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Abstract

Diffusion bonding, the joining of two surfaces by the diffusion of material across the interface, has
the attractions of very high strength and minimal distortion of the components.  Recent
developments of the diffusion bonding process in the aircraft industry has further exploited the
process by the diffusion bonding and superplastic forming of sheets of titanium to create cellular
structural components.  Along with these developments has been the necessary research into
inspection methods for quality control during production.  An important inspection problem is the
detection of a brittle layer of a phase of the titanium alloy which can occur at the bondline if air is
present during bonding.

This thesis presents an evaluation of the potential of using ultrasonic plate waves for the detection
of the presence of such a layer.  The principle is that differences in the acoustic properties of the
layer with respect to the adherends will affect the modal properties of wave propagation along the
joint.  Thus the presence of the layer could be detected by the measurement of a selected
propagating mode.

A theoretical model is developed for the prediction of the modal properties of wave propagation
along a layered plate.  The model is applicable to plate systems of any numbers of layers of
isotropic viscoelastic materials and can describe either free wave propagation or leaky wave
propagation, when the plate is assumed to be immersed in a fluid or solid.  The model predicts
the velocities, frequencies and attenuations of the propagating modes as well as the distributions
of displacements and stresses.

The acoustic properties of the brittle phase are measured and the model is used to predict the
plate wave properties in good and defective joints.  Two approaches are considered, one
involving Lamb waves which occupy the full thickness of the joint and the other involving interface
waves which travel along the brittle layer.  The optimum modes and conditions for testing are
identified and their sensitivities are compared with conventional normal incidence testing.  It is
found that both approaches show some sensitivity in principle to the presence of the layer but it is
concluded that in practice it is not likely that either will offer advantages over normal incidence
testing.
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Nomenclature

a0, a1, a2,... Antisymmetric Lamb modes, subscript refers to mode number
A(L),A(S) Amplitudes of longitudinal and shear waves
{A} vector of wave amplitudes in a layer
b Subscript, denotes bottom of layer
c Wave speed
cph Phase velocity
cgr Group velocity
C? ??C? ??
C2? ??Ci Abbreviation constants (Equation 2.43)
d Layer thickness
[D] Field matrix within a layer (Equation 2.48)
E Young's modulus
f Characteristic function
g? , g? Abbreviation constants (Equation 2.43)
HV Vickers hardness
i ?(-1)

i Interface label in layer model
k Wavenumber
K Effective material stiffness ( = E in plane stress case)
L Wavelength
L Subscript, denotes longitudinal wave
L Longitudinal wave displacement field
[L] Layer matrix (Equation 2.52)

l Layer label in layer model
n Number of layers in multilayered plate
N Unit length propagation vector
s Snell constant
S Subscript, denotes shear wave
S Shear wave displacement field
s0, s1, s2,... Symmetric Lamb modes, subscript refers to mode number
[S] System matrix (Equations 2.54, 2.87)
[S]' System matrix for guided waves using transfer matrix method

(Equations 2.60, 2.63, 2.65)
SED Strain energy density
t Time
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t Subscript, denotes top of layer
u Displacements
x Cartesian coordinate system
1,2,3 Subscripts, denote direction (Figure 2.2)
? Bulk longitudinal wave speed
? Bulk shear wave speed
? Volumetric strain
? Strain
? Helmholtz scalar function
? Wave phase
? Attenuation of plate wave, Nepers per wavelength
???? Lamé's elastic stiffness constants
? '??? ' Viscoelastic material constants
? Poisson's ratio
? Angle of incidence, measured from the normal to the plate
? Density
? Stress
? Frequency (radians/sec)
? Helmholtz vector function
+ Subscript, denotes wave propagating with positive component

in x2 direction
+ Superscript, denotes part of matrix or vector corresponding to + wave

- Subscript, denotes wave propagating with negative component

in x2 direction
- Superscript, denotes part of matrix or vector corresponding to - wave

Bold typeface denotes a vector.
Square brackets [] denote a matrix.
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1.1 Introduction

Diffusion bonding of metals is the joining of two surfaces by the diffusion of material across the

interface.  This is achieved by careful preparation of the surfaces followed by the application of

pressure for a period of time at elevated temperature.  It is a relatively new joining method,

depending heavily on modern production equipment, high quality materials and extensive

research in the development of the process parameters.

A good diffusion bond offers many attractions to the engineer as a joining process.  It can have

the microstructure and mechanical properties of the parent material so that there is no loss of

strength or toughness at the joint.  It involves minimal distortion of the components so that close

tolerances can be ensured.  Loads can be spread evenly over the joint without stress

concentration and there are no significant residual stresses.  Extremely stiff joints can be made

with minimal additional weight.  Large areas of material may be joined in a single process,

reducing the required number of components and manufacturing operations.  Finally,

maintenance costs in many applications can be much lower than for alternative methods

because of reduced needs for routine maintenance inspection.

The attractions of diffusion bonding have not been missed by the industries which are

concerned with high performance safety-critical mechanical components.  In particular, in the

aerospace industry major progress has been made in the diffusion bonding of titanium alloys, as

reported by Stephen (1986), Broomfield (1986) and Partridge (1987).  The technology has

been developed in two categories, 'Massive DB' and 'Thin sheet DB'.  Massive DB involves

the joining of thick section machined parts and is performed under relatively high pressures.  It

has been used for airframe components, including the joining of hollow section components on

the Space Shuttle, and for engine components, including blades for the Rolls Royce RB211-

535 engine for the Boeing 757 aircraft.  Thin sheet DB involves the joining of larger areas and

has been used for panels, for example underwing access panels on the British Aerospace

Airbus A310 aircraft.  A particularly exciting development of thin sheet DB is the combination

of diffusion bonding and superplastic forming which will be discussed further in the next section
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of this chapter.  Current developments in the Aerospace industry include the diffusion bonding

of aluminium alloys and the diffusion bonding of dissimilar metals such as titanium to stainless

steel.

As with the introduction of any new material or manufacturing method, appropriate quality

control and inspection techniques must be developed for diffusion bonds before they can be

used with confidence for safety-critical components.  The requirements for inspection are

strongly dependent on the applications and on the quality control but in general it is necessary

to detect defects of known types above a threshold of size or distribution.  The types of defect

which could occur with a given bonding process have to be characterised and the threshold

size determined from destructive mechanical testing.  Currently the favoured techniques for

nondestructive inspection are ultrasonics and radiography.

Outline of this chapter

A description of the diffusion bonding process is given in Section 1.2, introducing the particular

titanium alloy which was studied in the research programme, the form of diffusion bond of

interest here, and the defects which may potentially occur during bonding.

The conventional method of ultrasonic inspection, normal incidence reflectivity, is introduced in

Section 1.3.  This is the reference technique with which any new method of inspection must be

compared.

The alternative inspection techniques which will be investigated in the thesis rely on waves

which travel along the diffusion bonded joint or along the bondline of the joint.  Much of the

thesis will be concerned with the development of a model which can calculate the properties of

such plate waves and the application of the model to make predictions about the waves in

defective joints.  A general introduction to plate waves is therefore given in Section 1.4

followed by a summary of the proposed plate wave inspection methods, in Section 1.5, and an

introduction to the development of the model, in Section 1.6.

Much literature has been published both on plate waves and on nondestructive testing and, in

order to keep the introductions in Sections 1.2 to 1.6 as readable as possible, a review of the

literature is presented in its own section, Section 1.7, references being kept to a minimum

elsewhere in this chapter.
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The chapter is completed with an outline of the thesis, in Section 1.8, including a statement of

the objectives.

1.2 The diffusion bonding process and potential defects

Good descriptions of the diffusion bonding process for titanium may be found in Partridge

(1987) and Stephen (1986).

Thin sheet diffusion bonding is normally achieved by applying a fairly low pressure to the

components, of just a few MPa, but at a high temperature.  For titanium alloys the bonding

temperature is typically about 950º C, higher than half of their absolute melting point

temperature.  The time necessary to achieve the bond depends strongly on the composition of

the alloy and in particular on the grain size but is typically of the order of one or two hours.

The diffusion bonding process can be described in two stages.  In the first stage, which takes a

relatively short time,  the contacting surface asperities undergo plastic and creep deformations

so that the contact area increases.  The interface then consists of regions of intimate contact

separated by small voids.  This process is sensitive to stress, the creep strain rate for titanium

being described typically by a power law in stress of order 3-4, so that as the contact area

increases the deformation rate diminishes rapidly.  In the second stage, volume diffusion and

grain boundary migration mechanisms take place so that at the end of the process there is

ideally no evidence of the interface.  The grain boundaries at the bondline are no longer planar

and the small voids have been eliminated.

It is sometimes advantageous to use an interlayer of another material between the two

adherends of a joint.  Thin layers of a metal with a relatively low melting point, such as copper-

nickel, may be electroplated or sputtered onto the surfaces of the adherends prior to bonding.

During the bonding the interlayer melts, forming a liquid at the interface and subsequently

diffusing into the adherends.  The principal advantage with this method is that the bond may be

made with much lower pressures and temperatures.  It can also be beneficial for the bonding of

dissimilar metals.  Bonding using an interlayer is usually referred to as 'diffusion brazing', as

distinct from 'diffusion welding' when no interlayer is used.

The research which is reported here addressed the inspection of diffusion bonds of thin sheets

of a particular titanium alloy, joined without an interlayer.  The alloy is the 6 % aluminium 4 %

vanadium (Ti-6Al-4V) which is in widespread use in the aerospace industry.  As produced, it
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is a two-phase alloy consisting of 'alpha' and 'beta' grains, of which the alpha grains are

relatively soft.  The structure has been likened to grains of sand (beta) in a matrix of plasticene

(alpha).  It has been found to be particularly amenable to both diffusion bonding and

superplastic forming.

At temperatures in excess of 800º C the alloy is highly reactive, strongly absorbing both

oxygen and nitrogen.  This is convenient to a certain extent because the thin oxide layer which

is naturally present on the surfaces of the adherends is absorbed and the material is said to be

self-cleaning.  However it is very important that the material does not absorb larger quantities

of oxygen or nitrogen because this can cause embrittlement.  There are two aspects to this

mechanism.  First, the presence of these gases raises the beta transus temperature so that at the

high bonding temperature the beta grains tend to transform to alpha.  This is a softening

process because the alpha is softer than the beta.  Second, the gases cause interstitial locking

of the alpha grains.  Concentrations of locked alpha grains, called 'oxygen/nitrogen stabilised

alpha', 'hard alpha' or 'alpha case' are considerably harder than the parent alloy and are rather

brittle. Consequently the diffusion bonding of titanium is carried out with as little air present as

possible.  This is achieved by evacuation of the bonding press followed by  purging with an

inert gas such as argon.

An exciting development of the use of titanium has been to combine diffusion bonding with

superplastic forming ('SPFDB'), to form a highly structured material, as discussed by Stephen

(1986).  An illustration of the formation of one such structure, an X-braced panel, is shown in

Figure 1.1.  In the example, the process starts with four flat sheets of titanium.  A stop-off

agent which prohibits bonding is printed onto the surfaces of the sheets in a predefined pattern

and the sheets are put together and bonded, as illustrated in Figure 1.1(a).  While maintaining a

high temperature, an inert gas is then injected into the unbonded regions so that the pack of

sheets expands, as illustrated in Figure 1.1(b).  The final shape of the exterior of the structure is

controlled by carrying out the process in a shaped mould.  SPFDB structures can have a

considerable weight advantage over other forms of construction.  Manufacturing and assembly

may also be simplified because of large reductions in the numbers of components.

Clearly the successful production of bonds depends on the careful control of a large number of

parameters, including pressure, temperature, time, quality of material, surface preparation and

cleanliness.  Gross deviations may lead to total failure of the bond or perhaps to localised

'unbonded' regions.  Other consequences may be the embedding of particles of contaminants

or voids at the bondline.  A particularly dangerous possibility however is the formation of a
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brittle layer of alpha case, illustrated in Figure 1.1(c).  This can happen if significant quantities

of air are present during the bonding process.  The surfaces of the sheets absorb the oxygen

and nitrogen strongly as the material is heated, forming a continuous layer of alpha case at the

bondline.  The toughness of the whole joint is therefore reduced.  This thesis is concerned with

the nondestructive detection of the presence of this form of defect.

Figure 1.2 shows a micrograph of a section through a poor diffusion bonded joint where air

has been introduced during the bonding process.  The etching solution which was used for the

section shows the presence of alpha case as a lighter colour than the parent titanium alloy.

Here the alpha case appears to extend approximately 40 microns on each side of the bondline.

A distribution of  very small voids with dimensions of the order of a few microns can also be

seen on the bondline.

1.3 Conventional ultrasonic inspection

The conventional ultrasonic technique for the detection of defects in plates is to send an

ultrasonic pulse into the material and then to look for changes either in the transmitted signal on

the other side of the plate ('through-transmission') or in reflections from the plate on the same

side as the transmitter ('pulse-echo').  The transducers are set up so that the path of the signal

is normal to the surfaces of the plate and in pulse-echo mode a single transducer is then used

for both transmission and reception.  Typically a broadband piezo-electric transducer with a

focused beam and a short duration pulse excitation is used for this form of inspection.

Pulse-echo inspection is usually preferred when the aim is to detect planar defects or planar

arrays of defects from which the direction of any reflected energy is predominantly towards the

single receiver.  The detection of an embedded layer of alpha case clearly falls into this

category.  Also, pulse-echo inspection requires access to only one side of the component.

Through-transmission inspection is attractive when random scattering mechanisms are involved,

for example due to grain boundaries.  In such cases little energy is reflected back to the

transmitting transducer but the transmitted signal may be affected significantly.

Figure 1.3 illustrates the pulse-echo inspection of a plate in which there is an embedded

'defect'.  Part (a) of the figure shows the defective joint and identifies schematically the

reflections from each of the interfaces of the joint.  Part (b) shows the time trace which may be

seen on an oscilloscope when the joint is inspected.  The data has been simulated for the

illustration.  In this example the defect could be a continuous layer of alpha case embedded at
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the bondline of a diffusion bonded joint, the thickness being exaggerated somewhat for the

illustration.  In general the defect may be any continuous or localised material with surfaces

parallel to the plane of the plate.  The key feature is that it must have different acoustic

properties from the remainder of the plate.  The system is immersed in water in order to

provide good acoustic coupling between the transducer and the plate.

Each time the pulse is incident on an interface at which there is a change in acoustic impedance,

a partial reflection takes place and returns to the transducer.  The first three reflections, labelled

R1, R2 and R3 in Figure 1.3(a), can be seen in the typical time trace in Figure 1.3(b).

Subsequently an infinite series of diminishing reflections will be received as the pulse

reverberates in the plate.  The presence or absence of the defect can be determined simply by

using an electronic gate, portrayed as a dashed line in the figure, to limit the monitoring of

reflections to the time period when the first reflection would return from the bondline.  If any

reflection can be detected within the gate then some change of acoustic impedance is inferred

at the bondline.

The normal incidence pulse-echo technique is very effective for detecting large changes in

acoustic impedance such as voids or inclusions and it has the strong attraction of ease of

application.  The results of one such case are shown in a C-scan image in Figure 1.4.  This

shows the amplitude of the reflected pulse from the bondline, plotted over the area of a very

poor diffusion bonded plate.  Large regions of the plate were not bonded in this case and they

can be identified by the strong reflections (black in the image).  The plate consisted of two

sheets of titanium, each 4 mm in thickness.  The scan was performed using a broadband

transducer with a 10 MHz centre frequency, focused on the bondline.

Unfortunately the effectiveness of normal incidence inspection is limited when the defects are

small or their properties are similar to those of the plate, in which cases the amplitudes of the

reflections are small.  Embedded layers of alpha case fall into both categories.  It is desirable to

be able to detect alpha case with thickness down to some tens of microns yet its acoustic

impedance does not differ significantly from that of titanium.
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1.4 Introduction to plate waves

An alternative approach to normal incidence inspection is to consider some form of ultrasonic

wave which propagates along the plate.  This is very attractive in principle because the energy

in certain waves travelling along a plate may be concentrated at the bondline so that the wave

propagation properties may be sensitive to the properties at the bondline.  An inspection

method based on plate waves may therefore offer greater sensitivity to defects than normal

incidence testing in some circumstances.  However the drawback in devising such an inspection

method is that the waves propagating along a plate are very much more complicated than the

bulk waves which are utilised in normal incidence testing.

Two waves may travel in an infinite elastic solid medium, a compression wave and a shear

wave (the 'bulk waves').  Each may travel in any direction but at a fixed speed which is

independent of frequency and is given by the physical properties of the medium.  These wave

properties are analogous to the natural frequencies of a vibrating structure and are the modal

properties of the system.  In practice the modal properties are exploited in all types of

ultrasonic testing because they describe the transfer of energy by 'longitudinal' or 'shear' wave

from one location to another when a signal is transmitted.  The fact that they are properly only

modal solutions for an infinite space is not a problem.  The received signal is usually gated so

that unwanted reflections from boundaries are neglected, thus simulating an infinite space.

If an interface is introduced into the medium then the modal properties are changed

dramatically.  The simplest case is that of a free surface when the elastic medium extends to

infinity from one side of the interface and the other side is vacuum.  Now only one wave, the

Rayleigh wave, exists as a modal property and it can only travel along the surface at a constant

speed, independent of frequency.  If the second side is not vacuum but another medium then it

may still be possible for a wave to travel along the interface.  The nature of this interface wave

depends on the acoustic properties of the two media; it may carry all its energy along the

interface (the Stoneley wave) or it may leak energy into the half-spaces as it travels.

As a third step another, parallel, interface can be introduced.  This provides the physical

description for a plate with a top and bottom surface which extends infinitely in width.  If the

two half-spaces are vacuum then the modal properties of the plate are the Lamb waves.

Figure 1.5 shows a plot of the velocities of the first two Lamb wave modes for a 1 mm thick

titanium plate.  These waves are clearly dispersive, that is to say their velocities vary with
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frequency, and the plots are usually referred to as dispersion curves.  Inset on the figure are

illustrations showing the deformation shapes of the waves.  At low frequency the two waves

can easily be understood as extensional and bending waves travelling along the plate.  The

deformation of the plate is symmetric about the centre line of the plate for the extensional wave

and antisymmetric for the bending wave.  Accordingly the labels s0 and a0 denote them as the

zero order symmetric and antisymmetric waves.  As the frequency is increased the wavelength

of the waves reduces in comparison to the thickness of the plate and the energy is concentrated

increasingly near the surfaces of the plate.  At very high frequency the two curves converge

towards the Rayleigh wave speed, the limiting solution at infinite frequency being two

independent Rayleigh waves, one travelling on each surface of the plate.

In fact there is an infinite number of Lamb wave modes in a plate.  There are also families of

modal solutions for other plate systems, including for multilayered plates in vacuum and for

plates which are immersed in a fluid or embedded in a solid.  Further discussion and a variety

of examples will be given in Chapter 5.  In the meantime it will be useful to introduce some of

the terms which are used to classify plate waves:

Free waves.  This description covers all solutions in which the wave propagates indefinitely

without loss of energy.  A Rayleigh wave, which travels along the surface of a semi-infinite

elastic half-space adjacent to a half-space of vacuum is a free wave.  Lamb waves, which are

the whole family of modal solutions for a single layer of elastic material in a vacuum, are also

free waves.  In practice the modal solutions for the velocities of free waves are usually very

reasonable approximations when the surrounding medium is not a vacuum but has a relatively

low acoustic impedance.  This is the case for example when a metal plate is immersed in water.

Note however that the influence of water can be significant when the acoustic impedance of the

plate is low, as is the case with carbon reinforced composites.

Leaky waves.  Waves which leak energy from the plate into the adjoining media are termed

leaky waves.  Plate waves can only leak energy if at least one of the half-spaces is a solid or

liquid and the velocity of the wave is higher than a certain threshold.  For example a leaky

Rayleigh wave can travel along the surface of a semi-infinite elastic half-space which is adjacent

to a half-space of water.  Similarly a leaky Lamb wave can propagate in a plate which is

immersed in water.  In both cases the wave leaks energy into the water.  In practice any form

of testing with fluid or solid coupling relies on the waves being leaky.  Strict (free) Rayleigh or

Lamb modes could only be excited or detected by non-contact methods such as electro-

magnetic systems.
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Guided waves.  The term guided waves describes free waves which travel along plates or

layers of plates without leakage of energy into adjacent  non-vacuum layers.  For example a

guided wave may travel along a soft layer (low values of longitudinal and shear bulk velocities)

which is sandwiched between two hard layers, such as in an adhesive joint, without leaking

energy into the hard layers.

Surface waves.  Surface waves travel along the surface of a plate and may be free or leaky.

The best known surface wave is the Rayleigh wave.  The majority of the energy of the wave is

confined to a depth of approximately two wavelengths in the solid medium and there is no

energy leakage away from the surface into the solid half-space.  The wave is also non-

dispersive; its velocity is constant for all frequencies.  Surface waves can exist with other

geometries.  For a soft layer on top of a hard half-space a dispersive surface wave can exist,

its velocity decreasing with frequency.  Again, no energy is lost through leakage as the wave

propagates.  If the surface layer is harder than the half-space then a dispersive wave can exist

for which the velocity increases with frequency and, at its higher velocities, energy can leak into

the half-space.

Interface waves.  Interface waves can exist at the boundary between two different media.

The best known example of an interface wave is the Stoneley wave which can be considered

as a generalisation of the Rayleigh wave, where both half-spaces are solids rather than one

being solid and the other vacuum.  The Stoneley wave is a free wave, the energy being retained

at the interface without leakage into either half-space.  The Stoneley wave can only exist for

certain combinations of properties of the two media.  For other combinations a leaky Stoneley

wave may propagate, in which energy leaks into one or both of the half-spaces.  Waves which

travel along very thin interface layers may also be termed interface waves.

1.5 Approaches for inspection using plate waves

Two plate wave approaches have been identified as possible techniques for inspecting diffusion

bonded joints for embedded layers of alpha case.  The feasibility of each approach will be

examined separately in the thesis.  They will be referred to respectively as the Lamb wave

technique and the interface wave technique.
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The first idea is to exploit any changes which the layer may make to the properties of the Lamb

waves.  For example if the velocity of a particular Lamb wave is altered by the presence of the

layer then a testing system could be based on detecting a change in the velocity of this wave.

Figure 1.6(a) shows one experimental arrangement which is used for the excitation and

reception of Lamb waves.  Water is used in this arrangement for acoustic coupling between the

transducers and the plate.  The transmitted signal may be used to excite waves in the plate with

a particular velocity by the choice of the angle of incidence of the transducer.  The frequency of

excitation may also be chosen to preferentially excite waves at particular frequencies.  Thus by

choosing the angle of incidence and the frequency it is possible to target the energy on a

particular location on the Lamb wave dispersion diagram.

Precise measurements of the velocity of a Lamb wave may be made either by receiving the

wave at some distance from the transmitter or by detecting the fact that a wave has been

excited, by employing a point measurement technique at the excitation location (Mal, Xu and

Bar-Cohen (1989)).  In either case the measurement relies on the detection of leaking or

reflected energy returning from the plate to the receiving transducer.

The second plate wave idea is to consider an interface wave which travels within the

embedded layer.  This idea is illustrated in Figure 1.6(b).  The transmitting transducer is angled

such that the refracted wave within the top adherend arrives at the layer at the appropriate

angle to excite a particular wave in the layer.  The wave propagates along the layer, leaking

energy back into the adherends as it travels.  A receiving transducer is used to detect the wave,

again either by detecting some of the leaking energy at an appropriate location downstream or

by detecting the fact that a wave has been excited at the excitation point.  The presence of an

embedded layer is demonstrated if the interface wave can be excited and it may be possible to

characterise the layer from the properties of the wave.

1.6 Development of model

Both of the methods discussed above require careful examination of the modal properties of

good and bad bonds in order to select the best testing conditions.  Some modes will inevitably

be much more sensitive to the presence of an embedded layer than others and it is essential

that such characteristics are investigated carefully if the methods are to be assessed favourably.
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The Lamb waves for a single layer of material in vacuum are well known but general solutions

are not available for a three layer system in vacuum, which would be required for the first

method, or for a layer surrounded by another material, which would be required for the second

method.  A major part of the research programme has therefore been to develop a

comprehensive modelling tool for calculating the modal properties of these systems.

The model is general in its capabilities.  It can be used on plate systems of any numbers of

layers of different materials and thicknesses, the only limitation being that the interfaces must all

be parallel so that each layer is of uniform thickness throughout its width.  The layers may be

solid or liquid and their properties may be elastic or visco-elastic, so that material damping may

be taken into account if required.  The plate system may be in vacuum so that propagating

waves in elastic materials travel indefinitely without leaking any energy.  Alternatively the

system may be 'immersed' in a liquid or in a solid so that energy may leak into the half-spaces

causing the wave to decay as it travels.  In all cases plane strain is assumed, being the best two

dimensional representation of a wide wavefront.

The model calculates the dispersion curves for the layer system and displays them in a number

of ways.  Primarily the phase velocity curves can be plotted.  Alternatively plots may be made

of group velocity, coincidence angle, real wavenumber or attenuation versus frequency.  The

group velocity differs from the phase velocity in that it describes the velocity at which energy is

transported rather than the velocity of wave crests - there is a difference between these

velocities when the wave is dispersive, which will be discussed in Chapter 5.  The coincidence

angle is the angle of incidence of a bulk wave in a coupling medium being used to excite the

wave, as introduced in the previous section.  The real wavenumber is simply the reciprocal of

the wavelength.  The attenuation is the decay of the wave due either to leakage of energy into

the half-spaces or to damping losses in viscoelastic materials.  It is expressed as an exponential

decay per unit distance or per wavelength along the plate.

The model also calculates the field distributions through the thickness of the layers, the mode

shapes.  Plots may be made of the distributions of all of the displacement and stress

components and of the strain energy density which gives an indication of the distribution of the

energy of the wave.

The model was implemented on a microcomputer and was validated against a number of cases

of published solutions and experimental measurements.
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1.7 Historical background

Materials and diffusion bonding

The diffusion bonding of titanium alloys is a relatively new joining process, having been under

development for the last twenty years or so and in use for some components for around ten

years.  In the UK. the major progress has been made by British Aerospace plc and by Rolls

Royce plc.  Discussions about their bonding methods and applications have been published by

Stephen (1986) and Broomfield (1986).  An excellent review of the bonding process has also

been presented by Partridge (1987), including a wide survey of the literature.  All three of

these authors include some discussion about the metallurgy of the material.  Good background

information can also be found in the metallographic summary published by the RMI Company

(1981).

The mechanisms for the development of alpha case, when the material is exposed to oxygen or

nitrogen at high temperature, are well known by the metallurgists.  It is also understood from

the microscopic point of view that saturated alpha case is likely to be somewhat stiffer than the

raw alloy.  Relatively little has been published however on the actual measurement of the

acoustic properties of realistic concentrations of alpha case or on the nature of its distribution

near an exposed surface.  The major evidence comes from the researchers at Iowa State

University who have measured some acoustic velocities (Thompson, Margetan, Rose and

Batra (1992), Brasche, Margetan and Thompson (1992)) with an interest in developing

inspection methods for the detection of discrete inclusions of alpha case embedded in titanium.

They have also investigated the changes to the attenuation and backscattering of bulk waves

due to the microstructural changes which occur when titanium is converted to alpha case,

publishing a number of papers.  See Thompson et al. (1992) and Margetan and Thompson

(1992) for example.

NDT of diffusion bonds

The vast majority of research on the NDT of diffusion bonds has addressed the detection of

voids or inclusions at the bondlines of joints.  Fundamental work was reported by Baik and

Thompson (1984) and Angel and Achenbach (1985) who developed equivalent static spring

models for the interfaces of joints in which there is assumed to be an array of penny-shaped

cracks.  Their models were developed to determine the reflection of ultrasound at normal

incidence from the bondline when the wavelength is large in comparison with the crack size.
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Further developments have included the consideration of the resonant phenomena which can

occur when the wavelength of the ultrasonic signal is similar to the dimensions of the crack

(Rose (1990) for example), thus extending the applicability of the model to higher frequencies.

The aim in these developments was to be able to determine crack sizes and distributions from

measurements of reflection and transmission.  A number of successful applications of these

models have been reported, for example by Palmer, Rehbein, Smith and Buck (1988) and

Margetan, Thompson, Gray and Rose (1990).

Two other approaches for the NDT of diffusion bonds should be mentioned.  The first is the

idea that it may be possible to correlate the quality of diffusion bonds with the attenuation of

ultrasonic signals, attenuation at high frequencies being affected by grain structure.  This

approach was proposed by Rose (1989) who demonstrated that it has some potential in

general (using IN-100 material).  The second approach is the investigation of diffusion bonds

using acoustic microscopes, reported for example by Weglein (1988) and Bond, Som, Shiloh

and Taylor (1990).  At present this work is limited to the examination of sections which have

been cut through diffusion bonds, using surface waves.

Theory of plate waves

The earliest theory for the modal properties of multilayered media was Lord Rayleigh's

derivation (1887) for waves travelling along the free surface of a semi-infinite elastic half-space.

The derivation yields a third order expression whose roots determine the velocity of the

propagating surface wave.  A generalisation of the single interface problem was developed by

Stoneley (1924) to describe waves travelling along the interface between two different elastic

solids without leakage into the half-spaces.  An examination of the ranges of existence of free

wave solutions for these two wave equations has been conducted by Scholte (1947).  An

examination of leaky wave solutions was published by Pilant (1972).

Lamb (1917) added another interface to introduce the notion of a flat layer of finite thickness.

His derivation was for plates in vacuum and the roots of his two equations (one for symmetric

modes and one for antisymmetric modes)  yield the well known Lamb wave dispersion curves.

Love (1911) showed that transverse modes were also possible in layers of finite thickness.  His

modes involve shearing motion in the plane of the layer.  Note that this mode of deformation is

outside the scope of the model which is developed here.
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The derivation of equations for wave propagation in media consisting of arbitrary numbers of

flat layers was started by Thomson (1950).  He introduced a transfer matrix which described

the displacements and stresses at the bottom of a layer with respect to those at the top of the

layer.  The matrices for any number of layers could be multiplied and modal or response

solutions could then be found by application of the appropriate boundary conditions.  A small

error in his derivation was corrected by Haskell (1953).  The theory was developed

specifically for seismological applications where interest was in surface waves on media

consisting of multiple different rock layers.

Following Thomson's work, and aided by the availability of digital computers, there was an

increase in investigations into the modelling of wave propagation in multilayered media, almost

entirely for seismological applications.  A number of papers over a long period of time have

addressed the practicalities of solving the response equations or modal equations by computer

with minimum loss of precision and maximum efficiency, for example Press, Harkrider and

Seafeldt (1961), Knopoff (1964), Dunkin (1965), Randall (1967), Schwab and Knopoff

(1972), Abo-Zena (1979).  The most important problem is the loss of precision in the solution

when layers of large thickness are present and high frequencies are being considered.  Of

particular note in this context is the introduction in Knopoff's paper (1964) of a global matrix

for the full system instead of transfer matrices.  A further improvement to the stability of the

global matrix method was subsequently made by Schmidt and Jensen (1985) and Pialucha

(1992), with which the problem of loss of precision has effectively been eradicated.

The majority of developments have been confined to systems of equations whose modal

solutions describe free wave propagation only.  However Gilbert (1964) considered the

problem of modelling leaky waves and developed a theory based on complex frequency and

real wavenumber which could describe the decay of propagating waves along the layer system.

Alsop (1970) and Watson (1972) considered alternatively the possibility of assuming real

frequency and complex wavenumber and concluded that either approach could be adopted,

the more appropriate choice being based on the application in mind.

Furthermore the majority of applications of the multilayered plate theory have been to response

models, in which case the solution of the equations is straightforward.  Modal solution is more

difficult, and is particularly challenging for attenuating waves.  Very little has been published on

methods of modal solution of attenuating waves, although clearly a number of researchers have

developed modelling tools which are capable of predicting at least some cases of dispersion

curves for attenuating waves.  One approach utilised in the NDT community has been to
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calculate dispersion curves by identifying minima in the reflection coefficient response.  For

example Mal, Xu and Bar-Cohen (1989) and (1990) used this approach to calculate the

dispersion curves for leaky Lamb waves in plates in water.  Whereas this is a reasonable

approximation for mildly leaking waves, Chimenti and Rokhlin (1990) and Nagy and Adler

(1989) have pointed out that the minima of the reflection coefficient do not correspond to the

modal solution for leaky waves, and that the differences may be large when the leakage is

strong.  Nagy and Adler (1989) provided solutions for leaky waves for a layer of adhesive

embedded in aluminium half-spaces, commenting on the difficulty of the solution.  A number of

authors have also published solutions for other specific cases of layered media.  For example

Chimenti, Nayfeh and Butler (1982) presented a modal analysis for leaky surface waves on a

thin layer on a half-space and Kushibiki, Ishikawa and Chubachi (1990) presented solutions of

the equations for leaky Sezawa waves.

Application of plate waves to NDT

In recent years considerable work has been done on the application of plate waves outside the

field of seismology, principally for non-destructive testing.

A popular topic has been the application of Lamb waves for the inspection and

characterisation of single layers of material.  Worlton (1957) proposed the use of Lamb waves

for the detection of defects in metal plates, identifying in particular the detection of internal

laminar flaws lying parallel to the surface of a plate.  Subsequently Frederick and Worlton

(1962) proposed the use of Lamb waves for the measurement of the thickness of plates.  Since

then a wide range of applications has been reported, covering many industries, including such

diverse applications as the on-line monitoring of the quality of paper in paper mills (Habeger,

Mann and Baum (1979)) and the sizing of spot welds (Bendec, Peretz and Rokhlin (1984)).

A review of Lamb wave applications may be found in Alleyne's thesis (1991) which is on the

use of Lamb waves for the long range detection of flaws in plates.

Lamb waves have also been proposed for the inspection of multilayered media, in particular

adhesive joints and composite materials.  For example Bar-Cohen and Mal (1990) and Mal,

Xu and Bar-Cohen (1989 and 1990) suggested using Lamb waves for the measurement of the

cohesive properties of adhesively bonded aluminium.  Dewen, Lowe and Cawley (1992)

subsequently investigated the sensitivity of Lamb waves to the properties of the adhesive and to

other parameters of the joints.  The delamination of layered media may also be detected using
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Lamb waves.  An investigation of the inspection of composite plates for delamination has been

reported by Guo and Cawley (1992).

A number of investigators have studied surface waves in thin surface layers on half-spaces,

with a view to developing systems for measuring the layer thickness and its material properties.

Some examples of generic studies may be found in Adler & Sun (1971), Nayfeh, Chimenti,

Adler and Crane (1981), and Rose, Nayfeh, and Pilarski (1990).  In practice the measurement

could be achieved on a small scale by measuring the surface wave velocity with a line-focus

acoustic microscope, as suggested for example by Kushibiki, Ishikawa, and Chubachi (1990).

The use of surface waves for the detection of delamination of the thin layer from the half-space

has been addressed by Mal and Kundu (1987) and Adler, de Billy and Quentin (1990).

Investigations have also been undertaken on utilising leaky, interface and guided wave

propagation in internal layers in a solid for nondestructive testing.  Rokhlin, Hefets and Rosen

(1980,1981) and Rokhlin (1986) demonstrated that a guided wave travelling along a layer of

adhesive between two half-space adherends may be used to determine the material properties

of the adhesive (the cohesion properties).  Lee and Corbly (1977), Claus and Kline (1979),

Kumar (1983) and Pilarski (1985) investigated the use of an interface wave travelling along the

boundary between two materials for the determination of the properties of the boundary.  In

the case of an adhesive joint this approach would address the very difficult problem of

determining the quality of the interface between the adhesive and the adherend (the adhesion

properties).  Nagy and Adler (1989) and Nagy, Rypien and Adler (1990) proposed the use of

a leaky wave in the adhesive to detect both poor cohesion and poor adhesion.

1.8 Outline of thesis

This thesis presents an investigation into the potential of using ultrasonic plate waves for the

inspection of diffusion bonded titanium joints.  The aim of the inspection is to detect the

presence of a layer of the oxygen-rich brittle phase of titanium, alpha case, at the bondline of

the joint.  The principle is that differences in the acoustic properties of the layer with respect to

the adherends will affect the modal properties of wave propagation along the joint.  Thus the

presence of the layer could be detected by the measurement of a selected propagating mode.

The objective of the thesis is to assess the feasibility of using plate waves for the detection and

characterisation of the layer and to determine whether they can offer any advantages over the

conventional ultrasonic technique, the measurement of normal incidence reflectivity.
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The development of the modal theory for free wave propagation is presented in Chapter 2.

The chapter starts with the derivation of the equation of motion for isotropic materials and

concludes with the description of a solution which satisfies both the equation of motion and the

boundary conditions imposed by the interfaces between the layers.  The solution is in the form

of a characteristic function which must yield zero for a modal solution.

In Chapter 3 the modal theory is extended to include the possibility of the propagation of

attenuating waves along the layer system.  This enables the model to include material damping

and the leakage of energy from the plate into the half-spaces.  This chapter is written as a

generalisation of the free wave theory of Chapter 2.

Chapter 4 covers the implementation of the theory into a computer model for the calculation of

dispersion curves and mode shapes.  Some of the difficulties of solving the characteristic

function are discussed and systematic numerical procedures are developed.  Algorithms for the

generation of the dispersion curves and for the calculation of mode shapes are described.

The validation of the model is described in Chapter 5.  Examples of the application of the

model are presented and the modal solutions for a number of layered systems are discussed.

Comparisons are also made with known analytical solutions, with solutions predicted by other

models and with experimental measurements.

The properties of the materials are investigated in Chapter 6.  An experimental study is

reported in which alpha case was grown on sheets of titanium by exposing them in air at high

temperature and the acoustic properties of both treated and untreated materials were

measured.  The variation of the alpha case contamination with depth from the exposed surfaces

was also investigated by measuring hardness profiles.

Chapter 7 summarises a model study which was made in order to determine the limits of the

detectability of defects using conventional normal incidence inspection.  Normal incidence

reflection measurements were simulated, assuming a variety of alpha case properties and

property profiles.  The study also includes a brief examination of the reflectivity from arrays of

voids at the bondline, voids frequently accompanying alpha case in poor bonds.

The first plate wave approach for inspection, the Lamb wave technique, is assessed in Chapter

8.  Model studies are used to determine the sensitivity of the Lamb waves to defects and to

other parameters associated with the joints.  The excitation and measurement of  Lamb waves



Chapter 1 32

Background

is discussed and the method is assessed in the light of the detectability which can be achieved

currently using the conventional ultrasonic inspection method.

The interface wave technique is assessed in Chapter 9.  Two types of interface wave are

considered: waves which travel along a single interface between two materials and waves

which travel along an embedded layer.  Dispersion curves are calculated and the nature of the

waves is analysed.  Methods are assessed for the excitation and measurement of interface

waves and their potential for inspection is discussed.

The main conclusions of the thesis are presented in Chapter 10.
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Figure 1.1 X-braced structure formed by diffusion bonding and superplastic forming

Brittle layerVoids

(a) Flat sheets diffusion bonded in predefined pattern

(b) Bonded pack expanded by gas pressure

(c) Potential bond defects
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Figure 1.2 Micrograph of poor diffusion bonded joint
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Conventional ultrasonic pulse-echo inspectionFigure 1.3
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Figure 1.4 C-scan of unbonded regions in very poor diffusion bonded joint

Black = strong reflection from bondline
White = no reflection from bondline 10 µm
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Figure 1.6 Excitation and detection of plate waves
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Free wave propagation along a multilayered plate
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2.1 Introduction

A modal theory for free wave propagation in a multilayered medium is described in this

chapter. This theory, together with the theory for attenuating wave propagation in

Chapter 3, forms the basis for the predictive model which was used for the feasibility

studies. The implementation of the theories into the computer model will be described in

Chapter 4.

A free propagating wave is defined as one which travels indefinitely without change of

amplitude, without input of energy and without loss of energy. Free wave propagation in

multilayered plates is therefore necessarily limited to elastic materials without material

damping which would attenuate the waves. It is also limited to waves which do not leak

energy into the surrounding media.

The multilayered medium considered here is a plate system consisting of an arbitrary

number of perfectly flat layers, stacked together. Each layer is an isotropic material,

with a given uniform finite thickness and each is connected rigidly to the layer below and

the layer above, as illustrated in Figure 2.1. Above and below the plate system are semi-

infinite half-spaces of elastic material or vacuum. The system is assumed to be infinite in

all horizontal directions.

A modal solution for wave propagation in multilayered plates is a frequency domain

solution for conditions under which waves may propagate along the plate. Just as bulk

waves can only propagate in an infinite medium at two velocities, either longitudinal or

shear, waves can only propagate along a multilayered plate under certain conditions.

These conditions are in general frequency dependent so that solutions are described, not

just by velocity, but by combinations of frequency and velocity. A modal solution for

wave propagation states that a wave may travel with a particular frequency and velocity.

The solution is a two-dimensional eigensolution for the system, where the frequency and

velocity are an eigenvalue pair.



Chapter 2 40

Free wave propagation along a multilayered plate

Overview

The approach which is taken here is to build a modal description of free wave

propagation in a multilayered plate by the superposition of modal solutions for bulk wave

propagation in each layer and the application of suitable boundary conditions at the

interfaces between the layers. If all possible modal solutions are known for infinite

media then it is possible to construct all possible solutions in the multilayered plate by

their superposition in appropriate proportions.

The first task is to obtain solutions for bulk wave propagation in infinite media. It is

shown that exactly two such waves can exist in an elastic isotropic medium, a

'longitudinal' wave in which motion consists of change of volume of the material and a

'shear' wave in which motion consists of distortion of the material by displacement

normal to the direction of motion of the wave without change of volume. These two

types of wave are the eigensolutions for an infinite medium and each has its

characteristic propagation speed governed by the two elastic material constants and the

density. In an infinite medium only these two types of 'bulk' wave can propagate in any

direction.

Next, the general examination of wave propagation in an infinite medium is reduced to

the special case of a two-dimensional infinite space in which plane strain and in-plane

motion only are considered. The bulk waves are therefore restricted to those which

propagate in directions lying in the plane and whose particle motion is also entirely in the

plane. For these waves there is no variation of any field variables in the direction normal

to the plane and so any plate wave which is described by their superposition will also

have these properties. Particle displacements and stresses are derived for these waves.

The interaction of bulk waves with an interface is then examined. The theory is

developed for the case of two semi-infinite media which meet at an infinitely long

straight interface. In general four bulk waves can exist on each side of the interface, a

longitudinal and a shear wave arriving and a longitudinal and a shear wave leaving.

However there are four boundary conditions of displacements and stresses which must be

satisfied at the interface in order that combinations of these bulk waves can exist as

eigensolutions of the two-media system. This places the restrictions on the bulk waves

that they must have the same frequency and the same wavenumber in the direction

parallel to the interface. They therefore have the same velocity component in this

direction, as will any wave which is described by the superposition of these waves. It is



Chapter 2 41

Free wave propagation along a multilayered plate

also shown that, in order to satisfy these conditions in some circumstances,

inhomogeneous longitudinal and shear waves can exist, propagating without diminishing

along the interface but decaying in the direction normal to the interface.

Finally the analysis is extended to a multilayered plate by the consideration of a sequence

of these interfaces, parallel to each other and spaced apart according to the layer

thicknesses. An eigensolution will exist for wave propagation along this system when

the interface boundary conditions are satisfied simultaneously at all of the interfaces.

This means that for given geometry and material properties, suitable values of frequency

and wavenumber (or wavelength or velocity) have to be found. Two different strategies

are developed for the solution, each concluding with the definition of a characteristic

function whose result must be zero for a modal solution to exist.

2.2 Plane waves in an infinite elastic medium

The development of the equations of motion for an infinite elastic solid has been covered

in many texts (see Brekhovskikh and Goncharov, 1985, for example). The usual

approach, presented here, is to start with an infinitesimal cubic element in an infinite

elastic isotropic medium of density ρ. A Cartesian system is adopted, here with

displacements u1,u2 and u3 in directions x1,x2 and x3 respectively. By application of

Newton's second law, equilibrium requires that:

Equilibrium:

ρ
∂2u1
∂t2

=
∂σ11
∂x1

+
∂σ12
∂x2

+
∂σ13
∂x3

ρ
∂2u2
∂t2

=
∂σ21
∂x1

+
∂σ22
∂x2

+
∂σ23
∂x3

ρ
∂2u3
∂t2

=
∂σ31
∂x1

+
∂σ32
∂x2

+
∂σ33
∂x3

(2.1)

where σ11,12 etc. are the stress components acting on the faces of the cube and t is time.

These are the fundamental stress equations of motion for the medium. It will be more

convenient if they are expressed in terms of displacements, by substituting the stress-

strain and the strain-displacement equations:
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Stress-strain:

σ11 = λ∆+2µε11 , σ22 = λ∆+2µε22 , σ33 = λ∆+2µε33

σ12 = µε12 , σ23= µε23, σ13 = µε13 (2.2)

where λ and µ are Lamé's elastic stiffness constants and ∆ = ε11 + ε22 + ε33 is the

change in volume (dilatation) of the element. λ and µ are related to Young's modulus

(E) and Poisson's ratio (ν) by the expressions:

λ =
Eν

(1+ν)(1-2ν)

µ =
E

2(1+ν)

E =
µ

(λ+µ)
(3λ+2µ)

ν =
λ

2(λ+µ)
(2.3)

Strain-displacement:

ε11 =
∂u1
∂x1

, ε22 =
∂u2
∂x2

, ε33 =
∂u3
∂x3

ε12 =
∂u1
∂x2

+
∂u2
∂x1

, ε23 =
∂u2
∂x3

+
∂u3
∂x2

, ε13 =
∂u1
∂x3

+
∂u3
∂x1

(2.4)

Substitution yields the displacement equations of motion:

ρ
∂2u1
∂t2

= (λ + µ)
∂

∂x1
(
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

) + µ∇2u1

ρ
∂2u2
∂t2

= (λ + µ)
∂

∂x2
(
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

) + µ∇2u2

ρ
∂2u3
∂t2

= (λ + µ)
∂

∂x3
(
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

) + µ∇2u3 (2.5)
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where ∇2 is the operator (
∂2

∂x12 +
∂2

∂x22 +
∂2

∂x32 ).

