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Abstract

The thesis examines the possibility of using an ultrasonic guided wave system for the

determination of material properties. The system considered consists of a cylindrical

waveguide which is partly embedded in another material whose acoustic properties

are to be determined. Two main ideas are investigated.

The first idea is based on the fact that, when a waveguide is embedded in another

material, a guided wave in the waveguide will be attenuated due to the leakage of

bulk waves into the surrounding material. The rate of leakage depends on both the

material properties of the waveguide and the embedding material. The propagation

characteristics such as the phase velocity and the attenuation can be predicted using

software that has been developed in the laboratory as part of previous investigations.

With these predictions it is possible to relate a measured attenuation to material

properties such as the viscosity of a liquid. Experimental results show the validity

of these predictions.

The second idea uses the fact that, when the waveguide enters the material

under investigation, the guided wave will be scattered at the entry point due to

the change in surface impedance. Since the magnitude of the reflected guided wave

depends on the properties of the embedding material, it can in principle be used

for materials characterisation. Finite Element (FE) modelling and a theoretical

scattering analysis have been carried out in order to calculate reflection coefficients

for different material properties. Both these methods agree very well with each other

and with experimental results.

As one of the possible applications, the cure monitoring of epoxy resins has been

investigated in more detail. Both methods have been successfully applied to the

monitoring of bulk samples, yielding accurate quantitative results of epoxy shear

velocity. For the monitoring of adhesive cure in automotive joints, the reflection

coefficient method seems most suitable. However, it was found that the geometry

of the joints influences the reflection of guided waves. This effect has been investi-

gated using FE modelling. In this case, due to the uncertainty of the geometry in

the industrial environment, the reflection coefficient can be determined only quali-

tatively.
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Chapter 1

Introduction

1.1 Motivation

There is both a practical and a scientific interest in developing a technique for the

measurement of material properties based on ultrasonic guided waves.

The initial motivation for the practical aspect of such a technique comes from auto-

motive industry, where adhesive joining of metal structures is becoming increasingly

popular [1]. This is due to the fact that adhesively joined structures exhibit a higher

structural integrity compared to riveted or spot welded ones. Other advantages in-

clude reduced weight, improved corrosion performance and broader design possibil-

ities. Especially in cases where safety-critical structures are involved, this requires

the correct choice and cure of the adhesive. However, controlling the cure process

of adhesive bonds in large metal structures can be difficult because of temperature

variations in the cure ovens and the sensitivity of adhesive cure to temperature. A

measurement technique is therefore needed to monitor and assess the progress of

cure in industrial environments. Such a technique would not only be useful in devel-

opment stages but also as an online spot check technique during car manufacture.

The photograph in Fig. 1.1 shows the inside of a car boot, and arrows indicate as

an example a joint which needs to be monitored. It can be seen that in general

spot welding or riveting is used together with the adhesive, which is mainly due to

the fact that, before cure, the adhesive cannot keep the different metal structures
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1. Introduction

Figure 1.1: Photograph of the interior of a car boot. The arrows indicate an example of

an adhesive joint.

together. There are a number of cure monitoring techniques available, which will be

reviewed in Sec. 6.2. However, these are not suitable in this particular application

due to the limited accessibility of the joints and due to oven temperatures as high

as 200 ◦C.

The idea investigated in this thesis is to use a wire waveguide which is partly em-

bedded in the adhesive. A wire waveguide is preferred over, for example, a strip

waveguide because reflections from the edges of the strip may interfere with the

guided wave of interest and can thus complicate the analysis. Characteristically, the

bond-lines are approximately 0.2–1mm thick and 20mm wide, which restricts the

radius of the waveguide and the embedded length. An ultrasonic guided wave is

excited by a transducer at the free end of the wire, and propagates along the wire.

Where the wire is embedded, the guided wave will interact with the adhesive in a

characteristic way, depending on the material properties of the adhesive. Thus, the

wire can be used as a sensor for material properties. Due to the long range propa-

gation characteristics of guided waves, it is possible to place the testing equipment

including the transducer outside the oven. A steel waveguide is chosen because of
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1. Introduction

the availability of the material and its low intrinsic attenuation. Glass waveguides

may also be used (see, for example, [2]), however, steel waveguides were considered

more robust for the industrial application.

The physical and chemical processes occurring during the cure of epoxy resins are

still not fully understood. A guided wave technique, which could be used in con-

junction with other existing techniques to research these processes, would present a

significant contribution in the effort to complete the understanding of cure processes.

For example, with conventional ultrasonic bulk wave techniques it is often not pos-

sible to determine the shear properties of an epoxy resin in the very early stages of

cure because of high bulk shear attenuation [3]. Due to the different measurement

principles characteristic to the waveguide techniques, which will be introduced be-

low, it is possible to estimate the state of cure during the entire cure cycle, including

the interval at the onset of cure where conventional bulk wave techniques fail.

The use of such instrumentation is not just limited to the cure monitoring of epoxy

resins, but has a much wider applicability for the measurement of the acoustic

properties of materials in general. A very interesting prospect is the use of the

guided wave technique where conventional ultrasonic bulk wave techniques fail. As

an example, the measurement of the bulk longitudinal and shear velocity in wet

sands was realised by Long et al. [4] using the waveguide technique presented in

this thesis. Other applications include the use for industrial process monitoring of

liquids and for viscometric studies.

This investigation is therefore concerned with the development of measurement tech-

niques for the determination of material properties using ultrasonic guided waves in

wires. The aim of this work can be summarised in the following objectives:

– to identify suitable waveguide techniques for the measurement of material

properties,

– to apply existing and develop new modelling techniques to relate the results

from measurements to actual material properties,
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– to experimentally verify the validity of the modelling techniques, and

– to apply these waveguide techniques to the cure monitoring of epoxy resins.

1.2 Background

An embedding material affects the propagation of a guided wave in several ways

which can be used to determine its material properties, and they will be reviewed

thoroughly in Sec. 4.2. Two techniques are examined in detail in this work.

The first method is based on the fact that, when the waveguide is embedded in

another medium, the guided wave will be attenuated due to the leakage of bulk

waves into the surrounding material (see schematic in Fig. 1.2). The rate of leakage

depends both on the material properties of the waveguide and the embedding ma-

terial. As a general rule of thumb, the higher the impedance mismatch between the

two materials, the lower is the attenuation. The attenuation also depends on the

waveguide mode and on the frequency. The existing modelling tool Disperse [5, 6],

which was developed in the NDT laboratory at Imperial College, can be used to

relate the material properties of the waveguide and the embedding medium to the

attenuation of a guided mode. Thus, if the material properties of the waveguide

are known, the measurement of attenuation allows for the prediction of the material

properties of the surrounding material. In the following, this method will be referred

to as the ”attenuation method”.

The second method is based on the fact that a guided wave is partly reflected from

the point where the free waveguide enters into another medium due to the change

in surface impedance (see Fig. 1.3). In the following, this reflection is referred to

as the ”entry reflection”. As a general rule of thumb in this case, the higher the

change in surface impedance, the larger is the magnitude of the entry reflection.

Like the attenuation, the magnitude of the entry reflection also depends on the

waveguide mode and the frequency. The prediction of the entry reflection is not

as straightforward as for the attenuation method. Finite Element (FE) modelling
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1. Introduction

presents a powerful tool, however, the computational analysis can be tedious. In an

alternative approach, the entry reflection coefficient can be calculated using a modal

scattering analysis, whose theoretical foundations are developed in the thesis. This

is much more efficient than FE modelling, especially where a small element size and

time step would be required due to low velocities in the embedding material. The

numerical implementation of the modal analysis can be used to relate the reflection

coefficient to the material properties of the embedding medium. Therefore, the

measurement of the reflection coefficient allows for the prediction of the properties of

the embedding medium. This method will be referred to as the ”reflection method”.

guided wave

leakage of bulk waves

embedding medium

waveguide

vacuum

Figure 1.2: Schematic of the process of guided wave attenuation due to the leakage of

bulk waves into the medium surrounding the waveguide.

reflected
guided wave

embedding medium

waveguide

vacuum

incident
guided wave

Figure 1.3: Schematic of the process of guided wave reflection from a change in surface

impedance.
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1.3 Outline of Thesis

The thesis is divided into several chapters. Due to the diverse nature of the topics

covered by each chapter, relevant literature is reviewed separately at the beginning

of each chapter. In the following, the figures belonging to a particular chapter will

be placed at the end of that chapter. Subsequent to the introductory remarks in

this chapter, the thesis is structured in the following way.

Chapter 2 reviews the basic theory of bulk waves and guided waves in cylindrical

structures and introduces the necessary notations. Since this is well documented

in literature, it will be restricted to explanations which are essential for the under-

standing of the remaining chapters. On the basis of the properties of guided modes

presented in that chapter, a choice of the suitable modes for the testing techniques

is made.

Chapter 3 introduces experimental techniques which are used throughout the thesis.

This includes a description of the transduction mechanisms to excite guided waves in

wires and the typical experimental set-up. For accurate predictions it is necessary to

know the material properties of the waveguide. The basic measurement techniques

to determine these properties are outlined.

The following chapter explains in detail the attenuation method. The main mod-

elling tool used for the predictions is the software Disperse, and using this tool

the method is validated experimentally. As an example, the testing procedures to

determine the shear velocity of viscous liquids are set out. These testing techniques

are designed to be also applicable to the cure monitoring of epoxy resins.

As explained in Sec. 1.2, the modelling of the entry reflection coefficient is realised

by a modal scattering analysis. The theoretical foundations and its numerical im-

plementation are developed in Ch. 5. This analysis is validated experimentally and

by FE modelling. Keeping the initial motivation to monitor the cure of epoxy resins

in mind, the examples given concentrate on the cases where a steel waveguide is

partly embedded in an epoxy resin.
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In Ch. 6, the attenuation and reflection methods are applied to the cure monitoring of

bulk samples of epoxy resin. A review of existing cure monitoring methods is given,

and the applicability of the wire waveguide methods is discussed. The theoretical

predictions are experimentally verified for both the attenuation and the reflection

method.

Finally, with respect to the cure monitoring application in joints, Ch. 7 examines

the dependence of the entry reflection coefficient on the geometry of the adhesive

joint. The geometrical features of a meniscus, which may occur when the wire

enters the adhesive, and the thickness of the bond-line are studied using two- and

three-dimensional FE modelling.

The thesis concludes with a summary of the work undertaken and an outlook for

possible further research.
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Chapter 2

Guided Waves in Cylindrical

Structures

2.1 Background

The aim of this chapter is to introduce fundamental concepts of acoustic wave propa-

gation in cylindrical structures. In an unbounded, infinite, elastic medium, acoustic

waves can either propagate as homogeneous or inhomogeneous bulk shear and longi-

tudinal waves. In bounded media such as wires, plates and pipes, different modes of

guided waves can propagate which can be thought of as a superposition of these bulk

wave solutions of the unbounded medium. Especially in the case where the wave-

guide is embedded in another medium, inhomogeneous bulk waves play an important

role in the process of guided wave propagation. Characteristic features of guided

modes in cylindrical structures such as their dependence on the frequency, called

dispersion, and the radial distribution of the field variables over the cross-section of

the waveguide, called the mode shape, are discussed.

2.2 Wave Propagation in Infinite Media

The theory of wave propagation in unbounded, isotropic media is well documented in

many textbooks (see, for example, [7, 8, 9, 10, 11, 12]) and is therefore only outlined

briefly in this section. However, it is necessary to introduce notation and some

characteristics which are needed later for the understanding of wave propagation in
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2. Guided Waves in Cylindrical Structures

waveguides.

Starting with the equation of motion, the particle displacement u in a material of

density ρ is related to the stress tensor T by

ρ
∂2u

∂t2
= ∇ ·T (2.1)

(see, for example, [8]). Here, body forces such as gravity are neglected. Furthermore,

for small stresses, Hooke’s law states that, in an isotropic elastic medium, the dis-

placements are linearly related to the stress according to the following relationship:

T = λI∇ · u+ µ(∇u+ u∇), (2.2)

where λ and µ are the Lamé constants and I is the identity matrix. Combining

these two equations gives a single equation for the displacement, u:

ρ
∂2u

∂t2
= (λ+ 2µ)∇(∇ · u) + µ∇× (∇× u). (2.3)

The Helmholtz decomposition [13], which states that any vector can be written

in terms of a scalar potential, φ, and a vector potential, A, is used to derive the

standard wave equations:

u = ∇φ+∇×A. (2.4)

This expression is substituted into Eq. (2.3), which, after some algebra, becomes:

∇
[

ρ
∂2φ

∂t2
− (λ+ 2µ)∇2φ

]

+∇×
[

ρ
∂2A

∂t2
− µ∇2A

]

= 0, (2.5)

where ∇2 is the three-dimensional Laplace operator. This equation is fulfilled if

both terms in the brackets vanish, and therefore

∂2φ

∂t2
= c2l∇2φ and

∂2A

∂t2
= c2s∇2A. (2.6)

These are the wave equations, with the constants cl and cs being the bulk velocities

of longitudinal and shear waves, respectively. In an elastic isotropic medium, they

are real valued:

cl =

√

λ+ 2µ

ρ
and cs =

√

µ

ρ
. (2.7)
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2. Guided Waves in Cylindrical Structures

Solutions to the wave equations in (2.6) are sought in the form e−i(kr−ωt), where k

is the wavenumber, ω is the circular frequency, and r is the coordinate vector. It

follows that

k2 =
ω2

c2
, (2.8)

where c stands for either the longitudinal bulk velocity, cl, or the shear bulk velocity,

cs. Note that in this case the right hand side of this equation is pure real. However,

the wavenumber, k, can in general be complex:

k = kre + ikim, (2.9)

where kre and kim are the real and the imaginary part of the wavenumber, respec-

tively. Equation (2.8) can thus be written as

k2re + 2ikrekim − k2im =
ω2

c2
. (2.10)

It therefore follows that the real part of the wavenumber must be orthogonal to the

imaginary part:

krekim = 0. (2.11)

The real part of the wavenumber represents the phase propagation, and the phase

velocity cph, which is the speed at which the wave crests propagate, is defined as

kre =
ω

cph
. (2.12)

The imaginary part on the other hand represents a spatial attenuation. Of course,

since the medium is assumed to be elastic, there can be no attenuation in the

direction of propagation, however, the fields may decay in the direction normal to

the direction of propagation. When kim = 0, the equation simplifies to

kre =
ω

c
. (2.13)

In this case, the bulk velocity equals the phase velocity, and the wave is said to be

homogeneous. This is not the case when kim 6= 0, since then

k2re − k2im =
ω2

c2
, (2.14)
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2. Guided Waves in Cylindrical Structures

and the phase velocity is smaller than the bulk velocity. These waves are called

inhomogeneous [14].

So far, the material has been modelled as elastic. In order to model viscoelastic

materials, the hysteretic damping model is adopted [15]. For time harmonic propa-

gation with eiωt, an imaginary component is added to the real Lamé constants, and

the longitudinal and shear bulk velocities are now given by the complex expressions

cl =

√

(λ+ 2µ) + i(λ′ + 2µ′)

ρ
and cs =

√

µ+ iµ′

ρ
, (2.15)

where λ′ and µ′ are the viscous constants of the material. As an example, the special

case of a viscous liquid is discussed in Sec. 4.3.

2.3 Wave Propagation in Free Waveguides

2.3.1 Guided waves

Guided wave propagation in cylindrical structures has been treated by many re-

searchers (see, for example, [16, 17, 18, 19, 20, 21, 22]), and only a brief overview

is given here. The waveguides used in this work are wires, and therefore the treat-

ment of guided wave propagation will be limited in the following to solid cylinders.

Nevertheless, many of the features of guided waves are of a general nature which

are similar in other structures. Time harmonic propagation in the direction of the

axis of the waveguide is considered, which is chosen to be the z-direction in the

cylindrical coordinate system (r,Θ,z).

A guided wave is characterised by its generally complex wavenumber in the direction

of propagation, k = ξ− iα, or, alternatively, by its phase velocity, cph, and attenua-

tion, α. In general, these quantities depend on the frequency f , and this relationship

is referred to as dispersion. A guided wave can be thought of as a superposition of

partial bulk waves which are reflected within the waveguide boundaries (see, for

example, [8], p. 78). At the boundary to another medium, these waves have to fulfill

boundary conditions, where Snell’s law must be obeyed [13]. According to this law,
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2. Guided Waves in Cylindrical Structures

the wavenumber component of the guided wave in the z-direction, k, must be equal

to the z-component of the wavenumber of the partial wave, k′z:

k = k′z. (2.16)

Also the frequency, f , must be the same for all waves at the interface. In a free

waveguide surrounded by vacuum, the stresses normal to the waveguide surface must

be zero. It follows that all the bulk waves are totally reflected within the waveguide,

and the guided wave is attenuated due to intrinsic losses of the waveguide material

only. Thus, in a perfectly elastic free wire, the attenuation of a guided wave is zero,

and the wave is fully characterised by its phase velocity dispersion relationship. An

exception to this are the non-propagating and inhomogeneous waveguide modes,

which are discussed in detail in Sec. 5.2.3 and in App. A.

The waveguide can of course consist of a number of layers itself. In order to find the

acoustic parameters of guided waves for arbitrary multilayered systems, a general

purpose software tool, Disperse, was developed in the laboratory. This work was

started by Lowe [15] to model guided wave propagation in multilayered embedded

plates and cylindrical structures in vacuum, and was further extended to model

multilayered embedded cylindrical systems by Pavlakovic [5].

With the information about the geometrical and mechanical parameters in a mul-

tilayered waveguide in vacuum, the displacements and stresses can be expressed in

terms of the amplitudes of all the partial bulk waves that can exist in each layer.

Combining these with the boundary conditions at each interface, Disperse assem-

bles a global matrix, [G], which relates the partial wave amplitudes to the physical

constraints of the whole system, and solves

[G]{A} = 0, (2.17)

where {A} is a vector of the partial wave amplitudes. The above equation is satisfied

when the determinant of the global matrix vanishes, and solutions are sought in the

complex wavenumber - frequency space. Roots occur for distinctive combinations of

complex wavenumber in the axial direction, k, and frequency, f . Those roots that
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2. Guided Waves in Cylindrical Structures

connect together to a line - a dispersion curve - are found to belong to a specific

mode of propagation.

More precisely, a guided wave in a cylinder or wire can be described by general

expressions for the field variables such as stresses and displacements. For example,

the displacement field, u, of a guided wave can be written as

u(r,Θ, z, t) = u(r)eiνΘe−i(kz−ωt), (2.18)

where ω = 2πf is the circular frequency, ν is the angular wavenumber, and u(r)

is a radial distribution function characteristic to each mode (see Sec. 2.3.3). Since

only propagation in the direction of the axis of the cylinder is considered, and

the field variables such as displacements and stresses must be continuous in the

angular direction, ν must be a whole number. It is commonly referred to as the

circumferential order.

2.3.2 Dispersion Curves

Three different families of modes are present in wire waveguides: longitudinal, tor-

sional, and flexural modes. Each family of modes itself comprises an infinite number

of modes. The modal fields of longitudinal and torsional modes are axi-symmetric,

which means that the angular wavenumber is zero. For flexural modes, ν ≥ 1.

As an example, Fig. 2.1 shows the phase velocity dispersion curves in a steel wire

surrounded by vacuum as predicted with Disperse. The material properties for

steel are given in Tab. 2.1. The mode naming convention in this thesis follows the

one laid out by Silk and Bainton [23]. Longitudinal and torsional modes are denoted

according to the convention L(0,n) and T(0,n), respectively. In this notation, the

first number indicates the circumferential order, being zero for both longitudinal

and torsional modes, whereas the second number is a counter in order to distinguish

between the modes of one family. Flexural modes are abbreviated according to the

notation F(ν,n).

For elastic wire waveguides, the dispersion curves depend on the product of frequency
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Table 2.1: Material parameters used for the analysis in Ch. 2.

Material cl [m/s] cs [m/s] ρ [kg/m3]

Steel 5960 3260 7932

Water 1480 - 1000

and the radius of the waveguide. This means that, for example, the phase velocity

in a 1mm radius wire at a certain frequency is the same as in a 2mm radius wire

at half that frequency.

Since the phase velocity in general depends on the frequency, a wave packet which

propagates along the waveguide will not retain its original shape [24]. The further

it propagates, the more it will disperse out. Therefore, for long range testing, it is

convenient to work with modes that show no or only little dispersion.

2.3.3 Mode Shapes

The fields of every mode have a characteristic radial distribution function, referred to

as the mode shape. The different mode families are best distinguished by considering

the components of their displacement mode shape u(r) = (ur, uΘ, uz)(r):

– longitudinal (L) modes: ur, uz 6= 0 and uΘ = 0,

– torsional (T) modes: ur, uz = 0 and uΘ 6= 0,

– flexural (F) modes: ur, uΘ, uz 6= 0.

All mode shape predictions are also made using Disperse. Figure 2.2(a) shows as

an example the displacement mode shape of T(0,1) in a steel wire at a frequency-

radius product of 0.1MHzmm. It exhibits shear displacements in the angular di-

rection only, and propagates at the bulk shear velocity of the waveguide. The mode

shape of L(0,1) at this frequency-radius product however is dominated by the ax-

ial displacements; there is only little displacement in the radial direction, and no

displacement in the angular direction (see Fig. 2.2(b)). In the low frequency-radius

34



2. Guided Waves in Cylindrical Structures

limit, this mode approaches the bar velocity (see also Sec. 3.4.2).

2.4 Wave Propagation in Embedded Waveguides

2.4.1 Leaky guided waves

As mentioned before, a guided wave can be thought of as a superposition of partial

bulk waves which are reflected within the waveguide boundaries. Total reflection

occurs when the waveguide is surrounded by vacuum. However, if the waveguide is

surrounded by another medium, which extends infinitely in the radial direction, the

partial waves may also be transmitted across the interface. Thus, bulk waves are

excited in the embedding medium, radiating away from the waveguide. Thereby,

energy is carried away, and consequently the guided wave, which is propagating in

the axial direction, is attenuated.

When leakage occurs, Snell’s law not only determines the leakage angle, ϑ, via the

relationship

ξ = |k′re| sinϑ, (2.19)

where ξ is the real wavenumber of the guided wave (see Fig. 2.3), and k′ is the

wavenumber of the leaky partial wave, but also requires the radiating bulk waves

to be inhomogeneous. According to Snell’s law, both the real and the imaginary

part of the wavenumber component in the axial direction of the leaking bulk wave

must be equal to that of the guided wave. The fact that, in an elastic medium, the

attenuation of the bulk wave must be normal to the direction of propagation, results

in an imaginary wavenumber component in the outward radial direction. This is

explained in detail in Sec. 5.3.4, where its implications on waveguide orthogonality

are discussed.

However, the guided wave can be non-leaky, that means it is not attenuated even if

the waveguide is surrounded by another medium. This is the case when the phase

velocity of the guided wave is lower than any of the bulk velocities in the embedding

medium. Then, the bulk waves propagate parallel to the interface, that means the

35



2. Guided Waves in Cylindrical Structures

real part of the wavenumber is purely in the z-direction, and form part of the guided

wave. With the condition that the energy of the guided wave must be finite, the

fields in the embedding material decay in the outward radial direction, so the energy

is trapped close to the waveguide surface. Examples for these types of waves are

interface waves such as the Scholte wave (see, for example, [25, 11], and also App. B).

However, in the applications discussed in this paper, the guided wave will always be

leaky.

The rate of leakage depends on both the material properties of the waveguide and

the embedding material. As a general rule of thumb, the smaller the difference in

the acoustic impedances of the materials, the higher is the attenuation due to the

larger transmission coefficient of the partial bulk waves across the interface. On the

other hand, if the difference in the acoustic impedance is large, the attenuation will

be small. For this reason, the attenuation of, for example, a steel wire surrounded by

air is negligible and the system can, to a very good approximation, be modelled as a

steel wire being surrounded by vacuum. Also note that, if the embedding material

is an ideal liquid, only longitudinal waves may be radiated, whereas if it is a solid,

both longitudinal and shear bulk waves may be radiated.

