigation it has been found that there is no propagating interface wave
between half-spaces of titanium and apha case. This category of wave could not
therefore be utilised for the inspection of the diffusion bonded joints, even if testing
could be conducted at sufficiently high frequencies that the finite thickness of the layer
could be ignored.

However the study which was made using 'light' titanium showed that in cases where a
leaky wave does exist at a single interface it is potentially very useful, supporting the
findings of the previous workers. The attenuation of the wave was found to be very
senditive to the degree of acoustic mismatch between the half-spaces. Moreover the
value of the attenuation was found to be low in general, even when the acoustic contrast
was relatively small. Accordingly it was found in the smulations that such a wave could
be excited readily using the coincidence principle and could be detected accurately using
the null zone technique.
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Furthermore, a bonus with the measurement of waves at a single interface is the fact that
there is only one mechanism which can be associated with a reflection minimum, unlike
the complications of the embedded layer. A minimum in the reflection coefficient must
be associated with the modal properties of the system because the transmission
mechanism which was discussed in Section 9.2 cannot exist at the conditions when the
mode is excited. The angle of incidence is significantly larger than the critical angle for
shear waves in the stiffer half-space and consequently infinite plane waves are reflected
totally.

Leaky waves at a single interface may be useful for the inspection of diffuson bonded
joints where the materials of the two adherends are different. In such cases the
conventional normal incidence inspection technique would not be optimal because a
signal would always be reflected from the bondline, even in a good joint, obscuring any
small reflections from defects. However an interface wave may be rather sengitive to the
properties local to the bondline, particularly if the technique exploits the dependence of
the effective depth of the wave on the frequency. Other joints which could potentially be
inspected by such waves are joints in which an interface layer is known to exist but may
need to be characterised, such as diffusion brazed joints and, as mentioned above,
adhesive joints.

Interface wavesin an embedded layer

Regarding the second category of geometry, the embedded layer, the nature of the
present investigation differs fundamentally from the work on adhesive joints. The
embedded layer of alpha case is stiffer than the titanium adherends whereas in an
adhesive joint the embedded layer is less stiff than the adherends. The properties of the
alpha case are also very similar to those of the adherends unlike the large difference in
the acoustic impedances which is normal in an adhesive joint. Moreover, the primary
task addressed here is to detect the presence of alayer which may be extremely thin. In
an adhesive joint the layer is known to exist and the task isto characterise it.

The predictions are not promising. All of the modes are leaky, which is an attraction in
principle because it means that they could be excited and received through the adherends.
However the attenuations in all cases are extremely strong and it would be impossible to
contemplate any remote measurement of the velocity of the modes at a location
downstream of the point of excitation. In fact, even at the point of excitation, the
smulations indicate that incident waves in the adherend are unable to excite the
extremely attenuative modes. The inspection therefore addresses the detection of minima
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in the point reflection which are caused, not by the modal properties of the system, but
by the different (although associated) mechanism of maxima in the transmission of
energy through the layer.

As far as the detection of the presence of the layer is concerned, the exploitation of these
minima clearly offers no advantage over normal incidence inspection. In order to detect
aminimum in the reflected signal using the null zone technique it would be necessary to
detect significant reflections over arange of angles or frequencies. In a good joint there
would be no reflection from the bondline. In abad joint the presence of the layer would
be indicated, not by the minimum of the reflection, but by the fact that reflections could
be found at other angles or frequencies.

If the layer is known to exist and its characterisation is required, then the measurement of
the minima appears to be more attractive. The dispersion curves are rather sensitive to
the properties of the layer and rather insenstive to the properties of the adherends.
Assuming, very reasonably, that the loci of the minima are as sensitive as the modes,
such reflection measurements could therefore be used to examine the properties of the
layer. However, the measurements would be feasible only when the alpha case is
relatively thick and has good acoustic contrast with the titanium. Referring to the
reflection coefficient minima in Figures 9.16 and 9.17, a transducer with a centre
frequency of at least 25 MHz would be required in order to characterise the low
frequency loci. If the layer was 50 microns thick then the same information would
require atransducer with a centre frequency of 50 MHz. Since the upper frequency limit
in practice is no higher than 80 MHz (see discussion in Chapter 7), the thinnest layer
which could be examined would be at least 30 microns thick.