These equations cannot be integrated directly. Therefore for any application, a form of

solution must be assumed and checked for suitability by differentiation and substitution.

Here it is assumed that the wavefront is an infinite plane which is normal to the direction

of propagation, as illustrated in Figure 2.2. It is also assumed that, at any position in the

propagation direction and at any instant in time, all displacements are uniform over the

plane of the wavefront (this defines a homogeneous wave). Since the medium is

isotropic it is only necessary to consider a wave travelling parallel to the x1 axis without

loss of generality. Thus the wave is infinite and unchanging in the x2 and x3 directions

and all variations are in the x1 direction only. In this case a solution of the following

form may be assumed:

u1,u2,u3 = A ei(2πx1/L - ωt) + B ei(2πx1/L + ωt) (2.6)

where A and B are constants, L is the wavelength and ω is the frequency in radians per

second. By recognising that velocity, c, is the product of frequency (in Hz) and

wavelength, the solution can also be expressed in the form:

u1,u2,u3 = A eiω(x1/c - t) + B eiω(x1/c + t) (2.7)

or in terms of the wavenumber, k = ω/c, in the form:

u1,u2,u3 = A ei(kx1 - ωt) + B ei(kx1 + ωt) (2.8)

In each case the first term represents a harmonic wave travelling with amplitude A in the

positive x1 direction and the second term represents a wave of amplitude B travelling in

the opposite direction. The particle motion of the wave need not necessarily be parallel

to the direction of propagation and is in general some combination of u1,u2,u3.

Differentiation of (2.6), (2.7) or (2.8) and substitution into (2.5) yields two possible

expressions for the speed c,
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c =
ωL
2π =

ω
k = (

λ+2µ
ρ )1/2 = (

E(1-ν)
ρ(1+ν)(1-2ν)

)1/2 = α , say

c =
ωL
2π =

ω
k = (

µ
ρ )1/2 = (

E
2ρ(1+ν)

)1/2 = β , say (2.9)

The first solution requires that the particle motion is entirely in the direction of

propagation. In this case the wave motion consists of change of volume of the medium

only (dilatation). The second solution requires that the motion is normal to the direction

of propagation and the motion consists of rotation of the medium without change of

volume.

Thus two types of homogeneous plane wave may travel through the medium in any

direction, dilatational waves with speed α and rotational waves with speed β. These

(bulk waves) are the eigensolutions for the equation of motion in an infinite elastic

isotropic medium. Waves will propagate infinitely with these velocities, without

changing direction or amplitude.

Dilatational waves are often referred to as 'longitudinal' waves and rotational waves as

'shear' waves. These terms can be a little misleading because 'longitudinal' and 'shear'

deformations are not uncoupled - 'longitudinal' deformation involves both extensional

and shear behaviour as can be seen from the presence of the Lamé constant µ for

longitudinal waves in equation (2.9). However these terms are in very common use and

for simplicity they will be adopted from now on.

Before proceeding with the analysis a great deal of simplification will be achieved by

taking advantage of the principle of superposition and separating equations (2.5) into

these two displacement fields, one of 'longitudinal' waves and the other of 'shear' waves.

At the same time the specific coordinates x1, x2 and x3 and the displacements u1, u2 and

u3 will be replaced in the equations by their general vector forms x and u.

A neat and general way to separate the fields is to use the Helmholtz method (Malvern,

1969, for example). This defines two wave potentials, a scalar function φ    and a vector

function ψψψψ, representing longitudinal (L) and shear waves (S) respectively and performs

the separation by the operations:
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L = ∇∇∇∇φ

S = ∇∇∇∇ X ψψψψ (2.10)

where ∇∇∇∇ is the vector operator (
∂

∂x1
,

∂
∂x2

,
∂

∂x3
) and X denotes the vector cross

product.

The total displacement field is then given by the superposition of these two fields:

u = L + S (2.11)

and equation (2.5) breaks down into the two parts:

ρ
∂2φ
∂t2

= (λ + 2µ) ∇2 φ

and

ρ
∂2ψψψψ
∂t2

= µ ∇2 ψψψψ (2.12)

Now the solution equation (2.6) can be expressed as:

φ = A(L) eiω(N•x/α - t)

and

ψψψψ = A(S) eiω(N•x/β - t) (2.13)

where N is a vector of unit length which defines the direction of propagation and A(L)
and A(S) are the longitudinal and shear wave amplitudes. The propagation vector N is

introduced for convenience, to simplify the derivation. It is illustrated in Figure 2.3

together with an expansion of equation (2.13) into its component parts. To generalise the

expressions the amplitudes may be taken as complex quantities A(L)eiϕ, A(S)eiϕ , where

ϕ is the phase of the wave at the spatial and temporal origin x = 0, t = 0.

Wavenumber description:

These equations are often expressed in a more general form:
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φ = A(L) ei(k•x - ωt)

ψψψψ = A(S) ei(k•x - ωt) (2.14)

where k is the wavenumber vector, describing the spatial distribution of the wave. k is

real and parallel to N for an elastic homogeneous plane wave and is given by:

k =
Nω
α for longitudinal waves

k =
Nω
β for shear waves (2.15)

The wave propagates with wavelength (L) and speed (c) in the k direction of :

L =
2π
|k|

c =
ω
|k|

(2.16)

2.3 Plane waves in a two-dimensional space

The analysis will now be restricted to the two-dimensional case of plane strain and the

displacements and stresses associated with the plane waves will be derived.

The application of the model is to the propagation of waves along plates of significant

width compared to the wavelengths. It is therefore appropriate to simplify the model to

two-dimensional plane strain such that all behaviour in the plane is assumed to be

identical in any other parallel plane. Thus the plate is assumed to be infinitely wide.

The analysis so far has been independent of the orientation of the Cartesian coordinate

system. Any orientation of the coordinate system may therefore be chosen without

influence on the model. An attractive one is that in which x3 is the direction normal to

the plane, as shown in Figure 2.4. For plane strain there is no variation of any quantity in

the x3 direction:

∂
∂x3

= 0 (2.17)
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With this limitation, all solutions will describe waves propagating in the plane, i.e. in a

direction consisting of components of x1 and x2 only. The direction x1 will be

associated later with the direction of propagation of the modal solutions along the plate

and x2 with the direction through the thickness of the plate. However for the moment

the x1 and x2 dimensions are still considered to be infinite so that the two-dimensional

bulk plane waves can be defined.

At this stage one further restriction is voluntarily placed on the model by stating that

there is to be no displacement in the x3 direction:

u3 = 0 (2.18)

This latter restriction limits solutions such that, in addition to the waves propagating only

in the plane, the particle motion is also only in the plane. In particular it requires that

shear waves (rotational motion) involve rotation about the x3 axis only. This excludes

'in-plane' shear modes (Love waves for example) from the model.

Displacements of longitudinal waves:

From equation (2.10) and (2.13) the displacement vector of a longitudinal wave of

potential φ is:

u = ∇φ = ∇(A(L) eiω(N•x/α - t)) (2.19)

Expressing this in its component parts and re-scaling the (arbitrary) amplitude AL:

u1 = N1 A(L) eiω(N1x1/α + N2x2/α - t)

u2 = N2 A(L) eiω(N1x1/α + N2x2/α - t) (2.20)

Displacements of shear waves:

Similarly the displacement vector of a shear wave of potential ψψψψ is

S = ∇ X ψψψψ = ∇ X (A(S) eiω(N•x/β - t)) (2.21)
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Here the potential ψψψψ is the vector of rotation about the x3 direction (note that equation

(2.18) limits rotation to this axis). The cross product is therefore given by

∇ X ψψψψ =









∂
∂x1
∂

∂x2
∂

∂x3

X









0

0

ψ3

(2.22)

and the component displacement parts are

u1 = N2 A(S) eiω(N1x1/β + N2x2/β - t)

u2 = - N1 A(S) eiω(N1x1/β + N2x2/β - t) (2.23)

Stresses of plane waves:

Substituting equation (2.4) into (2.2), the stresses can be expressed in terms of the

displacements as:

σ11 = λ (
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

) + 2µ
∂u1
∂x1

σ22 = λ (
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

) + 2µ
∂u2
∂x2

σ33 = λ (
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

) + 2µ
∂u3
∂x3

σ12 = µ (
∂u1
∂x2

+
∂u2
∂x1

)

σ23 = µ (
∂u2
∂x3

+
∂u3
∂x2

)

σ13 = µ (
∂u1
∂x3

+
∂u3
∂x1

) (2.24)
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According to the plane strain condition of equation (2.17) these equations reduce to

σ11 = λ (
∂u1
∂x1

+
∂u2
∂x2

) + 2µ
∂u1
∂x1

σ22 = λ (
∂u1
∂x1

+
∂u2
∂x2

) + 2µ
∂u2
∂x2

σ33 = λ (
∂u1
∂x1

+
∂u2
∂x2

)

σ12 = µ (
∂u1
∂x2

+
∂u2
∂x1

)

σ23 = σ13 = 0 (2.25)

Stresses of longitudinal waves:

The stresses associated with longitudinal waves are found by differentiating equation

(2.19) with respect to x1 and x2 and substituting into equation (2.25):

σ11 = ( λ N12 + λ N22 +2µ N12 )
i ω A(L)

α eiω(N•x/α - t)

σ22 = ( λ N12 + λ N22 +2µ N22 )
i ω A(L)

α eiω(N•x/α - t)

σ33 = ( λ N12 + λ N22 )
i ω A(L)

α eiω(N•x/α - t)

σ12 = ( 2µ N1 N2 )
i ω A(L)

α eiω(N•x/α - t) (2.26)

Taking advantage of the unit length of vector N and substituting equations (2.9), these

stress equations can be expressed in terms of the velocities α and β of the bulk waves:
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σ11 = ( α -
2β2

α N22 ) i ω ρ A(L) eiω(N•x/α - t)

σ22 = ( α -
2β2

α N12 ) i ω ρ A(L) eiω(N•x/α - t)

σ33 = ( α -
2β2

α ) i ω ρ A(L) eiω(N•x/α - t)

σ12 = (
2β2

α N1N2 ) i ω ρ A(L) eiω(N•x/α - t) (2.27)

Stresses of shear waves:

The stresses associated with shear waves are found similarly by differentiating equations

(2.23) with respect to x1 and x2 and substituting into equation (2.25):

σ11 = ( 2µ N1N2 )
i ω A(S)

β eiω(N•x/β - t)

σ22 = ( -2µ N1N2 )
i ω A(S)

β eiω(N•x/β - t) = - σ11

σ33 = 0

σ12 = ( N22 - N12 )
i ω A(S)

β eiω(N•x/β - t) (2.28)

Again these stress equations can be expressed in terms of the velocities α and β of the

bulk waves:

σ11 = ( 2 β N1N2 ) i ω ρ A(S) eiω(N•x/β - t)

σ22 = - σ11

σ33 = 0

σ12 = ( N22 - N12 ) β i ω ρ A(S) eiω(N•x/β - t) (2.29)
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2.4 Plane waves at the boundary between two media

The equations so far are sufficient to describe the behaviour and quantities of interest of

bulk plane longitudinal and bulk plane shear waves in an infinite elastic medium. Now

the derivation will be continued by examining the interaction of these waves with a plane

boundary. An analysis of the interaction of plane waves with a boundary may also be

found in Kolsky (1963) or Brekhovskikh and Goncharov (1985). This analysis will form

the basis of the assembly of propagating waves in a layered system by the superposition

of bulk wave components.

It is assumed now that there are two semi-infinite half-spaces in plane strain. The

interface between the half-spaces is an infinite flat plane defined by the origin of the

coordinate x2. Thus all points on the interface have x2 = 0 and waves propagate in the

x1 and x2 plane, as shown in Figure 2.5.

Consider a longitudinal elastic bulk wave travelling in medium 1 and arriving at the

interface (Figure 2.5). The wave is infinitely wide, extending from - ∞ to + ∞ in the x1
direction, and is continuous in time. Its displacement in the x1 direction is described for

all positions in the half-space of medium 1 by equation (2.20):

u1 = N1 A(L) eiω(N1x1/α + N2x2/α - t) ((2.20))

The intersection of this wave with the interface is described by this equation when the

coordinate x2 is zero. This can be viewed as the projection of the wave onto the

interface or as the x1 component of the wave at the interface. Now the equation reduces

to:

u1 = N1 A(L) eiω(N1x1/α - t) (2.30)

or, in terms of the wavenumber along the interface:

u1 = N1 A(L) ei(k1x1 - ωt) (2.31)

Similarly the u2 displacement and all of the stress components for this wave will have

the same harmonic exponent and therefore the same wavenumber k1 along the interface.
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Next two different cases are considered. First, the simple case when medium 2 is

vacuum and, second, the general case when medium 2 is a different solid.

Case 1: Medium 2 is vacuum:

If medium 2 is vacuum then the displacements at the interface need not be constrained to

any particular value but the stress normal to the boundary (σ22) and the shear traction on

the boundary (σ12) must be zero in order to satisfy equilibrium. Therefore if this wave

is to exist without violating the conditions for propagation in an infinite medium then at

least one other wave must also be present, with equal and opposite stress components at

all times and positions along the boundary such that these stresses are always cancelled at

the boundary.

There are three other bulk waves which can exist in medium 1: a shear wave arriving at

the interface, a longitudinal wave leaving the interface, and a shear wave leaving the

interface. Their properties are constrained by Fourier's theorem which requires them to

have the same frequency in order to contribute to this harmonic process and Snell's law

which requires them to have the same spatial properties at the interface (i.e. the same k1
wavenumber). Thus a longitudinal wave leaving the interface ('reflected') will have the

same frequency as the longitudinal wave arriving at the interface ('incident') and the

angle of incidence will be the same as the angle of reflection. Similarly an incident shear

wave will have the same frequency and k1 wavenumber (thus defining its angle of

incidence) as the longitudinal waves and a reflected shear wave will leave at the same

angle as the incident shear wave. In summary these constraints can be expressed for the

incident (I) and reflected (R) longitudinal (L) and shear (S) waves as:

ω(RL) = ω(RS) = ω(IL) = ω(IS)

k1(RL) = k1(RS) = k1(IL) = k1(IS) (2.32)

It follows that all of the waves have the same component of velocity along the x1
direction (the x1 phase velocity), given by

cph =
ω
k1

(2.33)

The unknowns in this system are now only the amplitudes of three of the waves and to

find them there are two stress equations to be satisfied (σ22 = σ12 = 0 at x2 = 0). The
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system cannot therefore be solved unless one of the three waves is known. In a practical

analysis of reflections at such a boundary (a response analysis) it is probable that both

incident waves will be known, in which case the solution is evidently possible. Note that

the equations are all complex, as are the wave amplitudes, so that the solution must take

account of the phases ϕ of the waves (as defined in equation (2.13)).

Case 2: Medium 2 is solid:

The second case is the general case when medium 2 is not vacuum and has different

properties from medium 1. In the illustration in Figure 2.5, for example, the bulk

velocities in medium 2 are faster than those in medium 1.

As with the analysis of the first medium there are four possible bulk waves in the second

medium. Again these can combine harmonically and they are subject to the conditions

discussed above.

There are also four boundary conditions which may be used to link the two half-spaces:

normal stress (σ22), shear stress (σ12), normal displacement (u2) and tangential

displacement (u1). In a 'welded' interface all of these components must be continuous

across the interface, in a sliding interface only σ22 and u2 are continuous, and so on.

In this analysis welded interfaces are assumed and equations (2.32) apply to all eight of

the waves at the interface; the four in medium 1 and the four in medium 2. However it

should be noted that the continuity of only one of these boundary conditions across the

interface would be sufficient to apply this constraint. Thus equations (2.32) are extended

to link medium 1 (1) and medium 2 (2):

ω(2) = ω(1)

k1(2) = k1(1) (2.34)

With eight waves at an interface and four equations of boundary conditions at the

interface, a solution for the wave amplitudes is possible if any four of the waves are

known. This could be the case if the two incident waves on each side of the interface

were known and the amplitudes of the reflected and transmitted waves were required.
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Wave propagation in the x1 direction

The eight waves at the interface each propagate at some angle to the x1 direction but it

has been shown that the conditions of equations (2.32) and (2.34) force them to combine

such that they all have the same velocity and wave number component in the x1 direction

at the interface. In fact inspection of equation (2.20) shows that this will be the case not

only at the interface where x2 is zero but on any line where x2 is constant, so that

equations (2.32) and (2.34) apply to the whole system. It should therefore be possible to

express the wave equations for all waves and for all x1,x2 space in terms of their x1
components. This will be a useful progression towards the description of plate waves

where the interest is in the propagation in the x1 direction.

From equations (2.32), (2.20) and (2.23) the relationship between longitudinal (L) and

shear (S) waves is given by

N1(L)
α =

N1(S)
β (2.35)

This equality is a constant for the whole system and, following the notation of Pialucha

(1992), will be called s, the Snell constant. The wavenumber in the x1 direction (k1) and

the phase velocity in the x1 direction (cph), which are also constant for the system, can

be related to s and to the angles of incidence and reflection as follows:

s =
N1(L)

α =
N1(S)

β =
k1
ω =

1
cph

=
sin(θL)

α =
sin(θS)

β (2.36)

where θL is the angle of incidence and reflection for longitudinal waves and θS for shear

waves, as illustrated for two of the waves in Figure 2.5. The term 'angle of incidence' is

generally used for all waves, whether incident, reflected or transmitted, and is the

absolute value of the acute angle between the propagation axis of the wave and the

normal to the interface.

So, from (2.35)

N1(L) = α s

N1(S) = β s (2.37)
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Here it can be seen that a wave whose direction of propagation has a positive x1
component has a positive value of s, and a wave with a negative x1 component has a

negative s.

Since the vectors N(L) and N(S) are of unit length their components in the x2 direction

can now be found:

N2(L±) = ± ( 1 - α2 s2 )1/2

N2(S±) = ± ( 1 - β2 s2 )1/2 (2.38)

Here (and from now on) a positive subscript denotes a wave whose direction of

propagation has some component in the positive x2 direction and a negative subscript

denotes a wave whose direction of propagation has some component in the negative x2
direction. Thus the upward travelling waves in Figure 2.5 are + waves and the

downward travelling waves are - waves.

Now the displacement and stress equations (2.20), (2.23), (2.27) and (2.29), can be

expressed in terms of s as:

For longitudinal waves:

u1 = α s A(L±) eiω(sx1 ± ( 1 - α2 s2 )1/2 x2/α - t )

u2 = ± ( 1 - α2 s2 )1/2 A(L±) eiω(sx1 ± ( 1 - α2 s2 )1/2 x2/α - t )

σ11 = ( α -
2β2

α + 2 α β2 s2 ) i ω ρ A(L±) eiω(sx1 ± ( 1 - α2 s2 )1/2 x2/α - t )

σ22 = α ( 1 - 2β2s2 ) i ω ρ A(L±) eiω(sx1 ± ( 1 - α2 s2 )1/2 x2/α - t )

σ33 = ( α -
2β2

α ) i ω ρ A(L±) eiω(sx1 ± ( 1 - α2 s2 )1/2 x2/α - t )

σ12 = ± 2 β2 s ( 1 - α2s2 )1/2 i ω ρ A(L±) eiω(sx1 ± ( 1 - α2 s2 )1/2 x2/α - t )

(2.39)
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and for shear waves:

u1 = ± ( 1 - β2s2 )1/2 A(S±) eiω(sx1 ± ( 1 - β2 s2 )1/2 x2/β - t )

u2 = - β s A(S±) eiω(sx1 ± ( 1 - β2 s2 )1/2 x2/β - t )

σ11 = ± 2 β2 s ( 1 - β2s2 )1/2 i ω ρ A(S±) eiω(sx1 ± ( 1 - β2 s2 )1/2 x2/β - t )

σ22 = - σ11

σ12 = β ( 1 - 2 β2s2 ) i ω ρ A(S±) eiω(sx1 ± ( 1 - β2 s2 )1/2 x2/β - t ) (2.40)

2.5 Inhomogeneous waves

Consider a plane longitudinal wave incident at a free surface at an arbitrary angle θL
between 0 and 90 degrees, as illustrated in Figure 2.6(a). Its velocity in its own direction

of propagation is α (bulk velocity) and its frequency is ω. From equation (2.36) the

Snell constant s can be calculated and, since sin(θ) is less than unity, the product αs is

less than unity. The phase velocity cph is also greater than the wave velocity α. In

general a plane longitudinal wave is reflected at the same angle and a plane shear wave,

having a lower bulk velocity, is reflected at a smaller angle. No other waves are

present.

Now consider a shear wave incident at the free surface instead of the longitudinal wave,

as shown in Figure 2.6(b). For small angles of incidence, θS the same behaviour should

be expected, with the reflection of shear and longitudinal plane waves. The reflected

shear wave leaves at the same angle of incidence as the incident wave and the reflected

longitudinal wave leaves at a larger angle. However as the angle of incidence of the

incoming shear wave is increased, a critical point is reached when the shear angle is still

less than 90 degrees but the reflected longitudinal angle is equal to 90 degrees. At this

point a longitudinal plane wave propagates exactly parallel to the free surface, its product

αs is unity and its phase velocity cph is equal to its bulk velocity α.

At shear angles of incidence larger than this critical value, the shear wave behaviour is

unchanged but the longitudinal wave is inhomogeneous. Its product αs is greater than

unity and its phase velocity cph is less than its bulk velocity α. Now equation (2.38)
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yields an imaginary value for N2(L) rather than a real value and equations (2.39) for the

displacements become:

u1 = α s A(L+) eiω(sx1 + i( α2 s2 - 1 )1/2 x2/α - t )

u2 = i ( α2 s2 - 1 )1/2 A(L+) eiω(sx1 + i( α2 s2 - 1 )1/2 x2/α - t ) (2.41)

Separating the real parts of the exponents from the imaginary parts gives

u1 = α s A(L+) eiω (sx1 - t ) e-ω ( α2 s2 - 1 )1/2 x2/α

u2 = i ( α2 s2 - 1 )1/2 A(L+) eiω (sx1 - t ) e-ω ( α2 s2 - 1 )1/2 x2/α (2.42)

Both of these equations show, by their first exponents, propagation of a wave along the

x1 direction which satisfies the frequency and spatial requirements of the boundary

(equation 2.32), and by their second exponents, an exponential decay in the x2 direction.

Thus the inhomogeneous (or 'evanescent') wave is characterised by propagation along the

interface to satisfy the boundary conditions with the other wave(s) and by decay away

from the boundary. It can be seen also from equation (2.42) that this 'longitudinal'

inhomogeneous wave has a displacement component u2 normal to its direction of

propagation and out of phase with its u1 displacement.

In general, inhomogeneous waves, either longitudinal or shear, will exist under any

circumstances of reflection or transmission across interfaces where the phase velocity at

the interface is less than the bulk velocity in one of the adjoining media. They are

incapable of taking energy away from the interface because of their decay in the x2
direction but are valid propagating waves, carrying energy parallel to the interface.

The term 'critical angle' is often used to describe the conditions for the propagation of

inhomogeneous waves in a solid when excited by incident waves in a coupling liquid.

The longitudinal critical angle is the angle of incidence when the transmitted longitudinal

wave is (just) homogeneous and travels exactly parallel to the interface (the transmission

angle is 90 degrees); a smaller angle of incidence would result in a homogeneous

longitudinal wave with a transmission angle of less than ninety degrees and a larger angle

of incidence would result in an inhomogeneous longitudinal wave travelling parallel to

the interface. The shear critical angle is the (larger) angle of incidence when the same

conditions exist for the shear wave component in the solid.
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Rayleigh wave

The Rayleigh wave is a special and well known case of the combination of

inhomogeneous waves. It propagates along a free surface and consists of a combination

solely of an inhomogeneous longitudinal wave and an inhomogeneous shear wave. The

proportions, phases and wavelengths of these two wave components are such that their

normal and shear stresses σ22 and σ12 both cancel at the free surface, thus satisfying the

equilibrium requirement there.

The phase velocity of the Rayleigh wave depends on the material properties but for all

elastic bodies the range of possible values of Poisson's ratio limits the Rayleigh velocity

to the range 0.8741 β to 0.9554 β. The velocity is therefore only just lower than the bulk

shear velocity for the medium. It is also independent of frequency. Because both wave

components are inhomogeneous, all displacement and stress quantities for the Rayleigh

wave decay with distance from the free surface.

2.6 Assembly of layered system

The theory developed so far is sufficient to describe the characteristics of individual

infinite homogeneous bulk waves in an infinite elastic medium and the combination of a

set of these waves which is necessary for their existence when the medium is divided into

two half-spaces with different material properties. With this development from

individual waves to a set of waves, the emphasis was changed from waves travelling in

their own individual directions to the idea of a compound wave, consisting of the linear

superposition of the individual waves, travelling in the direction parallel to the interface.

In addition the possibility was discussed of an inhomogeneous wave which may be

present along the boundary as a valid part of this compound wave.

The next stage will be to consider the addition of further parallel interfaces such that

layers of finite thickness are described. The addition of a second interface will describe a

single infinitely long plate in plane strain with a semi-infinite half-space on each side of

it. The addition of a third interface will extend this to a two-layer plate, and so on.

The description of wave propagation along the multi-layered system in terms of infinite

bulk waves relies on the satisfactory coupling of the wave components in each layer at all

of the interfaces. A valid solution for a propagating plate wave therefore consists of a
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frequency (ω), a wavenumber in the direction along the plate (k1) and a set of wave

amplitudes, A(L+), A(L-), A(S+) and A(S-) for each layer, such that all of the interface

boundary conditions are satisfied. Valid solutions cannot be found for all values of ω
and k1. The approach will therefore be to build a description of the full layered system

in terms of the wave amplitudes and then to find valid pairs of ω and k1 such that all of

the interface conditions are satisfied.

The quantities necessary for the coupling of the waves at the interfaces are the two

displacements u1 and u2, the stress normal to the interface σ22 and the shear stress σ12.

The other stress components need not be continuous across a 'welded' interface nor need

they be any particular value at a free or fixed boundary. They therefore do not play a

part in the solution. The four necessary quantities come from equations(2.39) and (2.40).

They can be simplified by making the following substitutions:

Cα = ( 1 - α2 s2 )1/2 , Cβ = ( 1 - β2 s2 )1/2 ,

C2β = 1 - 2 β2 s2 , gα = eiω( 1 - α2 s2 )1/2 x2/α
,

gβ = eiω( 1 - β2 s2 )1/2 x2/β
, Ci = i ω ρ (2.43)

Thus for longitudinal waves travelling with increasing x2, the displacements at any

location can be expressed as:

u1 = α s gα eiω(sx1 - t ) A(L+)

u2 = Cα gα eiω(sx1 - t ) A(L+)

σ22 = α Ci C2β gα eiω(sx1 - t ) A(L+)

σ12 = 2 s β2 Ci Cα gα eiω(sx1 - t ) A(L+) (2.44)

For longitudinal waves travelling with decreasing x2:

u1 =
α s
gα

eiω(sx1 - t ) A(L-)

u2 =
- Cα
gα

eiω(sx1 - t ) A(L-)
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σ22 =
α Ci C2β

gα
eiω(sx1 - t ) A(L-)

σ12 =
- 2 s β2 Ci Cα

gα
eiω(sx1 - t ) A(L-)

(2.45)

For shear waves travelling with increasing x2:

u1 = Cβ gβ eiω(sx1 - t ) A(S+)

u2 = - β s gβ eiω(sx1 - t ) A(S+)

σ22 = - 2 s β2 Ci Cβ gβ eiω(sx1 - t ) A(S+)

σ12 = β Ci C2β gβ eiω(sx1 - t ) A(S+) (2.46)

and for shear waves travelling with decreasing x2:

u1 =
- Cβ
gβ

eiω(sx1 - t ) A(S-)

u2 =
- β s
gβ

eiω(sx1 - t ) A(S-)

σ22 =
2 s β2 Ci Cβ

gβ
eiω(sx1 - t ) A(S-)

σ12 =
β Ci C2β

gβ
eiω(sx1 - t ) A(S-)

(2.47)

Note that the term eiω(sx1 - t ) is common for all of the equations. This is the

description for the harmonic propagation in the x1 direction. Since it applies equally to

all of the individual waves it is of no use in determining their contributions to the

compound plate wave. Therefore for convenience from now on it will be omitted from

the equations. However it should be assumed to be implicit in all expressions of

displacement or stress. Thus the solution will depend spatially only on variations in the

x2 direction and temporally only on any phase difference between components.
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In general it is useful to describe the superpositions of the displacements and stresses for

the four waves at any x2 position. This is easily done by summing equations (2.44) to

(2.47) in matrix form:













u1

u2

σ22

σ12

=











αsgα

αs
gα

Cβgβ
- Cβ
gβ

Cαgα
- Cα
gα

- βsgβ
- βs
gβ

αCiC2βgα
αCiC2β

gα
- 2sβ2CiCβgβ

2sβ2CiCβ
gβ

2sβ2CiCαgα
- 2sβ2CiCα

gα
βCiC2βgβ

βCiC2β
gβ 












A(L+)

A(L-)

A(S+)

A(S-)

(2.48)

The matrix in equation (2.48) is the field matrix, describing the relationship between the

wave amplitudes and the displacements and stresses at any location in any layer. Its

coefficients depend on the through-thickness position in the plate (x2), the material

properties of the layer at this position (ρ, α and β), the frequency (ω), and the Snell

constant (s). The Snell constant is determined from the wavenumber along the plate (k1)

and the frequency, according to equation (2.36). The field matrix will be abbreviated in

the analysis to [D].

Figure 2.7 shows the labelling system which will be used in the analysis of multilayered

plates. A five layer system is illustrated as an example, consisting of a three layer plate

with two semi-infinite half-spaces. The half-spaces are always included as layers in the

description of the model, even if they are vacuum. The layers of the system are labelled

l 1 to l 5, and the interfaces, i 1 to i 4. Although the orientation of the plate in space is
arbitrary, it is convenient to refer to the layers and interfaces in terms of their vertical

positions in a stack and to the top and bottom surfaces, as in the orientation in the figure.

Accordingly the x2 direction is defined as downwards, from the top to the bottom of the

plate. Each layer has its own x2 origin, defined as the location of its top interface, except

for the first layer ( l 1) which has its origin at its interface with l 2 in order to avoid

having an origin at - ∞. A single origin for the whole system is not necessary because

phase differences from interface to interface can be accounted for by the complex wave

amplitudes. A reference phase is also not necessary for the modal solution but it will be

required for the calculation of mode shapes in Chapter 4. The reference phase is defined

by the positive longitudinal wave L+ in the first finite layer l 1 which is given zero phase
ϕ so that its amplitude is real. The directions of positive longitudinal and shear waves,

L+ and S+, and of negative waves L- and S- are also shown in the figure.
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Thus, for example, the displacements and stresses in layer l 3 at its interface with layer

l 2 (interface i 2) are expressed as:

u

u
1

2

22

12

σ
σ

R

S

|
|

T

|
|

U

V

|
|

W

|
|l 3, top

= [D]
l 3, top







A(L+)

A(L-)
A(S+)
A(S-) l 3

(2.49)

2.7 Solution: transfer matrices method

Two different approaches for the solution of the multilayered system for free propagating

waves have been considered, a 'transfer matrices' method and a 'global matrix' method.

The transfer matrices method will be described in this subsection and the global matrix

method in the next subsection. The transfer matrices method was the original of the two

ideas but it was found to be numerically unstable under certain conditions, as will be

discussed in Chapter 4. The global matrix method was developed to avoid the numerical

instability and it is the method which was employed in the modal model which is

developed in this thesis. The transfer method is presented here because it is intuitive and

is amenable to the examination of the modal properties.

The 'Transfer matrices' method works by condensing the multilayered system into a set

of four equations relating the boundary conditions at the first interface ( i 1) to the

boundary conditions at the last interface ( i 4 in the illustration). In the process, the

equations for the intermediate interfaces are eliminated so that if the four final equations

are satisfied then all equations are satisfied.

The basic principle of a transfer matrix description for layered media should be attributed

to Thomson (1950). Haskell (1953) subsequently corrected an error in Thomson's

formulation and went on to demonstrate that the method could be used to find the modal

solutions for surface waves. The derivation of the theory for the solution of other classes

of free waves is a straightforward extension of Haskell's idea. Formulations which use

transfer matrix equations for multilayered media are frequently referred to in the

literature as 'Thomson-Haskell' formulations.
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Assume that the displacements and stresses are known at the first interface, i 1. The

amplitudes of the four waves at the top of layer l 2 can now be found by inverting the

matrix [D]:

A

A

A

A

(L+)

(L-)

(S+)

(S-)

R

S

|
|

T

|
|

U

V

|
|

W

|
|l 2

= [D]-1
l 2, top









u1
u2

σ22
σ12 l 2, top

(2.50)

Now move to the next interface, i 2. Knowing the wave amplitudes in layer l 2, the

displacements and stresses at the bottom of the layer can be expressed:









u1
u2

σ22
σ12 l 2, bottom

= [D]
l 2, bottom

[D]-1
l 2, top









u1
u2

σ22
σ12 l 2, top

(2.51)

The matrix product in this equation now relates the displacements and stresses between

the top and bottom surfaces of a single layer. This matrix will be referred to as the layer

matrix, abbreviation [L], which for layer l 2 is:

[L] l 2 = [D] l 2, bottom [D]-1l 2, top (2.52)

The displacements and stresses must be continuous across a 'welded' interface.

Therefore:









u1
u2

σ22
σ12 l 3, top

=









u1
u2

σ22
σ12 l 2, bottom

= [L]
l 2









u1
u2

σ22
σ12 l 2, top

(2.53)

Equation (2.53) now gives the displacements and stresses at the top of layer l 3 in terms

of those at the top of layer l 2. Clearly this process can be continued layer by layer for

all subsequent layers, resulting in the equation:









u1
u2

σ22
σ12 l n, top

= [S]









u1
u2

σ22
σ12 l 2, top

(2.54)
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where n is the last layer ( l 5 in the example illustrated in Figure 2.7) and [S] is the

system matrix consisting of the matrix product of the layer matrices:

[S] = [L] l 2 [L] l 3 . . . .[L] l (n-1) (2.55)

A free wave travels along the plate without attenuation and without input of energy from

outside the system. There are two ways, illustrated in Figure 2.8, in which these

conditions can be met:

Solution for plate in vacuum

If the plate is in vacuum then the stresses must be zero at the extreme interfaces i 1 and

i (n-1), where n is the total number of layers in the system, as illustrated in Figure 2.8(a).

Now equation (2.54) reduces to:







u1

u2
0
0 l n, top

= [S]






u1

u2
0
0 l 2, top

(2.56)

Expanding this equation for the two (zero) stress terms on the left hand side gives:







0

0 =






S31 S32

S41 S42 





u1

u2 l 2, top
(2.57)

where the two-by-two matrix is the bottom left sub-matrix of [S] (rows 3 and 4 and

columns 1 and 2). For this equation to be satisfied, the submatrix must be singular.

Thus, defining the determinant as the characteristic function (f) for the system:

f = S31 * S42 - S41 * S32 = 0 (2.58)

If a pair of values of frequency and k1 wavenumber corresponding to a free wave are

used in the assembly of the system matrix then this equation will be satisfied.

Solution for guided waves

Free waves may also travel in systems in which one or both of the half-spaces are not

vacuum, but only under the condition that no energy leaks from the plate into the half-
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spaces. For this condition to be satisfied, any wave components in the half-spaces l 1

and l n must be inhomogeneous so that they may carry energy along the plate but are

unable to carry energy away from the extreme interfaces i 1 and i (n-1). Waves which

meet this condition are known as guided waves.

If a half-space is not vacuum then the stresses at the extreme interface are not necessarily

zero. The formulation based on stresses is therefore not applicable and is replaced by a

formulation based on wave amplitudes.

Taking first of all the case in which neither half-space is vacuum, equation (2.54) can be

expanded, using equations (2.49) and 2.50) to describe the system in terms of the wave

amplitudes in both half-spaces:







A(L+)

A(L-)
A(S+)
A(S-) l n

= [D]-1
l n, top

[S] [D]
l 1,(x2=0)







A(L+)

A(L-)
A(S+)
A(S-) l 1

(2.59)

The condition for free wave propagation is that there should be no energy coming into

the system. Therefore the incoming waves in the two half-spaces must be zero (Figure

2.8(b)) and equation (2.59) reduces to









A(L+)
0

A(S+)
0 l n

= [D]-1
l n, top

[S] [D]
l 1,(x2=0)









0
A(L-)

0
A(S-) l 1

(2.60)

Denoting the matrix product in equation (2.60) as [S]' and expanding this equation for

the two (zero) wave amplitude terms on its left hand side gives:







0

0 =






S'22 S'24

S'42 S'44 





A(L-)

A(S-) l 1
(2.61)

where the two-by-two matrix is the appropriate sub-matrix of [S]' (rows 2 and 4 and

columns 2 and 4). For this equation to be satisfied, the determinant of the submatrix

must be zero. Thus the characteristic function (f) for this system is:

f = S'22 * S'44 - S'42 * S'24 = 0 (2.62)



Chapter 2 66

Free wave propagation along a multilayered plate

Similarly, characteristic functions can be expressed for the two hybrid cases where one

half-space is vacuum and the other supports an inhomogeneous wave. In summary, for

vacuum as the top half-space the equations are:

[S]' = [D]-1l n, top [S] (2.63)

f = S'21 * S'42 - S'22 * S'41 = 0 (2.64)

and for vacuum as the bottom half-space:

[S]' = [S] [D] l 1,(x2=0) (2.65)

f = S'32 * S'44 - S'42 * S'34 = 0 (2.66)

Nature of the characteristic functions

Solutions of the characteristic functions can only be found for cases of free wave

propagation. Zeroes of the functions cannot be found for cases where one of the half-

spaces is not vacuum and homogeneous waves leave the layered system (leaky waves).

Furthermore, the solution of a characteristic function does not strictly prove the existence

of a modal solution, only that a sub-matrix of the transfer matrix is singular. However

examination of the coefficients of the sub-matrix show that singularity can only occur in

unrealistic cases, for example if the material has zero density or zero bulk wave

velocities.

The characteristic functions consist of complex quantities and in general they should be

expected to yield complex results. However it can be shown, as follows, that for all

cases of free wave propagation the characteristic function is always real. This general

proof has not been found elsewhere, the only other proof known to the author is for the

specific case of free surface waves by Haskell (1953).

Consider the layer matrix [L] introduced in equations (2.51) and (2.52) and consisting of

a [D] matrix at the bottom of the layer postmultiplied by an inverted [D] matrix at the top

of the layer. It would be useful, both from the analytical point of view and to reduce

computational effort when calculating solutions, to find an explicit expression for the

inverted matrix and then to perform the multiplication to give an explicit expression for

the layer matrix.
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An explicit expression for an inverted matrix at the top of the layer (coordinate x2 = 0)

was presented by Haskell (1953). However the Thomson-Haskell matrix formulation

was slightly different from that presented here because Thomson chose to derive the field

equations in terms of sums and differences of wave amplitudes rather than simply the

four wave amplitudes. An explicit expression for the inversion of the matrix [D]

discussed here was found by the author and his colleague T. Pialucha. The inverted

matrix is:

[D]-1 =















β2s
α

C2β
2Cα

1
2αCi

s
2CαCi

β2s
α

-C2β
2Cα

1
2αCi

-s
2CαCi

C2β
2Cβ

-βs
-s

2CβCi

1
2βCi

-C2β
2Cβ

-βs
s

2CβCi

1
2βCi top

(2.67)

Premultiplying this matrix by the [D] matrix gives the layer matrix [L] explicitly. Its

coefficients are:

L11 = β2s2 (gα +
1

gα
) +

C2β
2 (gβ +

1
gβ

)

L12 =
αsC2β
2Cα

(gα -
1

gα
) + Cβ β s (-gβ +

1
gβ

)

L13 =
s

2Ci
(gα +

1
gα

- gβ -
1

gβ
)

L14 =
αs2

2CαCi
(gα -

1
gα

) +
Cβ

2βCi
(gβ -

1
gβ

)

L21 =
Cαb2s

α (gα -
1

gα
) +

C2ββs
2Cβ

(-gβ +
1

gβ
)

L22 =
C2β

2 (gα +
1

gα
) + β2s2(gβ +

1
gβ

)

L23 =
Cα

2αCi
(gα -

1
gα

) +
βs2

2CβCi
(gβ -

1
gβ

)
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L24 = L13

L31 = CiC2ββ2s (gα +
1

gα
- gβ -

1
gβ

)

L32 =
CiC2β2α

2Cα
(gα -

1
gα

) + 2CiCββ3s2 (gβ -
1

gβ
)

L33 = L22

L34 = L12

L41 =
2CαCis2β4

α (gα -
1

gα
) +

CiC2β2β
2Cβ

(gβ -
1

gβ
)

L42 = L31

L43 = L21

L44 = L11 (2.68)

Since the layer matrix is independent of the wave amplitudes, relating only displacements

and stresses, it could also be found in this form from Haskell's matrices. Haskell did not

go so far as to perform the multiplication but it has been reported, subsequent to the

derivation discussed here, by Hosten (1991).

Examination of the term L11 shows that it is real for all input values, including

inhomogeneous cases where gα and/or gβ are imaginary. Similarly the term L22 is

always imaginary. In fact all terms in the layer matrix [L] are either real or imaginary, in

the following pattern, where 'R' denotes a real value and 'I' denotes an imaginary value:

[L] =







R I I R

I R R I
I R R I
R I I R

(2.69)

It can readily be seen that multiplication of two matrices of this form results in a matrix

also of this form. Thus the system matrix for any number of layers, [S], always has this

pattern of real and imaginary coefficients. The characteristic function for a plate in

vacuum, equation (2.58), is therefore of the form:
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f = I * I - R * R (2.70)

from which it can be seen that it must always yield a real value.

If one or both of the semi-infinite half-spaces is not vacuum, then the system matrix is

further modified for guided waves according to equations (2.59), (2.63) or (2.65). The

modifications involve the [D] matrix evaluated at x2=0 and the [D]-1 matrix evaluated at

x2=0. In general these two matrices have the patterns respectively:

[D] =









R R Rβ Rβ

Rα Rα R R

I I Iβ Iβ
Iα Iα I I

(2.71)

[D]-1 =









R Rα I Iα 

R Rα I Iα 
Rβ R Iβ I

Rβ R Iβ I

(2.72)

where Rα means that the term is real if Cα is real (else imaginary), Rβ means that the

term is real if Cβ is real (else imaginary), and so on. However for guided waves in either

or both half-spaces Cα and Cβ must both be imaginary so that the wave components are

inhomogeneous and no energy leaks from the plate. The patterns of (2.71) and (2.72)

are therefore simplified to:

[D] =









R R I I

I I R R

I I R R

R R I I

(2.73)

[D]-1 =









R I I R

R I I R

I R R I

I R R I

(2.74)

Construction of the system matrices [S]' for guided waves results in the following

patterns and characteristic functions:
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For solid or liquid in both half-spaces:

[S]' =









R R I I

R R I I

I I R R

I I R R

(2.75)

f = R * R - I * I = 0 (2.76)

and for solid or liquid in the bottom half-space and vacuum in the top half-space:

[S]' =









R I I R

R I I R

I R R I

I R R I

(2.77)

f = R * R - I * I = 0 (2.78)

In both cases it can be seen that the characteristic function must always yield a real value.

Due to symmetry it is not necessary to consider the third case, where the top half-space is

solid or liquid and the bottom half-space is vacuum.

2.8 Solution: global matrix method

The approach with the global matrix method is to assemble directly a single matrix which

represents the complete system. The system matrix consists of 4(n-1) equations, where n

is the total number of layers. The equations are based, in sets of four, on satisfying the

boundary conditions at each interface. Thus no assumption is made a priori about any

interdependence between the sets of equations for each interface. The solution is carried

out on the full matrix.

The originator of the global matrix description for layered media was Knopoff (1964)

who wished to avoid the problem of numerical instability which can occur with the

Thomson-Haskell method. This problem will be examined further in Chapter 4. He also

showed that the method could be used to solve some cases of free waves. Subsequently

an important improvement was made independently by Schmidt and Jensen (1985) and

Pialucha (1992), in both cases with an interest in developing robust response models.
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The general method for the modal solution using the global matrix method was

developed by the present author.

Consider a single interface, for example the second interface ( i 2) in Figure 2.7. The
displacements and stresses at the interface can be expressed as a function of the

amplitudes of the waves at the top of the third layer ( l 3). This was shown in equation
(2.49). They may also be expressed as a function of the amplitudes of the waves at the

bottom of the second layer ( l 2):









u1
u2

σ22
σ12 l 2, bottom

= [D]
l 2, bottom







A(L+)

A(L-)
A(S+)
A(S-) l 2

(2.79)

For continuity of displacements and stresses at the interface, these two equations should

give equal results. Therefore

[D]
l 2, bottom







A(L+)

A(L-)
A(S+)
A(S-) l 2

= [D]
l 3, top







A(L+)

A(L-)
A(S+)
A(S-) l 3

(2.80)

This equation can be expressed in a single matrix as:







[D2b][-D3t]













A(L+)2
A(L-)2
A(S+)2
A(S-)2
A(L+)3
A(L-)3
A(S+)3
A(S-)3

= {0} (2.81)

where the subscripts 2 and 3 refer to layers l 2 and l 3 and t and b to the top and bottom

of each layer. This equation describes the interaction at interface i 2 of the waves in the

adjoining layers l 2 and l 3.