2.4.2 Dispersion Curves

Figure 2.4 shows as an example the phase velocity and attenuation dispersion curves

for a steel bar embedded in water. For clarity, only the fundamental modes are

shown. The material properties for this analysis are given in Tab. 2.1.

It has been mentioned before that, if the waveguide and the embedding material are

elastic, the phase velocity dispersion curves for solid cylinders scale with the product

of frequency and the radius of the wire. Moreover, at a particular frequency-radius

product, the dispersion curves also scale with the product of attenuation and radius.

For example, the guided wave attenuation for a 1mm radius steel wire immersed in

water at a certain frequency is exactly twice as high than that for a 2mm radius

steel wire at half that frequency.
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In this example, water is modelled as an ideal or non-viscous liquid. Therefore, only

longitudinal bulk waves radiate from the steel bar into the water. It can be seen

that the attenuation of the lowest order longitudinal mode, L(0,1), at low frequencies

is very small and increases at higher frequencies. The fundamental torsional mode,

T(0,1), is not attenuated at all. The reason for this is best understood by considering

the mode shapes.

2.4.3 Mode Shapes

In order to explain the physics behind the process of leakage, the mode shapes for the

torsional mode, T(0,1), and the longitudinal mode, L(0,1), for a steel bar embedded

in water at the frequency-radius products of 0.1MHzmm are given in Fig. 2.5(a) and

(b). Additionally, the mode shape of L(0,1) at 0.5MHzmm is plotted in Fig. 2.5(c).

The half-space occupied by the water has been arbitrarily truncated at a distance

equal to three times the radius of the waveguide.

It can be seen that for the torsional mode the displacements in water are exactly zero.

This is due to the fact that the modal displacements on the surface of the waveguide

are entirely in the angular direction, which are in-plane displacements. Since the

embedding water does not support shear stresses, the surface displacements do not

couple into the water, and leakage cannot occur. For this reason, the attenuation

of T(0,1) in non-viscous liquids is zero. The case where the embedding liquid has

shear viscosity is discussed in detail in Ch. 4.

The longitudinal mode, however, has surface displacements in the radial direction,

i.e. an out-of-plane component. These displacements do couple into the water and

excite longitudinal bulk waves which radiate and cause the mode to be attenuated.

In the zero frequency limit, the radial displacements vanish and there are only axial

displacements. Therefore the attenuation tends to zero in this limit since the axial

in-plane displacements do not couple into the water. At higher frequencies, the

ratio between radial to axial displacements increases, so that also the attenuation

increases. It should be noted that the undulating displacements in the water arise

from the phase relations of the leaking waves, which are originating at different axial
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positions along the waveguide.

In general, it can be said that, if there are only in-plane displacements on the

surface of the waveguide, attenuation is entirely caused by shear leakage. If there are

both in-plane and out-of-plane displacements, both longitudinal and shear leakage

contributes to the attenuation.

2.5 Choice of waveguide modes for testing

On the basis of the properties of guided waves that have been presented in this

chapter, a choice can be made as to which modes are most suitable for measuring

material properties, always also having in mind the industrial application to the

cure monitoring of epoxy resins in joints.

Firstly, the presence of numerous waveguide modes in the experiment complicates

the analysis because signals from different modes might interfere. In an applica-

tion where thin wires are used, these cannot be separated by methods which are

used for example in pipe testing, where an array of transducers is used to separate

modes according to their characteristic mode shapes [26] (see also Sec. 3.2). For

this reason, it is preferable to work with fundamental modes at frequencies where

no other propagating modes of higher order are present, even though there are high

frequency applications where this is not a problem (see, for example, [27, 28]). This

greatly simplifies the interpretation of a received time trace. Therefore, only the

fundamental modes T(0,1), L(0,1), and F(1,1) are considered further.

Secondly, the effect of dispersion has to be kept as small as possible, especially in

an application where long range testing is necessary. An ultrasonic pulse which is

dispersed out too much may not have sufficient amplitude compared to the back-

ground noise to give reliable results. In this respect, the torsional mode, T(0,1), is

most suitable, because it shows no dispersion at all, but also the longitudinal mode,

L(0,1), shows very little dispersion at low frequencies and can therefore be used for

these purposes.
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Thirdly, the excitability of waveguide modes in thin wires has to be considered. As

will be discussed in Sec. 3.2, the possibilities are in this case limited to the funda-

mental modes. The excitation of the longitudinal and the torsional modes can be

achieved easily using magnetostrictive transduction, which is a non-contact excita-

tion method. Additionally, longitudinal modes can be excited using piezoelectric

transducers.

Having narrowed down the number of suitable waveguide modes in wires to the

fundamental longitudinal and torsional modes, it is important to check whether

these modes are sensitive to any of the properties of an embedding material. This

is discussed in Ch. 4 and Ch. 5.

2.6 Summary

Some fundamental theory behind the propagation of bulk waves in unbounded media

and of guided waves in cylindrical structures has been presented.

In an elastic, isotropic material, there are two modes of propagation: longitudinal

and shear waves. These waves may be homogeneous, in which case the wavenumber

is purely real, or they may be inhomogeneous. Then, the wavenumber is complex,

but in addition, the real part of the wavenumber must be normal to its imaginary

part.

In a cylinder, there are three types of guided modes: longitudinal, torsional, and

flexural. Of each type there is an infinite number of modes, which in general are

characterised by a complex wavenumber which depends on the frequency. Each mode

has a characteristic radial distribution function which is called its mode shape. When

the waveguide is embedded in another medium, the guided wave may be attenuated,

the rate of attenuation depending on the material properties of the waveguide and

the embedding material, the waveguide geometry, the waveguide mode, and the

frequency.
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For the applications investigated in this thesis, the fundamental longitudinal and

torsional waveguide modes in cylinders have been identified as most suitable. This

is because of the practical issues such as the difficulty of interpreting data when

many modes are present, the excitability of waveguide modes, and dispersion.
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Figure 2.2: Displacement mode shapes for a steel cylinder in vacuum.
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Figure 2.3: Schematic showing the leakage of bulk waves at an angle ϑ, which is given

by Snell’s law.
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becomes non-leaky once its phase velocity drops below the bulk velocity of water.
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Chapter 3

Experimental Techniques

3.1 Background

This chapter introduces the general experimental concepts used in this work. The

transduction mechanisms based on magnetostriction and piezoelectricity will be pre-

sented in Sec. 3.2. Since the effect of magnetostriction is less well-known than that

of piezoelectricity, a brief introduction of the physical foundations will be given.

This ensures that the peculiarities of the magnetostrictive transduction system can

be understood. For further information on the physics behind magnetostriction,

the reader will be referred to more detailed literature [29, 30, 31]. On the other

hand, the use of piezoelectric materials is well-known, and the physical foundations

are well documented in literature [8, 32]. Therefore, mainly the application to the

excitation of waveguide modes will be discussed. It should be noted that there exist

other electro-magnetic transducer (EMAT) systems which are not based on magne-

tostriction and which have been used for example for the excitation of guided waves

in tubes [33]. However, these systems have a lower sensitivity than magnetostrictive

systems, are are therefore not pursued here.

Furthermore, the general experimental set-up, which is common in the waveguide

experiments, is presented. The experimental procedures, which are different for the

attenuation and the reflection coefficient measurements, will be discussed separately

in Sec. 4.4 and Sec. 5.7, respectively.
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In order to determine the material properties of a material embedding a waveguide,

it is also necessary to know the material properties of the waveguide itself. The

techniques applied to measure the waveguide properties are presented in Sec. 3.4.

It is assumed that the density of the waveguide material, ρ, is known, and that the

waveguide material is elastic and isotropic.

3.2 Excitation of Waveguide Modes

3.2.1 Magnetostrictive Excitation

When a material is exposed to a magnetic field, it may be strained and change its

dimensions. This effect is referred to as magnetostriction [29]. Conversely, when a

magnetostrictive material is strained, a magnetic field is generated. This is called

inverse magnetostriction. The source of this effect lies mainly in the so-called spin-

orbit coupling in atoms, i.e. the coupling between the net magnetic moment of atoms

and their electron clouds (see, for a detailed explanation, [29]). As the spins of the

atoms of a particular magnetic domain align themselves in the external magnetic

field, the non-spherical electron clouds are also rotated. This results in a change of

the dimensions of the whole domain.

There are a number of magnetostrictive effects, which are described in detail in

Ref. [31]. Two of those are important in the context of this work. The first effect

refers to the change in dimension in the direction of the applied magnetic field. For

example, a magnetostrictive cylindrical rod changes its length when subjected to an

axial magnetic field. This longitudinal effect is called the Joule effect. The second

effect refers to a twisting motion due to a combination of circular and axial magnetic

fields. This is called the Wiedemann effect. These effects can be exploited for the

excitation of longitudinal and torsional waveguide modes in cylindrical waveguides,

and have been researched extensively by Tzannes [34]. Magnetostrictive excitation

of waveguide modes has also been used by other authors [35, 36, 37], and a general

review is given in [38]. A detailed discussion regarding torsional modes in magne-

tostrictive cylinders was given by Aime et al. [39].
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Figure 3.1(a) shows a schematic of a magnetostrictive transduction system. When an

alternating current with frequency ω flows through a coil, which acts as a transducer,

an axial magnetic field is created inside the coil. As will be explained further below,

in order to excite longitudinal modes of the same frequency, the section of the

magnetostrictive waveguide, which is inside the coil, has to be permanently axially

magnetised (see Fig. 3.1(b)). In order to excite torsional modes, this section has to

be permanently magnetised in the circular direction. The interaction of the time

varying axial magnetic field produced by the coil and the permanent magnetic field

in the wire generates stress waves in the waveguide via the Joule or the Wiedemann

effect. Conversely, a stress wave of frequency ω causes an alternating magnetic

field via the inverse magnetostrictive effects. This induces an alternating current

of frequency ω in the coil, which then acts as a receiver. Also for reception, the

material has to be permanently magnetised.

For transmission, the section of the waveguide where the coil is placed has to be

magnetised permanently in order to avoid the double frequency effect [29]. This is

explained by means of Fig. 3.2, which shows schematically the development of the

variables magnetisation, M , and strain, ε, during one cycle of an external, alter-

nating magnetic field, H(t). Consider a magnetostrictive material which has been

magnetised beforehand in a large magnetic field of magnitude H0, as depicted in

the graphs on the left hand side of Fig. 3.2. With no external field present, there

is a remnant magnetisation, M0. During one cycle of an alternating magnetic field

of frequency ω and maximum amplitude H0, the magnetisation completes a whole

hysteresis loop. At the same time, the strain completes two whole loops, and there-

fore a wave with frequency 2ω is excited in the material. This is called the double

frequency effect. However, if the magnetic field applied by the transmitting coil,

Hcoil, which is used to excite the guided waves, is small compared to H0, the mag-

netisation will oscillate around the value of M0 with the same frequency ω. Hence,

also the strains will oscillate around the value ε0 with that same frequency. This is

shown on the right hand side of Fig. 3.2. In a completely demagnetised sample, the

field Hcoil would cause the magnetisation to go through a whole hysteresis loop and

hence produce stress waves of twice the frequency.
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For the reception of guided waves the reason for permanent magnetisation lies not

in the double frequency effect, but in the fact that a stress only causes a change

in magnetisation in a magnetised sample. This can be seen in Fig. 3.3, which

schematically shows the dependence of magnetisation, M , on the applied magnetic

field, H, for both zero stress, T = 0, and non-zero stress, T = T1. A sample which

has been previously magnetised changes magnetisation from point ”A” to point ”B”

when no external field is present. However, at the origin the curves for zero and

non-zero stress meet, and a stress applied to a demagnetised section produces no

magnetisation. For a more detailed explanation see [29].

As can be seen from the figures in this section, magnetostriction is a non-linear

effect, and the direction of the strain does not depend on the sense of the applied

magnetic field. In the context of the Joule effect, for example, a rod of magne-

tostrictive material is said to show negative magnetostriction if, compared to the

demagnetised state, it contracts axially when a magnetic field is applied, and posi-

tive magnetostriction if it lengthens. The schematic in Fig. 3.2 thus shows a material

with positive magnetostriction.

Materials with large magnetostrictive coefficients are for example FeNi- and FeCo-

alloys. One particular FeCo-alloy, containing 49% Fe, 49% Co, and a balance of

vanadium and manganese, is known under the trade names Permendur and Re-

mendur. It can be obtained, for example, from Panametrics Inc. in the form of

circular waveguides of approximately 1.5mm diameter and 1m length (KT55 kit,

[40]). Transducers were also obtained from Panametrics Inc. and they were used in

some of the experiments (see Fig. 3.4(a) for a photograph). These are optimised to

work at around 100 kHz.

It is straightforward to self-manufacture such transducers, since the basic compo-

nents consists only of a coil made of thin copper-wire which is wound around a

bobbin. In the experiments presented in the remainder of the thesis, a teflon-tube

with an inner diameter of 1.5mm and a wall thickness of 1mm was used as a bobbin.

The copper wire (0.2mm diameter) was wound in three to four layers around the
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bobbin to form a coil and fixed using instant glue. The length of the coil was about

5mm (see photograph in Fig. 3.4(b)). By comparison, the wavelength of the fun-

damental torsional mode in a Permendur bar at 100 kHz is approximately 32mm.

With these transducers, it was possible to excite guided modes up to a frequency of

around 400 kHz.

The permanent axial magnetisation of the magnetostrictive wire is in general achieved

by placing a bar magnet parallel to the section of the wire which is located inside the

coil. Circumferential magnetisation may be achieved by applying a constant DC-

current through the wire, since an electrical current in the axial direction produces a

circumferential magnetic field. This has the advantage that constant circumferential

magnetisation is ensured, but is on the other hand not practical due to the additional

electrical connections which have to be made to the magnetostrictive wire. Instead,

the wire can be magnetised before the experiment by applying a high DC-current

along the wire for a very short time.

3.2.2 Piezoelectric Excitation

Piezoelectric materials are widely used in all fields of ultrasonics as a means of

exciting stress waves in materials (see, for example, [41]). When an electric field is

applied to a piezoelectric material, it changes dimensions, the stress being linearly

related to the electric field [32]. Inversely, an electric field is generated when the

material is strained. Piezoelectric discs or plates which are coupled to another

material will excite stress waves in that material when an alternating electric field is

applied to them. The frequency of the stress waves is equal to that of the alternating

electric field.

In order to excite a particular waveguide mode, it is possible to place piezoelectric

elements on the surface of the waveguide such that the displacements match the

mode shape of the desired mode on this surface. This is being used for example in

pipe testing, where an array of transducers is used to excite and receive longitudinal,

torsional and flexural modes [26]. For example, in order to excite a torsional mode

in a pipe, piezoelectric plates, which are poled such that they exhibit shear strains
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for an applied electric field across the thickness, are placed around the circumference

of the pipe such that the displacements of each element are in the circumferential

direction.

However, such an arrangement using multiple elements is not feasible in thin wires

but is, depending on the radius of the wire, limited to a very small number because

of the small surface area. Nevertheless, longitudinal modes can be generated in a

straightforward way by placing a single piezoelectric disc at the top end of the wire or

bar (see Fig. 3.5). An alternating voltage applied to the electrodes of the disc, which

is poled such that it operates in the thickness mode, creates axial displacements

over the cross-section of the waveguide. This matches closely the mode shape of the

lowest order longitudinal mode, L(0,1), and hence this mode is excited. Care has

to be taken to ensure that the end of the wire is as square as possible and that the

piezoelectric disc is centred on the axis of the wire such that the excitation of flexural

modes is avoided. The diameter of the disc can be chosen such that it is the same

as that of the wire. However, this becomes difficult once the wire diameter is below

about 1mm. Then, the diameter of the disc generally has to be chosen larger than

the wire diameter because of the difficultly in handling during transducer assembly

and poor material availability.

A typical arrangement for the excitation of the longitudinal mode, L(0,1), is shown

in Fig. 3.5(a). The transduction system consists of the piezoelectric disc and a steel

backing, the disc being directly coupled to the wire. In the case that the diameter

of the disc can be chosen to be the same as that of the wire, the disc can simply be

attached using general purpose, low viscosity adhesive (for example instant glue),

with which very thin bond-lines can be achieved. This is important because in

this design, the electrical connection to the electrodes of the disc is via capacitive

coupling. As can be seen in the schematic in Fig. 3.5(a), the actual connections

to the signal generator are made to the wire and to the backing, in general using

crocodile clips. It was found that the noise level is generally smaller when the ground

electrode is connected to the side of the disc which connects to the wire. This may

be due to the fact that otherwise the wire acts as an antenna.
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The diameter of the steel backing is always chosen to be the same as that of the

piezoelectric disc. The purpose of the backing is to generate a reaction and thus

a significant force in the wire. The transducer is operated below its resonance fre-

quency so as to avoid distortion of the input pulse shape. It should be noted that

the backing thus limits the upper operating frequency, depending on the dimensions

of the disc and the backing. The effect of the backing geometry on the resonance

was investigated by Allin [42]. Nevertheless, this arrangement was found to be bet-

ter suited for higher frequencies (above around 400 kHz) than the magnetostrictive

transducer.

In the case where the wire diameter is smaller than that of the disc, the wire is

soldered to the disc (see Fig. 3.5(b)). For this, a solder pellet is first placed on a disc

and melted using a soldering iron. The end of the wire, which has been prepared

using solder flux, is placed carefully into the middle of the molten pellet, and then

the solder is allowed to cool. This way the disc is firmly attached to the wire. It

should also be noted that in this arrangement the electrical connection is made to

the solder pellet instead of the wire because, in thin wires of the order of about

0.5mm or less, scattering of the ultrasonic guided wave occurs even from very minor

disturbances such as touching the surface with a crocodile clip. An alternative way

of attaching the wire to the piezoelectric disc has been investigated by Atkins [43].

Atkins used a cone of epoxy resin instead of solder, and studied the effects of the

cone geometry on the excitation of the longitudinal mode. However, it was found

that the solder gave satisfactory results and was much easier to manufacture.

The torsional mode, T(0,1), may also be excited using piezoelectric transduction.

Figure 3.5(c) shows a schematic of the arrangement in this case. Two piezoelectric

shear elements are placed on opposite sides of the wire, and they are excited with the

same input signal. The displacements and the polarisation of the shear transducers

are such that a torsional momentum is created. However, it was found that, in

thin wires it was difficult to maintain axi-symmetry and hence flexural modes were

likely to be excited as well. Therefore the magnetostrictive system was favoured for

torsional waves.
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3.3 Experimental Setup

3.3.1 Waveguide system

The general set-up for the experiments conducted in this work is shown in Fig. 3.6.

When magnetostrictive excitation is used, a magnetostrictive wire, acting both as

a transduction wire and a delay line, is connected to a measurement wire, which

can be chosen to have a different diameter than the magnetostrictive wire. In gen-

eral, the measurement wires used in the experiments were made of stainless steel,

but other suitable wire materials may be used. With piezoelectric excitation, the

magnetostrictive wire is replaced by a steel wire.

The guided wave, which is generated in the transduction wire, propagates along

the wire until it is partly reflected from the interface with the measurement wire.

This reflection serves as a reference in successive experiments to cancel out effects

such as changes in the excitation amplitude. The part of the guided wave which

is transmitted into the measurement wire interacts with the embedding material.

The reflection method experiments record the reflection which occurs at the point

where the wire enters the surrounding material, whereas the attenuation method

measurements monitor the reflection from the remote free end of the measurement

wire.

As an example, Fig. 3.7 shows the pulse-echo time trace of the torsional mode,

T(0,1), in a steel wire connected to a magnetostrictive wire in air. The excitation

signal can be seen at the start of the time trace. The first reflection corresponds

to the reference reflection from the joint between the magnetostrictive and the steel

wire, whereas the second signal is the reflection from the free end of the steel wire.

The following signal is the second reverberation between the joint and the free end

of the steel wire.

Ideally, the geometry of the interface between the transduction and the measure-

ment wire is perfectly axi-symmetric. Then, below the cut-off frequencies of higher

order modes, the lowest order fundamental modes L(0,1) and T(0,1) do not scatter,
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by symmetry, into propagating modes other than themselves. The scattering of tor-

sional waves from a diameter step in a cylindrical waveguide was studied in detail by

Engan [44]. The theoretical results presented in his paper can be used to estimate

the reflection and transmission of the incoming torsional wave for different diameters

of the transduction and the measurement wire. However, it should be noted that

here the two adjoining wires may have different material properties and that the

connection is not perfect, and thus such a prediction can only give an indication.

The connection between the transduction wire and the measurement wire is best

accomplished by drilling a hole approximately 1–2mm deep into the larger diameter

wire at one of its ends, with a diameter matching that of the smaller diameter wire.

The smaller diameter wire is then glued into the hole using instant glue. This makes

a bond which is at the same time firm enough for the measurements, but can also

be detached afterwards by a combination of heat and mechanical treatment. This

is especially important when using the magnetostrictive wire, which is relatively

expensive, because in experiments such as cure monitoring of epoxy resins, the

measurement wire has to be disposed of after the experiment. It is also possible to

use solder instead of glue, however, it was found not to be as practical as gluing.

In early experiments, the piezoelectric transducers were directly attached to mea-

surement wires of 0.5mm diameter or less to excite longitudinal modes. In this case,

the reference reflection was obtained by simply introducing a sharp kink in the wire

at a suitable location. This is due to the fact that any change in the curvature

of the wire presents a discontinuity in the waveguide geometry (see, for example,

[45]). Surprisingly, with a longitudinal mode being incident, it was found in the

experiments that the scattering into flexural modes is small. The advantage of this

method was that the magnitude of the reflection from the kink and hence of the

transmitted signal could be controlled by adjusting the kink angle. The more acute

the angle, the higher is the reflection.

In the previous paragraph, the effect of a change in curvature was mentioned. Thin

wires are usually delivered on reels and tend to curl when taken off the reel. The
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wire generally shows a constant curvature along its length. In vacuum, as long as the

radius of the curvature is large compared to the wavelength of the guided wave, this

effect can be neglected and the wire can be modelled as a straight wire. However,

when the waveguide is embedded in another material, this curvature may have an

effect on the attenuation of the guided wave. Beard has found that this effect is

significant for high frequency modes, but not as significant for low frequency modes

such as the ones used in this work [46]. Therefore, the effect of curvature is neglected

here.

3.3.2 Instrumentation

The experiments presented in this thesis make use of a range of instruments. The

core of the experimental set-up consists of the Wavemaker-instrument, which is pur-

pose built by Macro Design Ltd. [47], and a digital oscilloscope. Alternatively, a DUI

(Desktop Ultrasonic Instrument) from NDT Solutions Ltd. [48] may be used. Both

the Wavemaker and the DUI can be used to drive piezoelectric and magnetostrictive

transducers. Additionally, a computer is used for data capture.

The Wavemaker is capable of driving the ultrasonic transducers with a range of

different pulse shapes, and can be operated in pulse-echo or pitch-catch mode. The

frequency of the input signal to the transducers can be changed almost continuously

in the range between 0.05 – 4MHz, and the received signal can be amplified by up to

60 dB. A LeCroy-oscilloscope is connected to the Wavemaker and is used to display

and, if necessary, average the received signals. A computer is in turn connected to

the oscilloscope via a GPIB-interface, and the software Spectrum, a tool which was

developed in the NDT laboratory at Imperial College, reads the received waveforms

from the oscilloscope and stores them to disk for further processing. This set-up is

preferred in the development stages of a technique because of the versatility of its

individual components.

In place of this, the DUI combines a Wavemaker and an oscilloscope, though with

limited options, and it can be directly controlled via a computer. The internal

arbitrary function generator and a number of pre-set waveforms allows any desired
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waveform to be sent, and it can be used both in pulse-echo and in pitch-catch modes.

It is better suited for automated operations such as cure monitoring experiments,

where numerous waveforms have to be stored in a certain time-interval.