9.7 Possible alternative inspection strategy

It is clear from this investigation and from the Lamb wave study which was reported in
Chapter 8 that plate waves are not attractive either for the detection or for the
characterisation of the embedded layer. The conventional technique, the measurement of
reflectivity at normal incidence, is therefore currently the most sensitive approach.
Fortunately the investigation of the conventional method revealed that in principle it is
extremely well suited to the detection of alpha case and it also has the benefit of
simplicity of application. It may therefore not be necessary to pursue any other
aternatives.
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However another ultrasonic approach, the oblique incidence reflectivity method, has not
been considered for this inspection problem to date and it is possible that it may offer
sgnificantly greater sendtivity than the normal incidence technique. Although the
method utilises pairs of transducers at oblique angles of incidence in exactly the same
arrangement as was discussed in the context of modal inspection, the method is
fundamentally different. Instead of identifying the frequency and angular conditions at
which changes can be observed in the reflectivity, the method is based on the
measurement of the amplitude of the reflected signal at a particular frequency and angle.
It is therefore much more closely related to the norma incidence technique, the only
difference being the selection of appropriate oblique angles in order to maximise the
sengitivity.

The method has been studied widely in the context of the characterisation of adhesive
joints. For example Pialucha (1992) addressed the inspection of the interface between
the adhesive and an adherend using oblique incidence measurements. A review is aso
presented by Cawley, Pialucha and Lowe (1993). In fact the task of characterising an
adhesive joint by this method is difficult; the layers of the joint are known to exist and
the measurement system must rely on detecting changes in the amplitude of the
reflectivity. In the present case the task is somewhat smpler; as with the normal
incidence measurements, the reflection only exists if the layer is present. It would
therefore appear that the method is well suited to the detection of the embedded layer.

Such an investigation into obligue incidence response is outside the scope of this thesis.
However one possibility which could be explored is to measure the reflectivity from the
layer using waves which are incident on the layer at super-critical angles. Super-critical
angles are angles of incidence in the adherend which are larger than the angle at which
the transmitted wave in the layer becomes inhomogeneous. The method could use either
shear or longitudinal waves. The use of shear waves offers the advantage that any
longitudinal waves which are reflected or transmitted are inhomogeneous so that the
received signal is simple, just as in the near-field smulations in Section 9.4. It may be
simpler however to make measurements of longitudinal waves because the angle of
incidence of the transducer will be smaller.

Taking an incident shear wave as an example, if the layer is infinitely thick then total
reflection of the shear wave takes place at super-critical angles but if the layer has finite
thickness then the reflectivity is dependent on the properties of the layer, the layer
thickness and the angle of incidence. This isillustrated in Figure 9.25(a) which shows
the predicted reflection coefficient for shear waves for several thicknesses of alpha case
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and for the full range of angles. It can be seen that the reflectivity at super-critical angles
isvery much larger than at normal incidence and is rather sensitive to the thickness of the
layer. Furthermore, the positions of the curves in the horizontal direction in the plot will
depend on the material properties of the apha case because the critical angle is defined
by the bulk velocity of the layer.

The 'tunnelling’ mechanism which permits the transmission of some energy through the
thin layer at super-critical anglesisillustrated in Figure 9.25(b). Here it can be seen that,
even if the shear wave in the layer is inhomogeneous, it may transmit energy into the
lower adherend. In order for energy not to be transmitted, the depth of penetration, the
depth in which the majority of the energy of the inhomogeneous wave is retained, must
be smaller than the thickness of the layer. The exponential function which describes the
decay of the wave with the depth from the interface is dependent on the wavenumber in
the direction along the layer and on the frequency, as discussed in detail in the derivation
in Chapter 2 (see Section 2.5). Accordingly, the depth of penetration of the
inhomogeneous wave reduces with both the angle of incidence in the adherend and with
the frequency.

9.8 Conclusions

Model studies have been conducted to investigate the potential of using interface waves
for the inspection of an embedded layer of alpha case in a diffusion bonded joint.

A study of the interface wave which travels along the boundary between two different
materials indicated that in general such a wave shows good potential for nondestructive
testing. A single, leaky non-dispersve mode may exist between certain pairs of
materials. It may readily be excited and received and is sensitive to the properties of the
materials in the region of the interface. However it could only be utilised in embedded
layersif its depth of penetration was significantly smaller than the thickness of the layer.
This would require tests to be conducted at extremely high frequencies for very thin
layers. Moreover it was found that such an interface wave does not exist in the specific
case of the interface between titanium and alpha case.