Before proceeding, a modification can be introduced here to improve the numerical

performance of the method. This is the modification which was proposed independently
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by Schmidt and Jensen (1985) and Pialucha (1992). Instead of defining the origin for all

of the waves in a layer to be the top of the layer, the origin of all waves is defined to be

at their entry to the layer. Thus downward travelling waves (L+, S+) have their origin at

the top of the layer and upward travelling waves (L-, S-) have their origin at the bottom

of the layer. No change is made for the semi-infinite half-spaces. With this

modification, and referring to equation (2.48), the [D] matrices for the top and bottom of

a layer can be expressed, respectively as:

[Dt] =











αs αsgα Cβ -Cβgβ
Cα -Cαgα -βs -βsgβ

αCiC2β αCiC2βgα -2sβ2CiCβ 2sβ2CiCβgβ
2sβ2CiCα -2sβ2CiCαgα βCiC2β βCiC2βgβ

[Db] =











αsgα αs Cβgβ -Cβ
Cαgα -Cα -βsgβ -βs

αCiC2βgα αCiC2β -2sβ2CiCβgβ 2sβ2CiCβ
2sβ2CiCαgα -2sβ2CiCα βCiC2βgβ βCiC2β

(2.82)

A similar equation to (2.81) can now be written for the interface i 3 and simply added to

the global matrix so that interfaces i 2 and i 3 and layers l 2, l 3 and l 4 are described:







[D2b] [-D3t]

[D3b] [-D4t] 





{A2}

{A3}
{A4}

= {0} (2.83)

where the wave amplitudes in each layer, A(L+),A(L-),A(S+),A(S-), have been

abbreviated simply to a layer wave vector {A}. The process is continued for all

interfaces, resulting in a matrix of 4(n-1) equations and 4n unknowns. In the case of the

example in Figure 2.7 the matrix equation is:







[D1b] [-D2t]

[D2b] [-D3t]
[D3b] [-D4t]

[D4b] [-D5t] 







{A1}
{A2}
{A3}
{A4}
{A5}

= {0} (2.84)

As it stands this system cannot be solved for the 20 wave amplitudes because in this case

there are only sixteen equations, and in general for any system there will always be four
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more unknowns than there are equations. In order to progress further, either for response

or modal solution, four of the wave amplitudes must be known and removed from the

system.

For the modal solution of plate waves it is convenient to select as the four known waves

the incoming waves in the two half-spaces, that is to say A(L+)1, A(S+)1, A(L-)n and

A(S-)5. These can be moved to the right hand side of equation (2.84) to give:







[D-

1b] [-D2t]
[D2b] [-D3t]

[D3b] [-D4t]
[D4b] [-D+

5t] 







{A-
1}

{A2}
{A3}
{A4}

{A+
5}

=









[-D+

1b]

[D-
5t] 








{A+
1}

{0}
{0}
{0}

{A-
5}

(2.85)

where the superscripts + and - denote those parts of the matrices or vectors corresponding

to + and - waves respectively. Thus the vectors {A+} and {A-} each consist of half of

the vector {A} and the matrices [D+] and [D-] are four-by-two partitions of the matrix

[D]. The partitioning is as follows:

{A+ } =






A(L+)

A(S+)

{A- } =






A(L-)

A(S-)

[D+ ] =







D11 D13

D21 D23
D31 D33
D41 D43

[D- ] =







D12 D14

D22 D24
D32 D34
D42 D44

(2.86)

The matrices on both sides of equation (2.85) are square and of dimension 4(n-1). A

solution for any set of waves on the left hand side can now be calculated for known right

hand sides.
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Solution for guided waves

The modal solution for guided waves is straightforward because the system is already

described in terms of the wave amplitudes. For a free wave travelling along the plate

without input of energy from outside the system, there are no incoming waves, as

discussed in Section 2.7 and illustrated in Figure 2.8(b), and so the right hand side of

equation (2.85) must be zero. Thus, denoting the matrix on the left hand side as the

system matrix [S]:

[S]













{A-
1}

{A2}
{A3}

.

.

.
{A+

n}

= {0} (2.87)

For this equation to be satisfied, the system matrix must be singular, so its determinant

must be zero. This yields the characteristic function for the solution of guided wave

propagation in multilayered plates using the global matrix method:

f = |S| = 0 (2.88)

General solution

If the top and bottom half-spaces are vacuum then the [D+ ] and [D- ] matrices cannot

be evaluated. Modification is therefore required to the system matrix to account properly

for the absence of waves in vacuum and for zero stresses on the free surfaces. This can

be done by reformulating the problem, resulting in a smaller system matrix. The sub-

matrices and wave amplitudes associated with the half-spaces are removed from equation

(2.79) and the remaining top and bottom sub-matrices are partitioned into their stress and

displacement rows. The stress partitions are then taken onto the right hand side as

knowns, leaving a square system matrix again, and the solution is then possible.

However a much simpler alternative, which leaves the solution completely general, is to

retain the full system matrix and to modify the layer constants for the vacuum half-

spaces in such a way that the [D+] and [D-] matrices can be evaluated, hence solution is

possible and the resulting surface stresses are zero. This is achieved by setting the bulk
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velocities α and β of the vacuum to arbitrary non-zero values and the density ρ to zero.

With these modifications, the matrix assembly and solution is identical to that for guided

waves.

Nature of the characteristic function

The characteristic function of the global matrix method yields a complex value, in

general, for all inputs. Furthermore, as with the transfer matrices method, zeroes of the

function can only be found when any waves in non-vacuum half-spaces are

inhomogeneous (guided waves). Solutions cannot be found for cases where

homogeneous waves leave the layered system (leaky waves).

It was explained in Section 2.7 that the solution of the characteristic function for the

transfer matrices method does not automatically prove the existence of a modal solution,

a further condition being that any other (trivial) causes of singularity of the sub-matrices

are avoided. Similarly it is evident that the solution of the characteristic function for the

global matrix method does not strictly prove the existence of a mode. However in this

case there is one non-trivial circumstance in which the matrix is singular. This is when

the wavenumber of the propagating wave is equal to the wavenumber of either of the

bulk waves in any of the internal layers of the system. Here the system matrix has two or

more identical columns and is singular. Physically the explanation for this is that the +

and - waves in this layer both travel parallel to the layer and are therefore

indistinguishable in their effect on stresses and displacements at the adjacent interfaces.

Consequently a solution for these wave amplitudes is not possible and the matrix is

singular.

2.9 Phase properties of free waves

Further analysis by the author of the modal equations for free wave propagation in

multilayered plates has revealed that there are consistent phase relationships between the

field quantities in free waves. Relationships can be identified between the displacement

and stress components in a plate and it can be shown that the wavefront of a free wave is

always normal to the propagation direction.

Plate in vacuum

The analysis is most easily performed using the theory of the transfer matrices method of

section 2.7. It was shown in equation (2.57) that a two-by-two submatrix of the system
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matrix [S] must be singular for a solution to exist in a plate in vacuum. The expansion of

this sub-matrix into its two constituent equations gives:

S31 * u1 + S32 * u2 = 0

S41 * u1 + S42 * u2 = 0 (2.89)

where u1 and u2 are the displacements at the free surface at the top of the plate. It was

also shown, in equations (2.69) and (2.70), that the coefficients S31 and S42 are always

imaginary and the coefficients S32 and S41 are always real, regardless of the number of

layers in the system. For non-trivial solutions, the system matrix is always fully

populated and the displacements are not zero. It follows therefore from equation (2.89)

that the displacement components u1 and u2 at the free surface at the top of the plate

must have a phase difference of 90 degrees.

Suppose that the in-plane displacement at the top surface u1 is real so that the normal

displacement at the surface u2 is imaginary. This assumption is permissible because the

absolute phases of the displacements and stresses are arbitrary. Now the displacements

and stresses may be calculated at any location (x2) in the top layer of the plate (l 2) using
the layer matrix [L] defined in equation (2.51):









u1
u2

σ22
σ12 l 2, x2

= [L]
l 2









u1
u2
0
0 l 2, top

(2.90)

It was shown in equation (2.69) that the layer matrix always has a fixed pattern of real

and imaginary coefficients, denoted 'R' and 'I' respectively in the equation. Continuing

with this description, the phase pattern of equation (2.90) can be written:









u1
u2

σ22
σ12 l 2, x2

=







R I I R

I R R I
I R R I
R I I R 








R
I
0
0

(2.91)

Multiplication of the coefficients on the right hand side of this equation shows that the

displacements and stresses are all either real or imaginary, and this holds for any depth in

the layer:
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







u1
u2

σ22
σ12 l 2, x2

=







R

I
I
R

(2.92)

The u1 displacement and the σ12 stress are always real and the u2 displacement and the

σ22 stress are always imaginary. Thus in general the phase differences between the two

displacement components and between the two stress components are always 90 degrees,

and the normal stress σ22 is always in phase (0 degrees) or in opposite phase (180

degrees) with the in-plane displacement u1. It follows also that the wavefront of the

plate wave is parallel to the x2 axis, normal to the plane of the layers and the propagation

direction.

Continuing to a second finite layer (l 3) in a multilayered plate, the displacements and
stresses at any depth are given by the product of the layer matrix for this layer and the

vector of displacements and stresses at the interface between the layers:









u1
u2

σ22
σ12 l 3, x2

= [L]
l 3









u1
u2

σ22
σ12 l 2, bottom

(2.93)

The phase pattern of the displacements and stresses is known at the interface from the

above analysis and it is not changed by the premultiplication by [L]. The phase pattern

in the second layer (l 3) is therefore the same as that in the first layer (l 2). Clearly the

same is true for any further layers in the system.

Plate with solid or liquid in both half-spaces

The two-by-two submatrix of the system matrix [S]' for a plate with two solid or liquid

half-spaces was shown in equation (2.61). Expanding it into its two constituent

equations gives:

S'22 * A(L-) + S'24 * A(S-) = 0

S'42 * A(L-) + S'44 * A(S-) = 0 (2.94)

where A(L-) and A(S-) are the amplitudes of the longitudinal and shear waves 'leaving'

the top interface of the system (Actually these waves must be inhomogeneous for a

guided wave solution so they do not leave the interface but travel along it). It was shown
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in equation (2.75) that the coefficients S'22 and S'44 are always real and the coefficients

S'24 and S'42 are always imaginary so, again for non-trivial solutions, the wave

amplitudes must have a phase difference of 90 degrees.

The stresses and displacements at any location (x2) in the top finite layer of the

multilayered plate (l 2) are given by the equation:









u1
u2

σ22
σ12 l 2, x2

= [L]
l 2 [D]

l 1,(x2=0)








0
A(L-)

0
A(S-) l 1

(2.95)

The phase patterns for both of the matrices in this equation are fixed (equations (2.69)

and (2.73)). Assuming a real longitudinal wave amplitude A(L-) and an imaginary shear

wave amplitude A(S-), the phase pattern for equation (2.95) is found from:









u1
u2

σ22
σ12 l 2, x2

=







R I I R

I R R I
I R R I
R I I R 






R R I I

I I R R
I I R R
R R I I 








0
R
0
Ι

(2.96)

This evaluates once again to a vector of displacements and stresses which are all either

real or imaginary. With the assumption which was made here of real longitudinal wave

amplitude and imaginary shear wave amplitude, the phase pattern of the displacements

and stresses is identical to that for the plate in vacuum. The analysis for additional layers

then follows that for the plate in vacuum.

Therefore the relationships between the phases of the displacements and stresses in

guided waves where both half-spaces are solid or liquid are the same as in the case of the

plate in vacuum, and the wavefront is again normal to the x2 axis.

Plate with solid or liquid in one half-space and vacuum in the other

Due to symmetry it is only necessary to consider one of the two cases in which one half-

space is solid or liquid and the other is vacuum. If the top half-space is chosen to be

vacuum then the analysis of the system equation (2.63) and its phase pattern (2.77)

reveals immediately that there is a phase difference of 90 degrees between the two

displacement components u1 and u2 at the free surface at the top of the plate. The
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remainder of the analysis and the conclusions are then identical to those for a plate in

vacuum.

2.10 Conclusions

The modal theory has been developed for the propagation of free plate waves in

multilayered systems. The theory is applicable to plates consisting of any number of flat,

parallel layers of elastic material, rigidly connected together. The plates may be assumed

to be in vacuum or to be embedded in semi-infinite elastic half-spaces. In the latter case

the solution is restricted to guided waves in which no energy leaks from the plate into the

half-spaces.

Two different methods of solution have been developed. In the first method, the transfer

matrix method, the equations for the system are condensed to a matrix which simply

relates the boundary conditions at the top of the plate to those at the bottom of the plate.

In the second method, the global matrix method, a large matrix is assembled containing

the equations for all of the layers of the plate. In both cases a characteristic function has

been found which has to be solved to find the conditions for free wave propagation. The

function takes as its input the material and geometric descriptions of the layers, a value of

frequency and a value of the wavenumber in the plane of the plate. For free wave

propagation the characteristic function must yield zero as its result. For the first method

the function has been shown to be real in all ranges of solutions which are relevant for

free waves. For the second method the function is complex.

It has been shown that the phases of the stresses and displacements of free plate waves

bear the same relationship to each other for all solutions. The wavefront of free waves is

also always normal to the plane of the plate.

The implementation of the characteristic function in the computer model will be

described in chapter 4.
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Wave propagation along multilayered plateFigure 2.1
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Propagation of a plane wave in an infinite elastic mediumFigure 2.2
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Unit length wave propagation vector, N, in 3-D spaceFigure 2.3

x3

x2

x1

N3

N2

N1

N

Wavefront

(Unit length vector, 
normal to wavefront)

φ = A e
iω (N• x /α - t)

= A e
iω (N1x1/α + N2x2/α + N3x3/α - t)

= A eψ iω (N• x /β - t)
= A e

iω (N1x1/β + N2x2/β + N3x3/β - t)

(Equation 2.13)
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Coordinate system and constraints for in-plane wave propagation
in a 2-D infinite medium

Figure 2.4
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Plane waves at the boundary between two semi-infinite mediaFigure 2.5
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Homogeneous and inhomogeneous waves at a free surfaceFigure 2.6

θL

θS

(a) Homogeneous waves: (1): Incident longitudinal, (2): Reflected
longitudinal and (3): Reflected shear

(b) Homogeneous and inhomogeneous waves: (1): Incident shear
(homogeneous), (2): Reflected shear (homogeneous) and 
(3): Reflected longitudinal 
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Boundary conditions for free wave propagation in platesFigure 2.8

(a) Plate in vacuum

(b) Plate in solid or liquid semi-infinite half-spaces

interface i (n-1)

interface i 1

Vacuum

Vacuum

Normal stress σ22 = 0
shear stress σ12 = 0

Normal stress σ22 = 0
shear stress σ12 = 0

interface i (n-1)

interface i 1

Solid or liquid
semi-infinite half-space

Solid or liquid
semi-infinite half-space

S+ L+
S-

L-

S- L-
S+

L+

Incoming waves
must be zero

Incoming waves
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Surface tractions must be zero
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3.1 Introduction

A modal theory for attenuating wave propagation in a multilayered medium is described

in this chapter. The theory is developed as a generalisation of the theory for free wave

propagation which was presented in Chapter 2. The implementation of the theory into

the computer model will be described in Chapter 4.

Attenuation of a wave is simply loss of energy with distance travelled. Two causes of

attenuation of waves in plates can be observed in practical applications. The first is

material damping. Media in general are not perfectly elastic, but exhibit some form of

damping which absorbs the energy of mechanical waves. This can be seen and measured

directly with bulk waves and must be expected to occur too with plate waves. The

second cause of attenuation of plate waves is known as leakage. If the plate is immersed

in a liquid or solid then the plate wave may emit bulk waves into the surrounding

medium, thus losing its own energy and decaying as it travels.

The idea with the development of a modal solution for attenuating wave propagation is to

extend the formulation for free wave propagation such that each modal solution includes

some description of the manner in which the wave decays. The basic philosophy is not

changed, a solution still describes the modal properties of the system in terms of a

frequency and a velocity at which a wave can travel indefinitely without further input of

energy. However the amplitude of the wave may diminish with distance travelled and

the rate at which the wave decays has to be found as part of the modal solution. The

attenuation description is independent of the value of the amplitude of the wave, it

simply describes a fixed rate of decay which is relevant for any wave amplitude at any

location along the plate.

Since the theory for attenuating wave propagation is a generalisation of the theory for

free wave propagation, it is not necessary to classify waves before attempting the

solution of the equations. The general theory is equally applicable to all classes of plate

wave propagation: free waves (including guided waves), damped waves and leaky
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waves. In cases of attenuating waves the rate of decay is evaluated as part of the

solution; in cases of free waves the rate of decay is found during the solution to be zero.

Overview

In order to extend the analysis to include the possibility of attenuating wave propagation,

the key element is to generalise the equations at their basic levels. If this is done

effectively then the development of the formulation for free waves which was presented

in Chapter 2 remains relevant for all types of waves and a free wave becomes simply a

special case of the general theory. Thus material damping is introduced by generalising

the stress-strain relationship to include visco-elasticity and Snell's law is generalised to

describe the attenuation of the waves along the plate.

The first task is to obtain solutions for bulk wave propagation in infinite visco-elastic

media. It is shown that two bulk waves can exist in a viscoelastic medium, a

'longitudinal' wave and a 'shear' wave. Each has its propagation characteristics governed

by the two elastic constants and two visco-elastic constants. The propagation of an

attenuating wave is described by a complex vector, the real part representing the

harmonic properties and the direction of propagation, and the imaginary part representing

the rate of decay and the principal direction of decay. The descriptions reduce to those of

the elastic theory of Chapter 2 when the visco-elastic constants are set to zero.

The analysis is reduced to a two-dimensional space and the interaction of bulk waves at

the boundary between two semi-infinite media is examined. It is found that the rules for

interaction still apply but that a complex form of Snell's law is required, the real part of

the wavenumber along the plate describing the harmonic properties of the waves in this

direction and the imaginary part describing the decay of the waves in this direction. All

waves on both sides of the interface must have the same harmonic properties and the

same rate of decay along the interface, whether elastic, viscoelastic, homogeneous or

inhomogeneous.

The construction of a plate wave from the component waves in the layers, as developed

in Chapter 2, is consistent with the generalised theory except that now the wavenumber

for the plate wave is complex, the imaginary part adding the rate of decay to the spatial

description. The characteristic functions for the modal solution are now complex for

both solution techniques. Furthermore the zeroes of the characteristic functions can only

be found when appropriate sets of frequency, real wavenumber and imaginary
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wavenumber (attenuation) are input. Thus the modal solution is extended from a

function taking two real variables, frequency and wavenumber, to a function taking one

real variable and one complex variable.

3.2 Plane waves in an infinite viscoelastic medium

Material damping may be modelled in a number of ways. A convenient and valid

constitutive model for small-displacement dynamic behaviour is the Kelvin-Voigt

viscoelastic description in which a velocity-dependent damping force is added to the

equation of motion for an infinitesimal element of the material. Symbolically the model

consists of a dashpot representing the damping in parallel with the spring representing the

elastic stiffness. A thorough discussion of several alternatives, including this model, may

be found in Malvern (1969). He also presents a completely general derivation of the

wave equations for infinite media. A specific analysis of viscoelastic wave propagation

may also be found in Pialucha (1992).

To implement the model in a three-dimensional isotropic solid, the Lamé constants λ and

µ are replaced by the operators:

λ becomes: λ +
λ'
ω

∂
∂t

µ becomes: µ +
µ'
ω

∂
∂t

(3.1)

where the constants λ' and µ' are the viscoelastic material constants and ω is the

frequency. The model clearly reduces to elasticity if the viscoelastic constants are zero.

Now the stress-strain relationship can be expressed:

Stress-strain:

σ11 =






λ +

λ'
ω

∂
∂t

∆ + 2






µ +

µ'
ω

∂
∂t

ε11

σ22 =






λ +

λ'
ω

∂
∂t

∆ + 2






µ +

µ'
ω

∂
∂t

ε22

σ33 =






λ +

λ'
ω

∂
∂t

∆ + 2






µ +

µ'
ω

∂
∂t

ε33
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σ12 =






µ +

µ'
ω

∂
∂t

ε12

σ23 =






µ +

µ'
ω

∂
∂t

ε23

σ13 =






µ +

µ'
ω

∂
∂t

ε13 (3.2)

Substitution of equation (3.2) and the strain-displacement relationship (equation (2.4))

into the equilibrium equation (equation (2.1)) gives the displacement equation of motion

for viscoelastic materials, shown here in vector form:

ρ
∂2u
∂t2

= (λ+µ)∇(∇•u ) + µ∇2u +






λ'+µ'

ω ∇(∇•
∂u
∂t

) +






µ'

ω ∇2 ∂u
∂t

(3.3)

This equation can be separated into the dilatational ('longitudinal') and rotational ('shear')

fields by the Helmholtz method to give:

ρ
∂2φ
∂t2

=






λ+2µ+

λ'+2µ'
ω

∂
∂t

∇2φ

ρ
∂2ψ
∂t2

=






µ+

µ'
ω

∂
∂t

∇2ψψψψ (3.4)

where φ and ψψψψ are the scalar and vector wave potentials for the two fields respectively.

Now solutions are assumed for φ and ψψψψ in the same form as in equations (2.13):

φ = A(L) eiω(N•x/α - t)

ψψψψ = A(S) eiω(N•x/β - t) (3.5)

Differentiating these and substituting into equations (3.4) shows that they are suitable

assumptions when N is a complex vector of unit length and the constants α and β are:
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α = (
λ+2µ - i(λ'+2µ')

ρ )1/2

β = (
µ - iµ'

ρ )1/2 (3.6)

Characteristics of the waves:

Equations (3.5) may also be expressed in terms of the wavenumber vector k:

φ = A(L) ei(k•x - ωt)

ψψψψ = A(S) ei(k•x - ωt) (3.7)

k is now a complex vector given by:

k =
Nω
α for longitudinal waves

k =
Nω
β for shear waves

= kreal + ikimag , say (3.8)

Separating the real and imaginary parts in equations (3.7) for φ or ψ ψ ψ ψ gives:

φ,ψψψψ = A(L,S) ei(kreal•x - ωt) e-kimag•x (3.9)

Here the first exponential term, which is wholly imaginary, describes the harmonic

propagation of the wave in the direction of the vector kreal and the second, real, term

describes the exponential decay of the wave with distance in the direction of the vector

kimag. The decay is therefore described in a spatial manner.

The harmonic term shows that the wave propagates in the kreal direction with

wavelength (L) and speed (c) in this direction of :
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L =
2π

|kreal|

c =
ω

|kreal|
(3.10)

If a 'plane' wave is propagated into a viscoelastic medium from the face of an unfocused

transducer then a reasonable assumption is that the attenuation vector is parallel to the

propagation direction. For the strict analysis of plane waves discussed here we must

assume that the transducer is infinitely wide and that the motion of the transducer is

identical at all locations on its face. For such a wave with parallel kreal and kimag
vectors, the attenuation term kimag describes the residual amplitude of the wave after

each unit distance of propagation. Thus a wave of unit amplitude is reduced to an

amplitude of e-kimag after travelling one unit of distance. When attenuation is expressed

in this form the units of the attenuation kimag are said to be Nepers per unit distance.

The complex material constants α and β can be related to the (measurable) decay of

plane bulk waves by equation (3.8). Since the propagation vector N has unit length, its

square (N•N) is unity and the squares of equation (3.8) are:

k2 = k • k =
ω2
α2 for longitudinal waves

k2 = k • k =
ω2
β2 for shear waves (3.11)

Expanding the wavenumber vector into its real and imaginary parts:

ω2
α2 ,

ω2
β2 = kreal•kreal - kimag•kimag + 2i kreal•kimag (3.12)

If kreal and kimag are parallel, as with the plane wave leaving the transducer in the

discussion above, then this equation will be satisfied by the following expression for the

material constants α and β:

α , β =
ω

|kreal| + i|kimag|
(3.13)

This can also be expressed in terms of the wave speed c by substituting equation (3.10):



Chapter 3 94

Attenuating wave propagation along a multilayered plate

α , β =
c

1 +
i|kimag|
|kreal|

=
c

1 + iκ/(2π)
(3.14)

where κ is the attenuation in Nepers per wavelength, so that a wave of unit amplitude is

reduced to an amplitude of e-κ after travelling one wavelength. Note from the equation

that for a given material the attenuation per unit distance increases linearly with

frequency but the attenuation per wavelength is constant.

It has been shown therefore that there are two bulk waves which can exist in an infinite

viscoelastic medium, a longitudinal wave and a shear wave, and that they can be

described by a generalisation of the equations for the bulk waves in an elastic medium.

The only modification to the input to the material description is the extension of the two

constants α and β to include imaginary parts which describe the attenuation of the

propagating waves. It has also been shown how the complex constants can be related to

measurements of the speed and attenuation of bulk waves. The model reduces to

elasticity when the imaginary parts of the material constants are zero.

Restriction of the model to a two-dimensional space follows exactly the theory for elastic

waves which was presented in Section 2.3 of Chapter 2. Thus the displacement and

stress fields are given by equations (2.19) to (2.29), in which the wave propagation

vector N and the material constants α and β are now complex.

3.3 Plane waves at boundaries

The derivation for the interaction of viscoelastic waves at a boundary differs from that

for elastic waves by the addition of further constraints which describe the relationships of

the attenuations of all of the waves. Analyses of the interaction of viscoelastic waves at

plane boundaries may also be found in Pialucha (1992) or Deschamps and Roux (1991).

Consider two semi-infinite half-spaces in plane strain, one on each side of an infinite flat

plane. The half-spaces are joined at the interface and its location is defined by the origin

of the coordinate x2, as in the system of Section 2.4 and Figure 2.5 of Chapter 2.

Consider a longitudinal viscoelastic wave travelling in medium 1 and arriving at the

interface. Its u1 particle displacement at the interface was given in terms of its

wavenumber by equation (2.31) as:
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u1 = N1 A(L) ei(k1x1 - ωt) ((2.31))

Now the wavenumber k is complex and so, separating the real and imaginary parts:

u1 = N1 A(L) ei(k1real x1 - ωt) e-k1imag x1 (3.15)

Here it can be seen that the component of the wave in the x1 direction consists of a

harmonic part and an exponential decay. This is to be expected because it simply

represents the projection of the decaying bulk wave onto the interface.

Similarly it can be seen that the u2 displacement and the stress components all share

exactly the same harmonic and attenuation functions along the interface.

Now in order for the stress and displacement boundary conditions to be satisfied between

this wave and any other waves at the interface, all waves will have to have the same

attenuation in the x1 direction in addition to having the same frequency and wavelength.

Thus the conditions for elastic waves are extended by stating that the k1 wavenumber,

which must be the same for all waves, is now complex rather than real. Now the Snell

constant s is complex, given by:

s =
k1
ω =

N1(L)
α =

N1(S)
β =

sin(θL)
α =

sin(θS)
β (3.16)

The phase velocity (cph) is related to the real parts of s and k1 by:

cph =
1

sreal
=

ω
k1real

(3.17)

and the attenuation of all of the waves along the interface is:

Loss per unit length = 1 - e-k1imag = 1 - e-ωsimag

Loss per wavelength = 1 - e-κ = 1 - e-2πk1imag/k1real = 1 - e-2πsimag/sreal

(3.18)

On first inspection this description of the interaction of viscoelastic waves at an interface

appears to run into difficulty if the attenuation of the bulk waves is not the same on both
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sides of the interface. This is not the case however because the reflected and transmitted

waves at the interface need not necessarily have their attenuation vectors parallel to their

propagation directions. The limitations are only that the boundary conditions be satisfied

along the interface and that the attenuation normal to the interface be such that the

equations of motion (3.4) are satisfied.

For the boundary conditions to be satisfied, the complex k1 wavenumber for a reflected

or transmitted wave is required by equation (3.16) to be governed by the value of the

Snell constant:

k1 = sω (3.19)

For the equations of motion to be satisfied, the full wavenumber vector (k) must satisfy

equations (3.8). Recalling the expansion of these equations in equation (3.12) and

expanding the dot products fully gives:

ω2
α2 ,

ω2
β2 = k2

= k1real2 + k2real2 - k1imag2 - k2imag2

+ 2 i ( k1real k1imag + k2real k2imag ) (3.20)

Thus from equations (3.19) and (3.20) the complex wavenumber for any participating

wave in either of the media is defined.

The coupling conditions are illustrated in Figure 3.1. Part (a) of the figure shows the

coupling of the harmonic terms. The real part of the wavenumber along the interface,

k1real, must be the same for all waves. Part (b) shows the coupling of the attenuations.

The imaginary part of the wavenumber along the interface, k1imag, must be the same for

all waves, even if it means that the attenuation vector for a wave is not parallel to its

propagation vector.

As examples consider three cases of wave interactions at an interface. For simplicity

only longitudinal waves are considered although the principles apply to all waves at the

interface. In all cases there is an incident wave arriving at the interface in medium 1, a

reflected wave leaving the interface in medium 1 and a transmitted wave leaving the

interface in medium 2. Cases 2 and 3 are illustrated in Figures 3.2(a) and 3.2(b)

respectively.
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Case 1: Both media are elastic

If both media are elastic then the incident wave is not attenuative, α is real and so s is

real (equations 3.14 and 3.16). Now for the reflected wave and the transmitted wave, k1
is real (equation 3.19) and, since these waves are also elastic, their k vectors are real.

Their k2 components are therefore real and all behaviour is elastic and non-attenuative.

Thus the model reduces to the description of elastic wave interaction.

Case 2: First medium is elastic, second medium is viscoelastic

If the incident wave arrives in an elastic medium (Figure 3.2(a)) then s is real, even

though the second medium is attenuative, because it is defined here by the incident wave.

The reflected wave is therefore elastic according to the arguments of the first case. The

transmitted wave is attenuative but has no component of attenuation in the x1 direction,

according to equation (3.19). Its attenuation vector is therefore parallel to the x2
direction (normal to the interface) with magnitude given by equations (3.20). In other

words the attenuating wave is constrained not to decay along the interface and has to

have a sufficient decay component normal to the interface to satisfy the equations of

motion in the medium.

Case 3: First medium is viscoelastic, second medium is elastic

Finally, consider the case where the incident wave arrives in a viscoelastic medium but

the second medium is elastic, illustrated in Figure 3.2(b). Assuming that the attenuation

vector for the incident wave is parallel to the propagation direction, s is complex and is

evaluated from equation (3.19). The reflected wave is also longitudinal in this case and

travels in the same medium so it shares the same α, k2, kreal and kimag. It follows from

equation (3.20) that its attenuation vector is also parallel to its propagation direction.

The transmitted wave now is constrained to attenuate in the x1 direction even though it is

travelling in an elastic medium. Thus its k1 is complex but its k is real. If k is real then

the right hand side of equation (3.20) must be real so that the imaginary part must be

zero:

2 i ( k1real k1imag + k2real k2imag ) = 0 (3.21)

The attenuation vector for the transmitted wave must therefore have the component

normal to the interface of :



Chapter 3 98

Attenuating wave propagation along a multilayered plate

k2imag = -k1imag 





k1real

k2real
(3.22)

Thus the transmitted wave has negative attenuation in the direction normal to the

interface.

The term in brackets in equation (3.21) is the dot product of the real and imaginary parts

of the wavenumber. For this to be zero the attenuation vector must be normal to the

direction of propagation of the wave. There is therefore no attenuation in the direction of

propagation. In general for all elastic waves the attenuation vector is either zero or

normal to the direction of propagation of the wave.

Concluding the analysis of the interaction of viscoelastic waves at an interface, it has

been shown that the relationships between the waves can be described by a complex

generalisation of Snell's law. The real part describes the harmonic coupling in the same

manner as for elastic waves and the imaginary part is added to describe the coupling of

the attenuations of the waves in the direction parallel to the interface.

The displacements and stresses in viscoelastic waves can be expressed in terms of the

Snell constant in an identical fashion to the derivation for elastic waves, given in

equations (2.39) and (2.40), utilising the complex values of the material constants α and

β and the Snell constant s.

3.4 Assembly and solution

It has been shown that the descriptions of the displacements and stresses in viscoelastic

waves and their relationships at an interface are identical to those for elastic waves,

except that the material constants α and β and the vectors N and k are now complex.

Consequently the development of the equations for the assembly of a layered system as

discussed in section 2.6 of Chapter 2 apply equally here, with these same generalisations.

Continuing the development of the equations, the transfer matrices method or the global

matrix method may be used for the modal solution of multilayered viscoelastic systems.

Furthermore the introduction of the complex form of Snell's law also enables solutions to

be found, in general, of attenuating wave propagation even when the materials are all

elastic. This would be the case for example when an elastic wave propagates along an

immersed plate, leaking bulk waves into the adjacent material. The model is therefore



Chapter 3 99

Attenuating wave propagation along a multilayered plate

not restricted to free and guided waves but may be used to solve any type of propagating

plate wave provided that a zero value of the characteristic function can be found.

The characteristic function for either solution method now requires as input a complex

value of the wavenumber and a (real) value of frequency and both methods yield, in

general, a complex result. If a zero value of the characteristic function can be found then

a modal solution has been found. In this case the imaginary part of the wavenumber

describes the attenuation of the wave along the plate (equation 3.18). Physically it

should be expected that systems involving material damping or leakage of energy from

the plate into the half-spaces should require complex values of the wavenumber for their

solution. Systems consisting of elastic materials without leakage reduce the model to

the free wave descriptions of Chapter 2 when solutions are found with real values of the

wavenumber.

Finally it should be noted that the analysis of the phase properties of free plate waves in

Chapter 2 does not hold for attenuating waves. The coefficients of the matrices in the

transfer matrix method are no longer wholly real or wholly imaginary and so the analysis

of the phases is not valid.

3.5 Conclusions

The modal theory for free waves in multilayered plates which was developed in Chapter

2 has been extended to include attenuating wave propagation, either due to material

damping or to leakage of energy from the plate into the half-spaces. The extension of the

theory was achieved by generalising both the material model and the coupling constraints

for the interaction of waves at an interface. The generalisation of the material model

incorporates viscoelastic material constants which describe the attenuation of bulk waves

in an infinite elastic solid. The generalisation of the coupling constraints allows for

attenuation of waves in the direction along the plate and constrains all wave components

in the plate to share the same attenuation in this direction.

The transfer matrices method and the global matrix method remain valid approaches for

the solution of the equations. In either case the characteristic function now requires as

input an imaginary part of the wavenumber, corresponding to the attenuation of the plate

wave, in addition to the real wavenumber and the frequency. The functions both yield

complex results.
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The generalised theory may be used to solve all types of attenuating wave, whether due

to material damping or leakage, in addition to free waves. It is not necessary to classify

waves prior to the solution.

The implementation of the characteristic function in the computer model will be

described in chapter 4.
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Conditions for spatial coupling of viscoelastic waves at an interfaceFigure 3.1

(a) Coupling of harmonic terms: k1real must be the same length in both media
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Wavenumber and attenuation vectors at interfaces between elastic and
viscoelastic media

Figure 3.2

(a) Incident and reflected waves in elastic medium, transmitted wave in
viscoelastic medium
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(b) Incident and reflected waves in viscoelastic medium, transmitted wave in
elastic medium
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4.1 Introduction

This chapter covers the implementation of the theory of Chapters 2 and 3 into a general

purpose computer model for the prediction of the modal properties of multilayered

media. The model predicts the dispersion curves for plate waves and their mode shapes.

A dispersion curve is a plot describing the variation of velocity with frequency for a plate

wave. From the theoretical point of view it is a plot of the locus of solutions of the

characteristic function (equation 2.58, 2.62, 2.64, 2.66 or 2.88). Any point on a

dispersion curve represents conditions of frequency and velocity (or wavenumber) for

which the characteristic function yields a zero value. Under these conditions a

propagating wave continues to travel without requiring any input of energy from outside

the layered system. In the case of a free plate wave, the wavenumber is real and the

wave continues indefinitely without diminishing and without leaking any energy from

the layered system. In the case of an attenuating plate wave the wavenumber is complex

and the wave continues indefinitely but with an exponential decay in its amplitude caused

by damping losses in viscoelastic materials or leakage into the half-spaces.

A mode shape is the distribution of a displacement or stress component through the

thickness of the plate. Mode shapes are calculated at a particular location on a dispersion

curve and are used to reveal the physical nature of a mode. They are also used to

determine the positions through the thickness of the plate where the energy of a wave is

concentrated.

Overview

The core task of the dispersion curve model is to find the solutions (zeroes) of the

characteristic function. Each point on a dispersion curve is found numerically by

repeatedly evaluating the function whilst varying the input (frequency and wave number)

according to a robust search algorithm. A dispersion curve is generated by finding a

sequence of such solutions, using a trace algorithm to extrapolate from the end of the
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curve to each new point. The global matrix method is selected for the definition of the

characteristic function.

A coarse search is conducted first in order to locate approximately all modes of interest

at a particular frequency or wave number. The coarse search steps with constant

increments through a range of one of the input parameters, identifying minima in the

function as approximate solutions. A fine search then starts from one of the approximate

solutions and locates each of these modes accurately. It uses an unconditionally stable

bisection algorithm. For attenuating modes, where the imaginary part of the

wavenumber must be found in addition to the frequency and real wavenumber, the fine

search also involves a sequence of alternate searches of the real variable (frequency or

real wavenumber) and the imaginary variable (attenuation).

The curve tracing algorithm generates a dispersion curve for each mode by starting from

each of these solution points and incrementing the wave number slowly. A further fine

search is performed at each point on its path by varying the frequency. The first estimate

of each new point is obtained by quadratic extrapolation from three of the preceding

solution points. The process continues for each curve until the maximum frequency of

interest is reached. Dispersion curves are plotted as phase velocity, group velocity, real

wavenumber or incident angle in the coupling medium versus frequency. Attenuation is

plotted in Nepers per wavelength or Nepers per unit distance along the plate versus

frequency.

Mode shapes are calculated at any solution point which has been identified by the search

algorithms. An arbitrary amplitude of one of the wave components is assumed and all of

the other component wave amplitudes are evaluated with respect to this. The

displacement and stress equations are then evaluated at a discrete number of locations

through the thickness of the plate. Mode shapes are plotted for the displacement and

stress components and for the strain energy density.

4.2 Selection of characteristic function

The theoretical development of Chapter 2 ended with two different procedures for the

solution, both resulting in characteristic functions for which zero values must be found.

Both of these methods are mathematically correct but in practical applications the

transfer matrices method suffers from a fundamental numerical weakness under certain

conditions. It has therefore been rejected in the implementation described here in favour

of the global matrix method. This is unfortunate because the transfer matrices method is
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the more intuitive idea, is more amenable to examination of the properties of the modal

solution and has the convenience of always being real when calculating solutions for free

waves. It is also computationally more efficient, particularly as the number of layers is

increased.

The difficulty with the transfer matrices method comes from its requirement for the

displacements and stresses at each interface to be expressed in terms of those at the next

interface. It can be seen in the assembly of the layer matrix [L], given explicitly in

equation (2.68). Look for example at term L11. This value gives the relationship of the

u1 displacement at the bottom of the layer to that at the top of the layer. The terms gα
and gβ (defined in equation 2.43) are exponential expressions of imaginary quantities for

homogeneous waves or real quantities for inhomogeneous waves. When the exponents

are imaginary the evaluation of L11 is straightforward. However if either exponent is

real then the expression contains, in brackets, the sum of a real positive exponential term

and a real negative exponential term. There is no problem if the exponents are

reasonably close to unity but if the exponents are very large or very small then each of

the expressions in brackets consists of the sum of a very large number and a very small

number. Similarly the other coefficients of the [L] matrix also consist of sums or

differences of large and small numbers. Clearly therefore the matrix becomes ill-

conditioned if the exponents are very large.

The condition for the exponent of gα or gβ to be real is when α2s2 or β2s2 in equation

(2.43) is greater than unity, corresponding to the condition for an inhomogeneous wave.

The exponent can also be seen in this equation to be linearly dependent on the product of

the frequency and the distance x2 from the top of the layer. Physically now it can be

seen that the problem is associated with large exponential decays of inhomogeneous

waves through the thickness of the layer. The small exponential terms relate the

displacements and stresses at the bottom of the layer to those at the top, due to an

inhomogeneous wave at the top of the layer. The large exponential terms relate the

displacements and stresses due to an inhomogeneous wave at the bottom of the layer.

Practical implementation of the transfer matrices method has shown indeed that the

solution becomes unstable for high values of the product of frequency and layer thickness

when inhomogeneous waves are present. A study made by the author using the transfer

matrices method and utilising 64 bit precision for real numbers and 128 bit precision for

complex numbers has shown that the practical limit for the analysis of the first two

modes in a titanium plate in vacuum is about 15 MHz-mm. At high frequencies these

two modes consist of inhomogeneous longitudinal and shear waves and are both
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asymptotic to the Rayleigh wave solution. The largest exponent is associated with the

shear wave because the bulk shear velocity is lower than the bulk longitudinal velocity

(see equation (2.43)). Assuming a typical value for the bulk shear velocity for titanium

and that the product β2s2 is just less than unity, the magnitude of the exponent at 15

MHz-mm is about 30 and so the large and small exponential terms are about 1013 and

10-13 respectively. The coefficients in the [L] matrix are therefore composed of the

sums and differences of numbers which differ by 26 orders of magnitude.

Stable solutions for higher frequency-thickness products using transfer matrices have

been achieved by other researchers, often for specific applications, by further

manipulations of the formulation or in some circumstances by monitoring and re-scaling

of variables. A number of papers have been published on this matter with specific regard

to geophysical applications, for example Dunkin (1965), Abo-Zena (1979) and Evans

(1985). However it was decided during the development reported here that the best way

to avoid the risk of instability in the general purpose model is to adopt the global matrix

formulation which is inherently stable so that the risk can be dismissed entirely.

The fundamental attraction of the global matrix method is that it does not involve the

expression of displacements and stresses at one interface with respect to those at any

other. Each equation in the matrix is formed at an interface and the solution of the

characteristic function simply implies that all of the equations have been satisfied

independently. This does not mean that the interfaces are completely independent,

because the equations at an interface are influenced by the arrival of waves from the

neighbouring interfaces. However, as the frequency-thickness product is increased, the

influence of an inhomogeneous wave travelling along one interface on the displacements

and stresses at the next interface simply reduces. The extent of the influence is

determined by the exponential terms in the global matrix. These terms are always

decaying functions for inhomogeneous waves if the modification of Schmidt and Jensen

(1985) and Pialucha (1992) is made to the origins of the waves (see equations 2.82).

Thus in the limit these terms vanish and an inhomogeneous wave travelling along one

interface has no influence on the waves at the next interface. The method therefore

remains perfectly stable for any frequency-thickness product because it does not rely on

the coupling of waves from one interface to another.

4.3 Evaluation of characteristic function

Examination of the characteristic equations of Chapter 2 shows that they describe both

the layered system and its boundary conditions. Specifically any evaluation of the
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function yields a result which is determined by the material properties and thicknesses of

all of the layers, and the frequency and wave number. Additionally if the evaluation of

the function yields zero then the function represents a solution to the equation, implying

that the desired boundary conditions have been satisfied.

The material properties and thicknesses are input to the model as constant descriptions.

A sequence of layers is defined, each with a thickness, a density, a longitudinal bulk

wave velocity and attenuation and a shear bulk wave velocity and attenuation. For ease

of discussion these properties will be treated as constants in the evaluation of the

characteristic functions because typically they do not vary significantly, if at all, over the

frequency and wave number solution space. In general however any variation of these

properties with frequency is permissible, provided that it is sufficiently slow not to upset

the search algorithm, because each solution of the equation exists only at its single

frequency and wavenumber. Any such variations are assumed to be accommodated by

re-sampling the 'constant' data at each evaluation of the function.

The theory has now been condensed to a function which requires as input a value of

frequency and a value of wave number and whose output indicates whether or not these

inputs are appropriate for wave propagation. The frequency is real in all cases and the

wave number is real for free waves and complex for attenuating waves (see section 3).

Strictly speaking the wavenumber is a vector but the analyses of Chapters 2 and 3

showed that the characteristic function is expressed in terms only of its components (real

and imaginary) in the direction parallel to the plane of the layers. All references to the

wavenumber in this chapter therefore refer to this component (k1) of the wavenumber.

Referring to equations (2.36), (3.16) and (3.17), the input can be further generalised for

practical applications by relating the real part of the wave number to the phase velocity

of the plate wave or to the angle of incidence (θ) of a bulk wave with velocity ci in one

of the half-spaces, if present:

kreal =
ω

cph
=

ω.sinθ
ci

(4.1)

The significance of relating the wavenumber to the angle of incidence of bulk waves in a

half-space is that the excitation and reception of plate waves is often achieved using the

coincidence principle, which will be described in Chapters 5 and 8, in which the

transducers must be oriented at this angle. The imaginary part of the wavenumber, if

present, describes the attenuation of the wave along the plate:
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Loss of amplitude per unit length = 1 - e-kimag

Loss of amplitude per wavelength = 1 - e-κ

= 1 - e-2πkimag/kreal (4.2)

To evaluate the function, the global system matrix is assembled according to section 2.8

using the input values of frequency and wavenumber and its determinant is calculated

(equation 2.88). Since the aim is to find zero values of the determinant, the matrix which

is assembled is frequently close to being singular. Nevertheless for the search algorithms

to converge successfully the determinant must be calculated accurately. Furthermore, the

generation of a dispersion curve typically requires many thousands of evaluations of the

function. A very important part of the development therefore was the implementation of

a robust algorithm for the calculation of the determinant of the complex global matrices.