3.4 Measurement of Waveguide Properties

3.4.1 Shear Velocity and Shear Modulus

The shear bulk velocity, cs, of the waveguide material in a rod can be determined

easily by measuring the velocity of the fundamental torsional mode, T(0,1). As men-

tioned before, T(0,1) propagates at exactly the shear bulk velocity of the waveguide

material. The phase velocity, which is the speed at which the wave crests propagate,

and the group velocity, which is the speed at which a wave packet propagates along a

waveguide in vacuum, are identical due to the non-dispersive nature of the torsional

mode. Therefore, the measurement of the velocity of a pulse is identical to a phase

velocity measurement. In an experiment, successive reflections from the end of the

wire in a pulse-echo arrangement are monitored. From the time for a round trip of

a signal, T , and the length of the waveguide, l, the velocity is calculated according

to

c =
2l

T
. (3.1)

Of course, the longer the distance l, the more accurate the measurement becomes.

The shear velocity calculated this way is, in elastic materials of density ρ, related

to the shear modulus, µ, by

cs =

√

µ

ρ
. (3.2)

3.4.2 Young’s Modulus

As mentioned before, the fundamental longitudinal mode, L(0,1), in a cylinder in

vacuum approaches the bar velocity, cE, in the zero frequency-radius limit. This

velocity is related to Young’s modulus in the following way:

cE =

√

E

ρ
. (3.3)
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However, care has to be taken in this case since the longitudinal mode is dispersive.

Group and phase velocity of the guided wave are only equal in the zero frequency-

radius limit. As an example, the group velocity, which is in free waveguides defined

by

cgr =
∂ω

∂ξ
, (3.4)

where ξ is the real part of the axial wavenumber of the guided mode (see Sec. 2.3),

is plotted together with the phase velocity in Fig. 3.8 for a steel bar in vacuum. It

can be seen that the phase velocity is almost constant and equal to the bar velocity

over an extended frequency range, but that the group velocity deviates more from

this value at higher frequencies than the phase velocity. However, in the practical

application, it is easier and more straightforward to measure the group velocity using

a narrow-band tone-burst (20 cycles or more). It has thus to be ensured that the

measurement frequency is chosen small enough such that the error, ∆c = cE − cgr,

is kept as small as possible.

3.4.3 Young’s Modulus and Poisson’s Ratio

A numerically more demanding way to determine Young’s modulus, E, and at the

same time the Poisson ratio, ν, of the waveguide material is to measure the phase

velocity of L(0,1) over a range of frequencies. For this, a low frequency, broad-

band signal is used to excite L(0,1), which then propagates along a wire of a given

length and is reflected from the free end of the wire. The experiment is repeated

with the same wire or wire type for a different length. For example, the wire under

investigation can be cut down to a smaller length. Software developed by Long et

al. [49] can then be used to extract the phase velocity from the two signals which

have travelled over different lengths.

Nagy and Kent have presented an approximate formula for the dependence of the

phase velocity of L(0,1) on the Poisson ratio at low frequency-radius products [50],

and also used this formula to determine Poisson’s ratio from experimental results.

However, the experiments presented in Ref. [50] were based on the measurement of

group velocity rather than phase velocity. Expressed in the notation used in this
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thesis the relationship given by Nagy and Kent is:

cph = cE

[

1− 1

4
ν2(ξR)2 +O(ξR)4

]

, (3.5)

where R is the radius of the waveguide. Note that, because dispersion is small at

low frequency-radius products, the term ξR is also small.

In the above equation, the axial wavenumber of the guided wave, ξ, implicitly con-

tains the phase velocity, since ω = cphξ. Using this equation to eliminate the

wavenumber in Eq. (3.5), and neglecting terms of order higher than two yields:

cph = cE

[

1− 1

4
ν2

(

ωR

cph

)2
]

. (3.6)

This is an equation of the form

Y = cE [1− ν2X], (3.7)

with

Y = cph and X =

(

ωR

2cph

)2

. (3.8)

The variables X and Y are known from the experiment, and a simple linear curve

fit can be used to determine cE and ν. Figure 3.9 shows the range of validity of this

approximation for the example of a steel bar in vacuum by comparison to the phase

velocity predicted by the software Disperse.

As an example, Fig. 3.10 shows an experimentally obtained and processed phase

velocity dispersion curve of L(0,1) in a 2.5mm radius steel bar and the corresponding

curve fit. In this case, the bar velocity was evaluated as cE = 4.822m/ms and

Poisson’s ratio as ν = 0.333. The curve fit only shows a small standard deviation of

∆Y = 0.6 10−3m/ms. It should be noted that these values may deviate considerably

from the bulk value due to anisotropy of the waveguide material caused by the

process of manufacture (see, for example, [51]). Even though the error in this

example is small, the accuracy of this method is limited since the dispersion is

inevitably small at low frequency-radius products. Therefore, whenever it is possible

to use the fundamental longitudinal and torsional modes, the methods presented in

Sec. 3.4.1 and Sec. 3.4.2 are preferred.

57



3. Experimental Techniques

Poisson’s ratio may also be derived from the bar velocity and the shear bulk velocity

in the following way [32]:

ν =
1

2

(

cE
cs

)

− 1. (3.9)

3.4.4 Derivation of Longitudinal Bulk Velocity

The longitudinal bulk velocity of the waveguide material, cl, is derived from those

quantities which are experimentally determined as described in the above sections.

Young’s modulus, E, and the Poisson ratio, ν, are related to the longitudinal bulk

velocity by [32]

cl =

√

E

ρ

1− ν

(1 + ν)(1− 2ν)
= cE

√

1− ν

(1 + ν)(1− 2ν)
. (3.10)

Alternatively, the bulk shear velocity, cs, and Poisson’s ratio can be combined to

yield the longitudinal bulk velocity [32]:

cl = cs

√

1− ν
1
2
− ν

. (3.11)

3.5 Summary

The experimental concepts which are used in this work have been discussed. Mag-

netostrictive transduction is applied to excite both the fundamental torsional and

the longitudinal mode up to a frequency of approximately 400 kHz. Piezoelectric

transducers directly attached to the wire are used to excite the fundamental longi-

tudinal mode. These can be applied at higher frequencies than the magnetostrictive

transducers.

The experimental setup generally consists of a transducer, a transduction wire,

which also acts as a delay line, and a measurement wire. From the point where

the two wires are connected, a reference reflection of the incident guided mode is

obtained. The measurement wire is embedded in the material under investigation,

and reflections arriving later in time than the reference reflection have interacted

with the surrounding material.
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The waveguide properties are determined either by the direct measurement of the

shear velocity and the bar velocity in cylindrical waveguides or by a more sophisti-

cated method, which is based on the measurement of the phase velocity dispersion

of the fundamental longitudinal mode. This method yields Young’s modulus and

Poisson’s ratio of the waveguide material. All other material properties of the elastic

wire can be derived from these quantities.
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magnetostrictive wire

magnetized sections
~ I

guided wavetransmitter receiver

(a)

axial magnetization circumferential magnetization

(b)

Figure 3.1: (a) Schematic of a magnetostrictive transduction system. The shaded areas

indicate permanently magnetised sections. (b) Illustration of axial and circumferential

magnetisation in these sections. The arrows indicate the direction of the magnetisation,

M.
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Figure 3.2: Schematic of the development of magnetisation and strain in a magnetostric-

tive material. (a) Time-varying, external magnetic field H(t), (b) magnetisation M(H),

and (c) strain ε(H). In the graph on the left hand side, the material is magnetised in

a large magnetic field, H0, whereas in the graph on the right hand side, this material is

subsequently subjected to a much smaller field, Hcoil. See text for the explanation of the

double frequency effect.
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H

M

0
0

T = 0

T = T1

A

B

Figure 3.3: Schematic of the influence of stress, T , on the magnetisation, M . The curves

show the hysteresis loop as the material is being magnetised by an external field, H, for

the first time. Stress has no influence on a completely demagnetised sample.

(a) (b)

Figure 3.4: (a) Photograph of the magnetostrictive transducers obtained from Panamet-

rics Inc., and (b) photograph of a self-manufactured transducer.
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piezoelectric disc
steel backing

waveguide
~V

(a)

piezoelectric disc

steel backing

waveguide

~V

solder pellet

(b)

piezoelectric shear transducer

waveguide~V

(c)

Figure 3.5: (a) Schematic of the piezoelectric transduction mechanism to excite the

L(0,1)-mode. (b) Schematic of the mechanism when the wire waveguide diameter is much

smaller than that of the piezoelectric disc. (c) Arrangement of piezoelectric shear trans-

ducers to excite T(0,1).
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Figure 3.6: Schematic of the experimental set-up, here shown using magnetostrictive transduction.
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Figure 3.7: Typical time trace of T(0,1) in pulse-echo arrangement, excited using mag-

netostrictive excitation.
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Figure 3.8: Comparison between the phase and group velocity of L(0,1) at low frequency-

radius products for a steel bar in vacuum. The material properties of steel are given in

Tab. 2.1. The difference between the bar velocity and the group velocity is indicated by

∆c.
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4.5

5.5
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Disperse predictions

Nagy approximation

Figure 3.9: Comparison between Disperse predictions and the approximate formula of

Eq. (3.7) for a steel bar in vacuum. The quantities X and Y are defined in Eq. (3.8). A

value of X = 0.4 corresponds in this case to a frequency-radius product of approximately

1MHzmm.
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Figure 3.10: Example of experimental results for the phase velocity (solid line) and

the corresponding linear curve fit (dashed line). The quantities X and Y are defined in

Eq. (3.8).
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Chapter 4

Attenuation Method

4.1 Background

This chapter introduces the attenuation method as a technique to measure the

material properties of an embedding material. Here, we concentrate mainly on

the measurement of the properties of viscous liquids. This serves the purpose of

validating the theoretical background of the attenuation technique experimentally

with the use of viscous liquids whose properties are well documented. Apart from

being an application in its own right, for example in the context of industrial process

monitoring of liquids, this is also necessary for the justification of its use for the cure

monitoring application, being the main motivation for this work.

The quantitative previous research into the use of waveguide techniques to mea-

sure material properties of an embedding material has also concentrated on viscous

liquids. Attention has also been given to other media such as slurries or, as will

be discussed in Ch. 6, to epoxy resins during cure, however, these results are of a

qualitative nature. The waveguide techniques can be divided into two main classes:

The first class of experiments measures the change in the wave speed of a guided

mode when the waveguide is embedded in another material compared to the case

when it is in vacuum. The second class of experiments is based on the attenuation

method presented in this thesis.

The corresponding literature will be reviewed in Sec. 4.2. The specific literature
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regarding waveguide techniques for cure monitoring will be discussed in Sec. 6.1.

Section 4.3 describes the solid-like model for viscous liquids, which is used by the

software Disperse to predict the dispersion curves. Then it will be explained in

detail how to extract the shear viscosity and the longitudinal velocity from guided

wave attenuation measurements.

4.2 Review of Literature

The use of ultrasonic guided waves for the measurement of material properties such

as the density and the viscosity of an embedding fluid has been investigated previ-

ously by several authors. Many of the techniques used to determine the density are

based on the measurement of the torsional wave speed in waveguides of non-circular

cross-section. Kim and Bau [52] and subsequently Smit and Smith [53] were able to

determine the density of an embedding fluid, considering that the speed of torsional

waves decreases with increasing density of the fluid. It can be shown that in most

cases of interest the torsional wave speed, c, can be approximated by

c

c0
= 1− A1

ρf
ρs
, (4.1)

where ρf and ρs are the density of the embedding fluid and the waveguide, re-

spectively, and c0 is the wave speed without fluid loading. A1 is a shape factor,

determined by the cross-section geometry of the waveguide [36]. For circular cross-

sections, A1 = 0. This has also been applied to the measurement of two-phase fluids

by Kim et al. [36] and to slurries by Costley et al. [54].

Kim and Bau have taken this approach further to simultaneously measure the density

and the shear viscosity of an embedding fluid [55]. In this case, the torsional sensor

consists of a rod with two sections of different cross-sections, a rectangular and a

circular one. The difference in torsional wave speed for the free and the fluid-loaded

rectangular waveguide is sensitive to the density of the fluid, whereas the change in

wave speed in the circular waveguide depends on the product of dynamic viscosity

and density. The two measurements are combined to give both density and dynamic

viscosity.
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However, not only can the change in the guided wave speed be very small, also

a short gauge length, such as the embedded length in adhesive joints for a cure

monitoring application, would further decrease the sensitivity of this technique.

As will be seen in the following sections, experiments based on the measurement of

guided wave attenuation rather than wave speed are a promising alternative. Roth

and Rich built a device as early as 1953, measuring the viscosity of liquids using a

strip-like waveguide sensor [56]. In their paper, the attenuation of the lowest order

symmetric guided wave is related to the viscosity of the embedding liquid. Recently,

Costley et. al. have presented a method based on the attenuation of the fundamental

torsional mode [57]. However, their method is non-analytical and requires the use

of calibration liquids. Also Kim et. al. studied the effect of viscous fluid loading

on torsional wave attenuation in circular rods, and derived an asymptotic formula

which was experimentally verified [58].

In contrast to the first class of experiments, which measure a change in guided wave

speed, the second class of experiments, measuring the guided wave attenuation, has

received much less attention regarding the quantitative prediction of material prop-

erties, and the current literature is of a qualitative nature. This task is addressed

in the remainder of this chapter.

4.3 Solid Model for Viscous Liquids

The case where the embedding medium is a liquid with Newtonian viscosity will be

discussed in this chapter. In all the following considerations, the density of the fluid

is assumed to be known.

A viscous fluid can be represented by a solid-like material with a phase velocity and

attenuation for both longitudinal and shear bulk waves [59, 60]. It can be shown

that the dynamic shear velocity in the liquid, cs, can be expressed in terms of the
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shear viscosity, η, in the following way:

cs =

√

2ηω

ρf
, (4.2)

where ω = 2πf is the circular frequency, and ρf is the density of the fluid. The

shear attenuation, αs, in nepers/m, is calculated as

αs [np/m] =

√

ωρf
2η

. (4.3)

It can be seen from this that the shear bulk velocity and attenuation in a viscous

fluid are related to each other by

csαs = ω, (4.4)

and thus only one variable has to be determined in order to fully characterise its

shear properties. Consider now the attenuation given in nepers per wavelength, α′
s:

α′
s [np/wl] = λαs [np/m], (4.5)

where λ is the wavelength. The wavelength is related to the phase velocity by

λ =
cs
f
, (4.6)

and combining this relationship and Eq. (4.4) with Eq. (4.5) yields

α′
s [np/wl] = 2π. (4.7)

In the following, the numerical implementation uses this to fix the attenuation in

nepers per wavelength and hence only the shear velocity is searched for. Subse-

quently, the shear viscosity is calculated from the shear velocity using Eq. (4.2).

The longitudinal properties are characterised by bulk velocity, cl, and attenuation,

αl. In the Stokes model [60], which is adopted here, the longitudinal attenuation

is assumed to arise entirely from the shear viscosity. The relationship between the

bulk velocity and attenuation of longitudinal waves is more complicated than for

shear waves. However, it can be shown that the change in longitudinal bulk velocity

when the viscous losses are accounted for, compared to the viscosity-free case, is

very small. For example, for Glycerol with an assumed shear viscosity of 10Pa s,
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the longitudinal velocities calculated including and excluding the viscous effect differ

by about 0.05%. Therefore the effect on the longitudinal velocity will be neglected

here. In the case that c2s ¿ c2l , i.e. for relatively low viscosity values, the bulk

attenuation may approximately be written as

αl ≈
2ω2η

3c3l ρf
(4.8)

(see also [60]). The liquids examined in this thesis are well described by these

approximations, and the above equations are implemented in the software Disperse.

However, it should be noted that for high viscosities a more rigorous approach may

have to be adopted.

4.4 Experimental Setup for Attenuation Measure-

ments

Attenuation is measured by comparing the amplitude of the guided wave when the

waveguide is in air to the amplitude when the waveguide is embedded over a given

length, L (see Fig. 3.6). As mentioned before, the guided wave which is excited

in the transduction wire is partly reflected from the joint with the measurement

wire, and this reflection serves as a reference. The fraction of the guided wave

which is transmitted across the joint into the measurement wire is subsequently

reflected from the free end of the measurement wire. In the section where the wire

is embedded in the viscous liquid, the guided wave is attenuated. Figure 4.1 shows

typical experimental time traces of T(0,1) before and after embedding a steel wire

in Glycerol.

At a given frequency, the amplitudes of the Fourier transforms of the reference

reflection and the end reflection before embedding are denoted by Avac
0 and Avac,

respectively, and after embedding by Aemb
0 and Aemb, respectively. The guided wave

attenuation α in np/m over the embedded length L is then calculated from

α = − 1

2L
ln

(

Aemb/Aemb
0

Avac/Avac
0

)

. (4.9)

Note that if the end of the wire is also embedded in the liquid, the guided wave

is not totally reflected but may also transmit energy into the liquid through the
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end face. This additional loss would introduce a small error in the attenuation

calculations, and is therefore avoided by leaving the end of the wire free. Also note

that reflections from changes in the surface impedance (such as the entry reflection)

are neglected here. For viscous liquids, this assumption is valid to a high degree of

accuracy (see Ch. 5 for the dependence of the entry reflection on the shear velocity

of an embedding material).

The measurement wires typically employed in the experiments were stainless steel

wires with radii between 0.25mm and 2.5mm. The material properties for the wires

used in the following experiments were determined experimentally by measuring the

bar velocity and the torsional velocity (according to Sec. 3.4.1 and Sec. 3.4.2), and

are listed in Tab. 4.1. Polyethylene beakers were used as a container for the liquids,

and the measurement wire was fed through holes in the walls.

Table 4.1: Material parameters used for the analysis in Ch. 4.

Material cl [m/s] cs [m/s] ρ [kg/m3]

Steel wire (0.25mm radius) 5560 3060 7930

Steel wire (0.50mm radius) 5120 2950 7930

Steel wire (1.00mm radius) 5550 2940 8070

Steel wire (2.50mm radius) 5630 2980 7770

Glycerol 1920 see Eq. (4.2) 1258

4.5 Measurement of Shear Viscosity Using T(0,1)

4.5.1 Numerical Predictions

As mentioned in Sec. 2.4.3, the fundamental torsional mode has surface displace-

ments in the angular direction only, and therefore only leaks shear bulk waves into

a surrounding medium. For this reason, the attenuation of T(0,1) is entirely due

to shear leakage, and hence is sensitive to the acoustic shear properties of the sur-
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rounding material only. The software Disperse can be used to predict the T(0,1)-

attenuation dispersion curves as a function of the shear viscosity, assuming that the

density of the viscous liquid and the material properties of the waveguide material

are known. In an experiment, the attenuation is measured and the dispersion curves

are used to correlate this to the shear viscosity.

It should be noted that the dispersion curves only depend on the frequency-radius

product as described in Sec. 2.3.2 when the material properties do not depend on

the frequency themselves. Here, the shear velocity of the viscous liquid depends on

the frequency, and hence the frequency-radius dependence of the dispersion curves

is no longer valid.

In order to illustrate the back-fitting procedure, Fig. 4.2(a) shows as an example a

T(0,1)-attenuation measurement for a 1mm radius steel bar embedded in an aque-

ous solution of Glycerol at several frequencies, and Fig. 4.2(b) shows the predicted

T(0,1)-attenuation dispersion curves at exactly these frequencies. An attenuation

value in plot 4.2(a), for example at 0.175MHz, corresponds to a point on the ap-

propriate dispersion curve in plot 4.2(b). In this way, the dynamic viscosity can

be directly determined. In principle it is sufficient to evaluate the viscosity at one

single frequency. However, in order to increase the accuracy by averaging, and to

verify the frequency dependence of the dispersion curve, measurements are taken at

several frequencies.

4.5.2 Experimental Validation

Viscosity standards used to calibrate viscometers can be used to estimate the ac-

curacy of the guided wave measurements. As an example, the commercial viscosity

standard Cannon VP450, which is a mineral oil, was obtained for the experiments

[61]. Figure 4.3 shows an attenuation measurement of T(0,1) at a temperature of

21.0 ◦C using a 0.5mm radius steel wire. The material properties of the steel wire

are given in Tab. 4.1. At each frequency, the viscosity was calculated, and the dis-

persion curve, which is also plotted in Fig. 4.3, was predicted using the average value

of viscosity. The average viscosity was this way determined as η = 1.42± 0.03Pa s,
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where the error is the standard deviation from the mean value.

Most viscous liquids follow an approximate relationship of the form

log η = a+
b

T
, (4.10)

where a and b are characteristic constants and T is the absolute temperature (see for

example [62], p. 52). The viscosity of the standard at the measurement temperature

was interpolated according to the above expression using the data at different tem-

peratures stated by the manufacturer in the range between 20 ◦C and 26 ◦C, and was

determined as η = 1.395Pa s at the measurement temperature. Thus, the viscosity

can be determined within a range of approximately 2%.

As another example, the attenuation measurement for a 1mm steel wire immersed

in an aqueous solution of Glycerol with 0.7% water content at 20 ◦C, shown in the

explanatory plot in Fig. 4.2, yields a dynamic viscosity of η = 1.17±0.07Pa · s. This
compares very well to a literature value, which is available for an aqueous Glycerol

solution with 1% water content, of η = 1.15Pa · s.

4.6 Measurement of Shear Viscosity Using L(0,1)

4.6.1 Low Frequency-Radius Approximation

The longitudinal mode L(0,1) may, at low frequencies, also be used to measure

the dynamic viscosity of an embedding viscous liquid. As mentioned before, the

attenuation of L(0,1) is in this frequency range almost entirely caused by shear

leakage and can therefore be directly related to the shear velocity and hence the

shear viscosity. As an example, Fig. 4.4 shows the predicted L(0,1)-attenuation

for a 0.25mm radius steel wire immersed in Glycerol with a dynamic viscosity of

1Pa s together with a hypothetical non-viscous Glycerol. The material properties of

Glycerol for this and the following analysis are given in Tab. 4.1, unless otherwise

stated. It can be seen that the longitudinal leakage at low frequencies is very small

for the non-viscous fluid. The difference in attenuation of the non-viscous and
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viscous case is entirely due to viscosity-induced attenuation, which is predominant

at low frequencies.

Nagy and Kent give an approximate formula for the viscosity-induced attenuation,

αη, of L(0,1) at low frequencies, which is useful for a first estimate [50]:

αη =
1

R

√

ωηρf
2Eρs

, (4.11)

where R is the radius, E is Young’s modulus, and ρs is the density of the waveguide.

This formula was derived assuming firstly that there are no radial displacements,

thus neglecting the longitudinal leakage, and secondly that the wire diameter is

large compared to the viscous skin depth. Figure 4.5 shows the attenuation of

L(0,1) for a steel bar embedded in Glycerol as predicted by Eq. (4.11) together

with the curve predicted by Disperse and which is the same as given in Fig. 4.4

for viscous Glycerol. The viscosity-induced attenuation may also be obtained by

simply subtracting the attenuation curve for the bar in the viscous fluid from that

of the bar in the non-viscous fluid. This curve is also shown in Fig. 4.5. From the

comparison between the total attenuation and the viscosity-induced attenuation it

can be estimated up to which frequency it is valid to neglect longitudinal leakage.

It should also be noted that the exact numerical modelling of the attenuation re-

quires knowledge of the longitudinal bulk velocity of the embedding liquid, since

it influences the amount of longitudinal leakage. For this reason, and because it is

limited to low frequencies, the use of T(0,1) is preferred to the use of L(0,1). How-

ever, the advantage of the longitudinal mode is that it is much easier to excite using

piezoelectric excitation. One might therefore consider using L(0,1) for example if a

magnetostrictive waveguide system is not available.

4.6.2 Experimental Validation

As a demonstration, experiments were conducted with Glycerol over a wide temper-

ature range. The viscosity changes significantly with temperature and it is therefore

possible to verify the method over a large viscosity range using a single material sam-

ple. As can be seen from Eq. (4.10), the dynamic viscosity decreases with increasing
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temperature.

L(0,1) was excited at 0.2MHz in a 0.25mm radius steel wire. Since for this combi-

nation of frequency and radius the attenuation is to a good approximation caused

by shear leakage only, the modelling here does not require accurate knowledge of the

longitudinal velocity. Instead, any reasonable estimated value can be used for the

modelling in Disperse. The Glycerol which was used in the following experiments

presented in this work was an aqueous solution with a water content of approxi-

mately 0.7%. The beaker with the Glycerol was placed inside an oven, and the steel

wire which was partly embedded in the Glycerol was fed through a hole in the oven

wall so that the transducers could be placed outside the oven.