A study of the modal properties of a layer of alpha case embedded in titanium revealed
that there is an infinite family of these interface waves just as there is with Lamb waves.
However the nature of the modes is substantially different. The dispersion curves bear
little resemblance to the Lamb wave curves and all of the waves leak energy strongly into
the adherends. In genera the dispersion curves are sensitive to the properties of the layer
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and insensitive to the properties of the adherends. However the strong attenuation of all
of the modes precludes any form of remote measurement of wave velocities. Point
reflection measurements made at the same location as an incident signal may be used to
detect spectral or angular minima which are associated (though not directly) with the
modal properties of the system. The conditions for these minima could in principle be
used to characterise a layer which is known to exist athough they are clearly
inappropriate for the detection of the presence of the layer. However with redlistically
thin layers of apha case and small acoustic contrasts between the materids, the
frequencies of the minima are likely to be too high for practical exploitation.

It is therefore concluded that interface waves offer no practical potentia for the
inspection of alpha case in diffusion bonded titanium.

Leaky waves at a single interface may be useful for the inspection of diffusion bonded
joints where the materials of the two adherends are different. In such cases the
conventional normal incidence inspection technique would not be optimal because a
signal would always be reflected from the bondline, even in a good joint, obscuring any
small reflections from defects. However an interface wave may be rather sengitive to the
properties local to the bondline, particularly if the technique exploits the dependence of
the effective depth of the wave on the frequency. Other joints which could potentially be
inspected by such waves are joints in which an interface layer is known to exist but may
need to be characterised, such as diffusion brazed joints and adhesive joints.

Finally, an obligue incidence response measurement technique is proposed for
investigation. An initial study indicates that it may offer strong sensitivity to both the
presence and the nature of embedded stiff layers.
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CHAPTER 10

Conclusions

10.1 Review of thesis

Diffusion bonding, the joining of two surfaces by the diffuson of material across the
interface, has the attractions of very high strength and minimal distortion of the
components. Recent developments of the diffusion bonding process in the aircraft
industry has further exploited the process by the diffusion bonding and superplastic
forming of sheets of titanium to create cellular structural components. Along with these
devel opments has been the necessary research into inspection methods for quality control
during production. An important inspection problem is the detection of a brittle layer of
a phase of the titanium alloy, known as alpha case, which can occur at the bondline if air
is present during bonding.

The conventional ultrasonic technigue for the detection of defects in platesis to send an
ultrasonic pulse into the material and then to look for changes either in the transmission
or in the reflection of the signal. In the case of an embedded layer the most sensitive
option is to look at the reflected signal, using a single transducer for both transmission
and reception, positioned so that the signal path is normal to the surface of the plate.
Typically a broadband piezo-€electric transducer with a focused beam and a short duration
pulse excitation is used for this form of inspection. The conventional approach is very
effective for detecting large changes in acoustic impedance such as voids or inclusions
but its sengitivity is limited when the defects are small or their properties are smilar to
those of the plate.

An aternative approach to normal incidence inspection is to consider some form of
ultrasonic wave which propagates along the plate. This is very attractive in principle
because the energy in certain waves travelling along a plate may be concentrated at the
bondline so that the wave propagation properties may be sensitive to the properties at the
bondline. Therefore an inspection method based on plate waves may potentially offer
greater senditivity to an embedded layer of alpha case than normal incidence testing.
However the drawback in devising such an inspection method is that the waves
propagating along a plate are very much more complicated than the bulk waves which
are utilised in conventional normal incidence testing.

- 285-
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The objective of this thesis was to investigate whether such ultrasonic plate waves could
be used for the detection of alpha case, and if so, whether they could offer improved
sensitivity over the conventional normal incidence approach.

A mgor part of the research was the development of a modelling tool to be used to
perform the feasibility studies. A comprehensive modal model was developed for the
prediction of the behaviour of waves propagating along multilayered plates and was
implemented in a computer code.

The theory for the model was developed in two stages, in Chapters 2 and 3. In the first
stage a formulation was derived for free waves, waves which propagate indefinitely
along the plate without losing energy. This class of waves includes, for example, Lamb
waves which exist in elastic plates in vacuum and Stoneley waves which carry energy
along the interface between two different materials. In the second stage the formulation
was extended to include attenuating waves which lose energy as they travel. The energy
may be lost by material damping, when the material is not perfectly elastic, or by leakage
from the plate into the adjacent media. An example of a wave which leaks is a leaky
Lamb wave in a plate which is immersed in water. The development of the theory
concluded with the expression of a characteristic function whose inputs are the physical
description of the multilayered plate, a value of frequency and a value of wavenumber,
and whose result must be zero for a plate wave to exist.