The ideal approach for the calculation of the determinant would be to use repeated

Laplace expansions, because this would involve multiplications, additions and

subtractions only and would be totally robust. However this method would be extremely

inefficient for large matrices and it has been found that in practice it is not necessary to

be so cautious. The fact that the determinant can be found by Laplace expansions has its

use however because it demonstrates simply that the characteristic function is analytic

within the desired solution space. The coefficients of the system matrix are analytic in

all space with the exception of the square root expressions in the exponents of gα and gβ
in equation (2.43). Each square root expression has two possible evaluations in general,

corresponding to a wave arriving at the interface and a wave leaving the interface. These

possibilities are identified separately in the analysis and the signs of the roots are

constrained so that there is no discontinuity in their evaluations. Therefore, with this

constraint, the coefficients of the system matrix are analytic. The sums, differences and

products of analytic functions are themselves analytic. Therefore the characteristic

function is analytic. This property is useful because it means that it is valid to assume

that the characteristic function is continuous and smooth.

There are many published algorithms for the calculation of the determinant of a matrix.

An introductory discussion, an implementation and further references may be found in

Press, Flannery, Teukolsky and Vetterling (1986). Commercial library program routines

may also be utilised, for example the routines of the Numerical Algorithms Group (Ref.

NAG Ltd.). However in order to address the specific demands of the application

discussed here, with maximum efficiency, it was considered preferable not to rely on
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such general purpose routines. An algorithm was therefore developed, based on a

complex form of Gaussian reduction. It has been found to perform perfectly. The global

system matrix is reduced systematically to upper diagonal form and the determinant is

then evaluated as the product of all of the diagonal elements. Partial pivoting of rows is

employed so that the best possible condition is achieved on each reduction. The banded

nature of the global matrix is also exploited as far as is possible with the partial pivoting.

Divisions are monitored when pivoting so that if the absolute value of the denominator

drops below a small tolerance of 10-20 then a zero determinant can be declared rather

than the solution fail due to zero division. In practice however the iteration of the

solution has always been found to converge to an acceptable accuracy without a zero

determinant being declared.

4.4 Searches

The task of the search algorithms is to find input values to the characteristic function

which are acceptably close to yielding zero results. The searches are carried out in two

stages, a coarse search is used to find the approximate locations of modes over a wide

range of solution space and a fine search is used to improve the accuracy, as required, of

any of these approximate solutions. The fine search algorithm is also used repeatedly for

the generation of dispersion curves.

Coarse search

The coarse search involves sampling the function over a range of one parameter whilst

holding the other independent parameters constant. Thus a frequency search consists of a

sweep of frequency by constant increments over a selected range at a fixed phase velocity

and attenuation, and a velocity search consists of a sweep of velocity at fixed frequency

and attenuation. A frequency search and a velocity search are illustrated in Figure 4.1.

Also shown as an example in the figure, in dotted lines, are the Lamb wave dispersion

curves for a 1 mm thick sheet of titanium. The coarse searches should identify

approximately the locations where these dispersion curves cross the sweep lines. This is

achieved by examining the array of complex values (the results of the sweep) and

identifying the minima of their amplitudes.

Typical results of a coarse search for a free wave problem are shown in Figures 4.2 and

4.3. The example is the 1 mm thick sheet of titanium, introduced above. The material is

assumed to be perfectly elastic and the plate is in vacuum. The sweep line is shown in

Figure 4.1. The sweep is of 101 samples at 20 kHz intervals over a range of frequency of
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1.5 MHz to 3.5 MHz, at a constant velocity of 8 km/s and a constant attenuation of zero.

Figure 4.2 shows the results of the sweep in complex space, revealing the existence of the

two modes in this range. These can be seen where the path of the sweep passes through

the origin of the plot. The frequencies of the modes can also be identified by the

locations of the minima in the amplitudes of the function, shown in Figure 4.3. Since the

solutions are for free waves the choice of attenuation of zero is correct. It can therefore

be assumed that further refinement of the sampling interval would improve the accuracy

with which the frequencies of the modes are known and that in the limit the minima

would be zeroes of the function.

Figures 4.4 and 4.5 show the same plots for an attenuating wave propagation problem

when the same plate is immersed in water. Here it can be seen that the path of the sweep

does not pass through the origin. Therefore zeroes of the function can not be found by

refining the sampling interval, only minima can be identified. For the path to pass

through the origin for either of the modes it would be necessary for the sweep to be

performed at the appropriate value of attenuation corresponding to the leaky solution for

the mode.

The coarse search does not always reveal minima for attenuating waves. The minima are

clearly identifiable in Figure 4.5 but they tend to be much blunter when the value of

attenuation which is used in the sweep is very different from the value which is

appropriate to the leaky solution. This is normally the case when zero attenuation is used

in the sweep but the wave is very leaky. In fact in many cases of strongly attenuating

waves it is necessary to perform the sweep a number of times with a range of different

attenuations in order to detect the minima.

Fine search

Having identified the approximate input values for a modal solution, the fine search is

used to improve the values to acceptable accuracy. This would be straightforward if only

free modes were required but it is rather difficult when the possibility of attenuating

modes is to be considered, for two reasons. The first difficulty is evident already: in

general there are three values of input to be considered, real wavenumber, imaginary

wavenumber and frequency, so that simple refinement of the sweep method is not

sufficient. The second difficulty is that modes can exist at very close or even coincident

locations (note the crossing of the dispersion curves at some locations in Chapter 5).

This means that the fine search algorithm may be influenced by more than one mode. It

is therefore extremely risky to employ any fast-converging methods based on slopes or
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extrapolations, such as Newton's method. Such methods may be beneficial for specific

problems where modes are well separated - Clayton and Derrick (1977) claim to have

had success with a complex Regula Falsi method which resorts to a Monte Carlo

technique for restarting when a wild extrapolation occurs. However, a study made by the

author using complex Regula Falsi indicated that wild extrapolations are extremely

frequent when modes are close. It was therefore decided to develop a robust algorithm

which is not dependent on the evaluation of gradients and which does not involve any

extrapolations.

The scheme works by performing an alternating sequence of searches of one of the real

inputs to the function and the attenuation. First, a single-variable search of a real input

(frequency, real wavenumber or velocity) is performed to find the minimum of the

function to a high degree of accuracy. The other real input and the attenuation (in

Nepers per wavelength, κ) are kept constant. A check is then made to determine whether

the minimum is acceptably close to a zero of the function and, if so, the search is

complete. If not, the single-variable search is repeated with the attenuation as the

variable so that an accurate minimum of the attenuation is found. Again the check is

made to determine whether the minimum is acceptably close to a zero. If not, the real

input is varied again, and so on until convergence is achieved.

The single-variable search is itself carried out in two stages. The first stage is simply a

refinement of the coarse search technique. The sign of the gradient of the amplitude of

the function is found by taking a very small arbitrary step of the input variable. This

determines whether the input variable should be increased or decreased to find a lower

function amplitude. The input variable is then incremented (or decremented) in fixed

small steps until a minimum is passed.

At this point the strategy is changed and a robust bisection method is employed, still

retaining the same input parameter as the variable. This method is similar in approach to

the 'Golden Section Search' discussed by Press et al. (1986). An iteration cycle of this

method starts with three samples: a current minimum, a sample obtained with a lower

value of the variable and a sample obtained with a higher value of the variable. These

are the 'centre' sample, the 'left' sample and the 'right' sample respectively. The size of

the sampling interval between left and centre is the same as between centre and right.

The function is then sampled at the two mid-points of these intervals so that a total of

five equi-spaced samples are known. For the next iteration cycle, the sample with the

lowest absolute value out of these five becomes the new centre, and its neighbours

become the new left and right. Examination of each of the possibilities during a cycle of
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the algorithm shows that this process must converge unconditionally. Convergence on

the minimum is deemed to have been achieved when the sampling interval has been

reduced to an acceptable tolerance. Typically a tolerance of 10 Hz is used for frequency,

the tolerance for the real wavenumber is such that a 0.01 m/sec tolerance is achieved for

phase velocity and the tolerance for attenuation is 0.001 Nepers/wavelength.

Convergence on the minimum is normally achieved in about 10-20 iterations when

starting from an approximate value given by a coarse search.

After each iteration of the single-variable search the result is examined to see whether it

is a valid solution. Since the gradient of the function varies significantly over the

solution space it is not advisable to decide whether the minimum is a solution simply by

comparing its magnitude with an arbitrary tolerance. This would result in large

variations of the accuracy of the solution over the solution space and different levels of

accuracy for different plate systems. Instead the angle is calculated between the vectors

in complex space from the origin to the sampling points just before and just after the

converged minimum, as shown in Figure 4.6. Since the function is smooth, an exact

solution in the limit should have an angle of 180 degrees. A solution is considered to

have been found if the angle is greater than 90 degrees.

An illustration of the application of the fine search algorithm is shown in Figure 4.7.

The example is of the 1 mm titanium sheet in water whose coarse search was shown in

Figures 4.4 and 4.5. In fact part of the coarse search plot of Figure 4.4 is included in the

figure, from which it can be seen that the fine search in this example starts from the

second minimum of the coarse search. The fine search starts with the variation of the

frequency to find an accurate minimum, which in this case is very close to one of the

sampling positions of the coarse search. The attenuation is then varied, then the

frequency, then the attenuation and so on. Only three applications of the single-variable

search are shown; a further five were required before the solution converged. The

attenuation in this case was found to be fairly large, at 0.462 Nepers per wavelength.

The frequency was calculated as 2.866 MHz, some 13 kHz lower than that for the plate

in vacuum.

The speed of convergence of the fine search algorithm depends on the accuracy of the

starting values, the proximity of modes and the degree of attenuation (large numbers of

iterations are often necessary for very leaky solutions). When searching for free modes

the solution is always rapid, provided that the coarse search has been performed with

zero attenuation, because the algorithm detects each solution in one application of the

single-variable search.
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4.5 Curve tracing

The task of the curve tracing algorithm is to generate a dispersion curve by finding a

smooth sequence of solutions for a given mode. The algorithm works on one mode at a

time, starting from a user-selected position (found by a coarse search) and finishing at a

selected upper limit of frequency. An illustration of the generation of a dispersion curve

is shown in Figure 4.8(a).

The curves could be generated as either phase velocity dispersion curves or wavenumber

dispersion curves. For convenience, wavenumber curves are generated because they are

closer to straight lines and are therefore easier to predict with extrapolation algorithms.

Any other dispersion curves (phase velocity, group velocity or angle of incidence) can be

calculated from the wavenumber curves. A constant wavenumber increment, ∆k, is

chosen and solutions are found by performing a fine search for a sequence of

wavenumbers with this spacing. Each fine search uses frequency as the real variable,

keeping the real wavenumber constant.

The algorithm starts by performing a fine search to obtain an accurate first point in the

frequency - wavenumber space. A very small increment (one thousandth of ∆k) is then

added to the wavenumber and a new solution is found by a fine search. This pair of

solutions gives the gradients of frequency and of attenuation of the dispersion curve at

this location and enables a linear extrapolation to be made to a position exactly ∆k from

the first point, where another fine search is performed. A second linear extrapolation

yields the third point and so on.

After six points have been found the algorithm switches to a quadratic extrapolation

scheme. For a polynomial where solutions y0, y1 and y2 are known for equally spaced

inputs x0, x1 and x2, it can be shown that the extrapolation

y3 = y0 - 3y1 + 3y2 (4.3)

for the next equally spaced input x3, is exact for the constant, linear and quadratic terms.

This extrapolation is employed with 2∆k as the equally spaced input and is used to

extrapolate both frequency and attenuation, as illustrated in Figure 4.8(b). Thus,

following the solution at point n, the predictions for frequency fn+1 and attenuation κn+1
are:
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fn+1 = fn-5 - 3fn-3 + 3fn-1

κn+1 = κn-5 - 3κn-3 + 3κn-1 (4.4)

The use of a quadratic extrapolation scheme improves the estimate of the prediction

enormously over a linear extrapolation. This reduces the number of iterations required

by the fine search after each extrapolation but, more importantly, it minimises the risk of

following the wrong curve when two dispersion curves cross (see examples of crossing

curves in Chapter 5). In practice it is extremely rare for this error to occur with this

scheme. The spacing for the input is chosen to be 2∆k rather than simply ∆k in order to

reduce the influence of errors in the individual solutions on the extrapolation. Two

possibilities can occur. Firstly, if solution fn is incorrect because it converges on the

wrong mode (perhaps one which is about to cross the one of interest) then extrapolation

to point n+1 using the solution at point n risks following the other mode. With the

spacing increased to 2∆k the erroneous result at point n is not used until a step later when

the danger is reduced. Secondly, the influence of any error at a point (some small error

must always be expected even after convergence) on the extrapolation is dependent on

the spacing, as with any numerical differentiation process. As the spacing is increased,

the extrapolation error for any given set of three solution errors is reduced.

Having traced the wavenumber dispersion curve, the phase velocity and angle of

incidence dispersion curves are easily calculated from equation (4.1). Additionally the

group velocity (the velocity at which energy is carried along the plate) is calculated from

the differential expression:

cgr =
dω
dk (4.5)

Any of these real quantities or the attenuation of the plate wave, in Nepers per

wavelength or Nepers per unit distance, may be plotted using the model.

4.6 Mode shapes

A mode shape of a plate wave is the distribution of one of the field variables through the

thickness (x2 direction) of the multilayered system. Thus a u1 displacement mode shape

shows the variation of the u1 displacement with depth through the plate, and similarly

with the other displacement and stress components. The variation in the x1 direction is

not of interest because it is always sinusoidal for all components, with wavelength equal
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to the wavelength of the plate wave. Mode shapes may be calculated at any location on a

dispersion curve. Some examples of mode shapes will be shown in Chapter 5.

The calculation of mode shapes starts with the calculation of the amplitudes of the four

component waves A(L+), A(L-), A(S+), A(S-) in each of the layers of the system at a

chosen position on a dispersion curve. Ideally this would be done by inverting the

system matrix [S] on the left hand side of equation (2.85) and using this to pre-multiply

both sides of the equation to give:









{A-
1}

{A2}
{A3}
{A4}

{A+
5}

= [S] -1









[-D+

1b]

[D-
5t] 








{A+
1}

{0}
{0}
{0}

{A-
5}

(4.6)

However the inversion of [S] at a position on a dispersion curve is not possible because

by definition it is singular for any modal solution. It is not surprising that this is the case

because the modal solution describes the conditions for the existence of plate waves but

it does not describe their amplitudes. Propagating waves of any amplitude are therefore

permissible.

The problem is solved by assuming an amplitude of one of the wave components in one

of the layers and scaling the others accordingly. Incidentally, by this assumption the

amplitude of the plate wave is also assumed. The choice is arbitrary; in the

implementation described here a unit real amplitude is assumed for the downward

longitudinal wave ( A(L+) ) in the first finite layer of the plate (layer l 2). The assembly
of the system equation (2.85) is therefore modified slightly. Instead of moving the

equations for all four of the incoming waves (A(L+)1, A(S+)1, A(L-)5 and A(S-)5) to

the right hand side, as described in Chapter 2, only three of them are moved and the

place of the fourth is taken by the assumed unit component A(L+)2. The modified

system matrix is still square and is in general non-singular and the right hand side of the

system equation is non-zero. The equation can therefore be solved for the array of wave

amplitudes. The solution yields the amplitudes of all of the layer wave components for

unit real A(L+)2.

The modified system matrix is in general non-singular but there is a condition when it

becomes singular. As discussed in Chapter 2, Section 2.8, the system matrix is singular

when the wavenumber of the plate wave is equal to the wavenumber of either of the

component waves in one of the layers. However this singularity is not a problem.
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Firstly, the existence of the singularity is due to the fact that the + waves and the - waves

with this wavenumber are indistinguishable in their influence on the displacements and

stresses. Any error in the evaluation of the relative amplitudes of these + and - waves

will therefore have no effect on the calculated mode shapes. Secondly, failure of the

solution algorithm due to zero division is unlikely because of numerical rounding. A

practical investigation conducted by the author has shown that, even if the matching

wave numbers are specified exactly to full precision, sufficient precision is lost in the

calculation of the exponential functions to avoid the trap for zero division in the solution

routine.

Having found the wave amplitudes, the stress and displacement components can be

calculated at any position through the thickness from equations (2.39) and (2.40),

remembering to adjust the x2 values for upwards travelling waves in order to account for

the location of their origins at the bottoms of the layers (Chapter 2, Section 2.8). Thus

plots can be made of the through-thickness variations. In the implementation described

here, plots may be made of any of the stress or displacement components, or of the strain

energy density , given by half of the sum of the stress-strain products:

SED =
1
2 (σ11

∂u1
∂x1

+ σ22
∂u2
∂x2

+ σ12(
∂u1
∂x2

+
∂u2
∂x1

) ) (4.7)

The displacements and stresses do not in general share the same phase in the x1 direction

(or time). For convenience when comparing plots, all of the mode shapes are therefore

plotted with phases such that in each case the value at the top of the first finite layer of

the plate is real and positive. Also, the displacement components are scaled such that the

Euclidean norm of the two arrays of displacement values through the thickness of the

plate is unity. The choice of scaling is arbitrary but it is useful to be able to compare

different displacement components of a mode on the same scale and to maintain a

reasonably consistent scale for all modes. Similarly the stress components are scaled to

the Euclidean norm of the stresses.

4.7 Conclusions

The theory for free waves and attenuating waves of Chapters 2 and 3 has been

implemented into a general purpose predictive tool for calculating the modal properties

of multilayered plates.
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The two possible solution methods which were introduced in Chapter 2 were examined

and the global matrix method was chosen for the implementation. An algorithm based

on complex Gaussian reduction with partial pivoting was developed for the evaluation of

the characteristic function and a robust scheme was developed for searching for the

complex roots. The generation of dispersion curves is achieved by repeated applications

of the search scheme, employing quadratic extrapolation for the prediction of each new

point. A procedure for calculating the mode shapes of propagating waves was developed

by modification of the system matrix.

The model calculates dispersion curves as phase velocity, group velocity, real

wavenumber or incident angle, versus frequency. The attenuation of the plate waves

may also be plotted. Mode shapes are plotted for the displacement and stress

components and for the strain energy density. They may be plotted at any location on a

dispersion curve.
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Coarse searches for location of modesFigure 4.1
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Complex evaluations of characteristic function for free wavesFigure 4.2

1 mm sheet of titanium in vacuum.
Frequency sweep from 1.5 MHz to 3.5 MHz in increments of 20 kHz.
Velocity 8 km/sec, attenuation 0.

Solutions
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Amplitude of evaluations of characteristic function for free wavesFigure 4.3

1 mm sheet of titanium in vacuum.
Frequency sweep from 1.5 MHz to 3.5 MHz in increments of 20 kHz.
Velocity 8 km/sec, attenuation 0.
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Complex evaluations of characteristic function for attenuating wavesFigure 4.4
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Amplitude of evaluations of characteristic function for attenuating wavesFigure 4.5
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Angle used to check for convergence of fine searchFigure 4.6
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Progression of solution for attenuating waveFigure 4.7
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Generation of dispersion curveFigure 4.8
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5.1 Introduction

The purpose of this chapter is to demonstrate that the model which was developed in

Chapters 2 to 4 is a suitable tool for the modal analysis of a wide range of plate systems

and waves and that it is capable of making accurate predictions of dispersion curves and

mode shapes.

Large numbers of modal solutions have been calculated with the dispersion curve model,

initially to confirm its accuracy and subsequently in the course of research. A few

examples of its application are described in Section 5.2. They have been selected to

show the versatility of the model, covering a range of plate systems and wave types,

including the well known cases of Rayleigh, Stoneley and Lamb waves, and both free

and attenuating solutions. The different forms of plotting dispersion curves are

demonstrated and illustrations are given of displacement and stress mode shapes.

Section 5.3 is devoted to the verification of the model by comparison with analytical

solutions. There are known analytical solutions for particular cases of the simpler plate

systems and these can be used to check the accuracy of the model to a high degree of

precision at specific locations in the solution space.

In Section 5.4 some predictions which were made using the model are compared with

measurements and with predictions made by other models. These include measurements

of surface waves made by the author, published measurements and predictions of Sezawa

waves and predictions of near-field reflections when waves are being excited, made using

a response model.

The material properties for all of the examples are given in Table 5.1.
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5.2 Examples of applications of the model

Rayleigh wave on titanium half-space

Figure 5.1(a) shows the mode shapes for a Rayleigh wave in titanium. The geometry

required for a Rayleigh wave is a semi-infinite half-space of the solid, adjacent to

vacuum, as illustrated in the inset diagram in the figure. The energy of the wave is

retained close to the surface and in an elastic material it does not attenuate. The Rayleigh

wave velocity was calculated by the model to be 2996.342 m/sec (independent of

frequency). The modes were plotted for a frequency of 10 MHz and so the wavelength

in this case was about 0.3 mm. Thus it can be seen that the depth in the plate in which

the stresses and displacements are significant is approximately two wavelengths. This is

the case for all frequencies because the wavelength and the depth axis of the mode shapes

both scale inversely with frequency. It can also be seen that the stress normal to the

surface and the shear stress are zero at the surface, as required by definition for a free

surface, but that they build up sharply just below the surface. The third stress

component, that parallel to the surface, is not constrained by the boundary conditions at

the surface and indeed it peaks at this location.

If the half-space of vacuum next to the titanium is replaced by a half-space of water then

the Rayleigh wave becomes a leaky Rayleigh wave. Its speed is faster than the speed of

bulk longitudinal waves in water and so it leaks a homogeneous longitudinal wave into

the water. It therefore attenuates as it travels. The velocity of the leaky Rayleigh wave

in titanium was calculated by the model to be 3001.051 m/sec, some 5 m/sec faster than

the free Rayleigh wave. Its attenuation is 0.114 Nepers/wavelength for all frequencies.

Its attenuation per unit distance is therefore linearly proportional to the frequency,

exactly as with viscoelastic bulk waves. In the example discussed here the frequency is

10 MHz and so the attenuation is 0.381 Nepers/mm and the wave loses 32 % of its

energy per mm travelled.

The mode shapes for leaky Rayleigh waves are almost identical to those for free

Rayleigh waves, with the exception of the normal stress close to the surface. Figure

5.1(b) shows a detailed plot of the stresses for both waves very close to the surface, the

depth scale being magnified by 20 compared to the previous figure. The solid lines are

for the free wave and the dashed lines for the leaky wave. It can be seen that the normal

stress is not zero at the surface for the leaky wave; the small value of stress here is

associated with the transfer of energy from the titanium into the water. There is no shear
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stress at the surface because the water is assumed to have no shear stiffness. (Actually

the water is given a very small shear stiffness, implied by the very small shear velocity in

Table 5.1. This is a convenience to avoid a singularity in the solution; it has no

significant effect on the results.)

If the half-space next to the titanium is vacuum but the material has viscoelastic damping

properties then again the wave attenuates as it travels. If the attenuation per wavelength

for bulk longitudinal waves is the same as that for bulk shear waves then it is evident

from the formulation that the Rayleigh wave must also have this value of attenuation.

Furthermore the velocity of the attenuating Rayleigh wave in this case is identical to that

of the free wave. If the attenuations of the two bulk waves are different then the

attenuation of the Rayleigh wave is dominated by the value of attenuation of the shear

bulk wave because Rayleigh waves consist mainly of shear wave components. For

example if the attenuations of the bulk longitudinal and bulk shear waves are 0.01 and

0.02 Nepers/wavelength respectively, then the attenuation of the Rayleigh wave in

titanium is 0.019 Nepers/wavelength. In general the attenuation of any non-leaking plate

wave in viscoelastic material lies somewhere between the maximum and minimum

values of the attenuations of bulk waves in the layers.

Stoneley wave at the interface between titanium and steel

The second example is the next simplest case of plate wave propagation, the Stoneley

wave. A Stoneley wave, by original definition (Stoneley (1924)), is a free wave which

can propagate along the interface between two solids. The energy of the wave is retained

close to the interface in both media and it does not attenuate as it travels. In fact

Stoneley waves can only exist between certain pairs of materials, as observed by

Stoneley (1924) and defined rigorously by Scholte (1946). A general condition for their

existence is that the shear velocities of the two materials must be very similar and in

some cases must be identical. The Stoneley wave travels at a velocity slightly lower than

the bulk shear velocity(ies).

Figure 5.2 shows the mode shapes for a Stoneley wave at the interface between steel and

titanium. These materials have similar bulk shear velocities; for convenience they were

given identical shear velocities in the calculation (Table 5.1) so that it was possible to

find a free solution. The wave was found to have a velocity of 3221.329 m/s, slightly

lower than the bulk shear velocity, as expected. The displacements and stresses can be

seen to decay as the distance from the interface is increased, as was observed with the

Rayleigh wave. None of the components is zero at the interface but it can be seen that
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the requirement for the two displacement components and the normal and shear stresses

to be continuous across the interface has been satisfied. The third stress component, the

stress parallel to the surface, is unconstrained at the interface and a step change can be

observed here.

If the conditions for Stoneley waves are not satisfied then a free wave solution can not be

found. However in many cases attenuating solutions can be found. These are for leaky

Stoneley waves, in which the velocity of the interface wave is higher than one or both of

the bulk shear velocities. In these cases energy leaks into the half-spaces and the waves

attenuate as they travel. A theoretical examination of leaky Stoneley waves is given by

Pilant (1972).

Lamb waves in titanium sheet

If a second interface is added to the system and the simplest case is taken, of vacuum

half-spaces, then the geometry is appropriate for the propagation of Lamb waves. Lamb

waves are free waves which travel indefinitely in elastic plates in vacuum. From a

practical engineering point of view there is no difference between the solutions for Lamb

waves for a metal plate in air and those for a plate in vacuum because the acoustic

impedance of air is negligible in comparison with that of the plate. For the same reason

the Lamb waves are also good approximations in most cases when the half-spaces are

water. As an example of Lamb waves, the modes for a 1.0 mm thick titanium sheet have

been calculated and are shown in Figures 5.3 to 5.5 and 5.7.

Figure 5.3 shows the phase velocity dispersion curves for the full set of Lamb modes for

frequencies up to 10 MHz and phase velocities up to 10 km/sec.

The two modes which can exist at very low frequencies, labelled a0 and s0 as is the

convention for Lamb waves, are those which were introduced in Chapter 1 and were

illustrated in Figure 1.5. Figure 1.5 also showed the shapes of the waves at the low

frequency limit from which it could be seen that s0 is an 'extensional' mode and a0 is a

'bending' mode. At the low frequency limit s0 is often called the 'Young' wave, its

velocity being determined simply from Young's modulus and the plane stress boundary

conditions in the plane of the plate (plane strain still applies in the section through the

plate, as discussed in Section 2.3 of Chapter 2). At all frequencies the deformations and

stresses of s0 are entirely symmetric with respect to the centre line of the plate and those

of a0 are entirely antisymmetric. Their respective labels 's' and 'a' refer to these

properties and the subscript '0' indicates that they are the first modes in series of
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symmetric and antisymmetric modes. In fact all Lamb modes are either perfectly

symmetric or perfectly antisymmetric throughout their frequency ranges.

Both a0 and s0 can be seen to be dispersive, that is to say their velocities vary with

frequency, and as the frequency is increased they converge on each other. At the high

frequency end of the plot, a0 and s0 appear to have the same phase velocity but still exist

as separate modes. They only converge to the same phase velocity at infinity, when they

are both asymptotic to the Rayleigh wave solution. As the frequency is increased the

ratio of the wavelength to the plate thickness decreases. The deformation is also

increasingly confined to the material adjacent to the top and bottom surfaces of the plate.

Thus at very high frequencies two identical Rayleigh-like waves travel along the top and

bottom surfaces of the plate, as was shown for the top surface in the inset diagram in

Figure 1.5. Both Rayleigh-like waves share the same phase for the s0 solution

(symmetric) and are in opposite phase for the a0 solution (antisymmetric).

The other modes in Figure 5.3 are the higher order symmetric modes (s1, s2, s3,....) and

antisymmetric modes (a1, a2, a3,....). These are the first few modes of two infinite sets

of symmetric and antisymmetric modes. Modes continue to be introduced to the diagram

as the frequency range is increased, to infinity. All of these modes extend upwards in the

plot to infinite phase velocity. Note that this is physically possible because energy is not

transported at the phase velocity but at the group velocity, as will be discussed shortly.

At the high frequency limit all of these modes converge on the bulk shear velocity of the

plate material.

Figure 5.4 shows the real wavenumber dispersion curves for the same modes. This plot

describes the spatial distribution of the waves, the number of wavelengths per unit

distance along the plate. In fact the imaginary part of the wavenumber is zero in all of

these cases because there is no attenuation of the modes. Here it can be seen that for the

most part the wavenumber varies very smoothly with the frequency and that any curve

can be described over its full length by steadily increasing or steadily decreasing the

wavenumber, without change of sign. It is for these reasons that it was decided in

Chapter 4 to generate the dispersion curves by incrementing the real wavenumber.

Figure 5.5 shows the group velocity dispersion curves. When a narrow band signal is

used to excite a dispersive plate wave then a 'packet' or 'envelope' of waves is observed to

travel along the plate. Although the phase velocity measured at any frequency complies

with the phase velocity dispersion curves, the wave packet itself may not travel along the

plate at the same velocity. It can be shown (Brekhovskikh and Goncharov (1985) for
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example) that the velocity of the packet is the velocity at which the energy is propagated

along the plate. This velocity is called the group velocity and it may be calculated

directly from the gradient of the wavenumber dispersion curves by equation (4.5). If the

mode is not dispersive then the group velocity is equal to the phase velocity.

The group velocity dispersion curves provide useful information for understanding the

long range propagation of waves. If a narrow band packet of waves is propagated under

conditions where the group velocity varies with frequency then there is a tendency for the

wave packet to spread as it travels along the plate. Much larger propagation distances

can be achieved if the wave packet is chosen such that the group velocity is steady (i.e. a

maximum or a minimum on the group velocity dispersion curve), when the packet retains

its shape. The long range propagation of Lamb waves is discussed by Alleyne (1991).

It is interesting to note in Figure 5.5 that mode s1 has negative group velocity at its

lowest frequencies. This implies that the energy of a narrow band packet of s1 waves

travels in the opposite direction to the phase velocity. This strange behaviour of s1 has

received some attention from other researchers. For example, Wolf, Ngoc, Kille and

Mayer (1988) predicted and measured negative group velocity for the s1 mode in a brass

plate over a short frequency range. Furthermore, close examination of the data of Figure

5.5 reveals that mode a2 also has negative group velocity over a very small range of

frequencies. In the plot this can only be seen as a slight extension of the end of the curve

below the axis but when expanded this region of the curve has the same shape as that for

mode s1.

The excitation of Lamb waves is often achieved by using water as a coupling medium

and positioning a transducer at an angle to the plate, according to the coincidence

principle. The coincidence principle, illustrated in Figure 5.6, states that an incident

wave in a coupling medium may be used to excite a plate wave if the component of its

wavenumber in the direction along the plate matches the wavenumber of the plate wave.

By the same analysis, a transducer positioned to receive a leaking signal from the plate

would be set at the same angle from the normal. This means that waves with high phase

velocities are excited and received using transducers at small angles of incidence and

waves with low phase velocities, using transducers at large angles. Clearly it is not

possible to excite waves with velocities lower than the bulk velocity in the coupling

medium. The application of the coincidence principle to the measurement of Lamb

waves will be discussed further in Chapter 8.
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Figure 5.7 shows the dispersion curves for the titanium plate in terms of the angle of

incidence of a longitudinal wave in water. The vertical axis therefore shows the angle at

which the transducer should be set in order to excite the modes. Now the significance of

infinite phase velocity can be seen. Infinite phase velocity corresponds to zero angle of

incidence. In the infinite phase velocity limit, the Lamb modes cease to propagate and

become through-thickness vibration modes in the plate (standing wave solutions). All of

the vibration modes consist of multiple half-wavelengths of either longitudinal bulk

waves or shear bulk waves. The shear modes (a1, s2, a2, s3 and a4) and the longitudinal

modes (s1, a3 and s4) are each symmetric for even numbers of half-wavelengths through

the thickness and antisymmetric for odd numbers of half-wavelengths. Thus the shear

modes and the longitudinal modes are each spaced at constant intervals along the

horizontal axis in the figure at zero angle of incidence.

Strictly speaking the angle of incidence dispersion curves in Figure 5.7 are incorrect

because the solution was obtained for a plate in vacuum whereas the calculation of the

angle of incidence required at least one of the half-spaces adjacent to the plate to be

water. However in practice dispersion curves for plates in vacuum may usually be used

for plates which are immersed in water because the presence of the water has only a

small influence on the velocities and wavenumbers of the modes. Furthermore, Lamb

waves are sometimes excited and received using only local immersion at the locations of

the transducers while the majority of the plate is in air, in which case it is perfectly

appropriate to use these angle of incidence dispersion curves.

The phase velocity dispersion curves for a plate in water are shown in Figure 5.8. These

curves were calculated for the same 1 mm thick titanium plate but with both half-spaces

consisting of water instead of vacuum. The plate waves are now in general attenuative

and are classed as leaky Lamb waves. Within the solution space which is plotted, the

velocities of the modes are almost identical to those of the free Lamb modes, with two

exceptions. The first is the break in the a0 mode at low velocity and the second is the

discontinuity of the s1 mode at high velocity.

The velocity of the break in a0 is the bulk velocity of longitudinal waves in water. For

the region of the curve below this critical velocity, any waves in the water must be

inhomogeneous. The low-velocity plate wave is therefore a free wave, with zero

attenuation, guided between the two half-spaces of water. As the velocity increases this

part of the mode becomes asymptotic to the bulk velocity of the water. In calculating the

curve, the solution was terminated arbitrarily at about 1.5 MHz, at which frequency the

value of the velocity was indistinguishable from that of the water. Above the critical
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velocity the wave leaks homogeneous waves into the water and attenuates. It is

interesting to note that there is some frequency overlap of the two parts of the mode.

This behaviour of a0 has been studied both theoretically and experimentally for steel

plates by Osborne and Hart (1946 and 1947). They made the same observation about the

nature of the curve.

The discontinuity in the s1 mode occurs because there is a singularity in the solution for

the attenuation of the wave. As discussed previously, the s1 mode has negative group

velocity where the curve has high phase velocity, but positive group velocity elsewhere.

When calculating the modal solutions for leaky modes with negative group velocity, the

model predicts a negative value of the attenuation. This is a perfectly reasonable result

because the energy of the wave travels in the opposite direction to the phase. The

singularity exists at the point where the group velocity is zero, when the wave is non-

propagating and the attenuation is infinite. In generating the curve, the attenuation of the

s1 mode increases rapidly as the velocity approaches the critical value. In this case the

mode was generated by constant decrements of wavenumber (i.e. from right to left in the

figure) and the solution was stopped when the attenuation started to rise sharply. Mode

a2 also has a discontinuity but it is at a much higher velocity. In general most modes

have high values of attenuation at high phase velocities and their calculation can be

difficult.

The attenuations of the leaky Lamb waves are plotted in Figure 5.9, in Nepers/mm,

plotted for the ranges of the dispersion curves which are shown in Figure 5.8. Here it

can be seen that all modes other than the low velocity part of a0 (which has zero

attenuation and is not shown in Figure 5.9) are attenuative to some extent and that most

modes have regions which are quite strongly attenuative. At 0.1 Nepers/mm a wave

loses 10 % of its amplitude per mm travel and at 0.2 Nepers/mm, 18 %. The other

notable feature is that the s0 and a0 modes both have strongly increasing attenuation with

frequency and that above about 5 MHz they and the Rayleigh wave are generally more

attenuative than the other modes. In the high frequency limit the a0 and s0 modes

converge on a steady gradient of attenuation per mm or constant attenuation per

wavelength, given by the leaky Rayleigh wave solution. The sharp gradient of the

attenuation of s1 at its low frequency end can also be seen in the figure.

Finally, note that the horizontal axis of all of the Lamb wave and leaky Lamb wave plots

may be scaled linearly by the thickness. Thus for example the plotted velocity of a mode

at 1 MHz for the 1 mm thick plate would be appropriate for a 2 mm thick plate at 0.5

MHz. Lamb wave dispersion curves are often plotted with the horizontal axis as the

frequency-thickness product (MHz-mm).
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Surface wave on thin epoxy layer on aluminium half-space

Figure 5.10 shows the phase velocity dispersion curve for a surface wave on a system

consisting of a thin layer of epoxy adhesive on a half-space of aluminium, as illustrated

in the inset diagram. Four different thicknesses of epoxy were modelled, from 50

microns to 400 microns.

It can be seen that the phase velocity of the surface wave is dispersive and is also

extremely sensitive to the layer thickness. At very low frequency the depth of influence

of the wave is large compared to the layer thickness and so the wave solution is

dominated by the aluminium half-space properties. The low frequency limit therefore

corresponds to the Rayleigh wave velocity in aluminium, as indicated by a dashed line in

the figure. At very high frequency the depth of influence of the wave is small compared

to the layer thickness and so the wave solution is dominated by the epoxy properties.

The solution is therefore asymptotic to the Rayleigh wave velocity in epoxy as the

frequency is increased, again indicated by a dashed line in the figure. The solution is

free for all frequencies and thicknesses because the velocity is always lower than the bulk

velocities in the aluminium and so it is not possible for energy to leak into the half-space.

Surface wave on thin layer of alpha case on titanium half-space

Figure 5.11(a) shows the phase velocity dispersion curve for a surface wave on a system

consisting of a thin layer of alpha case on a half-space of titanium, as illustrated in the

inset diagram. For the purpose of this example the alpha case material was assumed to

be 10 % faster in both its longitudinal and shear velocities but to have the same density

as titanium. The actual properties of alpha case will be discussed further in Chapter 6.

The system is therefore qualitatively different to that of the epoxy layer on aluminium,

the layer material properties being faster than the half-space. Three different thicknesses

of alpha case were modelled, from 25 microns to 100 microns.

Again it can be seen that the phase velocity of the surface wave is dispersive and is also

extremely sensitive to the layer thickness. At low frequency the wave solution is

dominated by the titanium half-space properties and at high frequency, by the alpha case

layer properties. The trend therefore is for the velocity to increase with frequency. The

low frequency limit corresponds to the Rayleigh wave velocity in titanium and the high

frequency limit to the Rayleigh wave velocity in alpha case, as indicated by the top and

bottom dashed lines in the figure. The third dashed line shows the velocity of bulk shear
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waves in the titanium, at which each curve shows a change in slope. The reason for this

is that the mode is in two parts. Below this velocity the wave is free because no energy

can leak into the half-space and above this velocity a shear wave leaks into the half-

space. This threshold can be seen clearly in the plots of attenuation in Figure 5.11(b)

where non-zero attenuation only exists for the high velocity regions of the modes.

5.3 Comparisons with analytical solutions

Rayleigh wave velocity

Solutions for the Rayleigh wave velocity may be calculated from Rayleigh's third order

equation (Rayleigh (1887)) and may also be found in Timoshenko and Goodier (1970),

for example. For Poisson's ratio of 0.25 the Rayleigh wave velocity is given by the latter

authors to four decimal places to be 0.9194 times the shear bulk wave velocity.

Velocities calculated by the model agree exactly with this expected figure when the

appropriate value of Poisson's ratio is used. As an example the velocity of the Rayleigh

wave for steel was calculated, using steel properties of Young's modulus of 200 GPa,

Poisson's ratio of 0.25 and density of 8000 kg/m3. The Rayleigh wave velocity was

calculated to be 2907.403 m/sec, a factor of 0.919402 times the shear bulk wave velocity.

Stoneley wave velocity

Solutions for the Stoneley wave velocity may be calculated from his paper of 1924. The

formulation is presented as a real characteristic function whose result must be zero for

the solution to exist. The example discussed in the previous section, of a Stoneley wave

at the interface between steel and titanium half-spaces, was checked with this function.

The prediction, of a velocity of 3221.329 m/sec, was found to be correct to all three

decimal places.

Lamb waves

The low frequency cut-off value of the Young wave (s0) can be found from simple

stiffness calculations on a small element. For very low frequencies the wavelength is

very long compared with the plate thickness and the plate behaves in plane stress in its

own plane. Of course it is still in plane strain in the plane defined by the wave

propagation direction and the through-thickness direction. The stiffness (K) in the

direction of wave propagation (the x direction, say) can therefore be calculated as:
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σxx = K εxx =
4µ(λ+µ)

λ+2µ εxx =
E

1-ν2 εxx (5.1)

and the velocity of propagation is then given by:

c = (
K
ρ )1/2 (5.2)

Again, velocities calculated by the model agree with this expected figure to three decimal

places in m/sec. For example, the Young wave velocity in titanium was calculated by

equation (5.2) to be 5465.891 m/sec. The same value was predicted by the dispersion

curve program for low frequencies, of less than 1 kHz.

The cut-off frequencies of the higher order Lamb modes at normal incidence can be

compared with the solutions for through-thickness vibration of the plate. These modes

consist of multiples of half-wavelengths of shear or longitudinal bulk waves and so their

frequencies can be shown (for example, see Pialucha, Guyott and Cawley, 1989) to be

given by

Frequency (Hz) =
nc
2d (5.3)

where n is the mode number (1,2,3....), c is the shear or longitudinal bulk wave velocity

and d is the plate thickness. The model can not be used for perfectly normal incidence

because the phase velocity is infinite. However predictions at a phase velocity of

1,000,000 km/sec showed perfect agreement with the solutions obtained using this

equation.

Surface wave on thin layer

The low frequency and high frequency limits of the examples of the surface waves on

thin layers can be checked by comparison with the Rayleigh velocities in the layers and

half-spaces. The curves are considerably more dispersive than the Young mode

discussed above and so it is necessary to calculate the low frequency values at much

lower frequencies. It was found that calculations at 10 Hz were sufficient to demonstrate

agreement in both cases. At the high frequency limit agreement was obtained in both

cases by calculations at 100 MHz. The Rayleigh velocities in the four materials were

calculated to be:
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Rayleigh wave Velocity (m/sec)

Epoxy 1035.184

Aluminium 2957.100

Alpha case 3295.976

Titanium 2996.342

Multiple identical layers

Finally, a useful verification is to compare the dispersion curves for a single plate with

those for the same thickness of plate divided into two or more layers with identical

properties, and to make sure that there are no differences. Reference to the theory of

Chapters 2 and 3 shows that this is not a trivial case. Tests have been performed on two,

three and four layer systems for free and leaky solutions and have shown perfect

agreement.

5.4 Comparisons with measurements and other predictions

Measurements of surface waves

The results of two experiments are shown in Figure 5.12. Both involved measurements

of the phase velocity of surface waves. The waves were excited and received by a pair of

broadband plane-wave piezo-electric transducers with a 4 MHz centre frequency. The

plates were immersed in water and the transducers were set at the appropriate angle for

the excitation of the waves according to the coincidence principle, as was illustrated in

Figure 5.6. Pulse excitation was employed and two signals were captured by the receiver

for each measurement, one a known distance downstream from the other. The phase

velocities over the range of frequencies of the broadband received signal were calculated

using the amplitude spectrum method (Pialucha, Guyott and Cawley (1989)).

In the first case a leaky Rayleigh wave was excited on the surface of a 13.0 mm thick

aluminium plate. The measured velocities are shown as discrete points in Figure 5.12(a).

The maximum frequency at which measurements were obtained was about 4 MHz

because of attenuation of the wave at high frequencies. Also shown in the plot, as a

continuous horizontal line, is the solution predicted by the model. The prediction was

made using elastic properties of the aluminium which were determined by measuring the
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through-thickness times-of-flight of ultrasonic pulses. A plane wave transducer was used

to measure the bulk longitudinal velocity and a shear wave transducer to measure the

bulk shear velocity. The measurements are consistently lower than the predicted

velocity, perhaps due to an overestimate of the bulk velocities. The shear velocity in

particular is rather difficult to measure accurately. However the difference is less than 10

m/sec so agreement has been achieved to an accuracy of better than 0.3 %.

Note that the measurements should be expected to differ from the Rayleigh wave

calculations at very low frequencies because separate s0 and a0 Lamb waves should be

excited rather than Rayleigh waves. Examination of Figure 5.3 indicates that the lowest

frequency-thickness product at which these two waves are indistinguishable from each

other and from the Rayleigh wave is about 8 MHz-mm for titanium. The same is found

to be true for aluminium. Therefore any surface wave measurements made above about

0.6 MHz in the 13.0 mm plate should be representative of Rayleigh waves. The lowest

frequency of measurement was 0.8 MHz.

In the second case a thin layer of epoxy adhesive was cast onto the surface of a 13.0 mm

thick aluminium plate. Spacers were used to hold a glass sheet on top of the epoxy with

a separation distance from the aluminium of 0.2 mm so that the epoxy cured as a

consistent 0.2 mm thick layer. The glass sheet was coated with release agent so that it

could be removed easily after the curing. A separate specimen of epoxy was cast at the

same time so that its bulk wave velocities and density could be measured.

The measurements are shown in Figure 5.12(b) with the model prediction.