The results are shown in Fig. 4.6 together with literature data, which were available

for an aqueous solution of Glycerol with 1% water content. Good agreement was

obtained between literature and experimental data. Note that the viscosity is plotted

on a logarithmic scale. Additionally, the viscosity of the same sample was measured

using plate-plate and cone-plate rheometers, which also confirm the validity of the

testing method.

4.7 Combined Measurement of Shear and Longi-

tudinal Velocity

Even though it is not significant in the context of the cure monitoring application

in this work, it is worth examining the possibility that L(0,1) may also be used

to measure the longitudinal velocity of an embedding liquid. This is interesting

from the point of view that thereby the material properties of a viscous liquid can

be completely determined. The purpose of this analysis is to show an example

procedure where two guided wave measurements can be combined to yield more

information about an embedding material.

At higher frequencies, the attenuation of the longitudinal mode L(0,1) is caused by

both shear and longitudinal leakage (see Fig. 4.4). If the viscosity is known from
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a T(0,1)-attenuation measurement, the L(0,1)-attenuation at a given frequency is a

function of the longitudinal bulk velocity only. This in turn allows for the prediction

of the longitudinal bulk velocity from an L(0,1)-attenuation measurement.

4.7.1 Results for Water

As a first test, the method was used to determine the longitudinal velocity of water.

Since the viscosity of water is very small (approximately 10−3 Pa s at 20◦C [62]), its

effect on the L(0,1)-attenuation may be neglected, so that the longitudinal velocity

can be determined directly from the L(0,1)-attenuation measurement.

The longitudinal mode L(0,1) was excited in a 2.5mm radius steel bar using a

piezoelectric transducer, and embedded in distilled water at 20◦C. Figure 4.7 shows

the L(0,1)-attenuation as a function of the longitudinal velocity of water, modelled

as an ideal liquid. From the slope of the curves it can be seen that the sensitivity

increases with increasing frequency, and therefore measurements are more accurate

at higher frequencies. Measurements were taken in the frequency-range between

0.1MHz and 0.4MHz, and the results are plotted in Fig. 4.8. The longitudinal

velocity was determined at each frequency. The average of the values at frequencies

between 0.25MHz and 0.4MHz was evaluated as cl = 1.439 ± 0.027m/ms. This is

within 3% of the literature value of 1.482m/ms for distilled water at this temperature

[62].

4.7.2 Results for Glycerol

The bar was embedded in Glycerol at 20.0 ◦C, and the L(0,1)-attenuation was mea-

sured at several frequencies. The viscosity was determined beforehand using the

torsional mode in Sec. 4.5.2.

Figure 4.9 shows the predicted attenuation of L(0,1) as a function of the longitudinal

velocity for a 2.5mm radius steel bar embedded in Glycerol at different frequencies.

The material properties for the steel bar are given in Tab. 4.1. From the slope of the

dispersion curves it can be seen that the sensitivity of the attenuation concerning
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the longitudinal velocity at lower frequencies is small, but increases towards higher

frequencies. This is in accordance with the previously mentioned fact that at low

frequencies, the attenuation is mainly sensitive to the shear properties of the viscous

liquid and independent from the longitudinal properties. A satisfactory sensitivity

is only obtained at higher frequencies.

The experimental data are shown in Fig. 4.2, and the viscosity was predicted as

η = 1.17 ± 0.07Pa · s. Figure 4.10 shows the results of the longitudinal mea-

surements. The average value of the longitudinal bulk velocity was determined

cl = 1.76 ± 0.04m/ms, and the dispersion curve predicted with this value is also

shown in Fig. 4.10. The value of longitudinal velocity is within approximately 10%

of the literature value of 1.92m/ms at 25◦C [62].

4.7.3 Error Analysis for Longitudinal Measurements

These preliminary results show that it is in principle possible to measure the longitu-

dinal velocity. The accuracy is however not as good as for viscosity measurements,

even though the standard deviation is small. As mentioned before, the calcula-

tion of the longitudinal bulk velocity requires the exact knowledge of the dynamic

shear viscosity and thus relies on the accuracy of the preceding T(0,1)-attenuation

measurement. One significant error can be introduced due to the fact that any

error in the calculation of the viscosity is carried through into the calculation of

the longitudinal velocity. Therefore an independent measurement of the longitudi-

nal velocity would be preferable. In fact, as was already pointed out by Nagy and

Nayfeh, there is one point on the dispersion curve where the L(0,1)-attenuation is

almost entirely caused by longitudinal leakage [60]. Figure 4.11 shows the atten-

uation dispersion curves for the 2.5mm radius steel bar used in the experiments

when embedded in Glycerol with different viscosities. As pointed out in the graph,

there is one point where the attenuation is caused almost entirely by longitudinal

leakage and the viscosity-induced attenuation is minimal. This is due to the fact

that there are mainly radial displacements on the surface of the waveguide at this

frequency-radius product, and only little displacements in the axial direction (see

mode shape in Fig. 4.12). At this point the longitudinal velocity can be determined
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independently from the viscosity, thereby reducing errors. However, L(0,1) is very

dispersive at this point, which makes the testing difficult. The feasibility of using

this point should be further evaluated in future.

Errors could also be caused by waveguide anisotropy. Wires are drawn during man-

ufacture, and therefore may to a certain degree exhibit a transversely isotropic

behaviour [51]. The waveguide properties were obtained assuming that the material

is isotropic, and here only two constants have to be determined in order to fully

characterise the waveguide (see Sec. 3.4). This is not true if the waveguide material

is transversely isotropic, since then 5 constants of the complex stiffness tensor Cij

instead of two for the isotropic case are needed to determine the waveguide proper-

ties (see, for example, [25]). Nevertheless, the shear velocity in the axial direction is

governed by the constant C66 only and is measured as such. Therefore, the propa-

gation characteristics of T(0,1) are correctly modelled, and hence there would be no

error in the viscosity calculations. However, the propagation of L(0,1) is governed

by more than one constant, and the modelling assuming isotropy of the waveguide

may be erroneous. Determining all the elastic constants of transversely isotropic

waveguide material experimentally is difficult, and is subject to future research.

4.8 Summary

It has been shown in this chapter that it is possible to use the guided wave atten-

uation in embedded waveguides to accurately measure material properties such as

the material properties of a viscous liquid.

Both the fundamental longitudinal and torsional modes are sensitive to the shear

properties of the medium surrounding the waveguide. The analytical predictions

using the software Disperse allow a quantitative evaluation without the use of

asymptotic formulas or calibration liquids. Further validation of the attenuation

technique for the measurement of shear velocity in the case where the embedding

material is solid are given in Sec. 6.5.
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The possibility to measure the longitudinal properties of the embedding viscous liq-

uid using L(0,1) at higher frequencies has also been examined. Since the attenuation

of L(0,1) at higher frequencies is caused by both shear and longitudinal bulk waves,

the shear viscosity is determined in a separate experiment, using either T(0,1) or

L(0,1) at lower frequencies. The experimental results are not as accurate as for the

viscosity measurements. This may be due to the fact that errors in the viscosity

measurements are carried through to the calculation of the longitudinal velocity and

that the sensitivity of the attenuation to the longitudinal velocity is very small at

lower frequencies. Also, the waveguide material may exhibit anisotropic behaviour.
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Figure 4.1: Typical time trace of T(0,1) in a steel wire (a) before, and (b) after embedding

in Glycerol.
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Figure 4.2: Illustration of the determination of shear viscosity from an attenuation

measurement. Plot (a) shows actual measurements of T(0,1)-attenuation in a 1mm radius

steel bar embedded in Glycerol at 20 ◦C in the frequency range of 0.1–0.275MHz in steps

of 0.025MHz (see Tab. 4.1 for the material properties). Plot (b) are predictions of T(0,1)-

attenuation as a function of the shear viscosity at exactly the measured frequencies. The

solid line in (b) corresponds to the example frequency of 0.175MHz. At this frequency,

the measured viscosity is 1.17Pa·s.
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Figure 4.3: Measured T(0,1)-attenuation for a 0.5mm radius steel wire embedded in the

commercial Cannon VP450 viscosity standard at 21 ◦C. The predicted dispersion curve

(solid line) was calculated using the average of viscosity (η = 1.42 ± 0.03Pa·s) obtained

from all measurement points. The density of the viscosity standard was 887 kg/m3, and

the material properties for steel are given in Tab. 4.1.
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Figure 4.4: Predicted attenuation dispersion curves of L(0,1) in a 0.25mm radius steel

wire embedded in a viscous and a hypothetical non-viscous Glycerol. The material prop-

erties are listed in Tab. 4.1. At low frequencies, attenuation is almost entirely due to shear

leakage when the liquid is viscous. In the non-viscous case, attenuation is solely due to

longitudinal leakage.
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Figure 4.5: Predicted attenuation dispersion curve of L(0,1) in a 0.25mm radius steel

wire embedded in Glycerol with a dynamic viscosity of 1Pa·s. The solid line includes both

shear and longitudinal leakage. By subtracting the attenuation caused by longitudinal

leakage (non-viscous case) from the total attenuation, the viscosity-induced attenuation is

obtained. The attenuation predicted by Nagy’s approximate formula is also shown.
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Figure 4.6: Viscosity of an aqueous solution of Glycerol with 0.7% water content mea-

sured at different temperatures using L(0,1) (guided waves) together with plate-plate (p-

p), cone-plate (c-p) rheometer data, as well as literature values available for an aqueous

solution of Glycerol with 1% water content.
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Figure 4.7: Predicted attenuation dispersion curves of L(0,1) at different frequencies for

a 2.5mm radius steel bar embedded in water. The material properties for steel are given

in Tab. 4.1, and water is modelled as an ideal liquid with a density of ρ = 1000 kg/m3.
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Figure 4.8: Measured L(0,1)-attenuation for a 2.5mm radius steel bar embedded in

distilled water at 20.0 ◦C at different frequencies. The predicted dispersion curve (solid

line) was calculated using the average value of the longitudinal velocity of water obtained

from the measured points between 0.25MHz and 0.4MHz (cl = 1.439± 0.027m/ms). The

material properties for steel are given in Tab. 4.1.
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Figure 4.9: Predicted attenuation dispersion curves of L(0,1) at different frequencies for

a 2.5mm radius steel bar embedded in Glycerol with a viscosity of 1.17Pa·s. The material

properties for steel are given in Tab. 4.1.
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Figure 4.10: Measured L(0,1)-attenuation for a 2.5mm radius steel bar embedded in

Glycerol at 20.0 ◦C at different frequencies. The predicted dispersion curve (solid line)

was calculated using the average value of the longitudinal velocity of Glycerol obtained

from all measured points (cl = 1.76 ± 0.04m/ms). The material properties for steel are

given in Tab. 4.1.
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Figure 4.11: Predicted attenuation of L(0,1) for a 2.5mm radius steel bar embedded in

Glycerol with different assumed viscosities. As pointed out in the graph, even for high

values of viscosity the attenuation is almost entirely caused by longitudinal leakage around

a frequency of 0.54MHz.
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Figure 4.12: Mode shape of L(0,1) in a 2.5mm radius steel bar embedded in a hypo-

thetical non-viscous Glycerol at 0.54MHz. It can be seen that the displacements at the

surface of the waveguide are mainly in the radial direction.
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Chapter 5

Reflection Coefficient Method

5.1 Background

As mentioned in the introduction in Ch. 1, two effects influence guided wave propaga-

tion when a waveguide is partly embedded in another material. Firstly, as discussed

in Ch. 4, the guided wave will be attenuated in the embedded part. Secondly, be-

cause of the change in surface impedance at the point where the waveguide enters

the embedding material, the guided wave will be reflected and also scattered through

mode conversion. That both these effects can be used to monitor the curing process

of epoxy resins was first discussed by Papadakis [63]. However, the results presented

were of a qualitative nature. As has been seen in Ch. 4, in order to make quantitative

predictions, the guided wave attenuation can be calculated if the acoustic properties

of all the materials in the guided wave system are known; indeed the attenuation is

an integral part of the dispersion curve calculation. To predict the scattering of a

guided wave which is incident from the free section of the waveguide at a change in

surface impedance is more difficult, and this problem is addressed in this chapter.

Apart from measuring material properties by embedding a waveguide in the material

under investigation, there are many other circumstances when the application of a

guided wave system to solve a practical problem involves a waveguide which is

partly free and partly embedded. Examples include the testing of partly buried

pipes for corrosion [26], or the detection of defects in rockbolts in mining roofs by

access to their protruding end [64]. In all these cases, depending on the waveguide
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mode, the frequency, and the geometry and the material properties of the waveguide,

reflection will occur at the entry point. In many cases, a reflection from the entry

point is undesirable, because it either interferes with other signals of interest, or can

even make it impossible to test for defects in the embedded section if the reflection

coefficient is so high that only little energy is transmitted. However, there are

circumstances in which the presence of an entry reflection is advantageous. Examples

are, as mentioned above, the cure monitoring of solidifying materials, or liquid level

measurements [36].

Most of these applications usually involve the use of a cylindrical waveguide. Some

theoretical work has been done on scattering from discontinuities in single and lay-

ered plates [65, 66, 67, 68], but less attention has been given to scattering problems

in cylindrical waveguides. Zemanek [69] treated the case of guided waves being scat-

tered from the end of a cylinder; the scattering of guided waves from circumferential

cracks in hollow cylinders was presented by Ditri [70] and Bai et al. [71]. Engan [44]

examined the scattering of torsional waves from a step change in the waveguide

diameter. The theoretical work in this thesis is based on some of the techniques

presented in these references.

Finite Element (FE) modelling presents another possibility of solving scattering

problems and has been employed by several researchers [72, 73, 74]. This is most

useful when analytical solutions cannot be found. However, the computational anal-

ysis can be tedious and does not easily yield insight to the physics of the scattering

process. Moreover, numerical problems occur when dealing with materials that have

small shear velocities, for example epoxy resins at the beginning of cure. It is there-

fore desirable to find an alternative solution for the cases where FE modelling is

slow or not feasible. In the following, FE modelling will be used for the validation

of the theoretical results where the material parameters allow for this.

First, a theoretical analysis will show the equivalence between the S-parameter for-

malism introduced by Auld [65] and a solution which is based on matching the

fields at the interface between the free and the embedded sections of a cylindrical
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waveguide when a guided wave is incident from the free section. A complete modal

solution is then given, and the results will be compared to FE modelling. It will

be shown that in most cases of interest, only a small number of waveguide modes

has to be considered in the modal solution. The following theoretical analysis is

completely general, but for the purpose of demonstrating its validity and in view

of the cure monitoring application presented in Ch. 6, the examples given will be

restricted to the case where the lowest order longitudinal mode is incident. It will

be shown that the entry reflection is sensitive to the shear velocity of the embedding

material, and can therefore be used for its measurement.

5.2 Theoretical Basis

5.2.1 Introduction

For the following derivations it is necessary to review and introduce the notation

used to describe guided modes in cylindrical structures. Time-harmonic propagation

in the direction of the axis of the waveguide is considered, which is chosen to be

the z-direction in the cylindrical coordinates (r,Θ,z). A guided wave solution is

represented by sets of wavenumber and frequency combinations for which the particle

velocity and stresses satisfy the chosen boundary conditions at the surfaces of the

cylindrical structure [20, 69]. The particle velocity, v, and stress tensor, T, are given

by the expressions

vνn(r, θ, z, t) = vνn(r) e
iνθ e−i(knz−ωt), (5.1)

Tν
n(r, θ, z, t) = Tν

n(r) e
iνθ e−i(knz−ωt), (5.2)

where ω is the circular frequency, kn is the complex wavenumber in the propagation

direction, and ν is the angular wavenumber. Firstly, because of the continuity of the

field variables in the angular direction, ν must be a whole number; it is commonly

referred to as the circumferential order. For example, longitudinal and torsional

modes are of circumferential order zero, which means that the modal fields are axi-

symmetric. For flexural modes, ν ≥ 1. Secondly, at each frequency, there is an

infinite number of modes of a given circumferential order, which are solutions to the

dispersion equation. The counter n is used to label a single waveguide mode of a
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given circumferential order. Therefore, the notation (ν,n) denotes the nth mode of

circumferential order ν. These two indices completely identify a waveguide mode.

This notation is similar to that originally introduced by Silk and Bainton [23]. In

fact, for flexural modes, the notation (ν,n) is equivalent to the bracketed term in the

notation F(ν,n) used by Silk and Bainton. However, for circumferential order zero

the notation (ν,n) does not distinguish between longitudinal, L, and torsional, T,

modes. In order to relate the counting number n used in this paper to the notation

of Silk and Bainton in the case where ν = 0, the following convention can be made:

n = 1→ L(0,1)

n = 2→ T(0,1)

n = 3→ L(0,2)

n = 4→ T(0,2)

n = 5→ L(0,3)

. . .

Both of the above notations will be used where appropriate. The variation of the

modal fields in the plane perpendicular to the propagation direction z is determined

by the radial distribution functions, vνn(r) and Tν
n(r), respectively. They are in

general complex functions, and are referred to as the mode shapes of the waveguide

mode (see Sec. 2.3.3).

5.2.2 Normal Mode Theory

The main tool for analysing scattering problems is the normal mode theory. It was

laid out for layered waveguides by Auld [65], and a brief review of the fundamental

framework is given here. In normal mode theory, one makes use of the fact that

an arbitrary field distribution can be expanded into so-called normal modes. These

normal modes have to fulfill two main conditions. Firstly, the set of modes has

to be complete, which means that they are sufficient, by superposition, to describe

any arbitrary field distribution. Questions of this kind have been treated by Kir-

rmann [75] for Lamb modes. In this work, completeness of the waveguide modes
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is assumed. Secondly, the modes must be orthogonal, which means that the ex-

pansion of an arbitrary field into normal modes is unique. Mode orthogonality for

layered plate waveguides was treated by Auld [65], and was generalised to cylindri-

cal waveguides by Ditri [70]. To be strict, the orthogonality relationships derived in

these references are actually bi-orthogonality relationships, since they involve two

different fields, namely the particle velocity and stress fields. We now review and

consider these relationships.

For any two solutions, ”1” and ”2”, of the particle velocity and stress fields to the

field equations, a real reciprocity relationship of the following form holds [65]:

∇ · {v1 ·T2 − v2 ·T1} = 0, (5.3)

where the indices denote the solutions ”1” and ”2”, respectively, and ∇ is the

divergence operator. Within a volume V , where the material parameters are the

same for solutions ”1” and ”2”, one can therefore write for a given frequency ω :

∫

V

∇ · {v1 ·T2 − v2 ·T1} dV = 0. (5.4)

Consider the case where solution ”1” is given by mode (ν,n), and solution ”2” is

given by mode (µ,m). Equation (5.4) then becomes

∫

V

∇ · {vνn ·Tµ
m − vµm ·Tν

n} dV = 0. (5.5)

Using the two-dimensional Gauss theorem, it follows that

∫

S

∂

∂z
{vνn ·Tµ

m − vµm ·Tν
n} ẑ dS +

∮

C

{vνn ·Tµ
m − vµm ·Tν

n} r̂ dl = 0, (5.6)

where S is the cross-section of the waveguide and C is a line along the circumference

of S, ẑ is a unit vector in the propagation direction, and r̂ is a unit vector in the

outward radial direction (see Fig. 5.1). For a free waveguide the tractions normal to

the surface of the waveguide vanish, T · r̂ = 0, whereas for a waveguide with rigid

boundaries the particle velocities vanish, v = 0. Therefore, in both cases equation

(5.6) reduces to

∫

S

∂

∂z
{vνn ·Tµ

m − vµm ·Tν
n} ẑ dS = 0. (5.7)
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The dependence of the field variables on z implies that

−i(kn + km)

∫

S

{vνn ·Tµ
m − vµm ·Tν

n} ẑ dS = 0. (5.8)

From this equation, either kn = −km, or the integral vanishes:

∫

S

{vνn ·Tµ
m − vµm ·Tν

n} ẑ dS = 0 for kn 6= −km. (5.9)

This is known as the real orthogonality relationship. However, there are cases where

two different modes can have kn = −km. In this case, orthogonality between the

two modes is restored by a second relationship, called the angular orthogonality

relationship. For kn = −km, the integral on the left-hand side of equation (5.9) can

be further evaluated (omitting the time dependence):

∫

S

{vνn ·Tµ
m − vµm ·Tν

n} ẑ dS =

R
∫

0

{vνn ·Tµ
m − vµm ·Tν

n} (r)ẑ r dr
Θ0+2π
∫

Θ0

ei(ν+µ)θ dΘ. (5.10)

The integration over Θ shows that

∫

S

{vνn ·Tµ
m − vµm ·Tν

n} ẑ dS = 0 for ν 6= −µ. (5.11)

This is called the angular orthogonality relationship. It is slightly different from

the one presented by Ditri [70], which, written in a form compatible with the mode

naming here, states that:

Θ0+2π
∫

Θ0

vνn ·Tµ
m dΘ = 0 for ν 6= µ. (5.12)

This is due to the fact that the modal distribution fields in Ref. [70] are assumed

to vary trigonometrically as either sin(νΘ) or cos(νΘ). However, in our case, in

which we think of the circumferential order as an angular wavenumber, the more

general exponential notation, eiνΘ, is more consistent. The sine or cosine notation

describes a standing wave solution along the circumference of the waveguide, and

can be thought of as a superposition of two spiral waves of the exponential type,

each in the opposite angular direction.
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The orthogonality relationship for a cylinder in vacuum can thus be written in the

following form:
∫

S

{vνn ·Tµ
m − vµm ·Tν

n} ẑ dS = 0 for kn 6= −km or ν 6= −µ. (5.13)

5.2.3 Normalisation Procedure

For the following scattering analysis it is convenient to introduce two more notations.

Firstly, we introduce the convention

−kn = k−n, (5.14)

to label the same mode propagating in the negative z-direction. We refer to modes

whose energy propagates in the positive axial direction as ”forward” modes, and

those whose energy propagates in the negative axial direction as ”backward” modes.

Non-propagating and inhomogeneous modes, however, do not propagate energy in

any direction (see App. A for a more detailed explanation). One can imagine these

modes as local vibrations, which exist only at waveguide discontinuities such as the

edge of a plate or the surface discontinuity considered in this work. In this case, the

equivalent to a forward mode is a non-propagating or inhomogeneous mode which

is attenuated in the positive z-direction.

Secondly, it is convenient to define the quantity Qµ ν
mn as

Qµ ν
mn = −1

4

∫

S

{vµm ·Tν
n − vνn ·Tµ

m}ẑ dS. (5.15)

For propagating modes, that means for modes with purely real wavenumber, the

fields satisfy the following relations ([65], p. 188):

v−µ−m(r,Θ) = −vµm∗(r,Θ), (5.16)

T−µ
−m(r,Θ) = Tµ

m
∗(r,Θ). (5.17)

Evaluating Qµ−µ
m−m with these relationships yields

Qµ−µ
m−m = −1

4

∫

S

{vµm ·T−µ
−m − v−µ−m ·Tµ

m}ẑ dS (5.18)

= −1

4

∫

S

{vµm ·Tµ
m
∗ + vµm

∗ ·Tµ
m}ẑ dS

= P µµ
mm, (5.19)
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where P µµ
mm is the average power flow of mode (µ,m) propagating in the z-direction.

The average power flow is the real part of the complex power flow.

In scattering analysis, the modal fields are usually normalised such that the aver-

age power flow through the cross-section of the waveguide is unity. However, non-

propagating and inhomogeneous modes do not carry power. Therefore they cannot

be normalised this way. Some researchers used the complex power flow instead,

noting that non-propagating modes can be normalised to the imaginary unit [44].