The implementation of the theory into the computer model was described in Chapter 4.
Some of the difficulties of solving the characteristic function were discussed and
systematic numerical procedures were developed. Algorithms were then developed for
the generation of dispersion curves and mode shapes. The dispersion curves describe the
variations of the velocities, frequencies and attenuations of the waves, and the mode
shapes describe the profiles of the displacements and stresses of a wave through the
thickness of the plate. The completed model may be used to predict both free and leaky
wave solutions in plate systems of any numbers of layers of isotropic elastic or
viscoelastic materials.

The validation of the model was addressed in Chapter 5. Examples of the application of
the model were presented and the modal solutions for a number of layered systems were
discussed. Comparisons were also made with known analytical solutions, with solutions
predicted by other models and with experimental measurements. The validation exercise
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demonstrated the versatility and accuracy of the model and its suitability for the research
task.

The acoustic properties of the materials were investigated in Chapter 6. An experimental
study was undertaken in which alpha case was grown on sheets of titanium by exposing
them to air at high temperature. The acoustic properties of both treated and untreated
materials were measured and the variation of the alpha case contamination with depth
from the exposed surfaces was assessed by measuring hardness profiles. It was found
that the longitudinal and shear velocities of bulk waves in the alpha case varied with the
depth but that in all cases they were faster than those in the titanium, typica measured
increases being between 5 and 10 percent. No difference in density could be detected
between alpha case and titanium.

Modd studies of normal incidence reflectivity were made in Chapter 7, in order to
guantify the sendtivity of the conventional inspection technique.  Reflectivity
measurements of defective joints were smulated, using a response model and assuming a
variety of apha case properties and property profiles. The study also included a brief
examination of the reflectivity from arrays of voids at the bondline, voids frequently
accompanying apha case in poor bonds. The investigation was limited to model studies;
unfortunately it was not possible to obtain suitable defective bonded joints for
experimental confirmations.

The first of two plate wave approaches for inspection, the Lamb wave technique, was
assessed in Chapter 8. This method relies on the detection of changes which the
embedded layer may make to the properties of the Lamb waves in the bonded plate.
Dispersion curves were predicted for good joints and for defective joints. The
predictions were used to determine the sensitivity of the Lamb waves to the potentia
defects and to other parameters associated with the joints. This resulted in the
identification of the most sensitive modes which could be used for inspection. The
means of excitation and measurement of Lamb waves were discussed and the Lamb
wave method was assessed by comparison with the conventional normal incidence
ingpection method.

The second plate wave approach, the interface wave technique, was assessed in
Chapter 9. This method relies on the excitation and detection of waves which travel
along the embedded layer, leaking energy into the adherends. Two types of interface
wave are possible in principle: waves which are restricted to a single interface between
the titanium and the alpha case, and waves which occupy the whole of the embedded
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layer. Wave propagation predictions were made for both of these cases and the nature of
the waves was analysed. The sengitivity of the waves to the properties of the embedded
layer and of the adherends was investigated by a parametric study. Methods were
considered for the excitation and measurement of interface waves and their potential for
inspection was discussed.

10.2 Summary of findings

Conventional normal incidence technique

The model studies of normal incidence reflectivity demonstrated that the conventional
ingpection technique performs particularly well when looking for an embedded planar
layer such as a layer of apha case in a diffuson bonded joint. Since both of the
adherends are identical there is no reflection from the bondline of a good joint. Any
reflection from the bondline must therefore be associated with some form of defect, and a
planar layer tends to reflect energy back towards the transducer rather than scattering it in
other directions. Consequently it is possible to detect features with dimensions more
than an order of magnitude smaller than the dominant wavelength of the test signal.

The model predictions for alpha case embedded at the bondline of titanium joints showed
that it should be possible to detect very thin layers of apha case using high frequency
equipment. The lower limit of thickness was predicted to be about 20 microns, using the
highest practicable frequencies of 60-80 MHz, provided that the acoustic velocity of the
alpha case differs from the titanium by at least 5 %. Furthermore, the predictions for
voiding at the bondline of titanium joints indicated that it should be possible to detect
voiding down to about 25 % area fraction. This additional contribution to the reflectivity
is asignificant consideration in practice because of the tendency for voids to be present
in poor bonds along with alpha case.