Measurements were only taken up to 2.7 MHz because of the strong attenuation of the

waves and the practical difficulty of making measurements when the transducers are at

large angles of incidence. As the frequency is increased the phase velocity of the surface

wave decreases and the transducer angle required to excite it increases. At angles greater

than about 40 degrees it was found that the excitation and reception were weak and prone

to cross-talk between the transducers. However the results show good agreement with

the predictions, the accuracy achieved being similar to that obtained in the Rayleigh

wave measurements.

Lamb waves

A number of careful comparisons was made between the predictions of the model and the

predictions of Lamb wave solutions made by a model developed by Alleyne (1991).

Alleyne's model has the advantage that its formulation is completely different from the
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model presented here. This is because it is restricted in its applicability to single layer

plates in vacuum and accordingly it calculates the Lamb wave solutions directly from

Lamb's equations (see Lamb (1917) or Viktorov (1970)).

Comparisons were made between the phase velocities, group velocities and wavenumbers

at arbitrary locations on the dispersion curves. Comparisons were also made between

displacement mode shapes at a number of discrete locations. Perfect agreement was

found in all cases.

Sezawa waves

Figure 5.13 shows predictions of dispersion curves for Sezawa and leaky Sezawa waves

in a system consisting of a layer of gold on a half-space of fused quartz. The properties

of the system were chosen to match a theoretical and experimental analysis which was

performed by Kushibiki, Ishikawa and Chubachi (1990). Following the sources of their

analysis, the acoustic properties of the gold were taken from Anderson (1965) and those

of the fused quartz from Mason (1958). Two cases were considered, one in which the

system was assumed to be in vacuum and the other in which it was immersed in water.

The geometry of the systems is shown in inset diagrams in the figure.

The Sezawa wave is a free surface wave which can propagate in a system consisting of a

solid elastic layer on a solid elastic half-space. A general theoretical analysis may be

found in Tolstoy and Usdin (1953). In the case considered here the Sezawa wave strictly

exists only in the system in vacuum and only at high frequencies. Under all other

conditions the wave leaks energy from the layer and is a leaky or 'pseudo' Sezawa wave.

Consider first the system in vacuum. The phase velocity of the wave, shown as a solid

line in Figure 5.13(a), decreases steadily with frequency throughout the range of the

solution. At zero frequency it is equal to that of the bulk longitudinal wave in the quartz

half-space and at the high frequency limit it tends to the bulk shear wave velocity in the

layer. At low frequencies its velocity is higher than the bulk velocity in the quartz and it

leaks a bulk shear wave into the half-space. This leaky region is characterised by non-

zero attenuation, shown in Figure 5.13(b). In the higher frequency region the wave is

non-attenuating.

The phase velocity curve for the system in water, shown as a dashed line in the figure,

differs only slightly from that for the system in vacuum. However there is a marked

increase in the attenuation because the wave additionally leaks a longitudinal bulk wave
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into the water throughout the frequency range. The sharp drop in attenuation at about

120 MHz corresponds again to the threshold when the wave stops leaking energy into the

half-space.

Kushibiki et al. (1990) performed measurements and predictions of the velocities and

attenuations of the immersed system over a range of frequencies, including both regions

of the solution. Their measurements agreed very closely with their predictions. The

predictions presented in the figures here also matched their published graphs.

Incidentally, another mode was also found for this system during the calculations which

is qualitatively similar to the surface wave which was predicted for the epoxy layer on

aluminium. It lies below the Sezawa wave on the phase velocity dispersion curve

diagram. Its phase velocity is equal to the Rayleigh velocity in quartz at zero frequency

and drops to the Rayleigh velocity in gold at high frequency.

Near-field model predictions of Rayleigh and Lamb waves

The final comparison to be presented here is between some modal predictions of leaky

waves made using the dispersion curve model and predictions of the near-field responses

when the waves are excited by a plane wave transducer, made by a response model. Two

cases are considered, one of a leaky Rayleigh wave and the other of a leaky s0 Lamb

wave. The cases are intended to demonstrate the accuracy of the calculation of

attenuation of leaky modes.

The response predictions were made using a model which was developed by T.

Pialucha (1992). The model calculates reflection and transmission from multilayered

plates consisting of any number of layers of arbitrary thickness with arbitrary elastic or

viscoelastic properties. The calculations are made in the frequency domain so that

reflection and transmission coefficients can be studied as a function of frequency.

Infinite plane waves are assumed and any angle of incidence is permitted. However the

model can incorporate the spatial behaviour of a realistic finite sized transducer by

performing a Fourier decomposition of the finite field in front of the transducer into

infinite plane wave components, solving separately for each of the plane waves, and

summing the results. Furthermore, an inverse Fourier transform may be applied to the

frequency domain solutions, yielding predictions of the time domain signal which would

be seen on an oscilloscope.
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In the study which is presented here the model was used to predict the frequency domain

solution for the reflected field when a plate is excited at a single frequency by a finite

transducer. The solution for the reflected field is therefore the summation of a set of

frequency domain solutions for plane waves. The simulation is illustrated in Figure

5.14(a).

A 5 mm diameter unfocused transducer was modelled for all of the predictions. A

Gaussian variation was assumed for the amplitude of the field in front of the transducer,

as illustrated in Figure 5.14(a) and plotted in Figure 5.14(b). The field was decomposed

into 1024 infinite plane waves for the solution. Following the solution, the reflected

plane waves were summed along a line normal to the reflected beam, as illustrated in

Figure 5.14(a). Thus the predictions which were made were of the reflected field in the

region of the point reflection from the surface of the plate.

In general a specular reflection may be expected from the plate. However, if the angle of

incidence of the transducer and the frequency are appropriate for the excitation of a plate

wave then the reflection changes. The point reflection along the axis of the beam is

modified, and more significantly, a signal is received downstream of the beam due to

leakage of energy from the plate wave. The leaking signal on the downstream side of the

received field is illustrated in Figure 5.14(a).

In the first case a leaky Rayleigh wave was modelled on a half-space of titanium in

water. A transducer frequency of 50 MHz was assumed and the transducer was

simulated at the appropriate angle of incidence (29.6 degrees) for the excitation of the

wave. The reflected field is shown (on a linear scale) in Figure 5.15(a) from which it can

be seen that the reflection is not specular but is weighted on the downstream side of the

centre line of the beam. The calculations were then repeated for three other cases with

different values of the density of the water in order to observe different rates of leakage

of the wave. The reflected fields are plotted in Figures 5.15(b) to 5.15(d) in decreasing

order of water density. Now the leakage from the waves can be seen clearly on the

downstream sides of the fields and it is evident that the rate of attenuation of the leaking

waves decreases as the density is decreased.

The fields of Figure 5.15 have been re-plotted in Figure 5.16 using a natural logarithm

scale for the amplitude. The variations of the amplitudes on the downstream sides of the

fields are extremely linear on this scale, indicating that the amplitudes decay

exponentially with distance. The average rate of decay of each field was calculated from

the results and is shown in the Figure in Nepers/mm.
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Modal solutions were calculated for these four leaky Rayleigh wave cases and the

attenuations were compared with the decays of the leaking fields. In order to make the

correct comparisons, the decays of the fields, which are normal to the reflected beam

direction, were projected onto the plane of the plate by multiplication by the cosine of the

angle of incidence. The comparisons showed excellent agreement, as follows:

Normal water Light water:

1/2

density

Light water:

1/10

density

Light water:

1/50

density

Rayleigh velocity (m/s) 3000.9 2997.5 2996.4 2996.3

Angle of incidence (deg) 29.616 29.653 29.665 29.666

Attenuation calculated by
modal model (Nepers/mm) 1.907 0.955 0.191 0.0382

Attenuation calculated from
field (Nepers/mm) 1.900 0.951 0.191 0.0382

Finally, a similar comparison was made between the predicted near-field response and

the modal solution for a leaky s0 Lamb wave in a 100 micron thick plate. A strongly

dispersive location on the leaky Lamb wave dispersion curve was selected, where the

attenuation is high, as shown in the two plots in Figure 5.17. The selected phase velocity

was 4500 m/sec corresponding to an angle of incidence of 19.242 degrees. The modal

model predicted a frequency of 23.172 MHz and attenuation of 0.170 Nepers/mm. The

field predictions are shown on linear and log scales in Figure 5.18 from which the

attenuation normal to the reflected beam was calculated to be 0.180 Nepers/mm. When

projected onto the plane of the plate the attenuation was found to agree exactly with the

modal solution.

5.5 Conclusions

A number of modal solutions has been presented in this Chapter in order to demonstrate

the validity and accuracy of the dispersion curve model.
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Predictions of Rayleigh waves, Stoneley waves and Lamb waves have shown that the

model is capable of reproducing the familiar published solutions. The versatility of the

program in its capabilities of plotting different forms of dispersion curves and mode

shapes has also been demonstrated. Additionally, predictions for more advanced cases of

leaky waves and multiple layers have demonstrated that the program has the capacity for

the general purpose modelling of all classes of plane strain plate waves and is therefore a

suitable tool for the research which is to be conducted on waves in interface layers.

A number of numerical comparisons with analytical solutions have been performed and

have shown in all cases that the model predicts the modal solutions with an extremely

high degree of accuracy. Predictions made using the model have also been shown to

agree with measurements, with published solutions and with predictions made with two

other models.
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Material
Longitudinal
velocity (m/s)

Shear
velocity (m/s)

Density
(kg/m3)

Titanium 6060 3230 4460

Alpha case 6666 3553 4460

Steel 5960 3230 7930

Aluminium 6370 3170 2700

Epoxy 2610 1100 1170

Gold 3217 1195 19488

Fused quartz 5968 3764 2197

Water 1483 0.01 1000

All materials assumed to be perfectly elastic.

Table 5.1 Material properties used in the validation calculations
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Mode shapes for Rayleigh waves in titanium at 10 MHzFigure 5.1

(a) Mode shapes for free Rayleigh wave

(b) Comparison of near-surface stresses for free and leaky Rayleigh waves
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The coincidence principle for the excitation of plate wavesFigure 5.6

Wave crests in water match
wave crests in plate

Plate wave

Plate wave velocity =
sin(θ)

Velocity in water
(Equation 4.1)



Fr
eq

ue
nc

y 
(M

H
z)

0
10

045

Incident angle of longitudinal wave in water (Degrees)

D
is

pe
rs

io
n 

cu
rv

es
 f

or
 L

am
b 

m
od

es
 i

n 
1.

0 
m

m
 t

hi
ck

 t
it

an
iu

m
 s

he
et

 -
 E

qu
iv

al
en

t 
in

ci
de

nt
 a

ng
le

 i
n 

w
at

er

Chapter 5

Validation of model

151

F
ig

ur
e 

5.
7

s 0

a 0

a 1
s 1

s 2
a 2

s 3
a 3

a 4
s 4

1 
m

m
 t

ita
ni

um

V
ac

uu
m

V
ac

uu
m



Fr
eq

ue
nc

y 
(M

H
z)

0
10

010

Phase velocity (km/sec)

D
is

pe
rs

io
n 

cu
rv

es
 f

or
 l

ea
ky

 L
am

b 
m

od
es

 i
n 

1.
0 

m
m

 t
hi

ck
 t

it
an

iu
m

 s
he

et
 i

n 
w

at
er

 -
 P

ha
se

 v
el

oc
it

y

Chapter 5

Validation of model

152

F
ig

ur
e 

5.
8

s 0 a 0

a 1

s 1

s 2
a 2

s 3
a 3

a 4
s 4

1 
m

m
 t

ita
ni

um

W
at

er

W
at

er



Fr
eq

ue
nc

y 
(M

H
z)

0
10

0

0.
4 Attenuation (Nepers/mm)

A
tt

en
ua

ti
on

 o
f 

le
ak

y 
L

am
b 

m
od

es
 i

n 
1.

0 
m

m
 t

hi
ck

 t
it

an
iu

m
 s

he
et

 i
n 

w
at

er

Chapter 5

Validation of model

153

F
ig

ur
e 

5.
9

s 0

a 0

a 1

s 1

s 2

a 2
s 3

a 3

a 4
s 4

1 
m

m
 t

ita
ni

um

W
at

er

W
at

er



Fr
eq

ue
nc

y 
(M

H
z)

0
10

05 Phase velocity (km/sec)

D
is

pe
rs

io
n 

cu
rv

es
 f

or
 s

ur
fa

ce
 w

av
es

 o
n 

ep
ox

y 
la

ye
r 

on
 a

lu
m

in
iu

m
 h

al
f-

sp
ac

e

Chapter 5

Validation of model

154

F
ig

ur
e 

5.
10

E
po

xy

V
ac

uu
m

A
lu

m
in

iu
m

50
 µ

m
th

ic
k 

ep
ox

y 
la

ye
r

10
0 

µm

20
0 

µm
40

0 
µm

R
ay

le
ig

h 
ve

lo
ci

ty
 i

n 
ep

ox
y

R
ay

le
ig

h 
ve

lo
ci

ty
 i

n 
al

um
in

iu
m



Chapter 5

Validation of model

155

Dispersion curves for surface waves on layer of alpha case on
titanium half-space

Figure 5.11

(a) Phase velocity

(b) Attenuation
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Measurements of surface wavesFigure 5.12

(a) Rayleigh wave on aluminium

(b) Surface wave on epoxy layer on alumium
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Dispersion curves for Sezawa waves in layer of gold on fused quartzFigure 5.13

(a) Phase velocity

(b) Attenuation
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Simulation of near-field response using finite transducer modelFigure 5.14

(a) Arrangement of simulation

(b) Incident field profile
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Modal solution for leaky s0 Lamb wave, showing location for
comparison with prediction of near-field response

Figure 5.17

(a) Phase velocity

(b) Attenuation
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Near-field response predictions when exciting leaky s0 Lamb wave 
in titanium

Figure 5.18

(a) Linear amplitude scale

(b) Log amplitude scale
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6.1 Introduction

Any ultrasonic method for the detection of a layer of alpha case embedded at the

bondline of a diffusion bonded joint must rely on some variation of the acoustic

properties of the alpha case with respect to the adherends. This chapter reports the

results of a practical investigation of the material properties of alpha case, which will be

needed for the model studies in Chapters 7 to 10.

In the introduction of this thesis the formation of alpha case was described as a

combination of two mechanisms: first the presence of oxygen or nitrogen increases the

beta transus temperature so that hard beta grains tend to transform to relatively soft alpha

grains and second, the gases cause interstitial locking of the alpha grains, increasing their

hardness. These mechanisms are contradictory in their effect on the hardness of the

material so that it is not immediately evident whether alpha case material should be

harder or softer than the uncontaminated material. This must depend on the degree of

softening and hardening associated with the two mechanisms and on the proportions of

alpha and beta grains in the alloy. For instance, the formation of alpha case is more

likely to increase the hardness of the material if the alloy is naturally dominated by alpha

grains than if it is dominated by beta grains.

This contention seems to have been observed in practice. Weglein (1988) reported two

cases of measurements of bulk longitudinal velocities in titanium alloys, one in which the

velocity increased by 3 % and the other in which the velocity decreased by 0.7 %. The

specification of the material which was used in the former case was not stated but the

latter measurements were made in the alloy Ti-6211. In his own preliminary

measurements, which he made across a section of a Ti-6Al-4V diffusion bonded joint

using an acoustic microscope, he also found a reduction of the surface wave velocity at

the bondline. In contrast, Thompson, Margetan, Rose and Batra (1992) and Brasche,

Margetan and Thompson (1992) found that the acoustic velocities of their Ti-6Al-4V

specimens increased substantially when the material was contaminated with oxygen.

They measured surface wave velocities on contaminated plates, finding increases of

around 7-8 %.
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It seems therefore that the material properties of the alpha case material must not be

considered to be absolute but to depend on the specifications of the titanium alloy.

Furthermore, since the growth of the alpha case is a diffusion process, it is quite

reasonable to expect that the properties of the alpha case may vary gradually with depth

unless saturation takes place. This is an important consideration because the ultrasonic

response from a discrete layer of alpha case with homogeneous material properties may

be rather different than that from a layer with gradually changing properties.

An important aspect of the research programme therefore has been to measure the

acoustic properties of alpha case in the specific material being utilised for the diffusion

bonds.

6.2 Preparation of specimens

In order to measure the acoustic properties of alpha case it was decided to grow thick

layers of alpha case by exposing titanium sheets in air at high temperatures. Two sheet

thicknesses were used, nominally 1 mm and 4 mm. Both sheets had the specification of

the stock which is used for the diffusion bonding. The intention with the 1 mm sheet was

to grow alpha case throughout the thickness so that through-thickness velocity

measurements could be made directly to determine representative acoustic properties of

the material. The intention with the 4 mm sheet was to grow a thick layer on each

surface. Note that the word 'layer' is used to refer to a zone where the alpha case

contamination is significant; it does not imply that the properties are constant throughout

the thickness of the layer.

The treatment of the sheets was undertaken by British Aerospace. The sheets were

exposed in air at 900 ºC for 12 hours and 120 hours respectively. During exposure,

considerable flaking of material occurred at the surfaces of the sheets. This was grit

blasted from the surfaces afterwards. Consequently the 1 mm sheet reduced in thickness

from 1.1 mm to approximately 0.8 mm and the 4 mm sheet reduced from 3.9 mm to

about 3.7 mm.

Figure 6.1 shows micrographs of sections through the heat treated sheets. The sections

were etched with a solution which was developed specifically by British Aerospace to

show the presence of alpha case. It shows titanium as a dark colour and alpha case as a

light colour. It is the same etch which was used to expose the alpha case in the poor

diffusion bond which was discussed in Chapter 1 and illustrated in Figure 1.2. In
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Figure 6.1(a) there appears to be some alpha case throughout the thickness of the 1 mm

sheet but its intensity varies, the surfaces being affected considerably more than the

interior. In Figure 6.1(b) the central region of the 4 mm sheet seems not to have been

affected, the alpha case apparently extending about 1 mm from each surface.

It was intended also to include a range of diffusion bonded joints with different degrees

of alpha case contamination as test specimens. British Aerospace have had considerable

success in developing the bonding process so that they are able to produce high quality

joints consistently. The plan therefore was that they would deliberately reduce the

quality of the bonds by exposing the sheets to air prior to bonding. However the

deliberate production of poor diffusion bonds was fraught with difficulties,

predominantly associated with the selection of the appropriate degree of exposure. The

result was that the 'defective' bonds were generally contaminated (or disbonded) much

too severely to be used in the research, and only one suitable specimen was made

available. This is the poor bond which was introduced in Chapter 1 and mentioned

above. It was cut from a diffusion bonded and superplastic formed (SPFDB) specimen.

It is considered to be rather heavily contaminated.

6.3 Measurements of hardness

Hardness measurements were made across the thicknesses of the heat treated specimens,

the untreated material from which the heat treated specimens were made, and the poor

diffusion bond. The results are plotted in Figures 6.2 to 6.4. In all cases the

measurements are Vickers microhardness made using a 200g weight.

In figure 6.2 it can be seen that the hardness of the untreated 1 mm material is about

300 HV at all five test locations across the sheet. The hardness of the treated sheet varies

with depth but is greater at all locations than the untreated sheet, the minimum hardness

being 340 HV near the centre of the sheet and the maximum about 540 at the edges of

the sheet. On average the hardness of the treated sheet is about 400 HV, 30 % greater

than for the untreated material. There is no evidence of saturation of the alpha case, the

hardness rising sharply at the edges of the sheet without reaching a limiting plateau.

The hardness of the untreated 4 mm sheet, in Figure 6.3, is also about 300 HV except at

the two extreme test locations where it is considerably lower, presumably because the test

positions were immediately adjacent to the edges of the sheet. The hardness of the

treated sheet is also about 300 HV in its interior, rising to nearly 700 HV at the edges,
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again without evidence of saturation. The average hardness of the treated sheet is about

365 HV.

Note that the peak hardness values at the edges of the treated 4 mm sheet are higher than

at the edges of the treated 1 mm sheet. There are two possible explanations for this. One

is that a greater proportion of the hard material was lost by spalling from the thin sheet

than from the thick sheet. The other is that a greater concentration of alpha case

developed at the surface of the thick sheet during its longer period of exposure.

The hardness of the bulk of the poor diffusion bonded joint is again about 300 HV,

consistent with the untreated material, but a spike of 420 HV is clearly evident in the

single measurement which was made at the bondline, as indicated in Figure 6.4. This

bondline hardness value is slightly higher than the average value across the thickness of

the treated 1 mm sheet. It must also be considered as a lower bound value; it is quite

possible that the single hardness measurement which was made at the bondline was not at

the location of the peak hardness. Furthermore the Vickers hardness measurement is not

made at a point but over a small area. Therefore if there was a steep gradient of hardness

at the measurement location then the measured hardness would be an underestimate of

the peak hardness at that location.

The hardness measurements indicate strongly that the alpha case is not a discrete layer of

homogeneous material but is a varying layer as may be expected from the gas diffusion

process. They also suggest that in no case has sufficient oxygen or nitrogen been

absorbed to saturate the material. Even after 120 hours exposure there is a steep hardness

gradient at the edges of the 4 mm sheet. Comparing the hardness distributions with the

micrographs it seems that the etch is very successful in identifying contaminated

material, even at relatively low levels. The threshold for detection appears to be about

350 HV, 50 HV higher than the hardness of uncontaminated titanium.

6.4 Measurements of acoustic properties

Measurements of bulk longitudinal and shear wave velocities

Acoustic velocity measurements were made through the thicknesses of the untreated

titanium sheets, the treated titanium sheets, and the poor diffusion bonded joint. The

results are summarised in Table 6.1(a).
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The longitudinal velocity measurements were made using an unfocused broadband

transducer with a 10 MHz centre frequency, in an immersion tank. The shear velocity

measurements were made using a broadband 8 MHz centre frequency shear transducer

attached to the specimens with a strongly viscous coupling agent. Two shear velocity

measurements were made at each location. The shear velocity 'parallel' to the rolling

direction was measured with the transducer positioned so that the shear motion of the

pulse was parallel to the rolling direction of the plate. The shear velocity 'normal' to the

rolling direction was then made with the transducer rotated 90º so that the shear motion

was normal to the rolling direction. The amplitude spectrum method (Pialucha, Guyott

& Cawley (1989)) was used, giving the velocity at a number of frequencies within the

bandwidth of the transducer in each case. Each tabulated value is the average of these

measured velocities. In no case was there any significant variation of velocity with

frequency.

The accuracy of the velocity measurement was limited mainly by the accuracy of the

measurement of thickness of each specimen. Thus the velocity measurements for the

thin specimens were considerably less accurate than for the thick specimens. Also, the

treated sheets suffered some distortion during their exposure so that their thickness

measurements were not as accurate as those of the untreated sheets. In general greater

confidence can be held in the measurements of longitudinal velocity than in those of

shear velocity because of the quality of the received signals. It is more difficult to obtain

a clean strong signal with the shear test arrangement than with the longitudinal test

because of the difficulty of coupling the transducer reliably to the test specimen.

Comparing the two untreated sheets, there appears to be some variation in the properties

of the raw material. The longitudinal velocity through the 1 mm sheet is some 2 %

higher than that through the 4 mm sheet. The shear velocity normal to the rolling

direction is also slightly higher in the 1 mm sheet than in the 4 mm sheet but the shear

velocities parallel to the rolling direction are almost identical. The difference between

the two shear velocity measurements in the thin sheet, indicating the degree of

anisotropy, is about 4 % and in the thicker sheet, 2 %. The shear velocity is lower in the

rolling direction than in the normal direction in both cases. The differences in properties

between the two thicknesses of sheet are presumably due to differences in the extent of

working of the material.

The fact that the shear velocity is faster in the direction normal to the plate than in the

direction parallel to the plate is rather surprising at first because the stiffness is normally

expected to increase in the direction in which a plate is rolled. However the plate
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material which was used in these studies is not rolled solely in one direction

(Bottomley (1992)). Prior to the final cold rolling of the sheets which defines the 'rolling

direction', the material is hot rolled in the normal direction and it is at this stage that the

microstructure is developed. Thus the elongation of the grains and the stiffening tends to

be normal to the 'rolling direction'.

A significant increase of some 6 % can be seen in the longitudinal velocity in the treated

1 mm sheet over that in the untreated 1 mm sheet. The shear velocities are also

increased, by 4 % and 5 %. These increases agree qualitatively with the measurements

of surface wave velocities on alpha case reported by the researchers at Iowa State

University (Thompson et al. (1992), Brasche et al. (1992)). It seems also that the

stiffness anisotropy of the sheet has not been removed by the heat treatment, the variation

of shear velocity with polarisation remaining at about 3 %. This is in agreement with

metallurgical studies of the material made by British Aerospace (Bottomley (1992)).

Heat treatment on its own does not affect the anisotropy of the material. However

stiffness anisotropy may be reduced during superplastic forming because of the tendency

for the grains to become equi-axed as the material flows.

The velocities through the treated 4 mm sheet are approximately mid-way between the

velocities through the 4 mm untreated sheet and those through the 1 mm treated sheet.

Again the treated sheet has retained its anisotropy, the variation of shear velocity with

polarisation remaining at 2 %.

Two sets of velocities are given in the table for the poor diffusion bond, one for each

adherend. Each adherend test piece was isolated from a piece of the joint by grinding off

the unwanted adherend down to the bondline. As can be seen, small differences were

found between the velocities in the two adherends, the longitudinal velocities differing

by about 1 %. The shear velocity measurements also indicate that the anisotropy of the

material is considerably lower than in the raw or heat treated sheets. The anisotropy in

the first adherend is about 1 % while no anisotropy is evident in the second adherend.

This observation is consistent with the loss of stiffness anisotropy during superplastic

forming. The small differences between the velocities of the two adherends could be due

to different degrees of straining during the superplastic forming.

Comparing the velocity measurements in the 1 mm sheets with the hardness distributions

it seems that an average increase in longitudinal velocity of 6 % can be associated with

the average hardness increase to 400 HV. If the velocity varies with the degree of

contamination as does the hardness then much higher velocities should be expected at the
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surfaces. A first linear approximation for the longitudinal velocity, obtained using the

hardness and velocity data for the 1 mm untreated and treated sheets, is given by the

expression:

cL =6280 + 3.7 ( HV - 300 ) m/sec (6.1)

where cL is the longitudinal velocity and HV is the Vickers hardness. If this

approximation is accurate then the velocity at the surfaces of the sheet would be some

10-12 % higher than in the untreated material.

The expression in equation (6.1) was also modified for the 4 mm sheet in order to

account for the small variations in the properties of the two thicknesses of untreated

material. Accordingly the velocity in the expression was reduced by 2 % , giving:

cL =6154 + 3.63 ( HV - 300 ) m/sec (6.2)

This equation was then applied to the 4 mm treated sheet where the average hardness is

about 365 HV. The resulting prediction for the average velocity through the sheet was

6390 m/sec, about 1 % higher than the measured value of 6350 m/sec. This good

agreement indicates that the simple linear approximation for the variation of the

properties is reasonably representative.

An assumption of 6 % increase in longitudinal velocity for severely contaminated alpha

case is therefore rather conservative. Of course the key question is the realistic degree of

contamination to be expected at the bondline of a poor joint. Currently the only evidence

comes from the single poor bond where a local hardness value of 420 HV implies an

increase in velocity of more than 6 %.

Attempt to detect reflection from alpha case boundary

In addition to the through-thickness velocity measurements, an attempt was made to

detect whether a discrete reflecting boundary existed in the interior of the treated 4 mm

sheet. If the alpha case exists as a discrete homogeneous layer then at normal incidence a

significant pulse should be reflected from the interface between the alpha case and the

parent titanium. Both focused and unfocused transducers were employed over a range of

frequencies from 10 MHz to 50 MHz but no discrete reflection could be found other than

grain boundary reflections when testing at high frequencies.
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Measurements of Lamb wave velocities

Lamb wave velocity measurements were made in the untreated and treated 1 mm sheets

as a further study of the anisotropy of the material. For ease of testing, the first

symmetric mode (s0) was used, excited by five cycles of a 1 MHz tone burst in a

Gaussian window. Coupling to the sheet was achieved by a pair of broadband

unfocused transducers set in perspex angle blocks and clamped to the sheet, as illustrated

in Figure 6.5. Two signals were received: the first arrival of the Lamb wave at the

receiving transducer (the reference signal), followed by the arrival some time later of the

same signal after it had traversed the full length of the sheet twice, reflecting from both

ends (the delayed signal). The velocity was then calculated by dividing twice the length

of the sheet by the difference between the arrival times of the two signals. Velocity

measurements were made in the rolling direction and normal to the rolling direction.

The measurements are summarised in Table 6.1(b). Also shown are the predicted Lamb

wave velocities, calculated using the measured values of the through-thickness velocities

and the dispersion curve model.

The measurements show once again that there is strong anisotropy in both the untreated

and the treated materials. In the untreated sheet the Lamb wave was some 5 % slower in

the rolling direction than in the normal direction. After treatment it seems that the

anisotropy remains in the material, a difference of 3 % being evident between the

velocities in the two directions. The measurements also show again significant increases

in velocity in the treated material compared to the raw material. Furthermore, the

predictions of the s0 velocity which were made using the measured through-thickness

acoustic properties are faster than the measured s0 velocities, indicating that material is

stiffer in the through-thickness direction than in either direction in the plane of the sheet.

Measurement of density

Density measurements were made using the 4 mm untreated and the 4 mm treated sheets.

A small piece of each sheet was ground on all sides so that its dimensions could be

measured accurately. In the case of the treated sheet, care was taken to remove only a

few tens of microns from the exposed surfaces in order to achieve flatness without losing

any significant quantity of the alpha case. The densities were then calculated from

precise measurements of dimension and weight.

The densities of the two specimens are shown in Table 6.1(c). As can be seen in the

values, no difference in the density of the treated sheet could be detected within the
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0.2 % measurement tolerance. It was therefore concluded that there is no significant

difference in density between alpha case and titanium. This conclusion is consistent with

the measurements which were reported by Weglein (1988), Thompson et al. (1992) and

Brasche et al. (1992), who observed differences in density of 1 % or less.

6.5 Conclusions

An investigation has been conducted in order to determine the acoustic properties of

alpha case and of titanium. Sheets of titanium have been exposed in air at high

temperatures and measurements of their properties have been compared with those of

untreated material and of a poor diffusion bond. The study included visual examinations

of etched micrographs, hardness measurements across the thicknesses of the sheets,

through-thickness velocity measurements, Lamb wave velocity measurements and

density measurements.

The measurements which were made on the treated sheets of titanium show that the

acoustic velocity in the material increases significantly when the material is exposed to

air at high temperature. It appears from the hardness measurements that saturation does

not occur even when the material is heavily exposed and it is concluded that the acoustic

velocity must be assumed to vary with the degree of exposure. Comparison of the

micrographs with the hardness measurements shows that the etch is very effective in

revealing the extent of contamination. Comparison of the hardness and through-

thickness velocity measurements indicates that a peak increase in acoustic velocity of

more than 6 % should be expected at the bondline of the poor diffusion bond which was

used for the hardness measurements. No difference in density could be detected between

untreated titanium and alpha case.
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Specimen
Longitudinal

velocity
(m/sec)

Shear velocity with
rolling direction

(m/sec)

Shear velocity
normal to rolling
direction (m/sec)

Untreated 1 mm 6280 ± 30 3150 ± 30 3290 ± 30

Untreated 4 mm 6160 ± 10 3140 ± 20 3200 ± 20

Treated 1 mm 6650 ± 50 3310 ± 50 3420 ± 50

Treated 4 mm 6350 ± 15 3210 ± 30 3280 ± 30

DB joint, first
adherend 6250 ± 30 3170 ± 30 3240 ± 30

DB joint, second
adherend 6170 ± 30 3180 ± 30 3160 ± 30

(a) Bulk wave velocities

Specimen

Measured
velocity in

rolling direction
(m/sec)

Measured
velocity normal

to rolling
direction (m/sec)

Predicted
velocity in

rolling direction
(m/sec)

Predicted
velocity normal

to rolling
direction (m/sec)

Untreated 1 mm 5110 5370 5340 5520

Treated 1 mm 5310 5490 5690 5820

(b) Lamb wave velocities

Specimen Density (kg/m3)

Untreated 4 mm 4407 ± 10

Treated 4 mm 4403 ± 10

(c) Densities

Table 6.1 Measured acoustic properties of titanium sheets
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Figure 6.1 Micrographs of sections through treated titanium sheets

(a) Treated 1 mm thick sheet
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(b) Treated 4 mm thick sheet
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Microhardness across 1 mm thick titanium sheetsFigure 6.2
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Microhardness across 4 mm thick titanium sheetsFigure 6.3
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Microhardness across bondline of poor diffusion bondFigure 6.4
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Arrangement for measurement of Lamb wave velocitiesFigure 6.5
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7.1 Introduction

In order to assess the potential of any new plate wave inspection technique it is important

to have a measure of what can be achieved using the conventional approach. This

chapter presents the results of two model studies which were conducted in order to

determine the limits of the detectability of defects in diffusion bonded titanium using

conventional normal incidence ultrasonic inspection.

The conventional ultrasonic technique for the detection of defects in plates, as introduced

in Chapter 1, is to send an ultrasonic signal into the material and then to look for changes

either in the transmitted signal on the other side of the plate or in reflections from the

plate on the same side as the transmitter. The inspection is carried out at normal

incidence, that is to say the transducers are aligned normal to the surface of the plate.

For the detection of planar defects embedded in a joint whose adherends have the same

acoustic properties it is clear that the latter approach, the pulse-echo method, is the

preferred option. It has therefore been employed for the model studies.

The model studies each consisted of a series of simulations of normal incidence pulse-

echo inspections, in which a range of inspection parameters and descriptions of the

defects was employed. The simulations yielded predictions of the reflected time domain

signal which would be detected by the receiving transducer. A realistic frequency

response of the transmitting transducer was modelled and water coupling between the

transducer and the joint was assumed.

Two model studies are reported, the first on the detection of alpha case at the bondline

and the second on the detection of a planar array of voids at the bondline. The latter case

is strictly outside the scope of this thesis but it was an important study because small

voids are invariably present in poor bonds. It was therefore decided to include it in the

presentation here.
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7.2 Modelling approach

All of the response predictions were made using a model which was developed by T.

Pialucha (1992). His response model was introduced and discussed in Section 5.4 of

Chapter 5 where it was used as part of the validation of the modal model. It calculates

the frequency domain reflection and transmission of plane waves from multilayered

plates consisting of any numbers of layers of arbitrary thickness and arbitrary elastic or

viscoelastic properties. An inverse Fourier transform may be applied to the frequency

domain solution to yield predictions of the time domain signal which would be seen on

an oscilloscope. In addition to the plane wave solutions the model may be used to

simulate the response of a finite sized transducer.

In most cases a four layer model was used, as illustrated in Figure 7.1(a). The top layer

was a semi-infinite half-space of water, representing the immersion coupling. The

second layer represented the top adherend of the joint and the third layer, the defect at the

bondline. The final layer represented the bottom adherend and was specified as a semi-

infinite half-space because there was no interest in predicting any reflections from the

bottom surface of the joint; indeed in practice any reflections following the bondline

reflection would be gated out. The only exception to this geometry was when the defect

was not described as a single layer but as multiple layers. This idealisation will be

discussed in Section 7.3. In all cases the top adherend in the model was 4 mm thick.

This thickness was chosen to be sufficiently large to give good separation in time of the

top face echo and the bondline echo. However the materials were modelled as perfectly

elastic, ignoring attenuation of the signal, so that the predictions are equally applicable to

joints with other adherend thicknesses.

When simulating normal incidence response, Pialucha (1992) has shown that it is

generally not necessary to include the finite dimensions of the transducer in the model

(note however that it is important at certain large angles of incidence). The computation

time for the finite transducer option is increased enormously over that for the plane wave

model, so it was fortunate that all of the modelling reported here could be performed

using the simplified infinite transducer model. This means that the predictions are for an

infinitely wide plate with an infinitely wide transducer. The only significant limitation

which may result from this assumption is that the predictions, which are a close match to

an unfocused transducer, may underestimate the reflectivity achievable with a focused

transducer.
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Broadband excitation was chosen in order to give a short pulse in the time domain. The

transducer response was simulated by a sin6 frequency response over the range from zero

frequency to twice the centre frequency. Figure 7.1(b) shows the assumed frequency

response for a 10 MHz centre frequency transducer, plotted on a linear amplitude scale.

This distribution function was chosen because it is representative of the typical

broadband transducer frequency response to pulsed excitation.

The reflection coefficient was defined as the amplitude of the reflection from the

bondline normalised with respect to the amplitude of the reflection from the top surface

of the joint. Referring to Figure 7.1(a) it is the ratio |R2| / |R1|. The paths of the pulses

in the figure have been drawn at oblique angles for clarity; in all cases the predictions

simulated normal incidence measurements.

7.3 Predictions of reflectivity from alpha case

In the first instance a single homogeneous layer of alpha case material was modelled at

the bondline of a titanium joint. Typical acoustic properties of titanium were assumed, a

longitudinal bulk velocity of 6100 m/s and a density of 4400 kg/m3. The shear bulk

velocity was not needed because it plays no part in the normal incidence response to

longitudinal waves. The longitudinal velocity in the alpha case was assumed to be higher

than in the parent titanium and the density was assumed to be unchanged, in accordance

with the study of the material reported in Chapter 6. Two sets of results were calculated,

one assuming the velocity increase to be 5 %, to 6400 m/s, and the other 10 %, to

6700 m/s. Predictions of the reflectivity from the joint were made over a range of

thicknesses of the alpha case, in all cases employing a 50 MHz centre frequency

transducer. Figure 7.2 shows the simulated time domain signal from one such prediction.

Here the layer is 30 microns thick, the velocity of the alpha case is assumed to be 10 %

higher than that of the titanium and the resulting bondline reflection is 35 dB lower than

the top face reflection. Clearly a reflection of this magnitude would be detected very

readily in practice.

The full sets of reflection coefficient results for the single homogeneous layer of alpha

case with a 50 MHz transducer are plotted in Figure 7.3. Note that the reflection

coefficient for other transducer frequencies can be deduced from the graphs because the

horizontal axis is scaleable with the frequency-thickness product. Thus for example the

plotted result for a 40 micron layer with a 50 MHz centre frequency transducer is

applicable to an 80 micron layer with a 25 MHz centre frequency transducer.
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As expected, the reflectivity vanishes when the thickness of the layer of alpha case

approaches zero so that at the left of the graph the coefficient for both curves drops to

minus infinity on the log scale. At the high thickness limit the response tends to that

from a single interface between titanium and alpha case, the layer thickness becoming

large enough so that the separate reflections from its front and back faces can be

resolved. The peak of reflectivity is at about 30 microns layer thickness for both velocity

assumptions. The trough at about 65 microns corresponds to resonance of the layer.

Resonance of a layer occurs when standing waves can be set up in the layer, when the

layer thickness is a multiple of the half wavelength of the signal. In this case the layer

thickness is half of the dominant wavelength in the broadband signal of about 130

microns. Comparing the two sets of predictions it can be seen that the reflection

coefficient for the 10 % faster alpha case is about 5 dB higher than for the 5% faster

alpha case for all frequencies. For percentages between 5 % and 10 % it is a very good

approximation to interpolate linearly on the plot.

Following these predictions two further sets of calculations were performed, assuming

smoothly varying acoustic properties with depth of alpha case. The layer of alpha case

was divided into a number of equal thickness sub-layers, each homogeneous. The

acoustic properties of the sub-layers were specified according to a sinusoidal variation

with depth, as illustrated in Figure 7.4(a). Thus the profile varied smoothly across the

whole of the alpha case and blended smoothly with the adjacent adherends. In the first

case the peak longitudinal velocity at the centre of the bondline was 10 % faster than in

the parent material, falling gradually on each side of the bondline to the parent value at

the 'edge' of the alpha case. In the second case the same profile was used but the peak

velocity at the centre of the bondline was only 5 % faster than in the titanium. All of the

results for the graded alpha case which are reported here were obtained using a 13 sub-

layer idealisation; a convergence study using different numbers of layers confirmed that

this number of sub-divisions was sufficient for the range of frequencies and thicknesses

considered here.

The predicted reflection coefficients are plotted in Figure 7.5. As expected, the response

from the smoothly graded alpha case is somewhat weaker than from the single layer.

Now there is no upper thickness asymptote and in fact it becomes more difficult to detect

the presence of the layer as its thickness increases. At first sight this observation seems

surprising but it must be remembered that the peak acoustic velocity at the centre of the

layer is the same for all thicknesses on each curve so that the acoustic impedance gradient

decreases as the layer thickness is increased. Again the reflection coefficient for the
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10 % faster alpha case is consistently higher than for the 5% faster alpha case, this time

by about 6 dB.

A final study was made to examine the influence of the grading profile on the reflection

coefficient. In addition to the smooth profile on each side of the bondline, a triangular

profile and an intermediate profile were considered. The profiles are illustrated in Figure

7.4, in parts (b) and (c) respectively. For the triangular profile, the velocity is assumed to

vary linearly with distance between the boundary with the titanium and the centre of the

bondline. The intermediate profile gives a smooth blend at the interface between the

titanium and the alpha case but a sharp gradient adjacent to the centre of the bondline. In

reality the profile of the velocity in exposed sheets of titanium may be expected to follow

the hardness profile, shown in Chapter 6, and would therefore best be modelled by the

intermediate profile. However, in making a joint the surfaces of the sheets are not

exposed after the bonding process has started. The diffusion of the oxygen during

bonding is therefore likely to smooth out the profile so that the smooth profile would be

most appropriate.

The results show that the grading profile has some influence on the reflection coefficient,

particularly for large thicknesses of alpha case. At low thickness, the region of greatest

interest, the largest difference between the predictions is about 2 dB. In general the

reflectivity for low thicknesses is determined by the volume of the alpha case material

(the area under the profile) because the wavelength is large compared to the thickness.

For high thicknesses the reflectivity is governed more by local changes of acoustic

impedance. Thus the reflectivity from the intermediate profile is low at low thickness

because its area is relatively small but high at high thickness because of the very sharp

change of gradient at the centre of the bondline.

Regarding the practical detection of an embedded layer of alpha case, the lower limit of

detectability of defects will be governed by the degree and profile of the material

stiffening of the alpha case, by the transducer characteristics, by the noise threshold and

by any difference which may exist between the material properties of the two adherends.

For small thicknesses the degree of material stiffening is extremely significant while the

profile is relatively unimportant. Ideally the transducer and associated electronics should

be selected to transmit a signal with a dominant quarter-wavelength which is as close as

possible to the effective thickness of the alpha case. This should be possible for

thicknesses down to about 20 microns using high frequency equipment, up to 60-80

MHz. Testing at higher frequencies will be limited by the grain scattering and

attenuation in the adherend and so lower thicknesses of alpha case will be considerably
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harder to detect. Significant levels of grain noise have been observed in the titanium

sheets which have been studied in this research programme, and have also been reported

by the researchers at Iowa State University (see Margetan and Thompson(1992)). In

practice it seems that the noise threshold will be somewhat higher than -50 dB in high

frequency measurements. Alpha case of 10-20 microns thickness would therefore be

detectable only if the material stiffening was high. Finally, the reflection from a defect

will be masked by a background reflection from the bondline if there is a difference

between the properties of the two adherends. Fortunately the background reflection is

relatively small for small differences in properties. A difference in longitudinal velocity

of 1 % between the two adherends, such as was measured in the adherends of the poor

diffusion bond in Chapter 6, results in a background reflection coefficient of only -59 dB.

7.4 Predictions of reflectivity from voids

The second study concerned the detection of voids at the bondline. Examination of a

small number of micrographs of sections of the bondline of the poor diffusion bonded

joint (one of them is shown in Figure 1.2 for example) suggests that the voids which can

occur with the formation of low levels of alpha case are small, typically a few microns in

diameter in the plane of the bondline and 1-2 microns normal to the bondline. These

dimensions are one or two orders of magnitude lower than the wavelength in any

practical normal incidence measurement of a joint.

The effect of the voiding was incorporated in the layer model by modifying the

homogeneous properties of a 1 micron thick layer of material at the bondline. The

stiffness across the bondline was calculated according to the 'Distributed Spring' model

for penny-shaped cracks, proposed by Baik and Thompson (1984). This model gives a

stiffness across the interface between two adherends corresponding to the stiffness across

a layer of voids. It also predicts that even when the voids are small compared to the

wavelength the stiffness is dependent not only on the area fraction of the voids but also

on the void diameters in the plane of the bondline. The interface stiffness from this

model was used to define the stiffness of the thin layer and the density of the thin layer

was reduced from that of titanium according to the area fraction of voiding. Note that it

is important to take the mass characteristics of the layer into account, even for very thin

layers, when the impedance of the layer is of the same order as that of the adherends.

This was shown in a theoretical analysis of interface models by Pialucha, Lowe and

Cawley (1992). In this case the omission of the mass description would result in

overestimation of the reflectivity. Alpha case was not included in the model.
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Figure 7.7 shows the variation of the predicted reflection coefficients with the centre

frequency of the broadband unfocused transducer, assuming a void diameter of 1 micron

in the Distributed Spring model. Three curves are shown, each for a different area

fraction of voiding. It can be seen that the reflectivity is strongly related both to the

area fraction and to the transducer centre frequency. The sensitivity of the reflection

coefficient to area fraction is also largely independent of frequency, the three curves

being separated by about 6-8 dB over the whole frequency range. The nature of the

response here is somewhat simpler than that of the embedded layer of alpha case. The

layer thickness is much smaller than the wavelength of the signal (the first resonance of

the layer would occur at about 3 GHz) and significant reflectivity is achieved only

because the acoustic impedance of the layer differs strongly from that of the adherends.

A further set of calculations was made in order to show the influence of the void

diameters on the reflectivity, in all cases assuming a 25 % void area fraction. The

results, plotted in Figure 7.8, show a strong sensitivity of the reflectivity to the void

diameter, with the 5 micron voids reflecting about three times as strongly as the 1 micron

voids over the whole range of frequencies.