However, in order to be able to apply the same normalisation procedure to all modes,

the modal fields will be normalised here such that

Qµ−µ
m−m = 1. (5.20)

Moreover, propagating modes with purely real wavenumbers are still power nor-

malised by this expression, since

Qµ−µ
m−m = P µµ

mm = 1. (5.21)

5.3 Scattering Analysis

5.3.1 Problem Statement

An infinitely long cylindrical waveguide is half free and half embedded in another

material, and the embedding material is assumed to extend infinitely in the radial

direction (see Fig. 5.2). A propagating waveguide mode is incident from the free

section of the waveguide and will be scattered and mode converted at the interface

between the free and the embedded section due to the change in surface impedance.

Two different approaches to solving the problem will be taken in the following. In

Sec. 5.3.2, we follow the S-parameter formalism laid out by Auld [65]. This analysis

yields an exact scattering formula for a guided wave incident from the free section of

the cylinder. In Sec. 5.3.3 it is shown that the same expression can be obtained by

simply matching the fields over the cross-section of the waveguide, thus neglecting

the free surface of the embedding material at the interface between the free and the

embedded section. Finally, in Sec. 5.3.4, a complete modal solution is given using a

more intuitive notation.
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5.3.2 S-Parameter Formalism

The first derivation follows closely the S-parameter method presented by Auld for the

calculation of scattering coefficients [65]. Consider a waveguide with and without

surface loading as depicted in Fig. 5.3. At any point within the volume V the

reciprocity relation holds:

∇ · {v1 ·T2 − v2 ·T1} = ∇ · {· · · } = 0, (5.22)

where the expression {v1 ·T2 − v2 ·T1} has been replaced by {· · · } for brevity.

Therefore

∫

V

∇ · {· · · } dV = 0. (5.23)

Let the fields denoted by ”1” be the solution for the case when there is no surface

loading, and solution ”2” for the case with surface loading. This is valid, because the

reciprocity relation holds anywhere in the waveguide where the material parameters

are the same. The surface S of the volume V can be divided into three regions (see

Fig. 5.3):

S = ∂V = Sl + Sr + Sc, (5.24)

where Sl is the plane on the left hand side, Sr the plane on the right hand side, and

Sc the surface on the circumference of the cylindrical waveguide. By applying the

Gauss theorem, it follows that

−
∫

Sl

{· · · }ẑ dS +

∫

Sr

{· · · }ẑ dS +

∫

Sc

{· · · }r̂ dS = 0. (5.25)

Consider a mode (µ̄,m̄) incident from the left, indicated as such with a bar super-

script for clarity. For solution ”1”, no scattering occurs, and the fields on Sl and Sr

can be written in the following form:

v1 =







vµ̄m̄ on Sl

Sµ̄ µ̄
m̄ m̄v

µ̄
m̄ on Sr

, (5.26)

T1 =







Tµ̄
m̄ on Sl

Sµ̄ µ̄
m̄ m̄T

µ̄
m̄ on Sr

. (5.27)
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Here, the scattering coefficients, S, called the S-parameters, are defined in a slightly

different way than in Ref. [65]. For example Sν µ
nm refers to the coefficient for mode

(µ,m) being incident from the left and mode (ν,n) being scattered (transmitted)

to the right hand side of the discontinuity, whereas S−ν µ
−nm denotes the reflection of

(−ν,−n) to the left hand side for an incident mode (µ,m). The mode propagation

does not depend on z except for attenuation, whose effect is implicitly contained in

the expressions for the particle velocity and the stress. Therefore it follows that

Sµ̄ µ̄
m̄ m̄ = 1. (5.28)

Solution ”2” must take the reflected and transmitted modes into account. For

reasons which will become clear later, mode (ν̄,n̄) is chosen to be incident from the

left. The fields can be expressed as:

v2 =















vν̄n̄ +
∑

n,ν

Sν ν̄
−n n̄v

ν
−n on Sl

∑

n,ν

Sν ν̄
n n̄v

ν
n on Sr

(5.29)

T2 =















Tν̄
n̄ +

∑

n,ν

Sν ν̄
−n n̄T

ν
−n on Sl

∑

n,ν

Sν ν̄
n n̄T

ν
n on Sr

. (5.30)

The sums run over negative and positive angular wavenumbers, but over positive

integers n only. Evaluating the integral from equation (5.25) on Sr yields:
∫

Sr

{· · · }ẑ dS =

∫

Sr

∑

n,ν

Sν ν̄
n n̄{vµ̄m̄ ·Tν

n − vνn ·Tµ̄
m̄}ẑ dS (5.31)

= 0. (5.32)

Note at this stage that therefore equation (5.25) becomes

∫

Sl

{vµm ·T2 − v2 ·Tµ
m}ẑ dS =

∫

Sc

{vµm ·T2 − v2 ·Tµ
m}r̂ dS. (5.33)

Further evaluating the integral on Sl one obtains:

−
∫

Sl

{· · · }ẑ dS = −
∫

Sl

{vµ̄m̄ ·Tν̄
n̄ − vν̄n̄ ·Tµ̄

m̄}ẑ dS (5.34)

−
∫

Sl

∑

n,ν

Sν ν̄
−n n̄{vµ̄m̄ ·Tν

−n − vν−n ·Tµ̄
m̄}ẑ dS

= 4S−µ̄ ν̄
−m̄ n̄.
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Equation (5.25) therefore becomes:

4S−µ̄ ν̄
−m̄ n̄ +

∫

Sc

{vµ̄m̄ ·T2 − v2 ·Tµ̄
m̄}r̂ dS = 0. (5.35)

This is valid for an arbitrary mode (µ̄,m̄), which can be renamed (µ,m). Thus

S−µ ν̄
−mn̄ = −1

4

∫

Sc

{vµm ·T2 − v2 ·Tµ
m}r̂ dS. (5.36)

This is a general scattering formula for an incident mode (ν̄,n̄) being scattered into

mode (−µ,−m). It is equivalent to the general scattering formula presented by

Auld. This is an exact formula, and the S-Parameters can be calculated if the fields

in ”2” are known. It can be seen that the scattering coefficients will depend on the

total waveguide surface area covered by the embedding material. To obtain the case

considered here, the integral over the surface Sc has to be extended to z =∞.

5.3.3 Alternative Calculation

It will be shown in this section that the same result can be obtained by simply

matching the boundary conditions at the interface where the waveguide enters the

embedding material. Only the mode shapes over the adjoining cross-section have

to be considered in order to obtain an exact solution for modes which are incident

from the free section. Thus, the free surface of the embedding material at z = 0

does not have to be considered.

It is assumed that the field in the waveguide on the left hand side of the interface

between the vacuum and embedded parts, ”1”, is a superposition of the waveguide

modes in the free cylinder (see Fig. 5.4); we refer to these here as the ”vacuum”

modes. The particle velocity and stress fields ”1” are expressed in terms of the

incident vacuum mode (ν̄,n̄), propagating in the +z-direction, and the sum of all re-

flected vacuum modes, propagating in the −z-direction. The sums run over negative

and positive angular wavenumbers, but over positive axial wavenumbers only:

v1 = vν̄n̄ +
∑

ν,n

Sν ν̄
−n n̄ v

ν
−n, (5.37)

T1 = Tν̄
n̄ +

∑

ν,n

Sν ν̄
−n n̄T

ν
−n. (5.38)
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We will make assumptions about the fields in ”2” later in Sec. 5.3.4, but for the

moment the fields created in the embedded section by the incident mode will just

be denoted by v2 and T2. The boundary conditions within the waveguide at the

interface between the free and the embedded section must be fulfilled,

v1 = v2, (5.39)

T1 · ẑ = T2 · ẑ, (5.40)

where ẑ is the unit vector in the z-direction. The boundary conditions therefore

become

vν̄n̄ +
∑

ν,n

Sν ν̄
−n n̄ v

ν
−n = v2, (5.41)

Tν̄
n̄ +

∑

ν,n

Sν ν̄
−n n̄T

ν
−n = T2. (5.42)

Multiplying the first equation by Tµ
m and the second equation by vµm, one obtains

vν̄n̄ ·Tµ
m +

∑

ν,n

Sν ν̄
−n n̄ v

ν
−n ·Tµ

m = v2 ·Tµ
m, (5.43)

vµm ·Tν̄
n̄ +

∑

ν,n

Sν,ν̄
−n,n̄ v

µ
m ·Tν

−n = vµm ·T2. (5.44)

Subtracting equation (5.44) from (5.43) yields:

{vν̄n̄ ·Tµ
m − vµm ·Tν̄

n̄}+
∑

ν,n

Sν ν̄
−n n̄ {vν−n ·Tµ

m − vµm ·Tν
−n} =

{v2 · Tµ
m − vµm · T2}. (5.45)

In order to take advantage of the real orthogonality relation, this is integrated over

the cross-section S. The terms on the left hand side can be examined separately:

∫

S

{vν̄n̄ ·Tµ
m − vµm ·Tν̄

n̄}ẑ dS = 0, (5.46)

∫

S

∑

ν,n

Sν ν̄
−n n̄ {vν−n ·Tµ

m − vµm ·Tν
−n}ẑ dS = 4S−µ ν̄

−mn̄. (5.47)

Replacing this into equation (5.45), the S-parameter for the scattered mode (−µ,−m)

and the incident mode (ν̄,n̄) is obtained:

S−µ ν̄
−mn̄ = −1

4

∫

S

{vµm ·T2 − v2 ·Tµ
m}ẑ dS. (5.48)
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The surface S is equivalent to Sl in equation (5.33). Since the boundary conditions

are fulfilled on this surface, the fields v2 and T2 on S in the two approaches to

calculate the scattering coefficients are the same. Thus it follows that the expressions

in equations (5.36) and (5.48) are equivalent.

Similarly, by multiplying equations (5.41) and (5.42) by Tµ
−m and vµ−m, respectively,

it can be shown that

−1

4

∫

S

{v2 ·Tµ
−m − vµ−m ·T2}ẑ dS =







1 for µ = −ν̄ and m = n̄

0 else.
(5.49)

Thus, the scattering parameters for the case of a mode incident from the free part

of the waveguide can be calculated by just considering the integrals over the cross-

section of the waveguide, ignoring the free surface of the embedding material. How-

ever, this is not necessarily true for the case when a mode is incident from the

embedded section of the waveguide. For this to be true, orthogonality would have

to be shown for these modes. Whether or not it is sufficient only to consider the

adjoining cross-section in the embedded part would then depend on the nature of

this orthogonality relationship (see also App. B).

5.3.4 Modal Solution

In fact, the equations (5.48) and (5.49) already give the complete solution to the

problem in the case where modes are incident from the free section of the waveguide.

However, it cannot readily be seen how to calculate the scattering parameters from

this. Therefore in this section the complete modal solution for the case of modes

which are incident from the free section of the waveguide will be derived in a more

intuitive notation similar to that presented by Engan [44].

In order to do this, one has to assume that the field in the embedded part of the

waveguide can be represented by a superposition of waveguide modes (ν ′,n′). These

modes are in general leaky modes, and there exist proofs of orthogonality in the

literature for leaky layered waveguides [76, 77]. However, it has to be mentioned

that it is usually assumed that the wavenumber in the propagation direction is
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either purely real or purely imaginary, or that the fields vanish far away from the

interface. This is not necessarily true, as leaky guided waves have a complex axial

wave number. If they have a purely real wavenumber, they are essentially non-

leaky modes. Also, the plane waves leaking into the surrounding material must

be inhomogeneous in order to fulfill Snell’s law, which states that the real and the

imaginary part of the complex wavenumber in the axial direction of both the guided

wave and the leaking inhomogeneous plane wave must be identical (see Fig. 5.5).

For inhomogeneous plane waves in an elastic medium, the attenuation direction

must be normal to the propagation direction [14] (see also Sec. 2.2). In plate-like

structures, where the partial waves are plane waves, this causes the fields in the

embedding material to increase exponentially in the outward direction normal to

the interface between the waveguide and the embedding material. The situation is

similar, though more complicated, in the case of a cylindrical waveguide. Here, the

dependence on the radial position is given by Bessel-functions, whose argument is

complex when there is attenuation. Hence, the fields actually tend to infinity far

away from the interface. Nevertheless, in this section, orthogonality of these modes

is assumed. As explained in more detail in section 5.4, this is found to be the case

to a satisfactory degree of accuracy. For more detailed comments on waveguide

orthogonality in embedded waveguides refer to App. B.

We will restrict the following derivation to longitudinal modes, which are of cir-

cumferential order zero. The superscripts denoting the circumferential order will be

omitted from now on, since by symmetry order zero modes can only scatter into

modes of the same order, and also torsional modes cannot scatter into longitudinal

modes and vice versa.

If the amplitudes of incoming modes are denoted by a’s, and scattered mode ampli-

tudes are denoted by b’s, the particle velocity and stress fields in the free section of

the bar can be written as

v1 =
∑

m

amvm + b−mv−m, (5.50)

T1 =
∑

m

amTm + b−mT−m. (5.51)
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The index of the mode amplitudes indicate in which direction the scattered mode is

propagating. As stated earlier, for non-propagating and inhomogeneous modes, this

is chosen to be the direction of the decay. It is now assumed that the fields being

excited in ”2” are composed of the modes of an embedded cylinder, denoted by a

dash:

v2 =
∑

m′

bm′vm′ , (5.52)

T2 =
∑

m′

bm′Tm′ . (5.53)

Note that there is no incident mode from the embedded section. In principle, the

sums in equations (5.50) – (5.53) extend over an infinite number of modes. However,

for the numerical calculations, these sums have to be truncated after a certain mode

M .

One can collect the incoming and scattered mode amplitudes in column vectors, and

they are related to each other by a scattering matrix in the following way:









































b−1

b−2

...

b−M

b1′

b2′

...

bM ′









































=









































S−1 1 S−1 2 · · · S−1M

S−2 1 S−2 2 · · · S−2M

...
...

. . .
...

S−M 1 S−M 2 · · · S−MM

S1′ 1 S1′ 2 · · · S1′ M

S2′ 1 S2′ 2 · · · S2′ M

...
...

. . .
...

SM ′ 1 SM ′ 2 · · · SM ′ M

























































a1

a2
...

aM

















=









































[S−mn]

[Sm′ n]

























































a1

a2
...

aM

















. (5.54)

The scattering sub-matrices S−mn and Sm′ n are M ×M matrices, whereas the full

scattering matrix is an M × 2M matrix. First, the boundary conditions are applied

on the interface between the free and the embedded section (see equations (5.39)

and (5.40), respectively):

∑

m

amvm + b−mv−m =
∑

m′

bm′vm′ , (5.55)

∑

m

amTm + b−mT−m =
∑

m′

bm′Tm′ . (5.56)
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Multiplying equation (5.55) by T−n and equation (5.56) by v−n, and subtracting

(5.56) from (5.55) yields:

∑

m

am (vm ·T−n − v−n ·Tm) +
∑

m

b−m (v−m ·T−n − v−n ·T−m) =

∑

m′

bm′ (vm′ ·T−n − v−n ·Tm′) . (5.57)

Then, by integrating over the cross-section of the waveguide one makes use of the

orthogonality relation (5.13), and some terms in equation (5.57) vanish. Noting that

the fields are normalised according to equation (5.20), it follows that

an = −1

4

∑

m′

bm′

∫

S

(vm′ ·T−n − v−n ·Tm′) · ẑ dS (5.58)

= −
∑

m′

bm′ Q−nm′ .

This can be written in matrix form:
















a1

a2
...

aM

















= −

















Q−1 1′ Q−1 2′ · · · Q−1M ′

Q−2 1′ Q−2 2′ · · · Q−2M ′

...
...

. . .
...

Q−M 1′ Q−M 2′ · · · Q−MM ′

































b1′

b2′

...

bM ′

















(5.59)

In an abbreviated notation, this is

[an] = −[Q−nm′ ][bm′ ], (5.60)

so

[bm′ ] = −[Q−nm′ ]−1[an]. (5.61)

Secondly, multiplying equation (5.55) by Tn and equation (5.56) by vn, and sub-

tracting (5.56) from (5.55) yields:

∑

m

am (vm ·Tn − vn ·Tm) +
∑

m

b−m (v−m ·Tn − vn ·T−m) =

∑

m′

bm′ (vm′ ·Tn − vn ·Tm′) . (5.62)

Again, this is integrated over the cross-section of the waveguide, and some terms

vanish due to orthogonality. One is left with the following equation:

b−n =
1

4

∑

m′

bm′

∫

S

(vm′ ·Tn − vn ·Tm′) · ẑ dS (5.63)

=
∑

m′

bm′ Qnm′ .
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Replacing n by m, this can be abbreviated to give

[b−m] = [Qmm′ ][bm′ ]. (5.64)

Recalling equation (5.61), the coefficients b−m are calculated as follows:

[b−m] = −[Qmm′ ][Q−nm′ ]−1[an]. (5.65)

Finally, equations (5.61) and (5.65) can be combined to give the solution to the

scattering problem:




[b−m]

[bm′ ]



 =





−[Qmm′ ][Q−nm′ ]−1

−[Q−nm′ ]−1



 [an] (5.66)

By comparison with the general scattering formula in equation (5.54), it follows that

[S−mn] = −[Qmm′ ][Q−nm′ ]−1 (5.67)

and

[Sm′ n] = −[Q−nm′ ]−1. (5.68)

The scattering amplitudes are here calculated using a normalisation procedure for

the modal fields according to equation (5.20). For the interpretation of the results it

is convenient to state the scattering amplitudes in terms of the scattered power. The

power normalised scattering coefficients, denoted by capital letters Am, B−m, and

Bm′ respectively, are obtained from the amplitudes calculated here, am, b−m, and

bm′ respectively, by multiplying by the square-root of the power of the corresponding

mode, for example:

B′
m = b′m

√

Pm′ m′ . (5.69)

Note that for non-propagating and inhomogeneous modes, Pmm = 0, and therefore

no power is carried away from the scattering region by these modes.

5.4 Numerical Implementation

The calculation of the elements of the scattering matrix requires the knowledge of

the radial distribution functions of the modes which are included in the solution. In
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most cases, a closed form analytical solution of the modal fields cannot be obtained,

and the dispersion equation has to be solved numerically. Disperse has been used to

trace the dispersion curves and to obtain the particle velocity and stress mode shapes

of each mode. These mode shapes are used to calculate the elements of the scattering

matrix. Typically, a resolution of 200 points over the radius of the waveguide was

found to give a reasonable accuracy for the calculation of the integrals.

A key assumption in the modal analysis is that the fields in the embedded section

can be represented by a sum of waveguide modes of the infinitely long embedded

cylinder. Orthogonality is assured for the waveguide modes of the free bar (see

equation 5.13). This relationship was checked numerically using the mode shapes

predicted by Disperse for the free bar modes in order to give an indication as to

how accurate the numerical values are. It was found that, once the fields have been

normalised according to equation (5.20), the value of Qν µ
nm for two orthogonal modes

was of the order of 10−5. Strictly this should be zero, so this value represents the

error in the calculations. For the equivalent modes of a cylinder embedded in an

epoxy resin as modelled in this work, Qν′ µ′

n′ m′ was found to be typically of the order

of 10−3. Given the increased difficulty in finding the complex roots of the dispersion

equation and the limited precision of the complex Bessel functions which have to

be employed, this seems to be an acceptably small value. However, this numerical

demonstration is not a proof, and it has to be accepted that orthogonality for leaky

waves may have to be evaluated including the embedding half-space and not only

the waveguide cross-section.

The dispersion curves can be presented in a 3-dimensional representation, showing

the real and imaginary part of the axial wavenumber, k, in the propagation direction

against the frequency f . A summary of the material parameters used in the analysis

is given in Tab. 5.1.

Onoe and Zemanek have presented the dispersion curves for a cylinder in vacuum

in great detail, showing the real, imaginary and complex branches [18, 69]. The

curves will therefore only be shown here for explanatory purposes. Real, imaginary
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Table 5.1: Material parameters used for the analysis in Ch. 5.

Material cl [m/s] cs [m/s] ρ [kg/m3]

Steel 5960 3260 7932

Epoxy 2610 1000 1170

Material ”a” 2000 1000 1000

Material ”b” 4000 1000 1000

and complex branches correspond respectively to propagating, non-propagating and

inhomogeneous solutions. As pointed out in Ref. [69], for every complex branch there

exists an exact negative complex conjugate one. A 3-dimensional representation of

the first three longitudinal modes is given in Fig. 5.6 (a). Consider for example the

modes L(0,2) and L(0,3), which are both inhomogeneous between zero frequency

and the cut-off frequency of L(0,2). In the inhomogeneous region, their imaginary

wavenumbers are identical, whereas the real parts of their wavenumber have equal

magnitude and opposite sign. As an example, in order to show this relationship

more clearly, the real wavenumber of the forward modes is plotted together with

that of the backward modes in Fig. 5.6 (b). The wavenumber of a forward mode

has the same magnitude and opposite sign to the wavenumber of the corresponding

backward mode, and therefore this graph allows a direct comparison of the real

wavenumbers of L(0,2) and L(0,3) in the inhomogeneous region by looking at L(0,2)

and -L(0,3). The latter overlap completely in the inhomogeneous region, therefore

the real wavenumbers of L(0,2) and L(0,3) are the exact negatives of each other.

The real part of the wavenumber is non-zero for an inhomogeneous mode and rep-

resents a phase propagation, whereas the imaginary part represents a spatial atten-

uation. However, as a simple power flow calculation shows, inhomogeneous modes

do not carry power.

The situation is different for an embedded waveguide. Figure 5.7 (a) shows the

dispersion curves for the longitudinal modes L(0,1) to L(0,5) in a 1mm steel cylinder
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embedded in an epoxy resin. In addition, the projection of these curves onto the real

wavenumber - frequency plane is given in Fig. 5.7 (b), which also shows the modes

which propagate in the negative direction. From this it can clearly be seen that the

modes which are equivalent to the inhomogeneous modes in the free cylinder do not

have a negative complex conjugate counterpart. Instead, the modes seem to repel

each other. Also, a power flow calculation shows that these modes do in general

propagate power, and are therefore propagating modes.

The case where the embedding material is replaced by a perfectly rigid material is

also discussed. It presents an appropriate validation case for two reasons. Firstly,

the validity of the modal solution can be tested without the assumption of orthog-

onality in the embedded case since the modes in a cylinder with rigid boundaries

obey the orthogonality relationship presented in equation (5.7). Secondly, a rigid

boundary can be thought of as a limiting case of infinite impedance of the embed-

ding material. The dispersion curves are shown in Fig. 5.8. Note that there are

only non-propagating and inhomogeneous longitudinal modes in the low-frequency

region and no propagating longitudinal modes. The consequences arising from this

are studied in Sec. 5.6.

In order to ensure that the sub-matrix [Qm′ −n] in equation (5.60) is invertible, the

equivalent number of modes in the embedded cylinder to that in the free cylinder

will be included in the modal solution.

The energy balance is often used as an estimate of the error in the calculation of

the scattering coefficients [67], and it is adopted here. After normalisation of the

coefficients to represent the scattered power (see equation (5.69)), the error ε in the

total power flow is given by:

∑

m

(

|Am|2 − |B−m|2
)

−
∑

m′

|Bm′ |2 = ε. (5.70)

For an exact solution, ε = 0. It should be noted that the sums only run over prop-

agating modes, since non-propagating and inhomogeneous modes do not contribute

to the power flow. Also note that modes propagating in the −z-direction have neg-
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ative power flow. In the case that only one mode of unit power flow is incident, this

simplifies to:

1−
∑

m

|B−m|2 −
∑

m′

|Bm′ |2 = ε. (5.71)

5.5 Comparison to Finite Element Modelling

5.5.1 Finite Element Technique

The Finite Element (FE) method is used here to validate the results obtained from

the modal scattering analysis, which will be shown later in Sec. 5.6. The FE analysis

was carried out using the software FINEL, developed at Imperial College [78].

It performs efficient modelling of elastic wave propagation using a time-marching

procedure. For general reference of the FE-method refer to Refs. [79, 80].

To model a circular waveguide, four-noded quadrilateral elements were used in axi-

symmetry. To obtain a stable solution, it is necessary to meet a number of require-

ments. Firstly, for numerical accuracy, the element size should at most be one eighth

of the shortest wavelength present. Then, the error, for example, in guided wave

speed is smaller than 0.5% [72]. Similarly, a rapidly varying mode shape over the

cross-section has to be accounted for correctly by a sufficient number of elements.