The strong sensitivity of the normal incidence technique to the presence of aphacaseisa
very positive conclusion from the practical point of view. The thickness of apha case
which can be detected, according to the predictions, is considerably thinner than the layer
which was evident in the very poor bond (the only badly bonded specimen which was
available), and may be associated with relatively low levels of contamination. Of course,
concerning the development of a plate wave inspection technique, the task is particularly
challenging because significant further improvements would have to be demonstrated in
order for the new technique to be viable.
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Lamb wave technique

The Lamb wave modelling study revealed that the disperson curves show some
sensitivity to the presence of a centrally embedded layer of alpha case so that in principle
the inspection of diffusion bonded joints should be possible using this technique.

Unfortunately however, because the Lamb waves occupy the whole of the bonded joint,
the curves are affected by variations in the properties of any part of the joint.
Accordingly, the curves are much more senditive to global parameters such as the
thickness of the joint and the properties of the adherends than they are to the presence of
a very thin layer of alpha case. They are aso insensitive to the profile of the acoustic
properties of the alpha case, depending only on the average properties and the thickness
of the layer, and consequently the method could not be used to characterise the layer.

The practical potential of utilising Lamb waves is further ill-fated by the success of the
conventional normal incidence method. Comparing the two methods, the best sensitivity
which could be achieved using the Lamb wave technique falls far short of that which is
possible using the normal incidence technique. Furthermore, the Lamb wave technique
would be more complicated to implement in practice than the conventional method.

It was therefore concluded that the Lamb wave inspection scheme could work in
principle but its sengitivity to the presence of the embedded layer falls short of normal
incidence testing and it suffers from unwanted sensitivity to other properties of the joint.

I nterface wave technique

The modd studies of the interface wave which travels along the boundary between two
different materials indicated that in general such a wave shows good potential for
nondestructive testing. A single, leaky non-dispersive mode may exist between certain
pairs of materials. It may readily be excited and received and is particularly sensitive to
the properties of the materials in the region of the interface. However it could only be
utilised in embedded layers if its depth of penetration was significantly smaller than the
thickness of the layer. This would require tests to be conducted at extremely high
frequenciesfor very thin layers. Moreover it was found that such an interface wave does
not exist in the specific case of the interface between titanium and alpha case.
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In general, aleaky wave at a single interface may be useful for the inspection of diffusion
bonded joints where the materials of the two adherends are different. In such cases the
conventional normal incidence inspection technique would not be optimal because a
signal would always be reflected from the bondline, even in a good joint, obscuring any
small reflections from defects. However an interface wave may be rather sensitive to the
properties local to the bondline, particularly if the technique exploits the dependence of
the effective depth of the wave on the frequency. Other joints which could potentially be
inspected by such waves are joints in which a relatively thick interface layer is known to
exist but may need to be characterised, such as diffusion brazed joints and adhesive
joints.

The model studies of the interface waves which travel along the embedded layer showed
that there is an infinite family of these waves just as there is with Lamb waves but that
the nature of the modes is substantially different. The dispersion curves bear little
resemblance to the Lamb wave curves and al of the waves leak energy into the
adherends. As anticipated, the dispersion curves are senditive to the properties of the
layer and insensitive to the properties of the adherends, a mgjor attraction compared with
the Lamb wave technique.

Unfortunately the attenuation of the modes is too strong for the remote measurement of
the wave velocities to be considered. The aternative, point reflection measurements
made at the same location as an incident signal, may be used to detect minima either in a
sweep of frequency or in a sweep of the angular position of the transducers. These
minima are associated with the modal properties of the system athough they do not
correspond directly to the frequencies or velocities of propagating waves.

The identification of the minima is an inappropriate method for the detection of the
presence of the layer because minima can only be found by measuring reflections at
adjacent angles or frequencies. If such reflections can be measured then they indicate
directly the presence of the layer and there is no need to find the minima. However the
conditions when minima occur could in principle be used to characterise a layer which is
known to exist. Unfortunately in the current application this approach is unlikely to be
practicable because the frequencies of the minimafor realistic joints are too high.

It is therefore concluded that interface waves offer no practical potentia for the
inspection of alpha case in diffusion bonded titanium.



Chapter 10 291
Conclusions

Possible alter native inspection strategy

Although it has been concluded that the plate wave techniques offer no advantage over
the conventional normal incidence technique, it is possible that a method based on
oblique incidence reflectivity may be worth pursuing.

Such an investigation into oblique incidence response is outside the scope of this thesis.
However one possibility which could be explored is to measure the reflectivity from the
layer using waves in the adherend which are incident on the layer at super-critical angles.
Aninitial study has indicated that this approach may offer strong senstivity to both the
presence and the nature of embedded stiff layers and further investigation is
recommended.
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