As with the embedded alpha case the practical limit of the detectability of voiding will be

determined ultimately by the grain scattering noise threshold. Above this threshold the

detectability will depend strongly on the void diameters and the best testing policy will

simply be to work at the highest frequency which is practicable. Assuming a void

diameter of 1 micron it seems that it should be possible to detect voiding down to about

20-25 % area fraction with high frequency equipment. However this assumption is

probably rather conservative, the voids appearing to be elongated to some considerable

extent in the plane of the bondline in the micrographs. Furthermore, unlike the

embedded alpha case, there may be some variation in the extent of contamination on the

scale of the spot size of the transducer so that local strong reflections may be found from

concentrations of voiding even when the mean level of voiding is low.

7.5 Comparison with experimental measurements

If suitable well-characterised specimens had been available it would have been useful to

make measurements of the reflectivity from bonds with a range of alpha case

contaminations and a range of void sizes and distributions, for comparison with the

predictions. This could also have enabled more to be discovered about the nature of the

alpha case layers at the bondlines. However, as discussed in Chapter 6, the attempts to

make a suite of test specimens have not been successful (to date).
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Measurements on good bonds have shown no reflections whatsoever other than scattering

from grain boundaries at high frequencies. Measurements on the only poor bond gave a

reasonably strong reflection coefficient of -44 dB. The transducer was focused and had a

nominal centre frequency of 80 MHz, although in practice the effective centre frequency

was about 50-60 MHz after attenuation in the water and the adherend. Examination of

micrographs of the bondline (Figure 1.2 for example) indicates that the alpha case is

about 80 microns thick and that there is considerable voiding, covering between 20 %

and 40 % of the bonded area. The voids are typically a few microns in diameter.

Assuming the smooth profile for the alpha case and a peak alpha case velocity

somewhere between 5 % and 10 % higher than titanium, the predictions in Figure 7.5 are

consistent with the measurement. Similarly, agreement is obtained between the

measurement and the predictions for voiding (Figures 7.6 and 7.7) if a mean void

diameter between 2 and 5 microns is assumed.

Of course these comparisons are rather approximate and are included here solely to

indicate that the predictions of measurable reflectivity are consistent with the limited

experimental evidence. If a range of specimens had been available for a full

experimental study it would have been necessary to take into account the attenuation of

the signal in the adherend (ignored in the model), the gain in reflectivity which is

achieved by using a focused transducer rather than plane waves and the effects of

combined alpha case and voiding.

7.6 Conclusions

Model studies based on normal incidence pulse-echo inspection have been used to

simulate the reflection of ultrasonic pulses from alpha case embedded in titanium and

arrays of voids in titanium. The latter case was included because of the tendency for

voids to be present in poor bonds. Both types of defect present a challenge to ultrasonic

testing methods. The alpha case is thin and has acoustic properties which are similar to

those of the adherends and the voids, although contrasting well, are extremely small.

However the fact that both of the adherends are always the same is enormously helpful

because it provides the best possible testing conditions for normal incidence pulse-echo

ultrasonic inspection. In a good bond there is no reflection from the bondline because the

parent material is continuous across the joint. The detection of any reflection from the

bondline therefore indicates the presence of a defect. Consequently it is possible to
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detect features with dimensions which are more than an order of magnitude smaller than

the dominant wavelength of the test signal.

Model predictions for alpha case embedded at the bondline of titanium joints have shown

that it should be possible to detect layers of alpha case with thicknesses down to 20

microns or less using high frequency equipment (60-80 MHz) if the acoustic velocity of

the alpha case differs from the titanium by at least 5 %.

Predictions for voiding at the bondline of titanium joints, assuming conservative void

geometries, have indicated that it should be possible to detect voiding down to 25 % area

fraction. The reflectivity is strongly sensitive to the diameter of the voids and so

detection should be sensitive to spatial variations in void geometry.
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Model used for reflection coefficient predictionsFigure 7.1
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Typical predicted normal incidence response from embedded alpha caseFigure 7.2
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Reflection coefficient from embedded single discrete 
layer of alpha case, using 50 MHz transducer

Figure 7.3
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Profiles of alpha case material properties used in modelsFigure 7.4
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Reflection coefficient from embedded layer of alpha 
case with smooth profile, using 50 MHz transducer

Figure 7.5
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Reflection coefficient from embedded alpha case with 
different grading profiles, using 50 MHz transducer

Figure 7.6
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Reflection coefficient from distribution of 1 m diameter 
voids at bondline of joint

Figure 7.7
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Reflection coefficient from distribution of voids at 
bondline of joint - Effect of void diameter

Figure 7.8
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8.1 Introduction

This chapter presents the results of model studies which were made in order to assess the

feasibility of using Lamb waves to detect the presence of alpha case at the bondline of a

diffusion bonded joint.

The objective with the Lamb wave technique is to exploit any changes which an

embedded layer of alpha case may make to the properties of the Lamb waves. For

example if the velocity of a particular wave is altered by the presence of the layer then an

inspection system could be based on detecting a change in the velocity of that wave. The

plate waves in the defective joint are still loosely referred to as Lamb waves, although

strictly speaking Lamb waves exist only in single-layer plates in vacuum, because they

occupy the whole of the plate and they differ only slightly from true Lamb waves.

Clearly it is important to identify those waves which are most sensitive to the presence of

the layer in order to assess the technique favourably. It is also important to take into

account the sensitivity of the modes to possible variations of other parameters of the

joint. Unless the other parameters of the joint are known accurately, the sensitivity of the

detection of alpha case using any of these modes may be reduced or lost.

Overview

The investigation starts with a model study of the influence of alpha case and of other

parameters of the joints on the dispersion curves. The modal model is used to predict the

dispersion curves for a number of cases and the sensitivities of the modes to each

parameter are quantified. The cases include the presence of alpha case at the bondline,

both as a discrete layer and as a graded layer, alpha case offset from the centre of the

joint and joints with different properties and thicknesses of adherends. The sensitivities

of the modes to differences in each of the acoustic properties of the embedded layer are

also predicted.
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Following the parametric study, the excitation and measurement of Lamb waves is

addressed. Two methods are reviewed, both involving the excitation of the waves by

immersion coupling using the coincidence principle. In the first method the velocity of

the wave is measured at some location downstream of the excitation point. In the second

method, the 'null zone' method, the velocity or frequency of a mode is measured at the

point of excitation.

The study is completed with a discussion of the implications of the model predictions.

The most attractive modes for inspection are identified and the sensitivity of the

technique is assessed by comparison with the sensitivity of the conventional normal

incidence technique which was presented in Chapter 7.

8.2 Predictions of dispersion curves for defective joints

The reference case for the parametric study was a perfect diffusion bond with identical

adherends, no embedded layers and a total thickness of 1.0 mm. The longitudinal

velocity of the titanium was 6060 m/sec, the shear velocity 3230 m/sec and the density

4460 kg/m3. The joint was assumed to be in vacuum. The reference case is therefore

identical to the Lamb wave case for a single sheet of titanium which was presented in the

examples in Chapter 5 and whose dispersion curves were shown in Figures 5.3 to 5.5

and 5.7.

The parametric study involved a series of calculations of the dispersion curves for

variations of the parameters of the joint. In each variant case only one parameter was

varied with respect to the reference case so that the influence of each parameter could be

studied separately. The details of each case will be discussed in turn.

The results of the study are summarised in Figures 8.1 to 8.10 and Tables 8.1 to 8.4. The

majority of the figures are plots of the dispersion curves of the joints, each showing the

results of one variant and the reference case, the perfect bond. In all cases the solid lines

are the dispersion curves for the perfect bond and the dashed lines for the variant case.

For convenience all of the modes have been labelled with the conventional Lamb mode

labels, a0, s0 etc., which were introduced in Chapter 5. Table 8.1 gives the values of

selected velocities and frequencies of all of the cases and Table 8.2 repeats this

information in the form of the percentage change of the parametric cases with respect to

the reference case. In a similar fashion Tables 8.3 and 8.4 show the predictions of the

through-thickness vibration frequencies of the joints. These are the frequencies of the
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Lamb modes at infinite phase velocity, which would be excited using a transducer at

normal incidence to the plate.

The dispersion curves may be scaled with the thickness of the joint, as discussed in

general for Lamb waves in Chapter 5. Thus the predicted velocity of a mode at 1 MHz

for the 1.0 mm plate would be appropriate at 0.5 MHz in a 2.0 mm plate. However all of

the layer thicknesses must be scaled together. Therefore if the curves for a 1.0 mm plate

with a 0.1 mm thick embedded layer are to be used to study a 2.0 mm plate then the

implicit assumption is that the thickness of the embedded layer is also doubled, to

0.2 mm.

All of the predictions were made with the assumption that the plate was in vacuum and

so all of the solutions are for free waves. However, as discussed and demonstrated in

Chapter 5, the leaky Lamb wave velocities and frequencies for a titanium plate immersed

in water are practically identical to those for the plate in vacuum, with minor exceptions.

The parametric study is therefore applicable to inspection arrangements in which water is

used as a coupling medium between the transducers and the plate. For completeness the

solutions for leaky Lamb waves in a 1.0 mm plate are included in the tables in this

chapter.

Single discrete layer of alpha case ('bad' bond)

For this set of predictions it was assumed that there was a layer of alpha case at the

bondline of the joint. The layer was 0.1 mm thick and it was centrally positioned in the

joint. The total thickness of the joint remained 1.0 mm so the two equal adherends were

each 0.45 mm thick. The layer was assumed to be homogeneous with both longitudinal

and shear velocities 10 % faster than in the titanium. The density was unchanged. The

idealisation is therefore broadly in line with the results of the material study of Chapter 6

but is a rather severe case. The alpha case is fairly thick, is assumed to be discrete rather

than graded and has a relatively high variation of its acoustic properties from the raw

material. In a sense this case is also a reference case, being the basic idealisation of a

poor diffusion bond. In the comparisons it will be referred to as the 'bad' bond case.

The dispersion curves for the reference case and for the variant are shown in Figure 8.1.

Here the sensitivities of each of the modes to the presence of the layer can be seen

immediately.
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The first symmetric mode, s0, shows some sensitivity to the presence of the layer at low

and medium frequencies in the figure, the change to the mode being an increase in

velocity. At the low frequency limit the increase in velocity is to be expected from the

nature of the mode. The wave is characterised by uniform stresses through the thickness

of the plate, according to the plane stress analysis which was discussed in Chapter 5. Its

velocity is therefore governed by an average value of the stiffness of the plate across its

thickness. Indeed reference to Tables 8.1 and 8.2 shows the velocity increase of the

wave to be 57 m/sec, about 1 %, which is consistent with such an analysis.

As the frequency is increased, the s0 mode shows increasing sensitivity to the presence of

the layer. At intermediate frequency-thickness products of 2-3 MHz-mm, it shows its

greatest sensitivity, when the deformations of the plate are concentrated around the

bondline. The deformations can be seen in the plots of the mode shapes in Figure 8.2

which have been calculated for a frequency-thickness product of 2.5 MHz-mm. At this

location on the dispersion curve (indicated in Figure 8.1) the component of the

displacement in the direction along the plate is no longer constant across the section, as it

would be at the low frequency limit, but is much larger at the centre of the plate than

elsewhere. The most useful revelation however is the peak in the strain energy density at

the centre of the plate, indicating that the energy of the wave is concentrated in this

region. The velocity of the mode is some 4 % higher than that of the reference case at

this frequency-thickness.

As the frequency is raised further the s0 mode is increasingly Rayleigh-like, the energy

concentrating near the surfaces of the plate. It is therefore no surprise that the sensitivity

of the mode to the presence of a centrally positioned layer diminishes. Clearly in the

high frequency limit the mode must be completely insensitive to the properties at the

centre of the plate.

In contrast, the first antisymmetric mode, a0, shows no sensitivity to the layer at the low

frequency limit and in general it shows very little sensitivity throughout its frequency

range. This is consistent with the antisymmetric nature of the wave. At very low

frequency it is characterised by bending of the plate and is therefore largely insensitive to

the alpha case because of the location of the layer in the region of the neutral axis where

there is very little strain. At intermediate frequencies the velocity of the mode is slightly

higher than in the reference case but the mode is still antisymmetric and is still dominated

by bending behaviour. At high frequencies the arguments which applied to the

symmetric mode s0 apply equally to the antisymmetric mode and in the limit the wave is

completely insensitive to the embedded layer.
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The higher order modes also show variations in their sensitivity to the layer. In general

the mode shapes of a Lamb mode vary considerably along the length of the dispersion

curve and, whereas they can be described in terms of integer multiple half-wavelengths at

the normal incidence limit (infinite phase velocity), their compositions are much more

complex at other locations. Indeed the number of 'half-waves' in the shapes of each

mode increases as the frequency is increased. Consequently it is not surprising that the

modes tend to have sensitive regions and insensitive regions, corresponding to relatively

strong and relatively weak deformations near the bondline.

Of the higher order modes, mode s2 shows the strongest sensitivity to the embedded

layer within the range of velocity and frequency in the figure. At 6 MHz the presence of

the layer causes an increase in velocity of 240 m/sec, about 4 % of the velocity of

6700 m/sec. On the frequency axis the difference is about 340 kHz, a 6 % increase, at

this velocity. The mode shapes of s2 at this location for the plate with the embedded

layer are shown in Figure 8.3 and the location on the dispersion curve is indicated in

Figure 8.1. As should be expected, the mode shapes show that the strain energy density

is relatively high at the centre of the plate.

It is interesting to observe also that mode s2 can be extremely insensitive to the presence

of the layer. At normal incidence it is the least sensitive of the first four of the higher

order modes, showing less than one tenth of a percent variation from the reference case.

The normal incidence cut-off frequencies are tabulated in Table 8.3 and the percentage

changes with respect to the reference case, in Table 8.4. The reason for its insensitivity

is that it consists of two half-wavelengths of a shear wave through the thickness of the

plate so that the stress at the centre of the plate is zero. The other three modes in the

table consist of odd numbers of half-wavelengths through the thickness and do not have

zero stresses at the centre. Mode a1 consists of half a wavelength of a shear wave, mode

s1 of half a wavelength of a longitudinal wave and mode a2 of one and a half

wavelengths of a shear wave.

Graded layer of alpha case

In the context of the influence of the presence of alpha case on the Lamb waves in a

plate, the variation of the alpha case properties across the layer is considered to be a

detail. The Lamb waves are likely to be influenced by the volume of the alpha case

material and by the average material properties; the profile is almost certainly of

secondary importance. The majority of the parametric study was therefore based on
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single embedded layers of homogeneous alpha case material. However in order to

demonstrate the secondary nature of the profile it was decided to make one set of

predictions using a graded layer.

A rather simple idealisation was chosen, in which the 0.1 mm thick layer was divided

into three sub-layers of equal thickness. The central sub-layer was given 10 % faster

longitudinal and shear velocities and the two adjacent layers were given 5 % faster

longitudinal and shear velocities. The profile was therefore the simplest case of the

triangular distribution which was modelled in the normal incidence reflectivity studies of

Chapter 7.

The dispersion curves for this system are shown in Figure 8.4. Comparison of the curves

with those of the reference case reveals again the sensitivity to the presence of the layer

and, as was expected, the modes vary from the reference case in the same manner as they

did for the single embedded layer in Figure 8.1. Furthermore, the variations are

consistent with the assumption that the Lamb modes are influenced by the average

material properties of the alpha case. The average acoustic velocities over the three sub-

layers are 6.7 % faster than in the titanium, two thirds of the value for the 'bad' bond.

Comparison of the velocities of s0 at low frequency, in Table 8.1, shows that the effect of

this case on the velocity is exactly two thirds of that of the 'bad' bond case. Similar ratios

are also found when comparing all of the other results in the tables.

Alpha case offset from centre of joint

Figure 8.5 shows the dispersion curves for an asymmetric joint in which there is an

embedded layer of alpha case and the two adherends are not of equal thickness. The

0.1 mm layer of alpha case is identical to that for the 'bad' bond except that it is offset

from the centre line of the joint by 0.05 mm. One adherend is therefore 0.4 mm thick

and the other is 0.5 mm thick. This case addresses the possibility that slight thinning

may occur in one of the adherends, perhaps during superplastic forming, even though the

adherends were expected to be the same thickness. Clearly if the two adherends are

markedly different then any trends which are identified here would be much exaggerated

but of course in such cases the asymmetry would be anticipated.

The dispersion curves show practically the same sensitivities to the presence of the offset

layer as they did for the central layer. Comparing the tabulated velocities of s0 at low

frequency for this case and the 'bad' bond (Table 8.1), there is no difference at all within

the given precision of 1 m/sec. Comparing the frequencies at 10 km/sec phase velocity,
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in the same table, the two cases can be seen to agree to within a few kHz. At normal

incidence the cut-off frequencies (Table 8.3) again agree to within a few kHz, the largest

difference being 16 kHz for the a2 mode. In conclusion therefore it appears that a small

offset of the alpha case from the centre line of the bond has an insignificant effect on the

dispersion curves.

Good bond with thicker adherends

In a sense this case is trivial because the frequency axis of the Lamb wave dispersion

curves is known to scale linearly with the thickness of the plate. A 1 % increase in the

thickness of the plate must therefore result in a 1 % reduction of the frequency for every

point on each dispersion curve. However it is useful to plot this variant because it

illustrates the strong sensitivity of the modes to the thickness of the plate. The changes

of the dispersion curves can be seen to be of a similar order to those of the 'bad' bond, yet

they are brought about by a very small change to the adherends.

Good bond with different acoustic properties

There are two further variants of the acoustic properties of a perfect bond which are also

trivial cases. They have not been plotted here but their results can be summarised very

simply. In the first case, if the bulk longitudinal and shear velocities of a single layer

plate in vacuum are increased by a certain percentage then both the velocities and the

frequencies of each mode are increased by that percentage. In the second case, if the

density of a single layer plate in vacuum is changed then there is no change at all to the

dispersion curves. These two deductions can be made without recourse to numerical

analysis, by examination of Lamb's equations (see Lamb (1917) or Viktorov (1970)).

Good bond with unmatched adherends

One of the realistic possibilities with diffusion bonds is that there may be small

differences between the properties of the adherends. In fact the measurement of the

properties of the two adherends of the poor diffusion bond in Chapter 5 revealed a 1 %

difference between their acoustic velocities, arising perhaps from differences in their

strain histories during superplastic forming. Another possibility is that the two adherends

may be anisotropic and may be bonded such that their rolling directions are not parallel.

Whereas a small degree of anisotropy is unlikely to affect the validity of the analysis,

provided that the appropriate material properties are used, the difference in the properties

between two adherends may be quite significant. A set of dispersion curves was
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therefore calculated for a good bond in which one of the adherends had 1 % faster

longitudinal and shear velocities than the reference values. The adherends were of equal

thickness and there was no embedded layer.

The results are shown in Figure 8.7. They show a general trend of an increase in velocity

for all of the modes, as would be expected if the bulk velocities of the whole of the plate

were increased. Indeed, the velocity of s0 at low frequency is increased by exactly

0.5 %, consistent with the average values of the properties of the plate. There is also an

increase in frequency which can be seen clearly in the normal incidence cut-off

frequencies in Tables 8.3 and 8.4. The frequencies all increase by exactly 0.5 %, again

consistent with the average properties of the plate. In conclusion it seems that the modes

are rather sensitive to the properties of the adherends, as revealed in the previous case,

but that they have no particular sensitivity to a small degree of asymmetry.

Layer with faster longitudinal velocity

The final three cases of the parametric study have been included simply to show

independently the influence of the three acoustic properties of the layer on the dispersion

curves. In all three cases a 0.1 mm thick layer was assumed to be embedded centrally in

the joint, so that the geometry was identical to that of the 'bad' bond.

In the first case the longitudinal velocity of the layer was increased by 10 %, the shear

velocity and density being identical to the adherends. The results are plotted in

Figure 8.8. The trends in the dispersion curves reflect the modes which are sensitive to

the presence of the alpha case and whose composition is dominated by longitudinal wave

components. This can be seen very clearly in the values of the cut-off frequencies. The

shear modes a1, s2 and a2 are completely insensitive to the change whereas the

longitudinal mode s1 is quite strongly affected. Of particular interest are the relatively

small changes to the lowest order modes a0 and s0.

Layer with faster shear velocity

In the second case illustrating independently the influence of the acoustic properties of

the embedded layer, the shear velocity of the layer was increased by 10 %, the

longitudinal velocity and density being identical to the adherends. The results are plotted

in Figure 8.9. Now a different pattern of influence can be seen in the curves, revealing

those modes whose composition is dominated by shear waves. Amongst them can be

seen the low order modes a0 and s0.
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Layer with higher density

In the final case illustrating independently the influence of the acoustic properties of the

embedded layer, the density of the layer was increased by 10 %, the longitudinal and

shear velocities remaining identical to the adherends. The results are plotted in

Figure 8.10. There is no change to the velocity of s0 at low frequency but in general

most modes show some sensitivity to the increase in density. The direction of change is

also not uniform, some modes showing increases in frequency (or velocity) and some

showing decreases. For the problem being addressed here, the detection of alpha case, it

seems that the density of the layer is no different from the density of the adherends and

so this information is not required. However, in general, if an embedded layer has a

different density it is clear that this influences the dispersion curves even though the

density plays no part in the true Lamb wave solutions.

The increase in frequency of a curve when the density of the layer is increased seems

surprising when considered in the context of the principles of vibration theory, the

frequencies of vibrating structures decreasing when masses are increased. However, the

analogy is not strictly correct in the case of Lamb waves. Consider the Lamb wave

dispersion curves for a single layer. The curves depend only on the bulk velocities of the

material and the thickness. On the other hand vibration frequencies depend on density

(or mass) and stiffness. The stiffness and density of the material are accounted for

implicitly in the dispersion curves because they define the bulk velocities, according to

equation (2.9), but they are not prescribed separately. An increase in density, without

changing the bulk velocities, is therefore accompanied by an increase in stiffness.

Accordingly, in the case considered here, both the stiffness and the mass of the layer of

alpha case are increased.

8.3 The measurement of Lamb waves

If Lamb waves are to be used to exploit any of the sensitivities which have been observed

in the model study it is important to be able to measure the velocities and frequencies of

the waves in a selective manner. There are two aspects to this. First, a method of

excitation should ideally be employed in which the energy can be focused on a particular

location on the dispersion curve diagram so that particular waves can be launched.

Second, a method of measurement should be used which can determine accurately the

velocities and frequencies of the modes.
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The excitation of Lamb waves

The selective excitation of Lamb waves can be achieved with considerable success using

the coincidence principle which was discussed in Chapter 5, Section 5.2 and was

illustrated in Figure 5.6. The principle states that an incident wave in a coupling medium

may be used to excite a plate wave if the component of its wavenumber in the direction

along the plate matches the wavenumber of the plate wave. This means that waves with

high phase velocities are excited and received using small angles of incidence and waves

with low phase velocities using large angles.

Ideally the coincidence principle could be used to excite a wave at a precise location on a

dispersion curve by using an infinitely wide plane wave transducer and a single

frequency signal. In practice of course this is not possible. Waves do not leave the face

of a finite transducer solely in the normal direction but are spread over a range of angles.

The transducer cannot therefore be aligned to excite plate waves of a single velocity, its

energy can only be centred on a particular velocity. Similarly it is not possible to work

with a single frequency, only with a range of frequencies.

However it is possible to direct the energy into a small zone of the dispersion curve

diagram by controlling the angle of the transducer and the frequency of the signal. The

practical excitation of plate waves using the coincidence principle is illustrated in

Figure 8.11. Typically an unfocused transducer is used, with water coupling to the plate.

The velocity of the centre of the excitation zone is defined by the angle of incidence of

the transducer and the velocity range of the excitation zone results from the beam

spreading characteristics of the transducer. The frequency of the excitation zone is

determined by the frequency characteristics of the signal. Clearly by selecting the angle

of incidence and the input signal it is possible to place the excitation zone at the desired

location on the dispersion curve diagram.

The frequency range of the excitation zone may be minimised by using a long tone burst.

Additionally, at a later stage in the measurements, when a signal is received, windowing

in the frequency domain may be used to limit the examination of the received signal to

the frequency of interest. The velocity range of the excitation zone decreases as either

the test frequency or the transducer diameter is increased. Additionally, an array of

parallel 'fingers', like a comb, may be used to partially shade the ultrasonic beam in the

coupling medium in order to limit the transmission of energy to a particular wavelength

(see Viktorov (1970)).
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Remote measurement of velocity

The obvious way to measure the velocity of a plate wave is to measure the time it takes

to travel a known distance. A typical scheme is illustrated in Figure 8.12(a). A receiving

transducer is set at the same angle to the plate as the transmitter, some distance

downstream, so that it detects a leaking signal from the plate. A second signal is then

recorded at a known distance further downstream and the velocity is calculated from the

separation distance and the time difference between the two signals.

If the wave is dispersive then the shape of the signal changes as it propagates and the

calculation of the time difference is not so straightforward. However, measurements can

be made by comparing the two signals in the frequency domain, using for example the

amplitude spectrum method (Pialucha, Guyott and Cawley (1989)). Indeed this

technique can usefully be employed to determine the velocity of a dispersive wave at a

number of frequencies within the range of frequency of the signal.

A second difficulty arises if the excitation zone covers more than one mode, in which

case more than one wave may propagate along the plate. Alleyne (1991) discussed the

difficulties associated with multimode signals and developed a method of measuring the

modes separately in the received signal. A general discussion of the long range

propagation and measurement of Lamb waves may also be found in his thesis.

A third consideration is the attenuation of the waves. As was discussed in Chapter 5,

Lamb waves can exhibit considerable attenuation in water, so that it may not be possible

to detect them at remote locations. One technique to avoid this difficulty is to use local

immersion only, at the positions of the transducers (Alleyne (1991)). An alternative of

course is to receive the signal as close to the transmitter as possible. In the extreme, a

signal may be received by another part of the transmitting transducer, as is the case when

a defocused acoustic microscope is used to measure surface wave velocities (see

Weglein (1985) for example).

The accuracy of the measurement of the velocities of plate waves using such techniques

is generally determined by the mechanical considerations such as the precision of the

positioning of the transducers and the degree of flatness of the plate. Accuracies of better

than 1 % can typically be achieved (Alleyne (1991)).
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Point measurement of velocity or frequency

An alternative approach, one which is extremely attractive for the inspection of diffusion

bonds, is the 'null zone' technique. With this technique the fact that a wave has been

excited is detected by a measurement at the location of excitation. Proponents of the

application of this technique to plate waves have included Mal, Bar-Cohen and co-

workers who have successfully measured Lamb waves over a wide range of the

dispersion curves for adhesive joints and have demonstrated excellent agreement with the

theoretical curves. See Mal, Xu and Bar-Cohen (1989) for example.

The technique works by exploiting the interference of the specular reflection of the

excitation signal from the plate with the leaking field immediately downstream of the

transmitter, which occurs when plate waves are excited. The mechanism is illustrated in

Figures 8.12(b) and 8.13. Figure 8.12(b) shows the arrangement of a pair of transducers

with their centre lines meeting at a point on the plate. Figure 8.13(a) shows the

dispersion curves for the s0 mode for a good bond (the reference case) and for the 'bad'

bond. Figure 8.13(b) shows a prediction of the reflected field from the good bond using

a 10 mm diameter transducer, at a frequency of 2.5 MHz (infinite tone burst) and an

angle of incidence of 21.119 degrees. The prediction was made in exactly the same

manner as was described in the validations in Section 5.4 of Chapter 5, using the

response model which was developed by Pialucha (1992). Since the angle and frequency

correspond to a position on the dispersion curve, in part (a) of the figure, a wave is

excited in the plate and it leaks energy downstream of the centre line of the reflected

beam. The leakage is out of phase with the specular reflection and so causes some

cancellation of the received signal, the extent of the cancellation clearly depending on the

size of the receiver.

If the transducers are swept through a range of angles, as shown in Figure 8.12(b), and

are excited with a narrow band signal, then the angles at which modes exist can be

determined by detecting the minima in the reflection amplitude, corresponding to the null

zones when the cancellations occur. Simulations of the amplitude of the received signal

from such a sweep are shown for the good bond and for the bad bond in Figure 8.14(a),

for a single frequency of 2.5 MHz (infinite tone burst), assuming a pair of 10 mm

diameter transducers. The difference between the locations of the minima for the two

joints corresponds to the difference between their velocities at this frequency, which can

be seen in Figure 8.13(a). Similarly, if the angles of the transducers are fixed and a

frequency sweep is performed then the frequencies of the modes may be located, as

illustrated for the same cases in the simulation in Figure 8.14(b). Again the difference
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between the locations of the minima can be seen to correspond to the difference between

the frequencies of the dispersion curves.

8.4 Discussion

The idea of using Lamb waves for the inspection of the material at the bondline in

bonded plates is not new. As was discussed in Chapter 1, a number of researchers have

worked in this field, in particular with regard to adhesively bonded aluminium joints.

Reviews may be found in Dewen (1991) or Dewen, Lowe and Cawley (1992). The

problems which the researchers have addressed are the evaluation of the thickness and

acoustic properties of the adhesive and the properties of the interfaces between the

adhesive and the adherends. The acoustic properties of the adhesive give an indication of

its strength (the cohesive properties) and the interface properties reveal the quality of its

attachment to the adherends (the adhesive properties).

The main progress in this field has been achieved by Mal, Bar-Cohen and co-workers.

Mal, Xu and Bar-Cohen (1989) generated dispersion curves for adhesive joints and

compared them with measurements. Karim, Mal and Bar-Cohen (1990) and Xu, Mal and

Bar-Cohen (1990) reported the development of an inversion algorithm which could be

used to determine the cohesive properties and the adhesive thickness of a joint from the

Lamb wave dispersion curves. Bar-Cohen and Mal (1990) used the algorithm to

determine these properties from experimentally constructed dispersion curves. Mal, Xu

and Bar-Cohen (1990) also calculated dispersion curves for joints in which one of the

interfaces between the adhesive and the adherends was assumed to be unbonded and they

suggested that the inversion of measured Leaky lamb wave data may be used to detect

this extreme case of poor adhesion.

The developers of the inversion technique have achieved some success in the detection of

the cohesive properties of joints when the other parameters are well characterised.

However a parametric study by Dewen, Lowe and Cawley (1992) indicated that the

dispersion curves for realistic aerospace joints are rather sensitive to small changes in the

properties of the adherends. They concluded that Lamb waves are unlikely to offer any

significant advantage over normal incidence inspection techniques.

The task of inspecting diffusion bonded joints differs from that of adhesive joints because

of the nature of the objective. In an adhesive joint the adhesive layer is known to be

present and the primary objective is to detect its homogeneous properties. In a diffusion

bonded joint the primary objective is to detect whether a layer is present at all. The latter
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task is clearly simpler in principle. However the layer thickness of the alpha case to be

detected is likely to be much smaller than the thickness of the adhesive in an adhesive

bond and, furthermore, the acoustic impedance of alpha case differs only slightly from

the titanium adherends. Therefore, although Lamb waves have been studied quite

extensively in the context of adhesive joints, it is not immediately evident from such

results what level of sensitivity may be achieved if the technique is applied to diffusion

bonds.

Considering the modelling study which is presented in this chapter, the implications for

the development of an inspection technique are not promising. The dispersion curves

show some sensitivity to the presence of a centrally embedded layer of alpha case so in

principle the inspection should be possible. The curves are also insensitive to a small

offset of the layer from the centre of the joint which would be an advantage in practice

because of the realistic possibility of slight differences between the thicknesses of the two

adherends. They are also insensitive to the profile of the acoustic properties of the alpha

case, depending only on the average properties and the thickness of the layer. This is an

advantage when the objective is to detect the presence of the layer but proves clearly that

the method could not be used to characterise the layer. However the serious drawback

which was demonstrated by the predictions is that, as was found in the studies of

adhesive joints, the dispersion curves are much more sensitive to the bulk velocities of

the adherends and the overall thickness of the joint than they are to the properties of the

embedded layer.

In identifying the best modes for an inspection scheme it is important therefore to

consider the nature of the sensitivities of the modes to the bulk velocities of the

adherends and to the thickness of the joint. In the former case the dispersion curves are

affected in both the frequency and velocity axes and in the latter case, solely in the

frequency axis. In general it is to be expected that the material properties of the

adherends are likely to be known more precisely than the thickness of the joint.

Consequently in practice the frequency axis of the dispersion curves for a good bond will

be less well known than the velocity axis. It follows that the best testing locations on the

dispersion curve diagram are the regions of modes which show strong sensitivity to the

embedded layer and have low dispersion.

Following this argument, the obvious candidate is the first symmetric mode, s0, at very

low frequency. It shows some sensitivity to the presence of the layer and is insensitive to

small variations in the thickness of the joint. However the sensitivity is not strong, the

velocity increasing by only 1 % when a 0.1 mm thick layer of alpha case is embedded in
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a 1.0 mm thick joint. This percentage is typical of the error margin which can be

achieved in careful velocity measurements on ideal specimens in the laboratory.

Furthermore if the adherends were thicker but the alpha case remained at 0.1 mm

thickness then the sensitivity would be reduced, roughly in linear proportion. Thus the

increase in velocity would be 0.1 % for a 10 mm thick joint.

There is greater sensitivity to the presence of the layer in the s0 mode and in the s2 mode

at the two locations marked in Figure 8.1 at which the mode shapes were calculated. In

both cases the sensitivity is about 4 % for a 0.1 mm thick layer in a 1.0 mm thick joint,

four times that of the s0 mode at low frequency. However unfortunately the modes are

strongly dispersive at these locations and so they are very sensitive to the thickness of the

joint. Any inspection method which utilised them would therefore have to include a

separate, extremely accurate, measurement of the thickness of the joint. This presents a

serious difficulty, as discussed in the context of adhesive joints by Dewen (1991). In

order to detect the layer in the joint considered here, it would be necessary to know the

thickness of the joint to an accuracy better than 1 %. Worse still, in order to detect the

same thickness of layer in a 10 mm joint it would be necessary to know these quantities

to an accuracy of better than 0.1 %.

By comparison, the use of normal incidence ultrasonics is considerably more attractive.

The case of the 0.1 mm thick layer in a 1.0 mm thick joint is very much an upper bound

description of a poor joint, the layer being relatively thick and the joint relatively thin.

According to the analysis of Chapter 7 such a layer would be detected rather easily using

the conventional pulse-echo inspection technique.

8.5 Conclusions

Model studies have been conducted to investigate the potential of utilising Lamb waves

for the detection of an embedded layer of alpha case in a diffusion bonded joint.

A parametric study was undertaken using the modal model in order to determine the

sensitivity of the Lamb waves to the presence and properties of the layer and also to other

parameters associated with a joint. Although the sensitivity to the presence of the layer

was not strong, the study revealed the modes which are most sensitive and led to the

identification of the most suitable locations on the dispersion curves for the inspection. It

also revealed however that the modes are strongly sensitive to the properties of the

adherends, specifically to their bulk acoustic velocities and to the total thickness of the

joint.
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The practical potential of utilising Lamb waves is further ill-fated by the success of the

conventional normal incidence method. Comparing the two methods, the best sensitivity

which could be achieved using the Lamb wave technique falls far short of that which is

possible using the normal incidence technique. Furthermore, the Lamb wave technique

would be more complicated to implement in practice than the conventional method.

It was therefore concluded that the Lamb wave inspection scheme could work in

principle but its sensitivity to the presence of the embedded layer falls short of normal

incidence testing and it suffers from unwanted sensitivity to other properties of the joint.
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Velocity
at zero

frequency
(km/sec)

Frequency at velocity of 10 km/sec
(MHz)

Case
Mode

s0
Mode

a1
Mode

s1
Mode

s2
Mode

a2

Good bond (Reference case) 5.466 1.975 2.814 4.353 4.970

Layer of alpha case
('bad' bond) 5.523 2.012 2.853 4.413 4.996

Graded layer of alpha case 5.504 2.000 2.841 4.393 4.988

Alpha case offset from
centre of joint 5.523 2.011 2.853 4.417 4.998

Good bond with thicker
adherends 5.466 1.955 2.786 4.309 4.920

Good bond with unmatched
adherends 5.493 1.989 2.828 4.385 4.997

Layer with faster
longitudinal velocity 5.485 1.975 2.841 4.415 4.970

Layer with faster shear
velocity 5.496 2.012 2.828 4.341 4.996

Layer with higher density 5.466 1.994 2.831 4.318 4.959

Good bond in water 5.466 1.975 2.649 4.351 4.970

Table 8.1 Predicted Lamb mode velocities and frequencies at selected locations
on dispersion curves
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Change of
velocity at

zero
frequency

(%)

Change of frequency at velocity of 10 km/sec
(%)

Case
Mode

s0
Mode

a1
Mode

s1
Mode

s2
Mode

a2

Good bond (Reference case) 0 0 0 0 0

Layer of alpha case
('bad' bond) 1.04 1.87 1.40 1.40 0.53

Graded layer of alpha case 0.69 1.29 0.96 0.93 0.36

Alpha case offset from
centre of joint 1.04 1.84 1.38 1.48 0.56

Good bond with thicker
adherends 0.00 -1.00 -1.00 -1.00 -1.00

Good bond with unmatched
adherends 0.50 0.72 0.51 0.75 0.56

Layer with faster
longitudinal velocity 0.34 0.00 0.96 1.43 0.01

Layer with faster shear
velocity 0.54 1.87 0.48 -0.27 0.53

Layer with higher density 0.00 0.95 0.59 -0.79 -0.21

Good bond in water 0.00 -0.01 -5.88 -0.03 0.00

Table 8.2 Percentage change of selected velocities and frequencies of Lamb
modes with respect to reference case
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Frequency at normal incidence
(MHz)

Case
Mode

a1
Mode

s1
Mode

s2
Mode

a2

Good bond (Reference case) 1.615 3.030 3.230 4.845

Layer of alpha case
('bad' bond) 1.643 3.083 3.232 4.926

Graded layer of alpha case 1.635 3.067 3.231 4.901

Alpha case offset from
centre of joint 1.643 3.082 3.237 4.910

Good bond with thicker
adherends 1.599 3.00 3.198 4.797

Good bond with unmatched
adherends 1.623 3.045 3.246 4.869

Layer with faster
longitudinal velocity 1.615 3.083 3.230 4.845

Layer with faster shear
velocity 1.643 3.030 3.232 4.926

Layer with higher density 1.630 3.057 3.200 4.884

Good bond in water 1.615 3.030 3.230 4.845

Table 8.3 Predicted frequencies of Lamb modes at normal incidence
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Change of frequency at normal incidence
(%)

Case
Mode

a1
Mode

s1
Mode

s2
Mode

a2

Good bond (Reference case) 0 0 0 0

Layer of alpha case
('bad' bond) 1.76 1.76 0.06 1.67

Graded layer of alpha case 1.21 1.21 0.03 1.16

Alpha case offset from
centre of joint 1.71 1.71 0.21 1.34

Good bond with thicker
adherends -1.00 -1.00 -1.00 -1.00

Good bond with unmatched
adherends 0.50 0.50 0.50 0.50

Layer with faster
longitudinal velocity 0.00 1.76 0.00 0.00

Layer with faster shear
velocity 1.76 0.00 0.06 1.67

Layer with higher density 0.90 0.90 -0.92 0.80

Good bond in water 0.00 0.00 0.00 0.00

Table 8.4 Percentage change of frequencies of Lamb modes at normal incidence
with respect to reference case
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Selective excitation of Lamb modes using the coincidence principleFigure 8.11
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Figure 8.12 The measurement of Lamb wave velocities
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Modal and field predictions of leaky s0 wave in diffusion bonded jointFigure 8.13

(a) Modal predictions of leaky s0 for good and bad bonds

(b) Near-field response from good bond, at 2.500 MHz, 21.119 degrees
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Simulation of null zone measurement of leaky s0 wave in good and bad
diffusion bonded joints

Figure 8.14

(a) Amplitude of received signal using angular sweep at frequency of 2.500 MHz

(b) Amplitude of received signal using frequency sweep at angle of 21.119 degrees
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9.1 Introduction

This chapter presents the results of model studies which were made in order to

investigate the possibility of using some form of interface wave for the detection and

characterisation of alpha case at the bondline of a diffusion bonded joint.

The objective with the interface wave inspection technique is to excite and detect a wave

which travels along the bondline. In principle there are two major attractions of this

technique when compared to the Lamb wave technique. First, if there is no alpha case at

the bondline then there is no interface and so it will not be possible to excite the wave.

The existence of the alpha case is therefore determined simply by the existence of the

wave, not by small variations in its properties as was the case for the Lamb wave

technique. Second, an interface wave whose energy is concentrated at the bondline is

likely to be much more sensitive to the properties of the embedded layer and less to the

properties of the adherends. If a layer of alpha case is found to exist, it may therefore be

possible to characterise it by measuring the properties of the interface wave, even if the

properties of the adherends are not known precisely.

It is well known that waves can exist at the interface between two semi-infinite half-

spaces, for example the Stoneley and leaky Stoneley waves which were discussed in

Chapter 5. It is possible that such an interface wave could be utilised for the inspection

of the interface between an adherend and the embedded layer if the layer was very thick

or if the frequency was very high, so that the depth of penetration of the interface wave

was much smaller than the thickness of the layer. However the smallest wavelengths of

acoustic waves which could be propagated through the thickness of an adherend in

practice (about 40 microns for a shear wave at 80 MHz) are not significantly smaller than

the thickness of an embedded layer of alpha case, even in a very poor bond. It is

therefore unreasonable to expect that an interface wave with a sufficiently small depth of

penetration could be generated for the inspection of alpha case. A second type of

interface wave must therefore be considered in which the wave travels along the layer of

alpha case, in principle rather like a Lamb wave. In this case the wave is strictly not an
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interface wave because it is not confined to a single interface. However it will be

referred to as an interface wave because it propagates along the interface layer.

Overview

The study starts with the examination of the excitation and measurement of leaky

interface waves. If the rate of leakage of the waves is mild then the coincidence principle

and the null zone technique may be used successfully. However it is shown that if the

waves leak strongly then such methods may not be valid.

Next, the study addresses the simplest form of interface wave, that at a single interface

between two different materials. Modal predictions are made for several pairs of

materials and are compared with near-field response simulations.

The investigation then proceeds to the much more difficult case of the interface waves

which travel along an embedded layer. Dispersion curves, attenuation curves and mode

shapes are predicted for a layer of alpha case embedded in titanium. The modal

predictions are analysed and compared with predictions of plane wave reflection

coefficients and with simulations of the near-field response.

A final set of predictions shows the influence of variations of the properties of a joint on

the dispersion curves. The variant cases include different acoustic properties of the alpha

case and of the adherends.

The study is completed with a discussion of the implications of the model predictions.

The potential for the practical use of interface waves for inspecting diffusion bonded

joints is examined and conclusions are drawn.

9.2 Approach for the excitation and detection of interface waves

If the rate of leakage of a plate wave is mild then the coincidence principle may be used

to excite and receive the wave and the null zone technique may be used successfully to

measure its velocity and frequency. However if the leakage is strong then considerable

complications emerge, based on fundamental differences between the modal and the

response characteristics of the system. The excitation and detection of interface waves is

therefore presented in two parts. First the case of the mildly leaking waves is examined

and it is shown that the basic principles which were introduced for the measurement of

Lamb waves may be applied to an embedded interface or layer. Then the complications
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of the strongly leaking waves are addressed and the implications for the measurements

are discussed. These discussions are followed by a model illustration of strongly leaking

plate waves and the section is completed with the overall conclusions about the

measurement of interface waves.

Mildly leaking interface waves

Mildly leaking interface waves at an embedded interface or in an embedded layer in a

joint may be excited and received using the coincidence principle, in a similar manner to

the method which was discussed for Lamb waves in Section 8.3 of Chapter 8. The

approach is illustrated in Figure 9.1, using an embedded layer as an example.

The excitation of a particular wave is achieved by the selection of the angle of incidence

of the transmitting transducer and the frequency characteristics of the ultrasonic signal.

The angle of the transmitting transducer in the coupling medium (water in the

illustration) must be such that the refracted beam, either longitudinal or shear, within the

top adherend arrives at the layer at the appropriate angle to excite the wave. The wave

propagates along the layer, leaking energy back into the adherends as it travels. Some of

the energy subsequently leaks back into the water and can be detected by the receiving

transducer.

As with the Lamb wave method, two approaches are possible in principle for the

measurement of the interface wave. A long-range measurement may be made at some

distance downstream of the point of excitation, as illustrated in part (a) of the figure. In

this case the velocity of the wave may be determined by receiving two signals a known

distance apart. Alternatively, a point measurement may be made at the location of

excitation, as shown in part (b) of the figure. In this case the velocity or frequency at

which the mode is excited may be measured using the null zone technique, as discussed

in Section 8.3 of Chapter 8.

Clearly the method is restricted to interface waves whose phase velocity is faster than the

bulk shear velocity in the adherend material and which leak energy as they travel.