Thirdly, the time step for the marching procedure should not exceed 0.8 times the

time in which the fastest wave can propagate one element length.

5.5.2 2D Finite Element Model

The nature of the reflection of L(0,1) from the point where a steel cylinder enters a

much larger diameter cylinder of epoxy resin was examined in detail. A schematic of

the FE model is shown in Fig. 5.9. The analysis covered the range from 0 – 0.5MHz,

and three different wire radii were modelled: 0.25mm, 0.5mm and 0.75mm. A 1-

cycle Hanning-windowed piston profile of 0.2MHz centre frequency was applied at

the free end of the cylinder in order to obtain the reflection coefficient over a range

of frequencies. Because the excitation has no significant energy above the cut-off

frequency of L(0,2) for the chosen waveguide diameters, the only propagating mode
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excited by this configuration is L(0,1). One has to make sure that the reflection from

the entry point is not disturbed by any other reflections from the end of the cylinder

or from the boundaries of the epoxy by choosing a sufficiently long embedded length

and a sufficiently large outer diameter of the epoxy. The monitoring point for

displacements in the axial direction is half way between the free end of the cylinder

and the entry point.

A typical FE time-trace is shown in Fig. 5.10. The first signal corresponds to

the incident mode L(0,1) passing the monitoring point, whereas the second signal

is the reflection from the entry point into the epoxy. Reflections from the other

boundaries of the embedded part of the model come later and can thus be neglected.

A Fourier transform was then applied to both signals individually. The division of

the amplitude spectrum of the reflected signal by the amplitude spectrum of the

incident signal gives the frequency dependent amplitude reflection coefficient.

The reflection from the interface between a cylinder with a free boundary and one

with a perfectly rigid boundary was also examined. A schematic of the FE model

is given in Fig. 5.11. The radius of the steel cylinder in this analysis was 0.5mm.

Since there are no propagating modes in the cylinder with rigid boundaries in the

frequency-range covered by the analysis, only non-propagating and inhomogeneous

modes will be excited in the rigid region. In order to observe these modes, the

displacements were additionally monitored in the axial direction in steps of 0.125mm

to the right hand side of the interface on the axis of the cylinder.

5.6 Results

5.6.1 Cylinder With Rigid Boundary

The reflection of L(0,1) from the interface between a cylinder with free and rigid

boundaries is considered mainly for the validation of the modal solution, since or-

thogonality is given in the cylinder with the rigid surface. However, it also gives

some insight into the behaviour of non-propagating and inhomogeneous modes.
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As stated earlier, there are no propagating modes at low frequencies in the rigid

cylinder. When the L(0,1) mode is incident from the free cylinder, then total reflec-

tion must occur at the interface at frequencies which are below the cut-off frequency

of L(0,2) in the free and L(0,1) in the rigid cylinder. This is because the non-

propagating and inhomogeneous modes in both parts of the cylinder cannot propa-

gate energy away from the scattering region. Therefore, both the modal and the FE

solution should give a reflection coefficient of unity. As shown in Fig. 5.12, this is

confirmed by both methods to a high degree of numerical accuracy. To obtain this

result, only the propagating L(0,1) mode in the free section and the non-propagating

L(0,1) in the rigid section were included in the modal solution.

The displacements in the z-direction on the axis of the cylinder with the rigid surface

were also monitored in the FE analysis. They can be thought of as the superposition

of the displacements of all the non-propagating and inhomogeneous modes excited

at the interface. Figure 5.13 shows the displacements as a function of time at three

different distances from the interface, which is located at z = 0mm. It can clearly be

seen that there is no propagation, and the amplitude decreases with distance from

the interface. These modes can therefore be thought of as local vibrations with

a spatial attenuation away from the discontinuity. The decay of the displacement

amplitude with respect to the distance from the interface at 0.2MHz, obtained from

the Fourier transform of the signal, is plotted in Fig. 5.14.

Zemanek [69] has already pointed out that inhomogeneous modes are always created

in pairs with equal imaginary wavenumber but with real wavenumbers of opposite

sign. This way, a spatially attenuated standing wave is set up which does not

propagate energy. As an example for the free cylinder, L(0,2) and L(0,3) represent

such a pair of inhomogeneous modes. Indeed, it was found in the calculations that

the scattering parameters, b, of the corresponding inhomogeneous modes are to a

high degree of accuracy identical.

As the total displacement, u, in the rigid part of the waveguide is a superposition of

all the spatially decaying non-propagating and inhomogeneous modes involved, the
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z-dependence of the modulus can be expressed in the form

u(z) =
∑

m′

um′(z) (5.72)

=
∑

m′

|um′ | e−iξm′z e−αm′z,

where ξ is the real wavenumber, and α is the attenuation (see also Sec. 2.3). Here,

the time-dependence has been omitted. Since the inhomogeneous modes occur in

pairs with real wavenumbers of opposite sign, this expression becomes

u(z) =
∑

m′

|um′ | cos(ξm′z) e−αm′z. (5.73)

For non-propagating modes, the real wavenumber is zero, and the cosine takes the

value unity. The values for the real wavenumber, ξ, and the attenuation, α, are

obtained from Disperse, and a curve can be fitted to the FE results using the

above equation, with the |um′ |’s being the fitting parameters. It is found that,

even though the modal solution gives accurate results when including only one non-

propagating mode, the decay function cannot be satisfactorily fitted using only one

mode (see Fig. 5.14). Instead, a minimum of 5 non-propagating and inhomogeneous

modes is needed to obtain a precise fit. This means that, although the modal

solution gives an accurate representation of the reflection coefficient when including

a minimal number of modes, more modes might actually be significantly involved in

the scattering process.

5.6.2 Scattering From Epoxy Loading

The different examples presented below are related to the application of a guided

wave system to the cure monitoring of epoxy resins. A steel cylinder which is partly

embedded in an epoxy resin is considered. The waveguide and the epoxy resin are

modelled as purely elastic materials.

Figure 5.15 shows the modulus of the amplitude reflection coefficient for the lowest

order longitudinal mode, L(0,1), in a 1mm radius steel wire using the material

properties given in Tab. 5.1 and using just the lowest order longitudinal mode in

the embedded section in the modal solution. In the same plot, the FE results are
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shown, and the agreement is very good. Including more inhomogeneous modes in

the free section and the equivalent modes in the embedded section changes the

reflection coefficient only by a negligible amount (not shown here). Therefore, the

influence of these modes on the reflection coefficient is minimal in this case. This is

in accordance with the findings of Engan in the case of the scattering of torsional

modes from a step change in diameter [44], which suggest that only a few non-

propagating modes are needed for a reasonably accurate description. The error in

the power flow calculation was found to be of the order of ε ≈ 10−4 − 10−5, even

with small numbers of inhomogeneous modes.

It is interesting to note that the amplitude reflection coefficient curve scales with the

product of the frequency and the radius of the cylinder (see Fig. 5.16). This is not

surprising as the reflection coefficient is calculated using the mode shapes, which,

like the dispersion curves, scale with the frequency-radius product. This has been

confirmed both with FE modelling and using the modal solution, although only the

FE results are plotted in Fig. 5.16.

The power of the L(0,1)-mode at low frequency-radius products is distributed fairly

evenly over the cross-section of the waveguide. However, the scattering occurs on

the circumference of the waveguide. It seems reasonable that under these conditions

the ratio of circumference to cross-sectional area roughly relates to the ratio of the

scattered to the total power of the incident mode. It was found that in this case only

the lowest order longitudinal mode plays a significant role in the scattering process,

and therefore the ratio of scattered to total power governs the reflection coefficient.

Because of the geometry, this ratio decreases with increasing radius. This explains

why the reflection coefficient is large for low frequency-radius products, and falls off

to low values at higher frequency-radius products.

The particle displacements of L(0,1) at the surface of the waveguide at very low

frequencies are mainly in the axial direction. Therefore, guided wave attenuation

is mostly caused by the leakage of shear waves and depends strongly on the shear

velocity of the embedding material, and only to a small extent on its longitudinal
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velocity. The situation is similar for the reflection coefficient. This is illustrated

in Fig. 5.17, where the reflection coefficient for embedding materials with constant

shear velocity and density but a 100% difference in the longitudinal velocity are

shown. There is a negligible difference in the curves for the two materials. For a cure

monitoring application, the change in shear properties with curing time is significant,

and a significant change in the reflection coefficient is expected. Fig. 5.18 shows the

amplitude reflection coefficient for different values of shear velocity, calculated using

both the modal solution and FE modelling. The reflection coefficient increases with

increasing shear velocity, since the difference in surface impedance between the free

and the embedded cylinder increases. Therefore the reflection coefficient can be used

to evaluate the shear properties of an embedding material.

5.7 Experimental Validation

For the experimental validation in this section the influence of the shear bulk at-

tenuation on the reflection coefficient after the resin has fully cured is neglected, so

the resin is modelled as an elastic material. The accuracy of this approximation is

discussed in Sec. 6.4.

Figure 5.19(a) shows an example of an experimental time trace of L(0,1) in the free

wire before embedding. It shows the reference reflection and the reflection from the

end of the wire. The time trace after embedding is shown in Fig. 5.19(b), with the

resin fully cured. Here the entry reflection is received at an earlier time because of

the reduction in propagation distance.

Since piezoelectric transducers were used for these experiments, a narrow-band signal

had to be chosen in order to prevent signal distortion due to the excitation of

frequencies close to the resonance frequency of the transducer. Let the modulus

of the Fourier transform of the reference reflection in the free and the embedded

wire be denoted by Avac
0 and Aemb

0 , respectively, the end reflection in the free wire

by Avac and the entry reflection in the embedded wire by Aemb. Then the reflection
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coefficient R is calculated according to

R =
Aemb/Aemb

0

Avac/Avac
0

. (5.74)

Experiments were conducted using the lowest order longitudinal mode, L(0,1). Two

steel wires of different radius, r = 0.125mm and r = 0.5mm, were embedded in

the same sample of epoxy resin (Araldite 2012, Ciba Specialty Chemicals) in order

to confirm the frequency-radius dependence of the reflection coefficient. Measure-

ments were taken between 0.1MHz and 0.55MHz using narrow-band signals, and

the reflection coefficient was evaluated at the centre frequencies.

In a separate experiment, the material properties of the cured epoxy sample were

measured using conventional ultrasonic transducers in a through-transmission exper-

iment at 0.05MHz. The shear velocity was determined as cs = 0.885m/ms, and the

density ρ = 1170 kg/m3. Using these material properties, the reflection coefficient

was predicted by means of FE modelling, assuming the epoxy to be perfectly elas-

tic. The experimental results are plotted together with the predictions in Fig. 5.20.

The agreement is very good, and it confirms the frequency-radius dependence of the

reflection coefficient.

5.8 Summary

The scattering of guided waves in a free bar from the point where the waveguide

enters an embedding material has been discussed. It has been shown that for a wave

which is incident from the free section of the bar, a scattering formula equivalent

to one derived using the S-Parameter formalism is obtained by matching the fields

at the interface between the free and the embedded waveguide. A modal solution

shows good agreement with results obtained from Finite Element modelling.

For the modal solution presented here, orthogonality of the leaky modes in the em-

bedded waveguide is assumed and appears to be satisfied sensibly in the example

which is studied. However, further research should investigate an orthogonality rela-

tionship for leaky waveguide modes. The mathematical form of such a relationship,
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for example whether an integral form includes the embedding half-spaces or only the

waveguide cross-section, determines the modal solution in the case where a guided

wave is incident from the embedded section of the waveguide.

Orthogonality is given in the case where the embedding material is perfectly rigid.

The results for this case show that, although several non-propagating and inhomo-

geneous modes are involved in the scattering process, only the lowest order non-

propagating mode significantly influences the reflection coefficient.

The nature of the reflection coefficient when the embedding material is an epoxy

resin has been discussed in detail. It has been shown that the reflection coefficient

is a function of the frequency-radius product, as are the dispersion relationships.

It was found that, in the frequency range which was covered by the analysis, the

reflection coefficient depends only minimally on the longitudinal velocity of the resin,

but is a strong function of the shear velocity. As in the case where the embedding

material is rigid, the influence of the non-propagating and inhomogeneous modes

was found to be minimal.

The numerical results from the modal solution and the Finite Element modelling

were experimentally verified, very good agreement being obtained.
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Figure 5.1: Circular waveguide of cross-section S and circumference C. r̂ is the outward

normal vector to C.
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Figure 5.2: Schematic of the problem considered in this chapter. A propagating mode

incident from the free section of the bar is scattered at the interface at z = 0 due a change

in surface impedance.
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Figure 5.3: (a) Solution ”1”, without surface loading, and (b) solution ”2”, with surface

loading.
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Figure 5.4: Partly embedded circular waveguide. An incident mode (ν̄,n̄) is scattered

at the interface between the free and embedded section of the waveguide. The fields v1

and T1 in the free section are represented by a superposition of the incident and reflected

waveguide modes. The fields excited in the embedded section are denoted by v2 and T2.
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Figure 5.5: Schematic showing the geometrical relationship between the complex

wavenumber of the guided wave in the axial direction, k, and the complex wavenumber

vector of the leaky inhomogeneous bulk wave, k′. Note that, for harmonic propagation

with e−ikz, Im{k} < 0 corresponds to a guided wave which is attenuated in the positive

z-direction.
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Figure 5.6: (a) 3-dimensional dispersion curves for the first three longitudinal forward

modes in a 1mm steel cylinder in vacuum. (b) Real wavenumber of the first three lon-

gitudinal modes, showing forward and backward modes plotted in solid lines and dashed

lines, respectively. CO indicates the cut-off point below which L(0,2) is inhomogeneous.
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Figure 5.7: (a) 3-dimensional dispersion curves for the first five longitudinal forward

modes in a 1mm steel cylinder embedded in epoxy resin. (b) Real wavenumber of the

first five longitudinal modes, showing forward but also backward modes in solid lines and

dashed lines, respectively.
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Figure 5.8: (a) 3-dimensional dispersion curves for the first five longitudinal forward

modes in a 1mm steel cylinder with rigid boundaries. (b) Real wavenumber of the first

five longitudinal modes, showing forward but also backward modes in solid lines and

dashed lines, respectively. Note that there are no propagating modes at low frequencies.
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Figure 5.9: Schematic of the Finite Element model for a cylinder entering an epoxy resin.
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Figure 5.10: Typical Finite Element time trace of the incident and reflected L(0,1) mode

in 0.5mm diameter steel bar which is partly embedded in epoxy.
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Figure 5.11: Schematic of the Finite Element model for a cylinder entering a region with
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Figure 5.12: Modulus of the reflection coefficient of L(0,1) from the interface between

a cylinder with a free and one with a rigid surface. As explained in the text, this should

be exactly unity. Note that the ordinate has been scaled to better show the error in the

calculations.
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Figure 5.13: Time trace showing the displacements in the rigid section of the cylinder

at three locations, 0.125mm, 0.625mm, and 1.125mm away from the interface.
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Figure 5.14: Modulus of the displacement at 0.2MHz versus distance from the interface.

Details regarding the curve fits are given in the text.
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Figure 5.15: Modulus of the amplitude reflection coefficient of L(0,1) in a 1mm radius

steel bar embedded in epoxy. The material parameters for this analysis are given in

Tab. 5.1. The plot shows the results obtained with the modal solution, using only the

lowest order longitudinal mode in the analysis, and the Finite Element (FE) model.
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Figure 5.16: Modulus of the amplitude reflection coefficient of L(0,1) in a steel bar

embedded in epoxy as a function of the product of frequency and radius. The material

parameters for the analysis are given in Tab. 5.1. The plot shows the Finite Element

results obtained with three different wire radii R.
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Figure 5.17: Dependence of the modulus of the reflection coefficient on the longitudinal

velocity for two different materials, ”a” and ”b”, respectively. The material properties

used in the analysis are given in Tab. 5.1.
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Figure 5.18: Modulus of the amplitude reflection coefficient of L(0,1) in a steel bar for

different values of epoxy shear velocity. All other material properties of the epoxy are

according to Tab. 5.1.
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Figure 5.19: Experimental time traces of the lowest order longitudinal mode, L(0,1),

in a 0.125mm radius steel wire. Plots (a) and (b) show the time trace before and after

embedding in epoxy resin, respectively. In plot (b) the resin has fully cured.
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Figure 5.20: Measured and predicted entry reflection coefficient for steel wires partly

embedded in an epoxy resin. Experiments were conducted with two wires of different

radius, r = 0.125mm and r = 0.5mm. The solid line shows the Finite Element results.
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Chapter 6

Application to Cure Monitoring

6.1 Background

This chapter is concerned with the monitoring of the cure process of epoxy resins.

The emphasis here is to demonstrate the measurement techniques presented in Ch. 4

and Ch. 5 rather than the examination of the properties of specific epoxy resins.

An epoxy is a molecule containing one or more epoxide groups (see, for example,

[81]). The curing process is a chemical reaction in which these epoxide groups in

the resin react with a curing agent to form a cross-linked polymer. The curing

agent is also known as hardener. Commercial epoxy resins are thus delivered in

two parts, one component being the epoxy resin, the other one being the hardener.

Before the epoxy resin and the hardener are mixed to initiate the curing reaction,

both components have the consistence of a viscous liquid or a paste, depending on

the particular resin and agent. Once mixed, due to the cross-linking of polymer

chains, the material properties of the resin change. In general, both the shear

and the longitudinal bulk velocity increase monotonically with the progress of cure

until the final values are reached and the resin is fully cured. The resin is then

a solid material. The longitudinal bulk attenuation initially increases, reaches a

maximum and decreases monotonically until the end of cure, whereas the shear bulk

attenuation decreases monotonically throughout the cure process [3, 82]. However,

it should be noted that existing ultrasonic techniques cannot easily monitor the

shear properties in the initial stages of cure. In some resins, the temperature in the
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sample may rise due to exothermic reactions, and cause the viscosity to decrease

in the initial stages of cure. Also the density can change during cure as shrinkage

is observed to different extents in some resins. However, for the resins used in this

thesis, a density change could not be observed.

Several researchers have previously investigated the possibility of using a waveguide

technique for monitoring this cure process. In 1974 Papadakis presented two meth-

ods for determining the change in material properties of an epoxy resin over the

cure cycle [63], which are indeed the measurement techniques presented in Ch. 4

and Ch. 5. The first method is based on the measurement of the attenuation of lon-

gitudinal and torsional guided waves in a circular bar. The second method measures

the reflection of those waves from the point where the waveguide enters the resin.

Both attenuation and reflection change significantly during cure.

The feasibility of using guided waves in wires for monitoring cure as well as the

structural integrity of composites was also investigated by Harrold and Sanjana [2].

Their measurements were based on the attenuation method. They excited guided

waves in a 1.5mm diameter polyester-fibreglass rod at 74 kHz, and the attenuation

of the guided wave when embedded in a curing epoxy resin and a curing gel was

measured in through transmission. The effect of bubbles occurring in the epoxy

could be observed as a small peak in the amplitude. However, they did not account

for the entry reflection. The theoretical foundations and practical aspects of cure

monitoring with waveguides were qualitatively described by the same authors in

Ref. [83]. Harrold et al. later also applied this technique to monitor the solidification

process of other materials such as concrete [84].

Li et. al. used the wire waveguide technique in a through-transmission arrangement,

with the transmitter at one end of the wire and the receiver at the other end [85].

Where it is embedded in the epoxy, the wire is bent in the form of a U-turn, so that

two sections of the wire run parallel to each other (see Fig. 6.1). When the epoxy

cures, the guided wave will go all along path 1 and be received at the other end,

thereby being more and more attenuated during cure. At one point, the guided wave
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attenuation will become too high, but energy is then propagated between the two

legs of the wire (path 2). Characteristic curing curves of amplitude and time of flight

can be obtained this way. It should be noted that the mechanism for the propagation

of waves between the legs of the wire is closely related to the study carried out in

Ch. 7, where the effect of radiating waves in a joint geometry is analysed.

However, all these results are so far only of a qualitative nature and have not been

related to the actual material properties of the epoxy resin. This is due to the fact

that the underlying theory had not been worked out in detail. The measurement

techniques and modelling tools for measuring material properties presented in Ch. 4

and Ch. 5 are suited for this task and are used in the following.

In the early stages of this investigation, only the longitudinal mode, L(0,1), was

used because it is easy to excite using piezoelectric excitation. Because of this

chronological circumstance, work has concentrated on the longitudinal mode. As

for the reflection coefficient method presented in Ch. 5 and the analysis carried out

in Ch. 7, the analysis in this chapter covers only this mode. However, the modelling

tools and measurement techniques are completely general and can be applied to any

other mode, such as for example the torsional mode, T(0,1).

In the following, a brief review of existing cure monitoring techniques other than

ultrasonic waveguide techniques will be given. Preliminary considerations then deal

with the applicability of the reflection and the attenuation method for measuring the

properties of curing and solid materials. The reflection and the attenuation method

are then applied to the cure monitoring of an adhesive that can be cured in bulk

form in order to avoid geometry effects which will be described in Ch. 7.

6.2 Review of Existing Cure Monitoring Tech-

niques

The following review is intended to give a short overview into the existing techniques

other than guided wave methods which have been described in Sec. 6.1. In order
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to remain within the scope of this work, the non-ultrasonic techniques in particular

are described only briefly, and the reader will be referred to the cited literature.

Ultrasonic Bulk Wave Techniques

Ultrasonic cure monitoring of epoxy resins was first investigated by Sofer and Hauser

in 1952 [86]. They measured the longitudinal velocity and attenuation of a resin

contained in a test chamber in through transmission at 2.2 – 2.4MHz. While the

longitudinal bulk wave velocity increased monotonically, they observed that the at-

tenuation increases at first, then goes through a maximum, and then decreases again.

Temperature changes were recorded, too, but they concluded that the maximum in

attenuation occurs independently.

Speake et al. [87] used both an ultrasonic critical-angle and an ultrasonic resonance

method to monitor the cross-linking reaction in epoxy resins. The objective of their

work was to measure cure after the gelation point, where the polymer is already

relatively solid. The critical-angle technique is based on the principle of critical

reflection of a wave at an interface between two media. The angles of reflection

and refraction of longitudinal and shear waves at an interface between two media

are related to each other by Snell’s law. At a certain critical angle, depending on

the material properties of the two media, total reflection occurs, and a peak in

the reflected amplitude can be observed, because the energy of the incident wave

is no longer split into a reflected and a refracted one. Thus, the measurement of

the critical angles for shear and longitudinal waves yields the sound velocities of

the material under investigation. They found that this technique is sensitive to

changes both in the shear and the longitudinal velocity of curing epoxy resins. In

the resonance technique, longitudinal or torsional waves were transmitted along a

rod which was mechanically coupled to the specimen in a frequency range of 10 –

100 kHz. Resonances which show up in the amplitude spectrum of the reflected signal

allow Young’s modulus and the shear modulus to be obtained, using an apparatus

originally developed by Bell [88].

Lindrose [89] measured and calculated both the longitudinal and the shear modulus
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of a resin as a function of cure time by applying a pulse-echo technique. He used

longitudinal and shear wave transducers at a frequency of 1MHz. Freemantle et

al. [3] presented a through-transmission set-up where the test cell, which contains

the resin sample, is immersed in water. A longitudinal wave is transmitted through

the water and the resin sample. Using a goniometer, the test cell could then be

angled with respect to the direction of propagation of the longitudinal wave in the

water. This way, longitudinal and, through mode conversion, also shear waves were

excited in the resin sample. Once these waves reach the other side of the sample, they

excite a longitudinal wave in the water and are detected by a receiving transducer.

Both longitudinal and shear phase velocity and attenuation can be calculated.

Rohklin et al. [90] measured the frequency dependence of phase velocity and attenu-

ation during polymerisation in the range of 2 – 20MHz. They concluded from their

measurements that the attenuation increases linearly with frequency at all stages of

the cure process. The frequency dependence of the longitudinal properties of thin

viscoelastic adhesive layers as a function of cure was also measured by Challis et

al. [91] by applying a short pulse technique in through transmission. The elastic

modulus can be calculated on the basis of a frequency domain comparison of shapes

of successive reverberations in the adhesive layer.

Dixon et al. [82] measured the cure process of an epoxy resin using electro-magnetic

acoustic shear transducers. The adhesive was contained in a test cell with parallel

aluminium sheets, and the transducers were placed on opposite sides of the cell. The

shear properties of the adhesive were measured both in through transmission and

by measuring the reflection which occurs at the interface between the aluminium

plate and the adhesive. It was found that the shear velocity increases during cure

whereas the shear attenuation decreases monotonically.

Measurements of cure were also carried out in composite materials [92, 93] and epoxy

resins containing fillers such as glass beads and fibres [87].
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Dielectric Analysis

A well established means of monitoring the cure process of epoxy resins is dielectric

analysis [94, 95, 96, 97, 98]. The method is based on the measurement of electrical

capacitance, which is related to the complex dielectric constant. The resin is placed

in an alternating electric field between two metal electrodes. In the early stages

of cure up to the gelation point the ionic conductance dominates the dielectric

response. It depends on the mobility and concentration of the ions, and is therefore

also closely related to the viscosity. If the viscosity is low, then the dissipation

term of the dielectric constant is small, because the motion of the dipoles is not

impeded. This is different during gelation, where the viscosity is very high. There,

the dissipation is at its maximum. After that point, a polymeric network is formed,

so that the dipoles are fixed in their position and hence cannot dissipate energy by

moving in the alternating electric field. Therefore, the dissipation curve decreases

until the end of cure. The real part of the dielectric constant is a measure of the

ability of the molecules to align themselves in the presence of an electric field, and

undergoes significant changes during the cure process, too. After gelation, like the

dissipation factor, it decreases monotonically.

NMR Analysis

The nuclear magnetic resonance technique reveals information regarding the internal

structure of a material. This method is able to distinguish the different stages of cure

by measuring relaxation times of nuclear spins. The relaxation time is related to the

mobility of the molecules, and is the shorter the more solid the material is. If both

a liquid phase and a solid phase co-exist in the material, two different signals with

different relaxation constants appear. Therefore, by tracking the relaxation times

over the cure cycle, the change from a viscous liquid to a cross-linked solid polymer

can be observed. Studies on an epoxy resin during cure were recently carried out by

Dare and Chadwick [99].

Infrared and Optical Analysis

There are a number of different infrared spectroscopy methods, which are all useful

for monitoring polymerisation rates and the chemical mechanisms of cure. They are
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based on the observation of absorption bands belonging to a group of reactants in

the infrared spectrum. A thorough review is given in Ref. [81]. Similar to ultra-

sonic guided wave methods, optical fibres can be used for the infrared spectroscopy

methods [100].

X-Ray Analysis

Wide-angle X-ray scattering has recently been applied to measure the formation

of chains and networks in curing resins [101]. The development of peaks in the

intensity at different scattering angles indicate the development of local structures

and molecular components. So far, the conclusions that can be drawn from this

technique are not very specific.

6.3 Applicability of the Reflection and Attenua-

tion Method

6.3.1 General Applicability

The nature of the entry reflection coefficient of the fundamental longitudinal mode

determines the range of frequency-radius products at which each method is appli-

cable. Clearly, the reflection coefficient method can only be used at low frequency-

radius products, since only there is it of significant magnitude. For the attenuation

measurements, it would be preferable also to work at low-frequency radius products,

since the influence of the longitudinal properties of the adhesive can be neglected

there, which makes it possible to relate the attenuation measurement to the shear

properties of the epoxy resin. Also, the longitudinal mode becomes dispersive at

higher frequencies which makes testing more difficult. However, in practice, where

the exciting transducer is placed on a free section of the waveguide, and the guided

wave of the free bar has to be transmitted into the guided wave in the embedded

section, the need to minimise entry reflection forces one to work at higher frequency-

radius products. Only there is enough energy transmitted into the embedded part,

and the entry reflection may be neglected or included in the analysis as an error.

The shaded regions in Fig. 6.2 schematically indicate where each method is appli-
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cable. Of course, the limits of these regions are not strict, and they depend on the

system under investigation and the accuracy required.

6.3.2 Application in Automotive Joints

Regarding the cure monitoring application in thin joints in an industrial setting, the

reflection coefficient methods seems at first better suited for an industrial application

mainly from a practical point of view. Firstly, for the attenuation method, it is

difficult to exactly determine the embedded length of the wire in real joints. This

uncertainty affects the calculation of the attenuation according to Eq. (4.9). There is

no such limitation for the reflection coefficient method. Secondly, for the application

in thin joints, also thin wires have to be used. Keeping in mind that for small

radius wires the entry reflection becomes large, the attenuation method does not

seem feasible. One solution would be to test at higher frequencies. However, the

intrinsic attenuation in the wire itself increases with increasing frequency, which is a

disadvantage when using long wires as is anticipated for this particular application.

For the reasons outlined above, the investigation into possible effects of the joint

geometry as presented in Ch. 7 will concentrate on the reflection method.

6.4 Reflection Method for Cure Monitoring of

Bulk Samples

6.4.1 Numerical Simulations

For a cure monitoring experiment it is important to know how the reflection coeffi-

cient changes with the increasing shear velocity of the embedding resin. Figure 5.18

shows the entry reflection of L(0,1) for different epoxy shear velocities. Apart from

the shear velocity, which is indicated in the plot for each reflection coefficient curve,

the epoxy properties are the same as the ones given in Tab. 6.1 for the solid epoxy.

While the epoxy resin solidifies, the shear velocity increases and the change in surface

impedance becomes larger, so that the entry reflection increases. As an example,

Fig. 6.3 shows the reflection coefficient as a function of the epoxy shear velocity at a
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frequency-radius product of 0.05MHzmm. This shows once more the advantage of

the modal solution over Finite Element modelling, since for this result a number of

different FE calculations would have to be performed, apart from the fact that it is

not feasible at low shear velocities for the reasons pointed out in Sec. 5.1. The modal

solution, in contrast, only needs one calculation, since the mode shapes, which are

needed for the modal solution, can be traced in Disperse as a function of the shear

velocity, with fixed frequency. Of course, the longitudinal bulk velocity also under-

goes significant changes during cure, but as was already mentioned in Sec. 5.6.2,

this does not affect the reflection coefficient.

Table 6.1: Material parameters used for the analysis in Ch. 6.

Material cl [m/s] cs [m/s] ρ [kg/m3]

Steel 5960 3260 7930

Solid Epoxy 2610 1000 1170

Liquid Epoxy 1700 – 1170

The modelling tools presented enable the optimisation of the guided wave system,

by choice of the frequency-radius product, to have the highest sensitivity to shear

changes. The sensitivity S, which is the change in reflection coefficient R for a given

change in shear velocity cs at a particular shear velocity c0 is determined by the

following expression:

S =
dR

dcs

∣

∣

∣

∣

c0

. (6.1)

Figure 6.4 shows the sensitivity around a shear velocity of c0 = 1m/ms. For a typical

epoxy resin surrounding a steel wire, a maximum occurs at around 0.05MHzmm.

The reflection coefficient experiments were therefore conducted in this frequency-

radius range.

As was explained in Sec. 6.1, the shear bulk attenuation decreases with the progress

of cure, whereas the shear bulk velocity increases. For typical values of bulk shear
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velocity and attenuation in the epoxy after the completion of cure (see, for exam-

ple, Ref. [3]), results using the modal solution suggest that even a high attenuation

value of 0.5 np/wl in the epoxy influences the reflection coefficient only minimally

(see Fig. 6.5). For this analysis, the frequency dependence of the bulk shear at-

tenuation of the resin was assumed to be such that the attenuation per wavelength

was constant. This behaviour is supported by findings of Freemantle et al. [3] in

ultrasonic bulk wave experiments.

It should be noted that the modelling examples given here are idealised in that the

epoxy resin was modelled as an elastic material. As mentioned before, in reality it

behaves more like a viscoelastic material with a changing bulk shear velocity and

attenuation. Since only one variable can be determined either from the reflection

coefficient or from the attenuation technique, it is not possible to characterise the

embedding material completely. However, it has been shown that in the later stages

of cure, the bulk shear attenuation has a negligible effect, so the bulk shear velocity

can be predicted accurately. In the earlier stages of cure, the bulk shear attenuation

is very high and will affect the calculation of the shear velocity. Therefore, an

accurate value of shear velocity cannot be obtained. Nevertheless, the measurement

is indicative of the progress of cure in the early stages.

6.4.2 Experimental Findings

The commercial epoxy adhesive Araldite 2013 (Ciba Specialty Chemicals) was used

in the experiments. It is a low temperature curing adhesive for metal bonding

and gap filling applications. Cure monitoring experiments were conducted using a

0.5mm radius steel wire as the measurement wire. The longitudinal mode L(0,1)

was excited in the wire using magnetostrictive transduction. A wide-band, 2 cycle

Hanning windowed signal was chosen so that the reflection coefficient could be eval-

uated at several frequencies. The epoxy was cured at room-temperature in a bulk

sample of 50ml volume in a polyethylene beaker of 53mm inner diameter, and the

measurement wire was fed through holes in the beaker. After taking a reference time

trace before embedding, the adhesive was poured into the beaker and measurements

were taken at intervals of 5 minutes. The beaker was positioned approximately in
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the middle of the measurement wire.

Figure 6.6 shows example time traces obtained during cure. The time trace at 0

hours shows the reference time trace before embedding. The signal denoted by

”A” is the reference reflection from the joint between the magnetostrictive and the

measurement wire, and the reflection denoted by ”B” is the reflection from the end of

the wire. The remaining time traces show the reflections while the measurement wire

is embedded in the curing epoxy. After 1 hour, the entry reflection, ”C”, can be seen,

and the amplitude of the end reflection decreases due to both increasing attenuation

in the embedded part and also due to the fact that some of the energy is reflected at

the entry point. After 2 hours, the end reflection disappears completely, and only the

entry reflection remains visible. The entry reflection increases monotonically with

curing time due to the increasing shear velocity in the epoxy. A second reflection,

”D”, can be observed after approximately 3 hours. This is not a reflection from the

end of the wire but a reverberation of the entry reflection ”C” between the entry

point and the joint between the magnetostrictive and the measurement wire. No

significant further changes are observed after approximately 8 hours.

The cure monitoring curves obtained from the above experiment at different fre-

quencies are plotted in Fig. 6.7, using equation (5.74). As expected, the reflection

coefficient is higher at lower frequencies. The reflection coefficient of L(0,1) at the

end of cure at 0.05MHzmm was R = 0.451. With a density of ρ = 1170 kg/m3, this

corresponds to an epoxy shear velocity of cs = 1.06m/ms. This agrees well with the

shear velocity data given in Ref. [3].

Note that in this case cure is measured at the edge rather than in the interior of

the epoxy sample. This is important to keep in mind as considerable temperature

differences may occur between the inside and the surface of the curing adhesive,

resulting in different curing rates.
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6.5 Attenuation Method for Cure Monitoring of

Bulk Samples

6.5.1 Numerical Simulations

It is clear from Sec. 6.3 that at higher frequency-radius products the guided wave

incident from the free section of the wire is almost entirely transmitted into the

embedded section. The analysis in this section deals with the guided wave which is

transmitted as a mode in the embedded waveguide.

As mentioned before, the guided wave is attenuated due to the leakage of bulk

waves into the surrounding medium. If the embedding material is an ideal liquid,

only bulk longitudinal waves are radiated, whereas if it is a solid, both shear and

longitudinal waves may be radiated and contribute to the leakage. In the case of the

fundamental longitudinal mode, L(0,1), at low frequencies the leakage of longitudinal

waves is small, since the surface displacements are mainly in the axial direction.

Therefore, leakage is almost entirely due to shear leakage. It is hence expected

that the attenuation is low at the onset of cure and increases with increasing shear

velocity of the embedding epoxy resin.

As an example, Fig. 6.8 shows the attenuation dispersion curves of L(0,1) for a steel

wire embedded in a liquid epoxy resin, modelled as an ideal liquid and representing

the pre-cure state, and a solid epoxy resin, modelled as an elastic solid and repre-

senting the post-cure state. The density is assumed to stay constant throughout

cure. As mentioned before, for an ideal liquid epoxy, only longitudinal bulk waves

radiate, whereas for the solid epoxy, both shear and longitudinal waves contribute

to the leakage. The dispersion curve for the liquid epoxy case confirms that at

low frequency-radius products, the attenuation due to the leakage of longitudinal

waves is small. Therefore, the attenuation is mainly sensitive to the shear proper-

ties of the epoxy resin. It should also be noted that the ordinate of Fig. 6.8 is a

np·mm/m-scale. Therefore, the attenuation per metre of a 1mm radius wire at a

given frequency-radius product is double that of a 2mm radius wire.
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Figure 6.9 shows the effect of different epoxy longitudinal velocities on the L(0,1)-

attenuation for a cured epoxy and an imaginary uncured one with a low shear

velocity and the same longitudinal velocity. It is found that the longitudinal velocity

has only little influence in the low frequency-radius limit below 0.5MHzmm after

the early stages of the cure cycle. Only at higher frequency-radius products does

the longitudinal velocity have a significant effect on the attenuation, which is due to

the increasing radial displacements at the surface of the waveguide. This is similar

to the behaviour observed for the entry reflection.

The effect of shear bulk attenuation on the attenuation of the longitudinal guided

wave at the end of cure is considered in Fig. 6.10. This shows the attenuation of

L(0,1) for a purely elastic and a strongly attenuating epoxy resin. As before, for

the evaluation of the influence of bulk shear attenuation on the reflection coefficient,

the attenuation was taken to be constant per wavelength, thus linearly increasing

with frequency. It can be seen that the difference in guided wave attenuation is very

small, and may therefore also be neglected when calculating the shear properties of

the epoxy resin after cure.

As an example, the L(0,1)-attenuation as a function of the epoxy shear velocity

is given in Fig. 6.11, assuming that the epoxy resin is elastic. The attenuation

increases almost linearly with increasing shear velocity. This is to be expected since

by increasing the epoxy shear velocity, the difference between the acoustic impedance

of the waveguide and the epoxy resin decreases.

6.5.2 Experimental Findings

The setup was changed slightly in order to make cure monitoring measurements

using the attenuation method. As pointed out earlier, these measurements have

to be taken at a higher frequency-radius product in order to avoid reflection at the

entry point. Therefore, measurements were taken using a 1.5mm radius steel wire at

0.266MHz, which corresponds to a frequency-radius product of about 0.4MHzmm.

A piezoelectric transducer was used to excite L(0,1) in a 1mm radius steel wire, and

in order to avoid ringing a 10-cycle Hanning windowed input signal was applied.
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The embedding length L for the calculation of the guided wave attenuation was

53mm. The same adhesive was used as for the reflection coefficient experiments.

Figure 6.12 shows the development of the time traces during cure. The reference

signal from the joint between the steel wires is denoted by ”A”, and the reflection

from the end of the measurement wire is denoted by ”B”. The plot at 0 hours

shows the reference time trace before embedding. After 1 hour, the amplitude of

the end reflection has decreased due to the fact that the wire is embedded and

leaking bulk waves into the epoxy. As the polymer chains are cross-linking, the

shear velocity increases and the amplitude decreases monotonically until the end

of cure as the L(0,1)-attenuation increases. After 2 hours, a small entry reflection

occurs, ”C”, which increases until the end of cure. This entry reflection reaches a

value of approximately R = 0.05 by the end of cure.

The attenuation as a function of the curing time is plotted in Fig. 6.13. In order to

check consistency between the reflection coefficient and the attenuation results, the

epoxy shear velocity is calculated at the end of cure. The attenuation of L(0,1) in the

1.5mm radius steel wire at the end of cure was α = 18.89 np/m, which corresponds

to an attenuation-radius product of α · r = 28.33 np ·mm/m. Using these values,

the epoxy shear velocity is calculated as cs = 1.01m/ms. This is within 4% of the

value obtained with the reflection coefficient method and also agrees well with the

shear velocity data given by Freemantle et. al. [3].

It should be noted that the entry reflection always introduces an error in the at-

tenuation measurements if it is not accounted for in the analysis; the measured

attenuation appears larger than the actual attenuation. The only way that this can

be avoided is to fully embed the waveguide in the epoxy resin. If this is not possible,

an estimate of the maximum error introduced by the entry reflection can be calcu-

lated from the entry reflection which was also measured during the cure experiment

(reflection ”C”). The transmission coefficient T may be calculated from the energy

balance equation:

R2 + T 2 = 1. (6.2)
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One main assumption enters this equation. It is assumed that all the incident

power is scattered into the transmitted and reflected L(0,1)-modes, and not into

other modes. As has been found in Ch. 5, the above equation is fulfilled to a high

degree of accuracy.

In order to calculate the error introduced by the entry reflection, it is further assumed

that the transmission coefficient from the free section into the embedded section is

equal to the transmission coefficient from the embedded into the free section. It

should be noted that this is not necessarily true, and the difficulty encountered

when trying to calculate the latter transmission coefficient is outlined in Appendix

B. In a pulse-echo experiment, as schematically shown in Fig. 3.6, the end of the

wire waveguide protrudes from the epoxy sample in order to avoid losses through

the end face of the wire. The received end reflection was therefore transmitted twice

from the free into the embedded section and twice from the embedded into the

free section, each time with a transmission coefficient of T . Thus, the normalised

amplitude Aemb/Aemb
0 can be written in the following way:

Aemb

Aemb
0

=
Avac

Avac
0

T 4e−2αL. (6.3)

It follows that the error ε introduced when calculating the attenuation according to

equation (4.9) instead of equation (6.3) is

ε =
2

L
lnT. (6.4)

Note that this error becomes smaller with increasing embedding length L. Since T is

always smaller than 1, ε < 0, and therefore the actual attenuation is overestimated.

In this case, with R = 0.05, the error is estimated as ε ≈ −0.05 np/m. This is small

compared to the measured attenuation and may be neglected.

In contrast to the reflection coefficient method, the measured shear velocity for the

attenuation method presents an average value measured over the embedded length

of the waveguide.
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6.6 Summary

The shear velocity of an epoxy resin changes significantly during cure. At the

beginning of cure, the material properties range from viscous to pasty, depending

on the epoxy resin. At this stage, conventional ultrasonic bulk wave techniques fail

to monitor changes in the shear properties due to the high shear bulk attenuation.

During solidification the shear velocity increases and the shear attenuation decreases

steadily due to the cross-linking of polymer chains. These changes happen relatively

quickly at the beginning of cure, whereas towards the end of cure, the curing rate

is slowed down very much, even though the cure cycle is not complete.

It has been shown that it is possible to monitor the curing process of epoxy resins

using the waveguide methods presented in Ch. 4 and Ch. 5. One significant advan-

tage of the wire waveguide method is that the shear properties can be measured

from the start over the whole curing cycle, and quantitative predictions of the shear

velocity for example at the end of cure are possible. An indicative assessment of the

progress of cure is possible at the early stages of cure, where conventional ultrasonic

cure monitoring methods fail.

The nature of the entry reflection determines at which frequency-radius products

the reflection and attenuation method can be applied. Experimental results have

shown the validity of the predictions by modal analysis. These results are valid in

bulk material of the embedding medium.

For the application in automotive joints, the reflection method is more attractive

than the attenuation method. This is mainly due to the fact that thin wires have

to be used, in which case the reflection method is better suited, but also due to

calibration difficulties when using the attenuation method.
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Figure 6.1: Experimental setup used by Li et al. to monitor epoxy cure.
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Figure 6.2: Entry reflection coefficient of L(0,1) as plotted in Fig. 5.15. The shaded

areas indicate schematically where the reflection and attenuation method are applicable

for cure monitoring experiments.
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Figure 6.3: Predicted entry reflection coefficient of L(0,1) as a function of the epoxy

shear velocity at a frequency-radius product of 0.05MHzmm (modal solution). All other

material properties are as for solid epoxy in Tab. 6.1.
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Figure 6.4: Sensitivity of the L(0,1)-reflection coefficient to changes in the shear velocity

at cs = 1.0m/ms. A maximum occurs at around 0.05MHzmm.
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ation values of the embedding epoxy resin (modal solution). All other material properties
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this analysis is ρ = 1170 kg/m3, and the steel properties are given in Tab. 6.1.
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Figure 6.10: Predicted attenuation dispersion curves of L(0,1) for a solid epoxy (see

Tab. 6.1) without attenuation (solid line) and with a constant attenuation of 0.5 np/wl

(dashed line).
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Chapter 7

Effect of Entry Geometry on

Reflection Coefficient

7.1 Background

In view of the original motivation to develop a testing tool for the cure monitoring

of adhesives in automotive joints, the possible effect of the joint geometry on the re-

flection coefficient and the attenuation has to be discussed. As discussed in Sec. 6.3,

the more favourable technique for the cure monitoring in thin joints is the reflection

method, and thus the main emphasis in this chapter will be put on the reflection

coefficient.

There are two main factors which potentially influence the magnitude of the reflec-

tion coefficient. Firstly, the shape of the entry geometry at the point where the wire

waveguide enters the adhesive is in general not well defined in automotive joints.

Instead of being perfectly square, as modelled in Ch. 5, the adhesive may take the

shape of a meniscus, either due to surface tension, or simply due to spewing when

the joint is assembled. Secondly, the thickness of the adhesive layer may possibly

have an effect due to reflections of radiating waves inside the adhesive layer which

can potentially feed back into the waveguide and interfere with the guided wave

signal of interest. This is shown schematically in Fig. 7.1. The extent of these ef-

fects will be examined in the following using Finite Element (FE) modelling, and

the analysis will be restricted to the fundamental longitudinal mode, L(0,1).
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7. Effect of Entry Geometry on Reflection Coefficient

7.2 Effect of Meniscus

7.2.1 2D Finite Element Modelling

The effect of a meniscus is analysed using 2D-FE modelling in axi-symmetry. The

model was idealised in such a way that the meniscus is assumed to take a cone-like

shape, and the angle, δ, between the free surface of the embedding material and

the direction of the cylinder axis is chosen as the parameter. Figure 7.2 shows a

schematic of the FE model.

All the materials in the model are elastic. In view of the cure monitoring application,

the embedding material was chosen to have the properties of a typical solid epoxy

resin after cure. The material properties are given in Tab. 7.1.

Table 7.1: Material parameters used for the Finite Element analysis in Sec. 7.2.

Material cl [m/s] cs [m/s] ρ [kg/m3]

Steel 5960 3260 7932

Epoxy 2600 1200 1170

As a waveguide, a steel wire with a radius of 0.5mm was modelled. As in the

FE modelling presented in Sec. 5.5, a 1-cycle Hanning-windowed piston profile of

0.2MHz centre frequency was applied at the free end of the cylinder. The size of

the quadrilateral, four noded elements was first chosen as ∆x = 0.125mm. At

a frequency of 0.2MHz, the wavelength of L(0,1) is approximately 25mm, so this

corresponds to about 200 elements per wavelength. With a wire radius of 0.5mm

this is equivalent to only 4 elements over the radius of the wire. Also note that

the lowest velocity of the materials in the FE model is the shear velocity of the

embedding epoxy resin. Here, one wavelength corresponds to approximately 40

elements. The model was subsequently run with only 2 elements over the radius of

the wire, and yielded identical results, thus demonstrating convergence. In order

to reduce the computation time, the element size for the following analysis was

therefore chosen as ∆x = 0.25mm. The length of the entire model in the axial
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7. Effect of Entry Geometry on Reflection Coefficient

direction was 150mm, and the embedding epoxy extended a maximum of 40mm in

the radial direction, so as to avoid interfering reflections from the end of the wire

and the epoxy boundaries. The time step size was ∆t = 0.02µs. The monitoring

point was half way between the free end of the wire and the entry point.

7.2.2 Sensitivity of Reflection To Meniscus Angle

Seven different angles between 27◦ and 153◦ were modelled, including the perfectly

square case which corresponds to an angle of 90◦. The data analysis is equivalent

to that in Sec. 5.5, and time traces are of the same form as shown in Fig. 5.10. A

Fourier transform is applied individually to the incident and the reflected signal. The

frequency dependent reflection coefficient is then obtained by dividing the amplitude

spectrum of the reflected signal by that of the incident signal.