Interface waves whose velocity is slower than the bulk shear velocity in the adherend

could only couple with inhomogeneous waves in the adherend so they could not be

excited using the coincidence principle and, furthermore, they would not leak energy into

the adherends.
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Strictly speaking, the study of any wave propagation properties of a multilayered plate

should take account of all of the layers of the system. In general it is not valid simply to

identify those layers in which there is a particular interest. The investigation of the

modal properties of a joint in which there is an embedded layer of alpha case should

therefore include the finite dimensions of the adherends and the presence of the coupling

medium. However, the influence of the parts of the joint which are remote from the

embedded layer are only significant in practice if reflections of the signals from such

boundaries are taken into account. Referring to Figure 9.1(a), the dashed line shows a

reverberating signal within the top adherend. If the signal which is detected at the

receiving transducer includes some part of this reverberation then any relevant modal

predictions of the system would have to include the finite dimensions of the top

adherend. However if it is possible to resolve the response from the bondline, gating out

any other reflections, then it is valid to idealise the system as the embedded layer

surrounded by semi-infinite half-spaces of the adherend material. The behaviour of the

layer, and indeed the received leaking signal, is then independent of the thickness of the

adherends. This is a very attractive feature of interface waves when applied to bondline

inspection.

Strongly leaking interface waves

In the description of the measurement of leaky Lamb waves in Chapter 8 it was

demonstrated that the minima of the reflection coefficient may be used to determine

accurately the frequency and velocity at which mildly leaking plate waves propagate,

according to the null zone technique. Indeed some researchers (Mal, Xu and Bar-Cohen

(1989) and (1990) for example) have used the reflection coefficient minima in order to

measure the dispersion curves for leaky Lamb waves.

The leaky Lamb wave dispersion curves for a metal plate in water differ only slightly

from the true Lamb wave curves, and the rate of leakage of energy into the water is

relatively small. In this circumstance good agreement may be expected between the

response measurements and the modal predictions. However if the acoustic impedance

of the half-spaces is much closer to that of the layer then the dispersion curves may differ

greatly from the Lamb modes. Furthermore, as observed by Nagy and Adler (1989) and

Chimenti and Rokhlin (1990), the same good agreement between the response

measurements and the modal predictions cannot necessarily be assumed. The work by

Chimenti and Rokhlin is particularly interesting in this context. They analysed the

behaviour of plates in water and demonstrated the divergence of the loci of the reflection

coefficient minima from the Lamb wave dispersion curves as the density of the water
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was increased. They also showed theoretically that the conditions for plane wave

reflection coefficient minima are fundamentally different from the conditions for plate

wave propagation, and that exact agreement is only achieved in the zero density limit.

The principal reason for lack of agreement between the plane wave reflection coefficient

minima and the modal predictions is that they are based on quite different boundary

conditions. A reflection coefficient minimum occurs when the transmission of the

energy of an incident wave through the plate is a maximum. The boundary conditions

for the system therefore are that there is an incoming wave in one half-space and an

outgoing wave in the other half-space, the other wave components in the half-spaces

being zero or small. On the other hand the boundary conditions for the existence of a

mode, which were shown in Figure 2.8, are that there are no incoming waves in either

half-space although outgoing waves may occur in both half-spaces, corresponding to

leakage of the plate wave.

Mathematically, as discussed by Chimenti and Rokhlin, the plane wave reflection

coefficient may be described by a complex function whose zeroes yield the response

minima and whose poles (given by zero values of the denominator), yield the modal

properties. Specifically, in their example of a plate immersed in water, they defined the

complex function in the form:

R =
(AS - Y2)

(S + iY)(A - iY) (9.1)

where R is the reflection coefficient, the terms A and S relate to symmetric and

antisymmetric Lamb waves, and Y is linearly dependent on the density of the water.

Clearly when Y is zero, corresponding to the case of the plate in vacuum, the numerator

and the denominator are identical and consequently there is no difference between the

conditions when the poles and the zeroes of the function occur. However when Y is not

zero then the conditions for the poles may be different from those for the zeroes.

The plane wave reflection coefficient minima may be predicted using an infinite plane

wave response model. The minima will also be revealed in finite transducer simulations

and in practice because the finite field consists of the summation of infinite plane waves

over a range of angles of incidence, much of the energy being concentrated in the

'central' waves of the field, those whose angle of incidence is approximately that of the

transducer. Thus the 'central' waves of the field will be transmitted through the plate and
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the peripheral waves will be reflected, the result being an overall reduction of the

amplitude which is measured by the receiver.

The reflectivity may also be perturbed when the conditions are appropriate for plate wave

propagation. In general a leaky plate wave emits a plane wave at a specific angle on both

sides of the plate, the angle being determined precisely by the velocity of the wave. The

plane wave reflection coefficient may therefore be affected at this angle. In practice

however, when the field is finite, the plate wave is detected by a mechanism which

occurs in the near-field. The mechanism, as discussed in Section 8.3 of Chapter 8, is the

interference of the leaking plate wave with the specular reflected beam, the result again

being an overall reduction of the amplitude which is measured by the receiver. Clearly

the simulation of this mechanism requires a finite transducer response model.

There is also a difficulty with the excitation of strongly leaky waves, concerning the

coincidence principle. The coincidence principle is based on the coupling of the incident

wave in the half-space to the plate wave, the angle of the incident wave being selected so

that the wavenumbers match in the plate wave direction. However the coupling is

limited to the real part of the wavenumber and makes no allowance for the imaginary

part of the wavenumber which describes the attenuation of the plate wave. The correct

coupling of the complex wavenumbers across the interface, as discussed in detail in

Section 3.3 of Chapter 3, is therefore not achieved. If the attenuation is weak, for

example in the case of a metal plate in water, then reasonable coupling may be achieved

and the omission of the imaginary part of the coupling can be ignored. However if the

attenuation is strong then the coupling may be very poor and in extreme cases it may not

be possible to excite very leaky modes with any significant amplitude by this method.

In summary, there are two possible causes of minima of the reflection coefficient.

Minima may exist either when the transmissibility of the plate is a maximum or when a

plate wave is excited and its leaking field interferes with the point reflection of the beam.

If the attenuation of the wave is weak then these mechanisms occur under practically

identical conditions of frequency and angle of incidence, and their distinction is

unnecessary. If the attenuation is strong then each of these mechanisms may occur under

different conditions. Furthermore, the excitation of a plate wave depends on the coupling

of the incoming wave in the half-space with the plate wave, poor coupling occurring

when the attenuation is strong. It may therefore not be possible in practice to excite very

leaky waves using the coincidence principle.
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The practical implication of this analysis in the context of embedded layers is that it may

not be possible to make direct measurements of strongly leaky waves. The first problem

is that the excitation of the waves is likely to be very weak because of poor coupling.

Then, even if a wave is successfully launched, the remote measurement technique will

not be possible because of the rapid rate of decay of the wave. Measurements will

therefore have to be made at the point of excitation. The difficulty here is that the other

mechanism, the reflection minimum due to the strong transmission of plane waves, is

likely to dominate the response. In principle the conditions for the strong transmission

mechanism and for the mode are expected to be slightly different so that ideally it should

be possible to measure the two effects separately. In practice however the influence of

the strong transmission will be detected over a finite range of angle and frequency

because of the spatial and frequency spread of the beam. It may not therefore be possible

to identify the comparatively weak influence of a propagating wave. Furthermore, under

conditions where there is good separation of the frequencies or angles of the minima of

the two mechanisms, the attenuation of the mode is expected to be particularly strong.

Consequently the mode will be particularly difficult to excite.

It is therefore concluded that if the modes are strongly leaky then the measurement

technique should address the response behaviour rather than the modal behaviour.

Measurements should be made of the minima which are associated with the strong

transmission of energy through the layer, in the knowledge that these are related

indirectly to the modal properties and are likely to be equally sensitive to the parameters

of the system.

Example: influence of water density on leaky so Lamb wave

Some calculations have been performed in order to illustrate the significance of the

density of the water on leaky Lamb waves. The s0 mode in a 1 mm thick sheet of

titanium was studied, at its most dispersive region, shown in Figure 9.2(a). This is the

same location on the dispersion curve as was chosen for the null zone simulation study in

Section 8.3 of Chapter 8. Modal solutions and near-field response predictions were

calculated for a range of densities. In all cases a constant angle of incidence of 21.119

degrees (constant velocity of 4116 m/sec) was assumed and the frequency was varied.

The response model developed by Pialucha (1992) and described in Section 5.4 of

Chapter 5 was employed for the response calculations.

Figure 9.2(b) shows the variation of the modal frequency and of the frequency of the

minimum of the plane wave reflection coefficient for a range of densities. At very low
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density the two predictions agree closely but divergence is evident as the density is

increased, the modal frequency rising and the response frequency falling. For the normal

density of water of 1000 kg/m3, the separation is about 10 kHz, some 0.4% of the modal

frequency of 2.5 MHz. For a density of water of 5000 kg/m3, the separation is about

80 kHz, 3 % of the modal frequency.

Figure 9.3(a) shows the near-field response for the 5000 kg/m3 'heavy' water case. A

10 mm diameter transmitting transducer was modelled and the reflected field was

calculated at a total water path length of 10 mm. The amplitude of the field in front of

the transmitting transducer was assumed to have Gaussian variation across the beam, as

discussed in Chapter 5 and illustrated in Figure 5.14(b). Three cases are shown, one for

the response at the modal frequency, one at the frequency of the plane wave reflection

coefficient minimum and one at a 'remote' frequency, about 50 kHz higher than the

modal frequency. In each case the transducer was excited by a single frequency tone (an

infinite toneburst).

In all three fields, a non-specular reflection is evident, the strongest distortion of the

beam occurring at the frequency at which the plane wave reflection coefficient is

minimum. The dominant mechanism in the distortion of the field therefore appears to be

the strong transmission (and consequent weak reflection) of the 'central' plane wave

components of the finite beam, those whose angle of incidence is approximately that of

the transducer. The modal calculations predicted the attenuation of the leaky wave to be

2.38 Nepers/wavelength which corresponds to a loss of amplitude of about 80 % per mm

travelled, or 99.9 % over 5 mm. It is clear therefore that if there is any significant modal

contribution to the field, it is restricted to the region within the beam, where the point

reflection is strong. The fact that the distortion of the field due to strong transmission

occurs over a range of frequencies is not surprising because of the beam spreading

properties of the transducer.

Finally, Figure 9.3(b) shows the results of simulations of null zone measurements in

which the excitation frequency was varied, the angle of incidence remaining fixed. Two

cases of finite transducers were considered, one in which the receiver was 10 mm in

diameter and the other in which it was 2 mm in diameter. In each case the receiver was

placed on the centre line of the reflected beam, shown by the dashed line in

Figure 9.3(a), at a total distance in water of 10 mm from the transmitter. The same

10 mm diameter transmitter, described above, was employed in both cases. For

completeness, the plane wave reflection coefficient is also included in the plot and the

frequency of the modal solution is indicated.
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The results show again the significant difference between the frequency of the reflection

coefficient minimum and the modal frequency. They also show small differences

between the minima for the three response predictions. These differences arise because

each of the finite receivers covers a different extent of the reflected field. Referring to

Figure 9.3(a), it is apparent that the reflection amplitude which is detected by a finite

receiver may vary significantly with the transducer's diameter. Furthermore, in practice,

the location of the transducer with respect to the centre line of the reflected beam is also

likely to be influential on the measurements.

Conclusions concerning the measurement of interface waves

It is concluded that if the rate of leakage of a plate wave is mild then the coincidence

principle may be used to excite and receive the wave and the null zone technique may be

used successfully to measure its velocity and frequency, just as with the measurement of

Lamb waves which was discussed in Chapter 8.

However if the modes are strongly leaky then the behaviour is much more complicated.

It may be very difficult to excite the waves using the coincidence principle and it may

not be possible to detect them because of their strong attenuation and the presence of the

separate transmission mechanism dominating the near-field. In this circumstance the

measurement technique should therefore address the response behaviour rather than the

modal behaviour. Measurements should be made of the minima which are associated

with the strong transmission of energy through the layer, in the knowledge that these are

related indirectly to the modal properties and are likely to be equally sensitive to the

parameters of the system.

9.3 Waves at a single interface between titanium and alpha case

Before tackling the case of the modal properties of an embedded layer, it is instructive to

examine the modal properties of the simpler geometry, the single interface between two

different materials. This geometry would be relevant in practice if tests could be

performed at sufficiently high frequencies that the different reflections from the top and

bottom surfaces of the embedded layer could be resolved separately in which case any

waves travelling along either interface could be studied. It would also be directly

appropriate if interface waves were to be used to inspect bonds between different

materials.
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The geometry which was modelled was the interface between a semi-infinite half-space

of titanium and a semi-infinite half-space of alpha case. The longitudinal velocity of

titanium was assumed to be 6060 m/sec, the shear velocity 3230 m/sec and the density

4460 kg/m3. The alpha case was assumed to have 10 % faster longitudinal and shear

velocities (6666 and 3553 m/sec respectively) but to have the same density as the

titanium. Both of the materials were assumed to be perfectly elastic.

For interest, three cases were considered, with varying values of the density of the

titanium. In the first case the titanium was modelled with one tenth of its density, in the

second with half of its density, and in the third with its correct density.

In the first case, where the density of the titanium was one tenth of its correct value, an

interface wave was predicted with a velocity of 3360 m/sec and an attenuation of

0.0056 Nepers/wavelength. These properties are independent of frequency. At 10 MHz

the attenuation per unit distance is 0.0168 Nepers/mm, corresponding to a 2 % loss of

amplitude per mm travelled. Since the velocity of the wave is slower than the

longitudinal bulk waves in both media and slower than the shear bulk wave in the alpha

case, all three of these bulk wave components of the interface wave are inhomogeneous,

retaining energy at the interface like a Rayleigh wave. However the fourth component,

the shear wave in the titanium is homogeneous. The interface wave may therefore be

excited by an incoming shear wave in the titanium and may also leak a shear wave into

the titanium. This leakage explains the predicted non-zero attenuation of the wave. The

angle of incidence of the excitation wave and of the leaky wave is 74 degrees.

When the density was increased to half of its correct value the properties of the interface

wave were found to change. The velocity of the wave increased by 4 % to 3496 m/sec

and the attenuation increased by almost an order of magnitude, to

0.0535 Nepers/wavelength, indicating that the leakage of energy is strongly sensitive to

the density. In this case a 10 MHz wave would decay at 0.153 Nepers/mm,

corresponding to a 14 % loss of amplitude per mm travelled. However the nature of the

wave has not changed, all of the components remaining inhomogeneous with the

exception of the leaking shear wave in the titanium. The angle of incidence of an

excitation wave and of the leaky wave is now 67.5 degrees.

Mode shapes for the half-density case are plotted in Figure 9.4, for a frequency of

10 MHz. The plots show the variations of the displacements and stresses in the alpha

case material only. Shapes have not been plotted for the titanium side of the interface

because there is no identifiable wavefront propagating parallel to the interface on this
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side. Although there is an inhomogeneous longitudinal wave in the titanium, its

contribution to the field is minimal. The field in the titanium is therefore dominated by

the leaking shear wave whose amplitude is constant with distance from the interface,

only the phase varying spatially. The mode shapes show that the effective depth of the

wave in the alpha case is approximately 1 mm, three times the wavelength of 0.35 mm at

this frequency. This depth-to-wavelength ratio is similar to that of a Rayleigh wave.

When the density of the titanium is increased to its correct value, it is no longer possible

to find a propagating wave solution. Pilant (1972) reported the conditions for the

existence of all types of plane strain interface waves between pairs of half-spaces and

observed a 'hidden' region in the solution space for which the solution of Stoneley's

interface wave equation is imaginary and there is no propagating wave. The hidden

region covers materials whose densities are almost equal and whose shear velocities are

almost equal. The case which is considered here falls in the hidden region. There is

therefore no propagating interface wave between titanium and alpha case half-spaces.

Near-field response predictions

Near-field response calculations were made for the three cases considered above, for

comparison with the modal solutions. The predictions were again made using the

response model which was developed by Pialucha (1992) and which was described in

Section 5.4 of Chapter 5. A modification was made however, to introduce an idealised

finite shear wave transducer, so that the interface wave could be excited from within the

titanium half-space. The simulation is illustrated in Figure 9.5. The finite transducer is

embedded in the titanium half-space and it emits a shear wave beam rather than a

longitudinal wave beam. In reality an embedded transducer, either shear or longitudinal,

would propagate a complex field of both shear and longitudinal waves into the titanium.

In the model however, the interest is simply to generate a finite width shear beam in

order to observe the excitation of the interface wave. Therefore the modelling of the

transducer has not been developed to simulate the more complex field which would be

associated with a real embedded transducer. A 10 mm diameter transducer was assumed

in all cases, operating at a single tone of 10 MHz.

The results for the first two cases are plotted in Figures 9.6 and 9.7 respectively. In each

figure, part (a) shows the reflected shear field (as shown schematically in Figure 9.5)

when the angle of incidence of the transducer is appropriate for the excitation of the

interface wave, and part (b) shows the amplitude of the reflections received by a 10 mm

diameter finite transducer, as a function of the angle of incidence. The receiver was
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placed on the centre line of the reflected beam, shown by the dashed line in part (a) of

each figure, at a total distance in the titanium of 10 mm from the transmitter. The

infinite plane wave reflectivity has been included in the plots too, for comparison.

In the first case, in which the density of the titanium is one tenth of its correct value, the

leakage of the interface wave is rather small and the leaky shear wave can be seen clearly

on the downstream side of the reflected beam, in Figure 9.6(a). The attenuation of the

leaky signal was calculated from the slope of the log of the field amplitude, in the same

manner as was described in Section 5.4 of Chapter 5, giving an attenuation of 0.061

Nepers/mm in the plane of the field. When projected onto the plane of the interface, by

multiplying by the cosine of the angle of the beam (74 degrees), this value agrees exactly

with the modal prediction of 0.0168 Nepers/mm.

Note also that the distortion of the reflected beam can be attributed entirely to the

excitation of the interface wave. Plane shear waves at angles of incidence greater than

the critical angle for shear waves in the alpha case substrate are reflected totally. Since

the angle of the transducer of 74 degrees is significantly greater than the critical angle of

65.4 degrees, the vast majority of the energy of the field in front of the finite transmitter

is reflected from the interface. The transmission mechanism which was discussed in

Section 9.2 in the context of leaky Lamb waves is therefore not present and cannot be

responsible for the distortion of the field.

Looking at the amplitude of the reflected signal as a function of angle of incidence, in

Figure 9.6(b), a minimum can clearly be identified at 74 degrees, in agreement with the

modal solution. As discussed above, the infinite plane wave reflectivity shows no

evidence of the existence of the mode because all of the energy of plane waves is

reflected when the angle of incidence is greater than the shear wave critical angle of 65.4

degrees (shown on the plot). The identification of this mode is therefore not possible

with infinite plane waves but requires the finite transducer simulation in order to generate

the near-field interference between the specular reflection and the leaking wave.

In the second case, in which the density of the titanium is half of its correct value, the

attenuation of the interface wave is much larger and consequently the field, shown in

Figure 9.7(a), does not extend significantly on the downstream side of the beam.

However considerable distortion of the beam is evident. The minimum of the reflection

coefficient, in Figure 9.7(b), is now at 67.5 degrees, again in agreement with the modal

prediction. Note that the plane wave reflectivity at sub-critical angles of incidence is

considerably lower than in the previous case, in Figure 9.6(b). This is because the
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acoustic impedances of the two materials are better matched in this case and so there is

greater transmission of energy into the alpha case.

Figure 9.8 shows the predictions for the third case, in which the titanium was given its

correct density. Part (a) of the figure shows three reflected fields, for different angles of

the transducer. Part (b) shows the amplitude of the reflections received by a 10 mm

diameter finite transducer, as a function of the angle of incidence, and the infinite plane

wave reflectivity.

The first observation is that there is no longer a minimum in the reflection amplitude,

indicating that no interface mode is excited within this angular range. This is in

agreement with the modal analysis of the system. The second observation is that,

although specular reflections may be expected when there is no interface wave, some

distortion of the reflected fields is evident, particularly at the angle of incidence of 65

degrees. The obvious explanation for this behaviour is that the reflectivity of plane

waves varies strongly with the angle of incidence, as shown in part (b) of the figure, so

that plane wave components of the finite field with large angles of incidence are reflected

much more strongly than those with small angles of incidence. It should therefore not be

expected that the composed field will reflect perfectly. The strongest distortion of the

field, at a transducer angle of 65 degrees, occurs when the gradient of the reflectivity is

largest. The variation in the reflectivity can also be seen in the magnitudes of the

reflected fields. The strengths of the fields increase substantially as the angle of the

transducer is increased, as does the plane wave reflectivity.

9.4 Waves in a layer of alpha case embedded in titanium

This section examines the second type of interface wave, waves which travels along an

embedded layer. These interface waves are likely to be much more relevant to the

inspection of the embedded layer of alpha case than the waves at a single interface

because the layer is very thin and consequently in practice it will not be possible to

propagate waves separately along each of the two interfaces.

The system which was chosen for the study of the modal properties of an embedded layer

was a 0.1 mm thick layer of alpha case between two semi-infinite half-spaces of titanium.

The longitudinal velocity of titanium was assumed to be 6060 m/sec, the shear velocity

3230 m/sec and the density 4460 kg/m3. The alpha case was assumed to have 10 %

faster longitudinal and shear velocities (6666 and 3553 m/sec respectively) but to have

the same density as the titanium. The embedded layer was therefore identical to that
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which was studied in the context of Lamb waves in Chapter 8. As discussed in Section

9.2, the external boundaries of the adherends do not need to be included in the modal

model because of the judicious gating of the ultrasonic signals. The modal properties

will therefore be independent of the dimensions of the joint and of the properties of any

medium which is used for coupling between the transducer and the joint.

Figure 9.9 shows the predicted dispersion curves for the system for frequencies up to

100 MHz. For convenience the modes have been labelled 1 to 9. As with the Lamb

wave dispersion curves there is an infinite number of modes, further modes being

introduced to the diagram as the frequency is increased. However it is apparent

immediately that the shapes of the dispersion curves for the embedded layer differ

strongly from the Lamb wave curves which would be generated if the half-spaces on

either side of the layer were vacuum rather than titanium. It is therefore not appropriate

to think of the modes simply as leaky Lamb modes, as can be done when a plate is

immersed in water; the addition of the stiff, solid half-spaces transforms the curves

radically.

Besides the shapes of the dispersion curves, the first important difference between the

interface modes and the Lamb modes is that all of the interface modes leak energy

strongly into the surrounding material as they travel along the layer. Their amplitudes

therefore diminish rapidly with distance travelled. The rate of decay is shown in

Figure 9.10 in Nepers/mm travelled along the layer, from which it can be seen that the

lowest leakage within the diagram is of mode 1 at its lowest frequency. The attenuation

here is 1.3 Nepers/mm, corresponding to a loss of about 70 % of the amplitude of the

wave in each mm travelled. The second least leaky mode is mode 6 which attenuates at

3.2 Nepers/mm at its lowest frequency in the diagram, losing about 95 % of its energy in

each mm travelled. There is also a general trend for the attenuation of the modes to

decrease with frequency, the main exceptions being modes 1 and 2 which have relatively

low attenuation at both low and high frequencies. This trend can be seen clearly in the

plots of attenuation in Nepers/mm in Figure 9.10 and is even more pronounced if the

attenuation is assessed in Nepers/wavelength.

The second important difference is that the dispersion curves for the interface waves have

been plotted with ends which are not necessarily at the boundaries of the diagram or at

infinity. In calculating the curves, each mode was identified by a velocity sweep at

100 MHz and the curve was generated by decreasing the wavenumber (decreasing

frequency direction in Figure 9.9). Modes 1 and 6 were found to have clearly identified

low frequency limits. In both cases the velocity at low frequency decreases with
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decreasing frequency and the limit is reached when the velocity drops to the bulk

velocity of the titanium half spaces. For mode 1 this is the bulk shear velocity in

titanium and for mode 6, the bulk longitudinal velocity. The curves have therefore been

calculated close to these values, down to 11 MHz and 29 MHz respectively. No

propagating solutions could be found for these modes at lower frequencies. For all of the

other modes the limit is practical. The solution of the modal equations can be extremely

difficult and time-consuming when the attenuation is very high. Furthermore, the results

are of dubious practical worth when the attenuation is of the order of tens of Nepers/mm.

The curves were therefore generated only for their regions of lowest attenuation. The

generation of each curve was terminated arbitrarily when the solution became slow as the

attenuation became very large. To give an indication of the strength of the attenuation at

these termination points, the lowest attenuation is 12 Nepers/mm, for mode 2. This

corresponds to a loss of 99.9994 % of the amplitude of the wave in each mm travelled.

The mode shapes of mode 1 are shown in Figure 9.11. Part (a) of the figure shows the

shapes near the low frequency end of the curve, at 12 MHz, and part (b) shows the

shapes at very high frequency, at 1 GHz. The shapes have been plotted through the

thickness of the 0.1 mm thick layer of alpha case. For clarity, the displacement mode

shapes have been plotted as solid lines and the stress mode shapes as dashed lines.

The mode shapes show that mode 1 is essentially a shear wave travelling along the layer.

The predominant motion is normal to the layer and the shear stress is much larger than

the other stress components. The wave would therefore appear, like a bending wave, as

an undulation propagating along the layer. The wave can also be seen to change with

frequency. At low frequency the dominant displacement and stress components are

approximately uniform across the thickness of the layer whereas at high frequency they

each develop a peak at the centre of the layer, decreasing towards the interfaces with the

titanium. The motion of the low frequency wave therefore involves the whole of the

layer but as the frequency increases the motion becomes concentrated at the centre of the

layer. This is consistent with the variation of the velocity of the wave. At the lowest

frequency the velocity is equal to the bulk shear wave velocity in the titanium adherends.

The shear wave motion in the whole of the layer can therefore couple, in the low

frequency limit, with bulk shear waves travelling along the two half-spaces. At very

high frequency the velocity of the mode tends to the bulk shear velocity in the alpha case.

This is consistent with the concentration of the motion of the wave at the centre of the

layer. The increasing concentration of the motion at the centre of the layer as the

frequency increases is also consistent with the predicted reduction of the rate of leakage

of the wave.
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The mode shapes of modes 2 and 3 are shown in Figure 9.12, in parts (a) and (b)

respectively, at their lowest frequencies. Mode 2 has a high value of displacement

parallel to the layer throughout the thickness of the layer. Its two direct stress

components are also approximately constant across the layer. It is therefore a first order

extensional mode, rather like an s0 Lamb mode which is constrained by the adjacent

half-spaces. Mode 3 is clearly a second order mode, fitting in perfectly as the next mode

in the series after mode 2. Each of its displacement and stress components shows an

increase in the order of its shape, the constant shapes being replaced by half-wavelengths

and the half-wavelengths by full wavelengths. Although not presented here, the

progression of the series was found to continue with modes 4 and 5.

The mode shapes of mode 6 are shown in Figure 9.13. As with mode 1, the shapes are

plotted for two frequencies, part (a) near the low frequency end of the curve, at 30 MHz,

and part (b) at very high frequency, at 1 GHz.

The mode shapes show that mode 6 is essentially a longitudinal wave travelling along the

layer. The predominant motion is parallel to the layer and the direct stress in this

direction is much larger than the other stress components. The characteristics of the

mode are very similar to those for mode 1, except that the wave is a longitudinal wave

rather than a shear wave. At low frequency the dominant displacement and stress

components are approximately uniform across the thickness of the layer whereas at high

frequency they each develop a peak at the centre of the layer, decreasing towards the

interfaces with the titanium. The motion of the low frequency wave therefore involves

the whole of the layer but as the frequency increases the motion becomes concentrated at

the centre of the layer. This is again consistent with the variation of the velocity of the

wave. At the lowest frequency the velocity of the wave is equal to the bulk longitudinal

wave velocity in the titanium adherends and at very high frequency the velocity of the

wave tends to the bulk longitudinal velocity in the alpha case.

The mode shapes of modes 7 and 8 are shown in Figure 9.14, in parts (a) and (b)

respectively, at their lowest frequencies. These two modes appear to be the next in a

series of modes of increasing order following mode 6, each of the displacement and

stress components showing an increase in the order of its shape with respect to the

previous. Indeed, although not presented here, the series is continued with mode 9 and

with further modes which can be found at higher frequencies.
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Finally, it appears that the categorisation of the modes according to symmetry and

antisymmetry or shear and longitudinal motions, as is applied to Lamb waves, is not the

most appropriate approach here. The analysis of the plane wave components of the nine

modes indicates that they can be categorised very clearly into two groups according to

the manner in which they leak energy. The amplitudes of the plane shear waves leaving

the layer for modes 1 to 5 are considerably larger than the amplitudes of the plane

longitudinal waves. Furthermore, the plane longitudinal waves are inhomogeneous

below the phase velocity of 6060 m/sec. The leakage of energy from these modes is

therefore entirely by shear waves. In contrast, the amplitudes of the longitudinal waves

leaving the layer for modes 6 to 9 are much larger than the amplitudes of the shear

waves. Accordingly, although in principle both longitudinal and shear waves could leak

in this region of the solution space, these modes are characterised by leakage of

longitudinal waves.

Comparison of interface modes with Lamb modes

For interest a few cases were studied in which the density of the titanium was varied, in

order to see how the dispersion curves develop between the Lamb wave curves and the

interface wave curves. Some of the results are plotted in Figure 9.15. Part (a) of the

figure shows the curves for the case in which the density of the titanium is one hundredth

of the correct density, part (b) for one tenth of the correct density and part (c) for half of

the correct density. Part (d) shows the case for the correct density, already shown in

Figure 9.9, for reference.

As expected, the curves for the case with the lowest density of titanium are extremely

close to the Lamb wave curves for a plate in vacuum. The only significant difference is

in the 'a0' mode at low frequency, a region of the curve which was already known to be

particularly sensitive to the presence of non-vacuum half-spaces (see discussion about

leaky Lamb waves in Chapter 5).

Following the a0 mode through the three low density cases, it seems that the mode is

modified progressively as the density is increased. Its low velocity region becomes less

pronounced but it remains continuous across the whole frequency range of the plot.

When the titanium has the correct density however, there is no propagating mode at zero

frequency, the nearest mode to a0 being interface mode 1 which only exists above a

threshold frequency. At first sight it seems that there may be an inconsistency here

because smooth changes may be expected when the density is varied yet discrete

differences are evident. However, recalling the investigation of Section 9.3 of the
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interface wave at a single interface, a major change was found when the density of the

titanium was varied. It was found that an interface wave may exist when the density of

the titanium is low but does not exist when the density of the titanium is identical to that

of the alpha case. Indeed, returning to the present study, the a0 mode converges on the

interface wave velocity at high frequency in all three of the low density cases. However

when the correct density is used, mode 1 is asymptotic to the bulk shear velocity in the

alpha case. It must be accepted therefore that discrete and fundamental changes may

occur in the nature of the curves as the density is varied and consequently that the

interface wave modes cannot be categorised simply as extreme forms of leaky Lamb

modes.

Examination of the other modes shows further discrete changes in the nature of the

curves. This is particularly clear in case (b) in which breaks are just apparent in three of

the modes. Following the progression of these 'breakaway' modes through from this case

to case (c) and then to case (d), it seems that they develop ultimately into the high

velocity group of interface modes. Finally, it seems that the interface wave mode 2 is

most closely related to the Lamb mode s0, an observation supported by the similarity in

their mode shapes.

Comparison of interface modes with minima of reflection coefficients

A study was made of the plane wave reflectivity from the embedded layer in order to

determine whether minima of the reflection coefficient would occur at the angles of

incidence and frequencies of the modes or would differ, as discussed in Section 9.2.

Furthermore, if the loci of the major reflection minima differed significantly from the

modes, indicating strong transmission of energy through the layer, then it was important

to determine whether any separate, perhaps minor, minima could be identified with the

excitation of the modes.

Two sets of plane wave reflection coefficients were calculated, one in which a shear

wave was incident and the reflected shear wave was measured, and the other in which a

longitudinal wave was incident and the reflected longitudinal wave was measured. In

each case a sweep of frequency from 0 to 100 MHz was performed and the minima were

identified from the resulting spectrum. The process was repeated for a range of angles of

incidence of the waves, up to 90 degrees. Thus the complete area of the dispersion

curves of Figure 9.9 was covered in both cases, for all velocities above the bulk

velocities in the titanium. For the shear wave case the bulk velocity is 3230 m/sec and

for the longitudinal wave case it is 6060 m/sec. The results are shown for shear waves in
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Figure 9.16 and for longitudinal waves in Figure 9.17, together with the dispersion

curves. The angles of incidence of the shear and longitudinal waves are indicated on the

right hand sides of the plots.

Before discussing the results, it should be mentioned that the quality of the minima was

found to vary considerably over the solution space, the minima being sharp in some cases

and rather vague in others. An example of very good minima is shown in Figure 9.18(a)

and an example of poor minima, in Figure 9.18(b). The good minima in the figure were

found using shear waves at a large angle of incidence of 40 degrees, when there are no

homogeneous longitudinal waves present. The poor minima in the figure were

encountered at 22 degrees (about 9000 m/sec phase velocity), again with shear waves. In

this example the five minima can just be identified, although the frequencies of all but

one of them are indistinct. However in some cases in this angular region the minima

were found to vanish as the angle of incidence of the sweep was advanced. This resulted

in discontinuities of the loci of the minima, evident in Figure 9.16.

One reason for the complication of the reflection coefficient spectra is that at velocities

above the bulk longitudinal velocity of the titanium, both shear and longitudinal waves

may be reflected from the layer. Minima in the shear wave reflection coefficient, for

example, may therefore be associated either with maxima in the reflection of longitudinal

waves or with maxima in the transmitted energy. The former case is of course not of

interest here; it relates to another aspect of the behaviour, the balance of the longitudinal

and shear wave components in the response. In many cases confirmation of the

frequency was therefore found by examining the transmission coefficient. This of course

has its complications too because both shear and longitudinal waves may be transmitted.

A second reason for complication of the spectra is the interaction of adjacent minima

when the loci (or dispersion curves) are close together. This was particularly evident at

the lowest phase velocities in Figure 9.16 where two of the loci appear to converge at

about 30 MHz. The loci are sharp at lower frequencies but vague at frequencies above

this value.

The results for the shear wave minima show that their loci differ significantly from the

dispersion curves. A pattern can be seen however, in which four of the loci of the

minima converge on four of the low velocity modes, modes 2 to 5, as the frequency

increases. The remaining locus is relatively close to mode 1 but convergence is not

demonstrated, the locus appearing to converge instead on mode 2. As discussed above,

the result is rather inconclusive however because the minima for this locus were poorly
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defined at all frequencies above about 30 MHz. The convergence of loci on modes is

consistent with the reduction of the attenuation of the modes with frequency. The

association of the shear wave minima with the low velocity modes is also consistent with

the fact that the leakage of these particular modes occurs entirely by shear waves.

The loci of the longitudinal wave minima also differ significantly from the dispersion

curves. Here it appears that the minima may converge on two of the high velocity group

of modes, modes 6 to 9. Indeed, further calculations of both the modal solutions and the

reflection coefficients at frequencies up to 200 MHz confirmed that this is the case, the

minima converging on modes 6 and 7. Furthermore, additional longitudinal reflection

coefficient minima appear at the higher frequencies, converging on the other high

velocity modes. Again the association of the longitudinal wave minima with the high

velocity modes is consistent with the fact that the leakage of these modes occurs

predominantly by longitudinal waves.

Near-field response predictions

Near-field response predictions were made for two locations in the solution space, one in

the shear-dominated region and the other in the longitudinal-dominated region. The

locations are identified in Figures 9.16 and 9.17 respectively. The predictions were made

using a spatially realistic simulation of a joint, including a finite thickness adherend and

water coupling.

The geometrical arrangement for the simulations is shown in Figure 9.19. The upper

adherend was 10 mm thick, the alpha case 0.1 mm thick and the lower adherend was a

semi-infinite half-space of titanium, there being no interest in predicting the reflections

from the lower surface of the joint. The finite transducer was located in a semi-infinite

half-space of water above the joint.

Figure 9.19 also shows a schematic illustration of the paths of the finite ultrasonic beams

and the received field. The general case is shown, in which both the longitudinal and the

shear waves in the adherend are homogeneous and both a shear and a longitudinal wave

are reflected and transmitted each time a beam encounters an interface. The reflected

field which is illustrated therefore contains four contributions in addition to the front face

reflection R1. The first reflection to be received, R2, is the shear-shear contribution from

the bondline, involving shear beams only. The final reflection, R4, is the

longitudinal-longitudinal contribution, involving longitudinal beams only. Between

these two are two other combinations, the shear-longitudinal and the longitudinal-shear
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beams which contribute at the same location in the field to make the reflection R3.

Although not shown in the illustration, additional contributions to the field would be

received further downstream due to subsequent reverberations of the signal in the upper

adherend and reflections from the lower boundary of the lower adherend. In practice

such reflections would be ignored by gating the signal, as discussed in Section 9.2.

A 10 mm diameter transducer was modelled in the first simulation, operating at a single

tone of 25 MHz. Two cases were considered. In the first case the transducer was placed

at an angle of incidence of 23.7 degrees in the water so that the refracted shear wave in

the titanium was incident on the bondline at an angle of 61.1 degrees. This angle

corresponds to the locus of the reflection coefficient minimum at the location shown in

Figure 9.16. In the second case the angle in water was reduced by one degree to 22.7

degrees, resulting in a reduction of the angle in the adherend by 3.9 degrees to 57.2

degrees. The intention of the second case was to provide a reference reflection, when

there is no minimum, for comparison.

The field predictions are presented in Figure 9.20. The full fields are shown in part (a)

of the figure and enlargements of the bondline reflections in part (b). The solid line is

for the first case when the angle was appropriate for the reflection coefficient minimum

and the dashed line is for the 'off-angle' case. The distortion of the reflected beam can be

seen very clearly in the first case, corresponding to the transmission of much of the

energy of the beam through the layer. In the off-angle case however the reflected beam

is specular. The positions of arrival of the bondline reflections agree perfectly with

trigonometric calculations of the beam paths, the off-angle reflection whose angle was

smaller arriving slightly closer to the front face reflection. There are no other

contributions to the field because in both cases the transducer angle is larger than the

critical angle for longitudinal waves and so there are no homogeneous longitudinal waves

in the adherend.

The second simulation used a 5 mm diameter transducer, operating at a single tone of

100 MHz. Again two cases were considered, one corresponding to the locus of the

reflection coefficient minimum at the location shown in Figure 9.17, and the other at a

half-degree smaller angle. The angles in water were 12.1 and 11.6 degrees respectively

and the longitudinal angles in the adherend were 59 and 55.3 degrees respectively.

The field predictions for the second simulation are presented in Figure 9.21, again using

solid lines for the first case and dashed lines for the off-angle case. All of the possible

contributions to the field are now present in both cases and their positions again agree
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with calculations of the beam paths. In the first case the shear-shear contribution to the

field is specular but the contributions involving longitudinal waves are distorted. All of

the off-angle contributions are specular.

According to the discussion in Section 9.2, minima in the reflected field may occur either

when the transmissibility of the plate is a maximum or when a mode is excited. The

simulations which have been presented here were made at locations on the loci of the

plane wave reflection coefficient minima, shown in Figures 9.16 and 9.17, and therefore

addressed the former category. The distortion is strong because the 'central' plane wave

components of the finite beam, those whose angle of incidence is approximately that of

the transducer, are transmitted through the layer whereas there is significant reflection of

the plane wave components at other angles. In both cases the plane wave reflection

coefficient minima were sharp (as in the 'good' case in Figure 9.18(a)) and so the contrast

between the reflection amplitudes of the 'central' and the 'off-angle' components was

strong.

An important question is whether separate near-field minima can also be found at

frequencies and angles which match locations on the dispersion curves. The presence of

such minima may then indicate the excitation of modes. Of course it should be expected

that the minima may be very weak because of the strong attenuation of the modes and the

consequent poor coupling of the incoming waves with the modes.

An attempt was made to find such minima, using embedded shear wave transducers,

introduced in Section 9.3 and illustrated in Figure 9.5, and, similarly, embedded

longitudinal wave transducers. The reflected fields were predicted at several frequencies

and angles which matched locations on the dispersion curves and which were remote

from the loci of the plane wave reflection coefficient minima. Pairs of transducers were

also used to predict the measurement of the amplitude of the received signal, performing

frequency sweeps in the same manner as for the infinite plane wave study. However no

evidence was found of the excitation of the modes. It was concluded that, as discussed in

Section 9.2, there was insufficient coupling between the incident wave and the

attenuating mode for significant energy to be transferred to the mode. Perhaps this is not

surprising when it is considered that the attenuation of the modes is typically greater than

10 Nepers/mm at the locations on the dispersion curves where there is good separation

from the loci of the plane wave reflection coefficient minima. This rate of attenuation

corresponds to more than 99.99 % loss of amplitude per mm travelled.
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9.5 Sensitivity of interface waves to the properties of the joint

One of the potential attractions of interface waves which was stated at the start of this

chapter was that they may be particularly sensitive to the properties of the embedded

layer and insensitive to the properties of the adherends. They could therefore be used,

not solely to detect the layer, but to characterise it.

Unfortunately it is clear at this stage in the investigation that it will not be possible to

excite and measure the interface waves because of the extreme attenuation of the modes.

The analysis of the variant cases in which the influence of the different parameters of a

joint are studied would therefore appear to be futile. However it seems that the reflection

coefficient minima which are associated with the transmission of plane waves through

the layer may be measurable and could in principle be used to characterise the layer.

Since the minima are related indirectly to the modal properties of the system, the

parameters of the joint which affect the dispersion curves are likely to affect the loci of

the reflection coefficient minima. For this reason, and for the completeness of the

investigation, it was therefore considered useful to conduct the parametric study.

Considering the cases which were assessed in Chapter 8, some of the results are evident

immediately. The dispersion curves are completely insensitive to the total thickness of

the joint because of the proposal to gate the ultrasonic signals in practice and the

consequent nature of the system which was modelled. For the same reason they are

completely insensitive to the location of the layer within the joint and would even be

insensitive to tapered adherends.

The curves are rather sensitive however to the thickness of the embedded layer, the

frequency axis of the dispersion curves scaling linearly as with Lamb waves. Thus for

example, referring to the curves in Figure 9.9, the cut-off frequency of 11 MHz for

mode 1 in the 100 micron thick layer would be at 22 MHz in a 50 micron layer.

Alpha case with slower bulk velocities

Figure 9.22 shows the effect of varying the values of the acoustic velocities of the alpha

case material on the dispersion curves. The solid lines show the dispersion curves for the

reference case, originally plotted in Figure 9.9, of the 0.1 mm thick layer of alpha case

with 10 % faster longitudinal and shear bulk velocities. The dashed lines show the

curves for the same system but with only a 5 % increase in the bulk velocities of the

alpha case.
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All of the modes show substantial reductions in their velocities, indicating their strong

dependence on the properties of the layer. Indeed in the cases of modes 1 and 6, the

reduction could have been foreseen because of the bounded nature of the curves. The

velocity of mode 1 must always lie between the shear velocity in the adherend, at low

frequency, and the shear velocity of the layer, at high frequency. Similarly the velocity

of mode 6 must lie between the longitudinal velocities of the two materials. A second

important observation concerning these two modes is that their cut-off frequencies have

approximately doubled.

Graded layer of alpha case

Figure 9.23 shows the dispersion curves for a graded layer of alpha case, the solid lines

again showing the reference curves and the dashed lines, the variant curves. The graded

layer was exactly that which was studied in the context of Lamb waves, in Chapter 8.

Thus the 0.1 mm thick layer was divided into three sub-layers of equal thickness. The

central sub-layer was given 10 % faster longitudinal and shear velocities and the two

adjacent layers were given 5 % faster longitudinal and shear velocities. The profile was

therefore the simplest case of the triangular distribution which was modelled in the

normal incidence reflectivity studies of Chapter 7.

In general the curves lie between the reference case and the first variant case (the alpha

case with slower bulk velocities), as would be expected if a single layer was modelled

using the average properties of the three sub-layers. There are some exceptions however,

modes 7, 8 and 9 being almost the same as the first variant case and the divergence of

mode 3 from the reference case actually increasing very slightly. This suggests that these

modes are dominated by the material near the surfaces of the layer and are not sensitive

to the central portion of the layer. Indeed the mode shapes of the strain energy density

for these four modes (not shown here) support this observation, the energy being strongly

concentrated at the edges of the layer.

Adherends with faster bulk velocities

Figure 9.24 shows the effect of varying the values of the acoustic velocities of the

adherend material. The dashed lines in this plot show the dispersion curves for the

system with a 1 % increase in the bulk longitudinal and shear velocities of the titanium.

An uncertainty of this order in the bulk properties of the titanium is consistent with the

variations in the measurements of the material which were reported in Chapter 6.
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The curves show some changes from the reference case but the differences are small,

particularly in the low velocity modes. The variant curve for mode 1 is present but is

completely obscured by the reference curve. In fact it differs slightly at its low

frequency end, the cut-off frequency and velocity both being slightly higher than in the

reference case.

The case of a layer between unmatched adherends has not been calculated, the present

variant case sufficiently demonstrating the general insensitivity of the modes to the

properties of the adherends. If the adherends are unmatched and there is no embedded

layer, in a good bond, then there is no mode at the interface, as discussed in Section 9.3

9.6 Discussion

Previous work

Previous work in the application of interface waves to nondestructive testing has

addressed both single interface geometries and embedded layers.

In the category of single interface geometries, Lee and Corbley (1977) made predictions

and performed calculations for interface waves travelling along the boundaries between

pairs of different metals, including aluminium, steel and titanium, with a view to

characterising the boundary conditions at the interfaces between such materials in

interference-fit components. In the perfect contact cases they found free wave solutions

with some materials and leaky solutions with others, the leaky solutions having low

values of attenuation, and they obtained good agreement between theory and experiment.

Kumar (1983) was also interested in characterising the interface boundary conditions

between components, in this case of the same material. He studied the interface between

two half-spaces of steel for different boundary conditions, finding free wave solutions

when the contact was imperfect. In the context of adhesively bonded joints, some

researchers have investigated the possibility of using an interface wave at the boundary

between the adhesive and the adherend, operating at sufficiently high frequencies and

bondline thicknesses to be able to ignore the second adhesive-adherend boundary. Claus

and Kline (1979) found an experimental correlation between the attenuation of true

Stoneley waves and the surface roughness of the adherend. Pilarski (1985) proposed the

use of such interface waves to inspect the adhesion quality.
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In the category of embedded layers, a number of researchers have investigated the use of

guided waves which travel along a flexible layer between two stiff half-spaces without

leaking energy, a particular interest again being the inspection of adhesive joints. Such

waves have the advantage that they can propagate over long distances but are only useful

if access is possible to the ends of the layer because they can neither be excited nor

received through the adherends. Rokhlin, Hefets and Rosen (1980 and 1981) and

Rokhlin (1986) demonstrated experimentally that a guided wave travelling along a layer

of adhesive between two half-space adherends may be used to determine the material

properties of the adhesive (the cohesive properties) at various states of cure.

Nagy and Adler (1989) and Nagy, Rypien and Adler (1990) additionally considered other

modes of the adhesive joint system, including both leaky shear and leaky longitudinal

modes which could in principle be excited and received through the adherends. Their

ultimate interest was to detect both poor cohesion and poor adhesion in joints. They

predicted and measured transmission coefficient maxima through the adhesive layer,

obtaining generally good agreement. They also anticipated divergence of these maxima

from the modal solutions at locations where the predicted leakage was strong. Such

divergence was discussed in Section 9.2 of this chapter and by Chimenti and

Rokhlin (1990).

Interface waves at a single interface

In the present investigation it has been found that there is no propagating interface wave

between half-spaces of titanium and alpha case. This category of wave could not

therefore be utilised for the inspection of the diffusion bonded joints, even if testing

could be conducted at sufficiently high frequencies that the finite thickness of the layer

could be ignored.

However the study which was made using 'light' titanium showed that in cases where a

leaky wave does exist at a single interface it is potentially very useful, supporting the

findings of the previous workers. The attenuation of the wave was found to be very

sensitive to the degree of acoustic mismatch between the half-spaces. Moreover the

value of the attenuation was found to be low in general, even when the acoustic contrast

was relatively small. Accordingly it was found in the simulations that such a wave could

be excited readily using the coincidence principle and could be detected accurately using

the null zone technique.
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Furthermore, a bonus with the measurement of waves at a single interface is the fact that

there is only one mechanism which can be associated with a reflection minimum, unlike

the complications of the embedded layer. A minimum in the reflection coefficient must

be associated with the modal properties of the system because the transmission

mechanism which was discussed in Section 9.2 cannot exist at the conditions when the

mode is excited. The angle of incidence is significantly larger than the critical angle for

shear waves in the stiffer half-space and consequently infinite plane waves are reflected

totally.

Leaky waves at a single interface may be useful for the inspection of diffusion bonded

joints where the materials of the two adherends are different. In such cases the

conventional normal incidence inspection technique would not be optimal because a

signal would always be reflected from the bondline, even in a good joint, obscuring any

small reflections from defects. However an interface wave may be rather sensitive to the

properties local to the bondline, particularly if the technique exploits the dependence of

the effective depth of the wave on the frequency. Other joints which could potentially be

inspected by such waves are joints in which an interface layer is known to exist but may

need to be characterised, such as diffusion brazed joints and, as mentioned above,

adhesive joints.

Interface waves in an embedded layer

Regarding the second category of geometry, the embedded layer, the nature of the

present investigation differs fundamentally from the work on adhesive joints. The

embedded layer of alpha case is stiffer than the titanium adherends whereas in an

adhesive joint the embedded layer is less stiff than the adherends. The properties of the

alpha case are also very similar to those of the adherends unlike the large difference in

the acoustic impedances which is normal in an adhesive joint. Moreover, the primary

task addressed here is to detect the presence of a layer which may be extremely thin. In

an adhesive joint the layer is known to exist and the task is to characterise it.

The predictions are not promising. All of the modes are leaky, which is an attraction in

principle because it means that they could be excited and received through the adherends.

However the attenuations in all cases are extremely strong and it would be impossible to

contemplate any remote measurement of the velocity of the modes at a location

downstream of the point of excitation. In fact, even at the point of excitation, the

simulations indicate that incident waves in the adherend are unable to excite the

extremely attenuative modes. The inspection therefore addresses the detection of minima
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in the point reflection which are caused, not by the modal properties of the system, but

by the different (although associated) mechanism of maxima in the transmission of

energy through the layer.

As far as the detection of the presence of the layer is concerned, the exploitation of these

minima clearly offers no advantage over normal incidence inspection. In order to detect

a minimum in the reflected signal using the null zone technique it would be necessary to

detect significant reflections over a range of angles or frequencies. In a good joint there

would be no reflection from the bondline. In a bad joint the presence of the layer would

be indicated, not by the minimum of the reflection, but by the fact that reflections could

be found at other angles or frequencies.

If the layer is known to exist and its characterisation is required, then the measurement of

the minima appears to be more attractive. The dispersion curves are rather sensitive to

the properties of the layer and rather insensitive to the properties of the adherends.

Assuming, very reasonably, that the loci of the minima are as sensitive as the modes,

such reflection measurements could therefore be used to examine the properties of the

layer. However, the measurements would be feasible only when the alpha case is

relatively thick and has good acoustic contrast with the titanium. Referring to the

reflection coefficient minima in Figures 9.16 and 9.17, a transducer with a centre

frequency of at least 25 MHz would be required in order to characterise the low

frequency loci. If the layer was 50 microns thick then the same information would

require a transducer with a centre frequency of 50 MHz. Since the upper frequency limit

in practice is no higher than 80 MHz (see discussion in Chapter 7), the thinnest layer

which could be examined would be at least 30 microns thick.

9.7 Possible alternative inspection strategy

It is clear from this investigation and from the Lamb wave study which was reported in

Chapter 8 that plate waves are not attractive either for the detection or for the

characterisation of the embedded layer. The conventional technique, the measurement of

reflectivity at normal incidence, is therefore currently the most sensitive approach.

Fortunately the investigation of the conventional method revealed that in principle it is

extremely well suited to the detection of alpha case and it also has the benefit of

simplicity of application. It may therefore not be necessary to pursue any other

alternatives.
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However another ultrasonic approach, the oblique incidence reflectivity method, has not

been considered for this inspection problem to date and it is possible that it may offer

significantly greater sensitivity than the normal incidence technique. Although the

method utilises pairs of transducers at oblique angles of incidence in exactly the same

arrangement as was discussed in the context of modal inspection, the method is

fundamentally different. Instead of identifying the frequency and angular conditions at

which changes can be observed in the reflectivity, the method is based on the

measurement of the amplitude of the reflected signal at a particular frequency and angle.

It is therefore much more closely related to the normal incidence technique, the only

difference being the selection of appropriate oblique angles in order to maximise the

sensitivity.

The method has been studied widely in the context of the characterisation of adhesive

joints. For example Pialucha (1992) addressed the inspection of the interface between

the adhesive and an adherend using oblique incidence measurements. A review is also

presented by Cawley, Pialucha and Lowe (1993). In fact the task of characterising an

adhesive joint by this method is difficult; the layers of the joint are known to exist and

the measurement system must rely on detecting changes in the amplitude of the

reflectivity. In the present case the task is somewhat simpler; as with the normal

incidence measurements, the reflection only exists if the layer is present. It would

therefore appear that the method is well suited to the detection of the embedded layer.

Such an investigation into oblique incidence response is outside the scope of this thesis.

However one possibility which could be explored is to measure the reflectivity from the

layer using waves which are incident on the layer at super-critical angles. Super-critical

angles are angles of incidence in the adherend which are larger than the angle at which

the transmitted wave in the layer becomes inhomogeneous. The method could use either

shear or longitudinal waves. The use of shear waves offers the advantage that any

longitudinal waves which are reflected or transmitted are inhomogeneous so that the

received signal is simple, just as in the near-field simulations in Section 9.4. It may be

simpler however to make measurements of longitudinal waves because the angle of

incidence of the transducer will be smaller.

Taking an incident shear wave as an example, if the layer is infinitely thick then total

reflection of the shear wave takes place at super-critical angles but if the layer has finite

thickness then the reflectivity is dependent on the properties of the layer, the layer

thickness and the angle of incidence. This is illustrated in Figure 9.25(a) which shows

the predicted reflection coefficient for shear waves for several thicknesses of alpha case
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and for the full range of angles. It can be seen that the reflectivity at super-critical angles

is very much larger than at normal incidence and is rather sensitive to the thickness of the

layer. Furthermore, the positions of the curves in the horizontal direction in the plot will

depend on the material properties of the alpha case because the critical angle is defined

by the bulk velocity of the layer.

The 'tunnelling' mechanism which permits the transmission of some energy through the

thin layer at super-critical angles is illustrated in Figure 9.25(b). Here it can be seen that,

even if the shear wave in the layer is inhomogeneous, it may transmit energy into the

lower adherend. In order for energy not to be transmitted, the depth of penetration, the

depth in which the majority of the energy of the inhomogeneous wave is retained, must

be smaller than the thickness of the layer. The exponential function which describes the

decay of the wave with the depth from the interface is dependent on the wavenumber in

the direction along the layer and on the frequency, as discussed in detail in the derivation

in Chapter 2 (see Section 2.5). Accordingly, the depth of penetration of the

inhomogeneous wave reduces with both the angle of incidence in the adherend and with

the frequency.

9.8 Conclusions

Model studies have been conducted to investigate the potential of using interface waves

for the inspection of an embedded layer of alpha case in a diffusion bonded joint.

A study of the interface wave which travels along the boundary between two different

materials indicated that in general such a wave shows good potential for nondestructive

testing. A single, leaky non-dispersive mode may exist between certain pairs of

materials. It may readily be excited and received and is sensitive to the properties of the

materials in the region of the interface. However it could only be utilised in embedded

layers if its depth of penetration was significantly smaller than the thickness of the layer.

This would require tests to be conducted at extremely high frequencies for very thin

layers. Moreover it was found that such an interface wave does not exist in the specific

case of the interface between titanium and alpha case.

A study of the modal properties of a layer of alpha case embedded in titanium revealed

that there is an infinite family of these interface waves just as there is with Lamb waves.

However the nature of the modes is substantially different. The dispersion curves bear

little resemblance to the Lamb wave curves and all of the waves leak energy strongly into

the adherends. In general the dispersion curves are sensitive to the properties of the layer
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and insensitive to the properties of the adherends. However the strong attenuation of all

of the modes precludes any form of remote measurement of wave velocities. Point

reflection measurements made at the same location as an incident signal may be used to

detect spectral or angular minima which are associated (though not directly) with the

modal properties of the system. The conditions for these minima could in principle be

used to characterise a layer which is known to exist although they are clearly

inappropriate for the detection of the presence of the layer. However with realistically

thin layers of alpha case and small acoustic contrasts between the materials, the

frequencies of the minima are likely to be too high for practical exploitation.

It is therefore concluded that interface waves offer no practical potential for the

inspection of alpha case in diffusion bonded titanium.

Leaky waves at a single interface may be useful for the inspection of diffusion bonded

joints where the materials of the two adherends are different. In such cases the

conventional normal incidence inspection technique would not be optimal because a

signal would always be reflected from the bondline, even in a good joint, obscuring any

small reflections from defects. However an interface wave may be rather sensitive to the

properties local to the bondline, particularly if the technique exploits the dependence of

the effective depth of the wave on the frequency. Other joints which could potentially be

inspected by such waves are joints in which an interface layer is known to exist but may

need to be characterised, such as diffusion brazed joints and adhesive joints.

Finally, an oblique incidence response measurement technique is proposed for

investigation. An initial study indicates that it may offer strong sensitivity to both the

presence and the nature of embedded stiff layers.
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Figure 9.1 The excitation and detection of interface waves
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Comparison of modal solution and reflection coefficient minimum 
for leaky s0 wave

Figure 9.2

(a) Dispersion curve for leaky s0 wave and location of frequency sweep

(b) Variation of modal and response frequencies with density of water
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Near-field response and simulation of null zone measurements 
for s0 wave in ’heavy’ water

Figure 9.3

(a) Near-field response at 21.119 degrees at a selection of frequencies

(b) Amplitude of received signal using frequency sweep at angle of 21.119 degrees;
effect of varying transducer diameter
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Simulation of embedded shear wave transducer for studying the
excitation of interface waves

Figure 9.5
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Predicted near-field response from interface between 1/10 density 
titanium and alpha case

Figure 9.6

(a) Near-field response at 74 degrees and 10 MHz

(b) Amplitude of received signal using angular sweep at frequency of 10 MHz
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Figure 9.7

(a) Near-field response at 67.5 degrees and 10 MHz

(b) Amplitude of received signal using angular sweep at frequency of 10 MHz
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Predicted near-field response from interface between titanium 
and alpha case

Figure 9.8

(a) Near-field response at 10 MHz and various angles

(b) Amplitude of received signal using angular sweep at frequency of 10 MHz
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Mode shapes of interface mode 1Figure 9.11

(a) At low frequency (12 MHz)

(b) At High frequency (1 GHz)
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Mode shapes of interface modes 2 and 3Figure 9.12

(a) Mode 2 at low frequency (12 MHz)

(b) Mode 3 at low frequency (34 MHz)
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Mode shapes of interface mode 6Figure 9.13

(a) At low frequency (30 MHz)

(b) At High frequency (1 GHz)

0

0

A
m

pl
itu

de
 (

ar
bi

tr
ar

y 
lin

ea
r 

sc
al

e)
A

m
pl

itu
de

 (
ar

bi
tr

ar
y 

lin
ea

r 
sc

al
e)

0.10 Depth through layer of alpha case (mm)

0.10 Depth through layer of alpha case (mm)

Displacement normal
to layer (u2)

Displacement normal
to layer (u2)

Displacement parallel
to layer (u1)

Displacement parallel
to layer (u1)

Shear stress
(σ12)

Shear stress
(σ12)

Stress normal
to layer (σ22)

Stress normal
to layer (σ22)

Stress parallel
to layer (σ11)

Stress parallel
to layer (σ11)

Layer of alpha case is 0.1 mm thick.
Stresses shown as dashed lines for clarity.

Layer of alpha case is 0.1 mm thick.
Stresses shown as dashed lines for clarity.



Chapter 9

Interface wave technique

273

Mode shapes of interface modes 7 and 8Figure 9.14

(a) Mode 7 at low frequency (60 MHz)

(b) Mode 8 at low frequency (75 MHz)
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Figure 9.18

(a) Example of good minima: Shear waves, frequency sweep at 40 degrees

(b) Example of poor minima: Shear waves, frequency sweep at 22 degrees
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Arrangement for modelling of near-field response from embedded layerFigure 9.19
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Predicted near-field response from layer of alpha case - shear wave 
at 25 MHz

Figure 9.20

(a) Near-field response at 25 MHz

(b) Detail of bondline reflection ( X 20 amplitude magnification)
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Predicted near-field response from layer of alpha case - longitudinal wave
at 100 MHz

Figure 9.21

(a) Near-field response at 100 MHz

(b) Detail of bondline reflection ( X 40 amplitude magnification)
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Figure 9.25

(a) Plane shear wave reflection coefficient for embedded layer of alpha case

(b) Transmission of energy through thin fast layer at super-critical angles of incidence
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10.1 Review of thesis

Diffusion bonding, the joining of two surfaces by the diffusion of material across the

interface, has the attractions of very high strength and minimal distortion of the

components. Recent developments of the diffusion bonding process in the aircraft

industry has further exploited the process by the diffusion bonding and superplastic

forming of sheets of titanium to create cellular structural components. Along with these

developments has been the necessary research into inspection methods for quality control

during production. An important inspection problem is the detection of a brittle layer of

a phase of the titanium alloy, known as alpha case, which can occur at the bondline if air

is present during bonding.

The conventional ultrasonic technique for the detection of defects in plates is to send an

ultrasonic pulse into the material and then to look for changes either in the transmission

or in the reflection of the signal. In the case of an embedded layer the most sensitive

option is to look at the reflected signal, using a single transducer for both transmission

and reception, positioned so that the signal path is normal to the surface of the plate.

Typically a broadband piezo-electric transducer with a focused beam and a short duration

pulse excitation is used for this form of inspection. The conventional approach is very

effective for detecting large changes in acoustic impedance such as voids or inclusions

but its sensitivity is limited when the defects are small or their properties are similar to

those of the plate.

An alternative approach to normal incidence inspection is to consider some form of

ultrasonic wave which propagates along the plate. This is very attractive in principle

because the energy in certain waves travelling along a plate may be concentrated at the

bondline so that the wave propagation properties may be sensitive to the properties at the

bondline. Therefore an inspection method based on plate waves may potentially offer

greater sensitivity to an embedded layer of alpha case than normal incidence testing.

However the drawback in devising such an inspection method is that the waves

propagating along a plate are very much more complicated than the bulk waves which

are utilised in conventional normal incidence testing.
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The objective of this thesis was to investigate whether such ultrasonic plate waves could

be used for the detection of alpha case, and if so, whether they could offer improved

sensitivity over the conventional normal incidence approach.

A major part of the research was the development of a modelling tool to be used to

perform the feasibility studies. A comprehensive modal model was developed for the

prediction of the behaviour of waves propagating along multilayered plates and was

implemented in a computer code.

The theory for the model was developed in two stages, in Chapters 2 and 3. In the first

stage a formulation was derived for free waves, waves which propagate indefinitely

along the plate without losing energy. This class of waves includes, for example, Lamb

waves which exist in elastic plates in vacuum and Stoneley waves which carry energy

along the interface between two different materials. In the second stage the formulation

was extended to include attenuating waves which lose energy as they travel. The energy

may be lost by material damping, when the material is not perfectly elastic, or by leakage

from the plate into the adjacent media. An example of a wave which leaks is a leaky

Lamb wave in a plate which is immersed in water. The development of the theory

concluded with the expression of a characteristic function whose inputs are the physical

description of the multilayered plate, a value of frequency and a value of wavenumber,

and whose result must be zero for a plate wave to exist.

The implementation of the theory into the computer model was described in Chapter 4.

Some of the difficulties of solving the characteristic function were discussed and

systematic numerical procedures were developed. Algorithms were then developed for

the generation of dispersion curves and mode shapes. The dispersion curves describe the

variations of the velocities, frequencies and attenuations of the waves, and the mode

shapes describe the profiles of the displacements and stresses of a wave through the

thickness of the plate. The completed model may be used to predict both free and leaky

wave solutions in plate systems of any numbers of layers of isotropic elastic or

viscoelastic materials.

The validation of the model was addressed in Chapter 5. Examples of the application of

the model were presented and the modal solutions for a number of layered systems were

discussed. Comparisons were also made with known analytical solutions, with solutions

predicted by other models and with experimental measurements. The validation exercise
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demonstrated the versatility and accuracy of the model and its suitability for the research

task.

The acoustic properties of the materials were investigated in Chapter 6. An experimental

study was undertaken in which alpha case was grown on sheets of titanium by exposing

them to air at high temperature. The acoustic properties of both treated and untreated

materials were measured and the variation of the alpha case contamination with depth

from the exposed surfaces was assessed by measuring hardness profiles. It was found

that the longitudinal and shear velocities of bulk waves in the alpha case varied with the

depth but that in all cases they were faster than those in the titanium, typical measured

increases being between 5 and 10 percent. No difference in density could be detected

between alpha case and titanium.

Model studies of normal incidence reflectivity were made in Chapter 7, in order to

quantify the sensitivity of the conventional inspection technique. Reflectivity

measurements of defective joints were simulated, using a response model and assuming a

variety of alpha case properties and property profiles. The study also included a brief

examination of the reflectivity from arrays of voids at the bondline, voids frequently

accompanying alpha case in poor bonds. The investigation was limited to model studies;

unfortunately it was not possible to obtain suitable defective bonded joints for

experimental confirmations.

The first of two plate wave approaches for inspection, the Lamb wave technique, was

assessed in Chapter 8. This method relies on the detection of changes which the

embedded layer may make to the properties of the Lamb waves in the bonded plate.

Dispersion curves were predicted for good joints and for defective joints. The

predictions were used to determine the sensitivity of the Lamb waves to the potential

defects and to other parameters associated with the joints. This resulted in the

identification of the most sensitive modes which could be used for inspection. The

means of excitation and measurement of Lamb waves were discussed and the Lamb

wave method was assessed by comparison with the conventional normal incidence

inspection method.

The second plate wave approach, the interface wave technique, was assessed in

Chapter 9. This method relies on the excitation and detection of waves which travel

along the embedded layer, leaking energy into the adherends. Two types of interface

wave are possible in principle: waves which are restricted to a single interface between

the titanium and the alpha case, and waves which occupy the whole of the embedded
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layer. Wave propagation predictions were made for both of these cases and the nature of

the waves was analysed. The sensitivity of the waves to the properties of the embedded

layer and of the adherends was investigated by a parametric study. Methods were

considered for the excitation and measurement of interface waves and their potential for

inspection was discussed.

10.2 Summary of findings

Conventional normal incidence technique

The model studies of normal incidence reflectivity demonstrated that the conventional

inspection technique performs particularly well when looking for an embedded planar

layer such as a layer of alpha case in a diffusion bonded joint. Since both of the

adherends are identical there is no reflection from the bondline of a good joint. Any

reflection from the bondline must therefore be associated with some form of defect, and a

planar layer tends to reflect energy back towards the transducer rather than scattering it in

other directions. Consequently it is possible to detect features with dimensions more

than an order of magnitude smaller than the dominant wavelength of the test signal.

The model predictions for alpha case embedded at the bondline of titanium joints showed

that it should be possible to detect very thin layers of alpha case using high frequency

equipment. The lower limit of thickness was predicted to be about 20 microns, using the

highest practicable frequencies of 60-80 MHz, provided that the acoustic velocity of the

alpha case differs from the titanium by at least 5 %. Furthermore, the predictions for

voiding at the bondline of titanium joints indicated that it should be possible to detect

voiding down to about 25 % area fraction. This additional contribution to the reflectivity

is a significant consideration in practice because of the tendency for voids to be present

in poor bonds along with alpha case.

The strong sensitivity of the normal incidence technique to the presence of alpha case is a

very positive conclusion from the practical point of view. The thickness of alpha case

which can be detected, according to the predictions, is considerably thinner than the layer

which was evident in the very poor bond (the only badly bonded specimen which was

available), and may be associated with relatively low levels of contamination. Of course,

concerning the development of a plate wave inspection technique, the task is particularly

challenging because significant further improvements would have to be demonstrated in

order for the new technique to be viable.
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Lamb wave technique

The Lamb wave modelling study revealed that the dispersion curves show some

sensitivity to the presence of a centrally embedded layer of alpha case so that in principle

the inspection of diffusion bonded joints should be possible using this technique.

Unfortunately however, because the Lamb waves occupy the whole of the bonded joint,

the curves are affected by variations in the properties of any part of the joint.

Accordingly, the curves are much more sensitive to global parameters such as the

thickness of the joint and the properties of the adherends than they are to the presence of

a very thin layer of alpha case. They are also insensitive to the profile of the acoustic

properties of the alpha case, depending only on the average properties and the thickness

of the layer, and consequently the method could not be used to characterise the layer.

The practical potential of utilising Lamb waves is further ill-fated by the success of the

conventional normal incidence method. Comparing the two methods, the best sensitivity

which could be achieved using the Lamb wave technique falls far short of that which is

possible using the normal incidence technique. Furthermore, the Lamb wave technique

would be more complicated to implement in practice than the conventional method.

It was therefore concluded that the Lamb wave inspection scheme could work in

principle but its sensitivity to the presence of the embedded layer falls short of normal

incidence testing and it suffers from unwanted sensitivity to other properties of the joint.

Interface wave technique

The model studies of the interface wave which travels along the boundary between two

different materials indicated that in general such a wave shows good potential for

nondestructive testing. A single, leaky non-dispersive mode may exist between certain

pairs of materials. It may readily be excited and received and is particularly sensitive to

the properties of the materials in the region of the interface. However it could only be

utilised in embedded layers if its depth of penetration was significantly smaller than the

thickness of the layer. This would require tests to be conducted at extremely high

frequencies for very thin layers. Moreover it was found that such an interface wave does

not exist in the specific case of the interface between titanium and alpha case.
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In general, a leaky wave at a single interface may be useful for the inspection of diffusion

bonded joints where the materials of the two adherends are different. In such cases the

conventional normal incidence inspection technique would not be optimal because a

signal would always be reflected from the bondline, even in a good joint, obscuring any

small reflections from defects. However an interface wave may be rather sensitive to the

properties local to the bondline, particularly if the technique exploits the dependence of

the effective depth of the wave on the frequency. Other joints which could potentially be

inspected by such waves are joints in which a relatively thick interface layer is known to

exist but may need to be characterised, such as diffusion brazed joints and adhesive

joints.

The model studies of the interface waves which travel along the embedded layer showed

that there is an infinite family of these waves just as there is with Lamb waves but that

the nature of the modes is substantially different. The dispersion curves bear little

resemblance to the Lamb wave curves and all of the waves leak energy into the

adherends. As anticipated, the dispersion curves are sensitive to the properties of the

layer and insensitive to the properties of the adherends, a major attraction compared with

the Lamb wave technique.

Unfortunately the attenuation of the modes is too strong for the remote measurement of

the wave velocities to be considered. The alternative, point reflection measurements

made at the same location as an incident signal, may be used to detect minima either in a

sweep of frequency or in a sweep of the angular position of the transducers. These

minima are associated with the modal properties of the system although they do not

correspond directly to the frequencies or velocities of propagating waves.

The identification of the minima is an inappropriate method for the detection of the

presence of the layer because minima can only be found by measuring reflections at

adjacent angles or frequencies. If such reflections can be measured then they indicate

directly the presence of the layer and there is no need to find the minima. However the

conditions when minima occur could in principle be used to characterise a layer which is

known to exist. Unfortunately in the current application this approach is unlikely to be

practicable because the frequencies of the minima for realistic joints are too high.

It is therefore concluded that interface waves offer no practical potential for the

inspection of alpha case in diffusion bonded titanium.
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Possible alternative inspection strategy

Although it has been concluded that the plate wave techniques offer no advantage over

the conventional normal incidence technique, it is possible that a method based on

oblique incidence reflectivity may be worth pursuing.

Such an investigation into oblique incidence response is outside the scope of this thesis.

However one possibility which could be explored is to measure the reflectivity from the

layer using waves in the adherend which are incident on the layer at super-critical angles.

An initial study has indicated that this approach may offer strong sensitivity to both the

presence and the nature of embedded stiff layers and further investigation is

recommended.



References

- 292 -

Abo-Zena, A. Dispersion function computations for unlimited frequency values.

Geophys. J.R. Astr. Soc., Vol 58, 1979, pp 91-105.

Achenbach, J.D., Epstein, H.I. Dynamic interaction of a layer and a half-space.

J. Eng. Mech. Div., ASCE, 1967, pp 27-42.

Adler, E.L., de Billy, M., Quentin, G. Evaluation of friction-welded aluminium-steel

bonds using dispersive guided modes of a layered substrate. J. Appl. Phys., Vol. 68,

1990, pp 6072-6076.

Adler, E.L., Sun, I-H. Observation of leaky Rayleigh waves on a layered half-space.

IEEE Trans. Sonics and Ultrasonics, Vol. SU-18, No. 3, 1971, pp181-184.

Alleyne, D.N. The nondestructive testing of plates using ultrasonic Lamb waves. PhD

thesis, University of London, 1991.

Anderson, O.L. Determination of some uses of isotropic elastic constants of

polycrystalline aggregates using single-crystal data. In Physical Acoustics, Vol. III,

Part B, Ed. Mason W.P. and Thurston R.N., Academic Press, New York, 1965, pp 43-95.

Angel, Y.C., Achenbach, J.D. Reflection and transmission of elastic waves by a

periodic array of cracks. J. Appl. Mechanics, Vol. 52, 1985, pp 33-41.

Alsop, L.E. The leaky-mode period equation - a plane-wave approach. Bull. Seism.

Soc. Am, Vol. 60, 1970, pp 1989-1998.

Baik, J.M., Thompson R.B. Ultrasonic scattering from imperfect interfaces: a quasi-

static model. J. Nondestr. Eval., Vol. 4, 1984, pp 177-196.

Bar-Cohen, Y., Mal, A.K. Characterization of adhesive bonding using leaky Lamb

waves. Review of Progress in Quantitative NDE, Vol 9, 1990, pp 1271-1277.

Bendec, F., Peretz, M., Rokhlin S.I. Ultrasonic Lamb wave method for sizing of spot

welds. Ultrasonics, 1984, pp 78-84.



References 293

Bond, L.J., Som, A.K., Shiloh, K., Taylor, K.J. Diffusion bond inspection using a

pulsed digital reflection acoustic microscope. Review of Progress in Quantitative NDE,

Vol 9, 1990, pp 1339-1346.

Bottomley, I. British Aerospace, plc. Private communication, 1992.

Brasche, L.J.H., Margetan, F.J., Thompson, R.B. Sample preparation techniques and

material property measurements of hard alpha titanium samples. Review of Progress in

Quantitative NDE, Vol 11, 1992, pp 1733-1738.

Brekhovskikh, L.M., Goncharov V. Mechanics of continua and wave dynamics.

Springer-Verlag, Berlin, 1985.

Broomfield, R.W. Application of advanced joining techniques to titanium alloys. In

Designing with Titanium, Institute of Metals, 1986, pp 69-75.

Cawley, P., Pialucha, T.P., Lowe, M.J.S. A comparison of different methods for the

detection of a weak adhesive/adherend interface in bonded joints. In press, in Review of

Progress in Quantitative NDE, 1993.

Chimenti, D.E., Nayfeh, A.H., Butler, D.L. Leaky Rayleigh waves on a layered

halfspace. J. Appl. Phys., Vol. 53, 1982, pp 170-176.

Chimenti, D.E., Rokhlin, S.I. Relationship between leaky Lamb modes and reflection

coefficient zeroes for a fluid-coupled elastic layer. J. Acoust. Soc. Am., Vol. 88, 1990,

pp 1603-1611.

Claus, R.O., Kline, R.A. Adhesive bondline interrogation using Stoneley wave methods.

J. Appl. Phys., Vol. 50, 1979, pp 8066-8069.

Clayton, E., Derrick, G.H. A numerical solution of wave equations for real or complex

eigenvalues. Aust. J. Phys., Vol. 30, 1977, pp 15-21.

Deschamps, M., Roux, J. Some considerations concerning evanescent surface waves.

Ultrasonics, Vol 29, 1991, pp 283-287.

Dewen, P.N. The nondestructive evaluation of the cohesive properties of adhesively

bonded joints. PhD thesis, University of London, 1991.



References 294

Dewen, P.N., Lowe, M.J.S., Cawley, P. The determination of the cohesive properties of

bonded joints using Lamb wave data - a feasibility study. Submitted to J. Nondestr.

Eval., 1992.

Dunkin, J.W. Computation of modal solutions in layered elastic media at high

frequencies. Bull. Seism. Soc. Am, Vol. 55, No. 2, 1965, pp 335-358.

Evans, R.B. The decoupling of seismic waves. Wave Motion, Vol. 8, 1986, pp 321-328.

Farnell, G.W., Adler, E.L. Elastic wave propagation in thin layers. Physical

Acoustics, Principles and Methods, Vol. IX, Ed. Mason W.P. and Thurston R.N.,

Academic Press, New York, 1972, pp 35-127.

Frederick, C.L., Worlton, D.C. Ultrasonic thickness measurements with Lamb waves.

Nondestructive Testing, 1962, pp 51-55.

Gilbert, F. Propagation of transient leaking modes in a stratified elastic wave guide.

Rev. Geophys, Vol. 2, 1964, pp 123-153.

Guo, N., Cawley, P. Lamb waves for the NDT of composite laminates. Review of

Progress in Quantitative NDE, Vol 11, 1992, pp 1443-1450.

Habeger, C.C., Mann, R.W., Baum G.A. Ultrasonic plate waves in paper.

Ultrasonics, 1979, pp 57-62.

Haskell, N.A. Dispersion of surface waves on multilayered media. Bull. Seism. Soc.

Am, Vol. 43, 1953, pp 17-34.

Hosten, B. Bulk heterogeneous plane waves propagation through viscoelastic plates and

stratified media with large values of frequency domain. Ultrasonics, Vol 29, 1991,

pp 445-450.

Karim, M.R., Mal, A.K., Bar-Cohen, Y. Inversion of leaky Lamb wave data by

simplex algorithm. J. Acoust. Soc. Am., Vol. 88, 1990, pp 482-491.

Knopoff, L. A matrix method for elastic wave problems. Bull. Seism. Soc. Am,

Vol. 54, 1964, pp 431-438.



References 295

Kolsky, H. Stress waves in solids. Dover Publications, New York, 1963.

Kumar, V. Attenuation and velocity of waves propagating along a steel-steel interface.

J. Appl. Phys., Vol. 54, 1983, pp 1141-1143.

Kushibiki, J., Ishikawa, T., Chubachi, N. Cut-off characteristics of leaky Sezawa and

pseudo-Sezawa wave modes for thin-film characterisation. Appl. Phys. Lett. 57 (19),

Am. Inst. Phys., Nov 1990, pp 1967-1969.

Lamb, H. On waves in an elastic plate. Proc. Roy. Soc., Vol 93 PT Series A, 1917,

pp 114-128

Lee, D.A., Corbly, D.M. Use of interface waves for nondestructive inspection. IEEE

Trans. Sonics and Ultrasonics, Vol. SU-24, No. 3, 1977, pp 206-212.

Love, A.E.H. Some problems of geodynamics. Cambridge University Press, London,

1911.

Love, A.E.H. Mathematical theory of elasticity. Cambridge University Press, London,

1927.

Lowe, M.J.S., Cawley, P. The detection of a brittle layer at the bondline in diffusion

bonded titanium. In press, in Review of Progress in Quantitative NDE, 1993.

Mal, A.K., Kundu, T. Reflection of bounded acoustic beams from a layered solid.

Review of Progress in Quantitative NDE, Vol 6, 1987, pp 109-116.

Mal, A.K., Xu, P.C., Bar-Cohen, Y. Analysis of leaky Lamb waves in bonded plates.

Int. J. Engng. Sci., Vol 27, 1989, pp 779-791.

Mal, A.K., Xu, P.C., Bar-Cohen, Y. Leaky Lamb waves for the ultrasonic

nondestructive evaluation of adhesive bonds. J. Eng. Mat. and Tech., Vol 112, ASME,

1990, pp 255-259.

Malvern, L.E. Introduction to the mechanics of a continuous medium. Prentice-Hall,

New Jersey, 1969.



References 296

Margetan, F.J., Thompson, R.B. Microstructural noise in titanium alloys and its

influence on the detectability of hard-alpha inclusions. Review of Progress in

Quantitative NDE, Vol 11, 1992, pp 1717-1724.

Margetan, F.J., Thompson, R.B., Gray, T.A., Rose, J.H. Experimental studies

pertaining to the interaction of ultrasound with metal-metal bonds. Review of Progress

in Quantitative NDE, Vol 9, 1990, pp 1323-1330.

Mason, W.P. Physical Acoustics and the Properties of Solids, Van Nostrand, New

Jersey, 1958.

NAG Ltd., Wilkinson House, Jordan Hill Road, Oxford.

Nagy, P.B., Adler, L. Nondestructive evaluation of adhesive joints by guided waves. J.

Appl. Phys., Vol. 66, 1989, pp 4658-4663.

Nagy, P.B., Rypien, D.V., Adler, L. Dispersive properties of leaky interface waves in

adhesive layers. Review of Progress in Quantitative NDE, Vol 9, 1990, pp 1247-1255.

Nayfeh, A.H., Chimenti, D.E., Adler, L.,Crane, R.L. Ultrasonic leaky waves in the

presence of a thin layer. J. Appl. Phys., Vol. 52, 1981, pp 4985-4994.

Norris, B. Liquid interface diffusion (LID) bonding of titanium structures. In Designing

with Titanium, Institute of Metals, 1986, pp 83-86.

Osborne, M.F.M., Hart, S.D. Transmission, reflection, and guiding of an exponential

pulse by a steel plate in water. I. Theory. J. Acoust. Soc. Am., Vol. 17, 1945, pp 1-18.

Osborne, M.F.M., Hart, S.D. Transmission, reflection, and guiding of an exponential

pulse by a steel plate in water. II. Experiment. J. Acouust. Soc. Am., Vol. 18, 1946,

pp 170-184.

Palmer, D.D, Rehbein, D.H., Smith, J.F., Buck, O. Nondestructive characterization of

the mechanical strength of diffusion bonds. II. Application of a quasi-static spring model.

J. Nondestr. Eval., Vol. 7, 1988, pp 167-174.

Partridge, P.G. Diffusion bonding of metals. AGARD, LS 154, 1987, pp 5.1-5.23.



References 297

Pialucha, T.P. The reflection coefficient from interface layers in NDT of adhesive joints.

PhD thesis, University of London, 1992.

Pialucha, T.P., Lowe, M.J.S., Cawley, P. Validity of different models of interfaces in

adhesion and diffusion bonded joints. In press, in Review of Progress in Quantitative

NDE, 1993.

Pialucha, T.P., Guyott, C.C.H., Cawley, P. Amplitude spectrum method for the

measurement of phase velocity. Ultrasonics, Vol 27, 1989, pp 270-279.

Pilant, W.L. Complex roots of the Stoneley wave equation. Bull. Seism. Soc. Am, Vol.

62, No. 1, 1972, pp 285-299.

Pilarski, A. Ultrasonic evaluation of the adhesion degree in layered joints. Materials

Evaluation, Vol. 43, Am. Soc. Nondestructive Testing, 1985, pp 765-770.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. Numerical recipes.

Cambridge University Press, Cambridge, 1986.

Press, F., Harkrider, D., Seafeldt, C.A. A fast convenient program for computation of

surface-wave dispersion curves in multilayered media. Bull. Seism. Soc. Am, Vol. 51,

No. 4, 1961, pp 495-502.

Randall, M.J. Fast programs for layered half-space problems. Bull. Seism. Soc. Am,

Vol. 57, No. 6, 1967, pp 1299-1316.

Rayleigh, Lord. On waves propagating along the plane surface of an elastic solid.

Proc. London Math. Soc., Vol 17, 1885.

RMI. Facts about the metallography of titanium. RMI Company, Niles, Ohio, USA,

1981.

Rokhlin, S.I. Interface properties characterization by interface and Lamb waves.

Review of Progress in Quantitative NDE, Vol 5, 1986, pp 1301-1308.

Rokhlin, S.I., Hefets, M., Rosen, M. An elastic interface wave guided by a thin film

between two solids. J. Appl. Phys., Vol. 51, 1980, pp 3579-3582.



References 298

Rokhlin, S.I., Hefets, M., Rosen, M. An ultrasonic interface wave method for

predicting the strength of adhesive bonds. J. Appl. Phys., Vol. 52, 1981, pp 2847-2851.

Rokhlin, S.I., Wang, W., Wang, Y.J. Ultrasonic evaluation of interphasial properties

in adhesive joints. Review of Progress in Quantitative NDE, Vol 9, 1990, pp 1231-1238.

Rose, J.H. Ultrasonic characterization of solid-solid bonds from microstructural

changes. Review of Progress in Quantitative NDE, Vol 7, 1988, pp 1311-1317.

Rose, J.H. Reflection coefficients for defective diffusion bonds. Review of Progress in

Quantitative NDE, Vol 9, 1990, pp 1317-1322.

Rose, J.L., Nayfeh, A., Pilarski, A. Surface waves for material characterization.

J. Appl. Mechanics, Vol. 57, 1990, pp 7-11.

Schmidt, H., Jensen, F.B. Efficient numerical solution technique for wave propagation

in horizontally stratified environments. Comp. & Maths. with Appls., Vol. 11, 1985,

pp 699-715.

Schmidt, H., Tango, G. Efficient global matrix approach to the computation of

synthetic seismograms. Geophys. J.R. Astr. Soc., Vol. 84, 1986, pp 331-359.

Scholte, J.G. The range and existence of Rayleigh and Stoneley waves. Mon. Not. Roy.

Astron. Soc. Geophys. Suppl., Vol. 5, 1947, pp 120-126.

Schwab, F.A., Knopoff, L. Fast surface wave and free mode computations. Methods in

Computational Physics, Vol II, ed. Bolt, B.A., Academic Press, New York, 1972,

pp 87-180.

Stephen, D. Superplastic forming and diffusion bonding of titanium. In Designing with

Titanium, Institute of Metals, 1986, pp 108-124.

Stoneley, R. Elastic waves at the surface of separation of two solids. Proc. Roy. Soc.,

Vol 106, 1924, pp 416-428.

Thompson, R.B., Margetan, F.J., Rose, J.H., Batra, N.K. Effects of interstitial

oxygen on the ultrasonic properties of titanium alloys. Review of Progress in

Quantitative NDE, Vol 11, 1992, pp 1725-1732.



References 299

Thomson, W.T. Transmission of elastic waves through a stratified solid medium.

J. Appl. Phys., Vol. 21, 1950, pp 89-93.

Timoshenko, S.P., Goodier, J.N. Theory of elasticity. McGraw-Hill, Tokyo, 1970.

Tolstoy, I., Usdin, E. Dispersive properties of stratified elastic and liquid media: a ray

theory. Geophysics, Vol. 18, 1953, pp 844-870.

Viktorov, I.A. Rayleigh and Lamb waves. Plenum Press, New York, 1970.

Watson, T.H. A real frequency, complex wave-number analysis of leaking modes. Bull.

Seism. Soc. Am, Vol. 62, No. 1, 1972, pp 369-541.

Weglein, R.D. Acoustic micro-metrology. IEEE Trans. Sonics and Ultrasonics,

Vol. SU-32, No. 2, 1985, pp 225-234.

Weglein, R.D. Titanium diffusion bond evaluation via acoustic microscopy. Ultrasonics

Symposium, IEEE, 1988, pp 1045-1048.

Wolf, J., Ngoc, T.D.K., Kille, R., Mayer, W.G. Investigation of Lamb waves having a

negative group velocity. J. Acoust. Soc. Am., Vol. 83, 1988, pp 122-126.

Worlton, D.C. Ultrasonic testing with Lamb waves. Nondestructive Testing, 1957,

pp 218-222.

Xu, P.C., Mal, A.K., Bar-Cohen, Y. Inversion of leaky Lamb wave data to determine

cohesive properties of bonds. Int. J. Engng. Sci., Vol 28, 1990, pp 331-346.

M J S Lowe, December 1992


	Title
	Abstract
	Acknowledgements
	Contents
	Lists of Tables and Figures
	Nomenclature
	1.  Background
	1.1  Introduction
	1.2 The diffusion bonding process and potential defects
	1.3  Conventional ultrasonic inspection
	1.4  Introduction to plate waves
	1.5  Approaches for inspection using plate waves
	1.6  Development of model
	1.7  Historical background
	1.8  Outline of thesis
	Figures - Chapter 1

	2.  Free wave propagation along a multilayered plate
	2.1  Introduction
	2.2  Plane waves in an infinite elastic medium
	2.3  Plane waves in a two-dimensional space
	2.4  Plane waves at the boundary between two media
	2.5  Inhomogeneous waves
	2.6  Assembly of layered system
	2.7  Solution: transfer matrices method
	2.8  Solution: global matrix method
	2.9  Phase properties of free waves
	2.10  Conclusions
	Figures - Chapter 2

	3.  Attenuating wave propagation along a multilayered plate
	3.1  Introduction
	3.2  Plane waves in an infinite viscoelastic medium
	3.3  Plane waves at boundaries
	3.4  Assembly and solution
	3.5  Conclusions
	Figures - Chapter 3

	4.  Development of numerical model
	4.1  Introduction
	4.2  Selection of characteristic function
	4.3  Evaluation of characteristic function
	4.4  Searches
	4.5  Curve tracing
	4.6  Mode shapes
	4.7  Conclusions
	Figures - Chapter 4

	5.  Validation of model
	5.1  Introduction
	5.2  Examples of applications of the model
	5.3  Comparisons with analytical solutions
	5.4  Comparisons with measurements and other predictions
	5.5  Conclusions
	Table - Chapter 5
	Figures - Chapter 5

	6.  Characterisation of defective joints
	6.1  Introduction
	6.2  Preparation of specimens
	6.3  Measurement of hardness
	6.4  Measurements of acoustic properties
	6.5  Conclusions
	Table - Chapter 6
	Figures - Chapter 6

	7.  Normal incidence inspection
	7.1  Introduction
	7.2  Modelling approach
	7.3  Predictions of reflectivity from alpha case
	7.4  Predictions of reflectivity from voids
	7.5  Comparison with experimental measurements
	7.6  Conclusions
	Figures - Chapter 7

	8.  Lamb wave technique
	8.1  Introduction
	8.2  Predictions of dispersion curves for defective joints
	8.3  The measurement of Lamb waves
	8.4  Discussion
	8.5  Conclusions
	Tables - Chapter 8
	Figures - Chapter 8

	9.  Interface wave technique
	9.1  Introduction
	9.2  Approach for the excitation and detection of interface waves
	9.3  Waves at a single interface between titanium and alpha case
	9.4  Waves in a layer of alpha case embedded in titanium
	9.5  Sensitivity of interface waves to the properties of the joint
	9.6  Discussion
	9.7  Possible alternative inspection strategy
	9.8  Conclusions
	Figures - Chapter 9

	10.  Conclusions
	10.1  Review of thesis
	10.2  Summary of findings

	References