The modulus of the reflection coefficient for these cases is shown in Fig. 7.3. If

the difference in angle compared to the square case, ∆δ = 90◦ − δ, is small, then

the difference in reflection coefficient for a given set of epoxy material properties

is also small. As was already discussed in Sec. 5.6 (see also Fig. 5.17), the influ-

ence of the epoxy bulk longitudinal velocity on the reflection coefficient of L(0,1)

is negligible. Hence, if the density of the epoxy resin is known, then the governing

variable is the epoxy bulk shear velocity. Because of this, one can estimate the

relative error in the shear velocity calculated from a measured reflection coefficient

for a given uncertainty in the angle δ. For example, at 0.05MHz, the relative er-

ror in the reflection coefficient, ∆R/R, for an actual angle of 45◦ when an angle

of 90◦ is assumed, is approximately 13%. Now the error in shear velocity has to

be considered for a given error in the reflection coefficient. The sensitivity of the

reflection coefficient to changes in the shear velocity was discussed in Sec. 6.4. It is

found that this error in the reflection coefficient around a shear velocity of 1.2m/ms

and at 0.05MHzmm would correspond to a relative error in the shear velocity of

approximately ∆cs/cs = 9%.

This may still be acceptable in practical terms for the cure monitoring in an in-

dustrial setting. However, if the thickness of the joint also has an influence on the
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reflection coefficient, errors may add up and become too high. The thickness effect

is analysed in the following section.

7.3 Thickness Effect

7.3.1 Preliminary Experimental Findings

In order to investigate a possible effect of the joint thickness on the reflection coef-

ficient, the following experiment was set up (see Fig. 7.4 for a schematic). A joint

was assembled, consisting of a layer of adhesive, sandwiched between aluminium

sheets of 2mm thickness. The adhesive thickness was 3.4mm, and three steel wires

of different diameters (0.25mm, 0.5mm, and 1mm) were embedded in the same

joint sample so as to have the same material properties of the adhesive surrounding

each wire. The entry point of the wires was kept as close to the mid-plane of the

adhesive layer as possible. Also, the embedded length of the wires was such that no

reflection from the end of the wire could be observed. In this way, it is possible to

study the effect of the joint thickness, and that of the ratio between the diameter of

the wire and the joint thickness.

It should be noted that the experimental procedure is problematic, especially in cases

where the wire diameter is only slightly smaller than the joint thickness, since it is

difficult to maintain the wires in a position exactly in the middle of the joint. This

is mainly caused by the fact that the wires tend to curl. In some cases, wires may

even touch one of the aluminium adherends, which introduces further experimental

errors.

An additional practical difficulty which has become apparent in the course of this

work is the fact that when handling wires with a radius comparable to or less than

about 0.1mm, kinks can easily be introduced by accident, which greatly diminishes

the transmission of guided waves along the wire. Reliable results especially with

these thin wires, intended for use in joints with a thickness down to 0.2mm, may

therefore be difficult to achieve in an industrial environment.
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7. Effect of Entry Geometry on Reflection Coefficient

Figure 7.5 shows the reflection coefficient obtained experimentally as well as using

Finite Element modelling for Araldite 2013. The techniques for this have already

been presented in Sec. 5.7, and the solid line shows the FE predictions for bulk

epoxy. The material properties for this analysis are shown in Tab. 7.2.

Table 7.2: Material parameters used for the Finite Element analysis in Fig. 7.5.

Material cl [m/s] cs [m/s] ρ [kg/m3]

Steel 5960 3260 7930

Epoxy 2120 1030 1170

Even though an adhesive thickness of 3.4mm is fairly large for an automotive joint,

which may range from about 0.2mm to 2mm, it can be seen that for the 1mm

diameter wire, which has the highest diameter to joint thickness ratio, the exper-

imental results deviate from the predicted curve above around 0.1MHzmm. The

smaller the diameter of the wire, the closer the values are to the predicted curve.

However, the frequency-radius dependence still seems to be preserved.

The thinner the adhesive layer becomes, the more significant the thickness effect be-

comes. As an example, Fig. 7.6 shows experimental data of the reflection coefficient

of L(0,1) in steel wires for a 1.2mm thick adhesive sample (Araldite 2017), sand-

wiched between two sheets of aluminium. In order to obtain a trend, interpolated

lines between the experimental data points are also shown in the graph. It can be

seen that the scattering of data points is large, and the data for the 1mm diameter

wire show an oscillating behaviour.

One possible explanation is that this behaviour stems from interference between the

reflected guided wave and radiated waves scattered from the different layers of the

joint, which could be feeding back into the wire waveguide. In order to investigate

this, 2D- and 3D-FE modelling has been employed. This is discussed in the following

sections.
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7.3.2 2D Finite Element Modelling

In the 2D-FE axi-symmetric model the embedding epoxy is modelled as an outer

cylindrical layer. As depicted in Fig. 7.7, any radiating wave will be reflected straight

back onto the wire surface, and hence interfere with the guided wave. In this respect,

the 2D-FE modelling is a worst case study, because in a real joint the radiating

waves would also be scattered away from the waveguide, since the adherends are flat

rather than circular and concentric (compare with Fig. 7.1). Also, the epoxy resin

is modelled as an elastic solid. Therefore, the radiating waves are not attenuated

except for beam spreading. In a real epoxy resin, in particular in the early stages of

cure where the shear bulk attenuation is high, the radiating waves are attenuated.

Hence the interference with the guided wave is less pronounced, since the amplitude

of the back-scattered waves is smaller compared to the elastic case.

FE models were run for different radii R of the outer epoxy surface, which corre-

spond in the 2D case to half the joint thickness d, so R = d/2 (see Fig. 7.8 for

a schematic). The material properties for the model are given in Tab. 7.3. Free

boundary conditions were chosen on the outer surface of the epoxy layer.

Table 7.3: Material parameters used for the 2D and the 3D FE analysis.

Material cl [m/s] cs [m/s] ρ [kg/m3]

Steel 5960 3260 7932

Epoxy 2610 1100 1170

Figure 7.9 shows the FE time traces obtained for joint thicknesses ranging from

d = 1.5mm to d = 41mm. As before, the first signal (”A”) corresponds to the

incident L(0,1)-mode. All the following signals are reflections from the entry point,

from the outer epoxy layer surface, or successive reverberations. We concentrate

now on the reflected signals.
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It can be seen that for a thin outer epoxy layer with free boundaries (d = 1.5mm),

the reflected L(0,1), denoted by ”B”, is small. This is expected since for a vanishing

epoxy layer thickness the reflection coefficient should also vanish. On the other

hand, if rigid boundary conditions on the outside of the epoxy layer were chosen,

the reflection would be large. Then, in the limit of vanishing thickness, the reflection

coefficient of L(0,1) would take the value unity (see Sec. 5.6). For increasing epoxy

layer thickness (d = 2.0−2.5mm), the waveform of the reflected L(0,1) mode shows

ringing, which suggests the presence of a resonance effect of interfering signals. At

even larger epoxy layer thicknesses, a separation into two reflected signals can be

observed. At d = 21mm, the first of these signals, ”C”, is equivalent to the entry

reflection obtained for the case when the epoxy layer is considered to extend infinitely

in the radial direction. The second reflection, ”D”, is an L(0,1)-mode which has been

excited by a radiating wave having been reflected back from the outer surface of the

epoxy layer. It should be noted that this signal ”D” is not well defined, and that

the dashed box in the plot is for illustration only and is not meant to give exact

limits to the signal duration. The last plot shows the time trace of the FE model

which is equivalent to those which have been used to study the reflection of L(0,1)

as presented in Ch. 5. Here, the reflected radiated signals are separated in time from

the reflected L(0,1) modes such that they do not interfere any more.

The waves that radiate and are reflected back may be a combination of leaky bulk

waves and also surface waves (Rayleigh type waves [65]) that propagate along the

free surface of the epoxy. As an example, Fig. 7.10 shows a time trace monitored at

the free surface of the embedding epoxy material at r = 1.5mm for an overall joint

thickness of 41mm, as indicated in Fig. 7.8 (point ”X”). It can be seen that there is

a signal, ”A”, which could be interpreted as a surface wave, since from monitoring at

two different positions a wave speed of approximately 0.96m/ms is calculated, and

the velocity of a Rayleigh wave on a half-space of epoxy resin with those properties

is 1.035m/ms. However, it should be noted that this signal changes shape as it is

monitored further away from the wire and interferes with other signals. Also, since

a radiating surface wave propagates radially outward, the amplitude decreases with

distance form the wire due to beam spreading. Therefore only a rough estimation of
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velocity is possible, and it proved difficult to determine conclusively which radiating

modes contributed to the fields in the epoxy layer. Hence the comparison with the

Rayleigh velocity can only serve as an indication, and one must therefore for the

moment merely accept that there is an interference effect. However, this study is,

as mentioned before, a worst case analysis since here all the radiating waves are

reflected back on the waveguide surface. It remains to be evaluated if this effect is

still significant when the waves are radiated from a wire into a plate-like epoxy layer

as depicted in Fig. 7.1. This is discussed in the next section.

7.3.3 3D Finite Element Modelling

In order to evaluate the effect of radiated waves being scattered back from flat

boundaries into the waveguide, a 3D FE-model of a steel wire of 0.5mm radius in a

plate-like layer of epoxy was created. A section of the mesh is shown in Fig 7.11(a).

The modelling parameters such as the excitation and the requirements for the ele-

ment size and time steps are the same as outlined previously in Sec. 5.5; the material

properties for all 3D-models are those given in Tab. 7.3. The model is divided into

several solid regions made up of brick elements (”HX08”, see FINEL manual [78]).

The software FINEL supports a region command (”HCIR”), that generates ele-

ments over a solid region that lie on a circular arc (the edges of the brick elements

are however straight). This is needed to correctly model the wire waveguide.

Figure 7.11(b) shows a more detailed section, showing the mesh geometry for the

wire material and the surrounding epoxy in the immediate vicinity of the entry

point. The cross-section of the wire is divided into three regions, which are made

up of nine elements each. Due to the geometry of the joint, symmetry conditions

can be applied and only one quarter of the joint has to be modelled.

The total number of elements required presents a considerable problem. The element

size here is governed by the condition that the wire waveguide has to be modelled

with sufficient accuracy, which requires 6 elements along the radius in the 3D-FE

model. In order to avoid elements with excessive aspect ratios, the element size in
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the axial direction was chosen as 0.1mm, giving an aspect ratio of 5/6. Therefore,

to model a wire of 150mm length with no epoxy loading results in 40500 elements.

With epoxy loading, depending on the thickness, d, of the epoxy layer, the number of

elements can quickly exceed 250000 elements. Due to the computational difficulty

in handling such large numbers of elements, the aluminium adherends were not

modelled.

In order to keep the number of elements to a minimum, some of the elements in

the epoxy layer were successively stretched by a factor of 1.4 in the lateral direction

(y-direction of the schematic in Fig. 7.1) away from the wire. Such elements may

not model wave propagation properly, however, the main interest does not focus on

the radiating waves propagating in the lateral direction but on the guided wave in

the wire. It should be noted that a change in the geometry of the element can cause

reflections of a propagating wave due to the change in the impedance of the element.

However, for a stretch factor of less than about 1.4, this error can be neglected [78].

Joint thicknesses between 1.5mm and 3mm in steps of 0.5mm have been modelled.

Since, due to the large number of elements, bulk epoxy could not be modelled, the

reflection coefficients are compared to those from the 2D-FE modelling for bulk

epoxy in Sec. 7.3.2.

As an example, Fig. 7.12 shows the time-trace of L(0,1) obtained from the 3D-FE

modelling for a 0.5mm radius wire in a 2.5mm thick epoxy joint. It can be seen that

the resonance effect due to interference of the entry reflection with the back-reflected

radiated waves is still significant, even though it is less pronounced than in the 2D

FE modelling (compare to the 2.5mm case in Fig. 7.9).

The comparison of the reflection coefficients obtained using the 3D-FE modelling in

different joint thicknesses and the bulk epoxy case obtained using 2D-FE modelling

is shown in Fig. 7.13. At lower frequencies, the reflection coefficient for a joint is

closer to that for the bulk material when the thickness of the joint is larger. However,

for higher frequencies, the reflection coefficient from the joint is generally larger than
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that for the bulk material, and still shows an undulating pattern. It is the same

form of pattern as was observed in the experiments of Fig. 7.6.

Additionally, in order to complete the picture of the effect of the joint geometry on

the guided wave propagation, the attenuation of the guided wave in the embedded

section was analysed by monitoring along a line on the axis of the wire. From the

amplitude change of the guided mode and the propagation length in the embedded

section, the attenuation can be calculated according to Eq. (4.9). This was done

using 3D-FE modelling for the joint geometry and using 2D-FE modelling for the

bulk epoxy case. Figure 7.14 shows the attenuation dispersion curves obtained in

this way together with the curve predicted by Disperse for a steel bar embedded

in epoxy (the material properties are given in Tab. 7.3). It can be seen that the FE

predictions for the bulk case are in accordance with the Disperse predictions, how-

ever, the attenuation dispersion curve for the joint geometry deviates significantly

from the bulk attenuation.

7.4 Summary

The purpose of the study presented in this chapter was to demonstrate the effect

of the entry geometry on the entry reflection. 2D- and 3D-FE modelling has shown

that a meniscus and the thickness can significantly influence the reflection coefficient

of L(0,1). This is due to the fact that radiating waves are reflected back into the

waveguide and interfere with the entry reflection. The effect of the joint thickness

was also experimentally examined, and the measured reflection coefficients show a

similar undulating behaviour as the coefficients obtained from the FE modelling.

FE simulations have shown that also the attenuation of L(0,1) is influenced by the

thickness of the epoxy layer.

In Ch. 6 it was found that both the reflection and attenuation method can be used

for the cure monitoring of bulk samples. However, due to the inherent unpredictabil-

ity of the joint geometry in automotive joints in the industrial environments, the

methods are not practical enough for this particular application. Nevertheless, even
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though in this application the method is not suitable for quantitative measurements,

it could still potentially be useful for qualitative time monitoring of the changes oc-

curring during the cure cycle.
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Figure 7.1: Schematic of radiating waves being reflected within the joint with view into

the axial direction (z-direction). Note that only some example rays of these waves are

shown. Of course, for an order zero mode like L(0,1), the waves radiate uniformly over

the circumference of the waveguide.
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Figure 7.2: Schematic of the Finite Element model to study the influence of a meniscus

on the reflection coefficient of L(0,1).
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Figure 7.3: Finite Element reflection results for a steel wire embedded in epoxy for

different angles δ (see Fig. 7.2). The dashed line corresponds to δ = 90◦.
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Figure 7.4: Schematic of the experimental set-up for studying the thickness effect.

Waveguides of different diameters are placed inside an adhesive joint to measure the entry

reflection of L(0,1).
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Figure 7.5: Experimental results (points) for steel wires of different diameters in a 3.4mm

thick adhesive joint (Araldite 2013). FE predictions for a steel wire partly embedded in

bulk material of epoxy (solid line) are also shown.
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Figure 7.6: Experimental results (points) for steel wires of different diameters in a 1.2mm

thick adhesive joint (Araldite 2017). An interpolated trend-line is shown in dashed lines.
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d

Figure 7.7: Schematic representation of radiating waves being reflected back from the

outer surface of a finite epoxy layer onto the waveguide surface with view into the axial

direction.
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Figure 7.8: Schematic of the 2D-FE model. The outer radius of the epoxy layer, R,

corresponds to half the joint thickness. The displacement amplitudes were monitored on

the axis of the cylinder and on the free surface of the epoxy layer, at locations indicated

by the arrows.
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embedded in an outer epoxy cylinder of various diameters.
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Figure 7.10: FE time traces obtained from the 2D-model for a 0.5mm radius steel wire

embedded in an outer cylinder of epoxy material (d = 41mm). The monitoring point is

on the free surface of the epoxy layer at r = 1.5mm, as depicted in Fig. 7.8
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Figure 7.11: (a) Finite Element mesh for the 3D analysis. (b) Enlarged section of the

mesh in the vicinity of the entry point.
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Figure 7.12: 3D-FE time trace of L(0,1) in a 0.5mm radius steel wire in a 2.5mm thick

epoxy joint.
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Figure 7.13: FE predictions of the reflection coefficient modulus for L(0,1) in a 0.5mm
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case modelled using 2D-FE is also shown (dashed line).
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Chapter 8

Conclusions

8.1 Summary

8.1.1 Basic Ideas

This thesis has examined the feasibility of using ultrasonic waveguide techniques for

the measurement of the material properties of an embedding medium. Two methods

in particular were investigated which have previously not received much attention

regarding the quantitative prediction of material properties. The first method is

based on the measurement of guided wave attenuation due to the leakage of bulk

waves. The second method measures the reflection of a guided wave from the point

where the waveguide enters the embedding medium. As was described in Ch. 1,

the original motivation for this work comes from automotive industry, which is in

need of an on-line monitoring technique to assess and control the curing process of

adhesives in automotive joints.

The work has concentrated on ultrasonic wire waveguides, and therefore the theory of

bulk waves and guided waves in cylindrical structures was reviewed briefly in Ch. 2.

For reasons outlined in that chapter, the fundamental longitudinal mode, L(0,1),

and the fundamental torsional mode, T(0,1), were identified as most suitable for

testing.

Both magnetostrictive and piezoelectric transduction mechanisms were used to ex-
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cite these modes, and they were discussed together with the general experimental

set-up for both the attenuation and reflection coefficient measurements in Ch. 3.

8.1.2 Attenuation Method

When a waveguide is embedded in another material, the guided waves may lose

energy due to the leakage of bulk waves. The guided wave attenuation over a given

embedded length was measured by comparing the amplitudes of the guided waves

before and after embedding the waveguide. Under certain conditions, which were

described in Ch. 4, the measured attenuation can be related to material proper-

ties of the embedding material. Viscous liquids whose material properties are well

documented were used to verify this method.

Numerical predictions, which use a solid-like model to describe viscous liquids,

showed that the torsional mode attenuation is sensitive exclusively to the shear

properties of an embedding material. The attenuation is an integral part of the dis-

persion curve calculation for the embedded waveguide system, and these calculations

were performed with the software Disperse. From the attenuation measurement,

the shear velocity, or alternatively the shear viscosity, could be calculated, thereby

completely determining the shear properties. Experimental results demonstrated

the validity of these predictions.

Also the longitudinal mode is, at low frequency-radius products, sensitive only to

the shear properties of an embedding material, since here the attenuation is caused

mainly by shear leakage. Numerical predictions were used to directly relate the

measured longitudinal mode attenuation to the shear viscosity, and the experimental

results were in very good agreement with literature data.

At higher frequency-radius products, the L(0,1)-attenuation is additionally caused

by longitudinal bulk wave leakage due to the increased radial displacements on the

surface of the waveguide. It was shown that, if the shear viscosity of the embedding

liquid is known, for example by previous measurement using either the longitudi-

nal mode at low frequency-radius products or the torsional mode, it is possible to
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then directly determine the longitudinal bulk velocity from the measured L(0,1)-

attenuation at higher frequency-radius products. Tests with distilled water, which

has a negligible shear viscosity at room temperature, have shown good agreement

with literature data. However, the results obtained using Glycerol were less accurate.

Possible sources of error were outlined in the thesis.

8.1.3 Reflection Method

At the point where a waveguide enters an embedding material, a guided wave is

reflected and scattered into other modes by mode conversion. This is caused by the

change in the surface impedance. The larger this change, the larger is the magnitude

of the entry reflection. This can be used to determine the material properties of

the embedding medium. Since initially the experimental work concentrated on the

longitudinal mode, L(0,1), the theoretical work in this thesis has also focused on

this mode. However, most of the theoretical analysis is completely general, and can

be easily repeated for the torsional mode.

The entry reflection coefficient of L(0,1) can be determined using Finite Element

modelling. However, the computational analysis can be tedious, and problems arise

when dealing with embedding materials with small bulk shear velocities. Therefore,

an alternative numerical method based on modal analysis was developed in Ch. 5.

The scattered field in the free and the embedded part of the waveguide can be

represented by a superposition of the modal fields of the modes of the free waveguide

and the modes of the embedded waveguide system. In this approach, the mode

shapes of the guided waves are used to calculate the scattering coefficients of the

modes involved.

First, the S-parameter approach laid out by Auld was compared to an analysis

which matches the fields in the free and the embedded part of the waveguide at the

interface. Since the solution was restricted to modes incident from the free part of

the waveguide, it is sufficient to consider only the fields over the cross-section of the

waveguide. Then, a complete modal solution was presented. For this, orthogonality

and completeness of the waveguide modes is necessary, and the problems encountered
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when considering orthogonality in leaky waveguide systems were discussed.

The modal solution was verified using Finite Element modelling, and very good

agreement was obtained. The case where the embedding material is rigid was chosen

as a reference case, because orthogonality is given for such a waveguide system.

Apart from validating the numerical method, the analysis gave insight into the

behaviour of non-propagating and inhomogeneous modes. Then, with respect to

the cure monitoring application, the case where the embedding material is an epoxy

resin was researched. Several characteristics of the L(0,1)-reflection coefficient in

the frequency range of 0–0.3MHzmm were found. Firstly, the reflection coefficient

depends, like the dispersion curves, on the product of frequency and the radius

of the waveguide. Secondly, the magnitude of the reflection coefficient is a strong

function of the epoxy shear velocity, but is only minimally influenced by the value

of the epoxy longitudinal velocity. Therefore, the entry reflection of L(0,1) can be

used to determine shear properties of an embedding material. In general, the entry

reflection is high at low frequencies and decreases with increasing frequency-radius

product.

These predictions were also verified experimentally by measuring the entry reflection

for a steel wire partly embedded in a cured epoxy resin.

8.1.4 Application to Cure Monitoring

In Ch. 6, the two measurement methods were successfully applied to the cure mon-

itoring of bulk samples of epoxy resin. The analysis of the reflection coefficient of

L(0,1) has shown that the reflection method can only be applied at low frequency-

radius products, with a maximum sensitivity at around 0.05MHzmm for a steel

waveguide. On the other hand, the attenuation method can only be applied at

higher frequency-radius products in order to avoid the entry reflection. These mea-

surements were conducted at 0.4MHzmm. At this frequency-radius product, the

entry reflection is negligible and the dispersion of L(0,1) is only weak.

With both methods, typical cure monitoring curves were obtained, and it was pos-
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sible to accurately determine the epoxy shear velocity of the cured sample. The

room temperature curing epoxy resin Araldite 2013 was used for the experiments,

and the results of both methods are consistent with each other and with literature

data. The reflection method measures cure at the edge of the epoxy sample, whereas

the attenuation method measures an average value over the embedded length. This

is important because of the temperature variations which may occur at different

positions in the sample and the sensitivity of cure to temperature.

One significant advantage of the waveguide method compared to conventional ul-

trasonic techniques is that the shear properties can be monitored over the whole

cure cycle, including the period at the start of the curing process where the bulk

shear attenuation is very high. Also, effects such as beam spreading do not occur.

For the application in automotive joints, the wire waveguide method is potentially

better suited than other cure monitoring methods, which were outlined in Sec. 6.2,

because it solves the problem of accessing the joint in the industrial process. The

transducers and the testing equipment can be placed outside the curing oven.

The reflection method is more attractive for the application in thin automotive

joints. The reason for this is that thin wires have to be used and at the same time

lower frequencies are preferred for long range transmission. Hence the frequency-

radius product must be small. Also, the calibration procedure is easier for the

reflection method.

However, it was found in Ch. 7 that the geometry has a significant effect on both

the reflection coefficient and the attenuation. A meniscus at the entry point as well

as different thicknesses of an epoxy layer, simulating a joint geometry, were con-

sidered using Finite Element modelling. The effect of a meniscus was investigated

by modelling the meniscus in the form of a cone with different opening angles, and

an estimate of the error in the calculated shear velocity when assuming a square

entry geometry was given. Regarding the thickness effect, both a 2D- and a 3D-

Finite Element analysis revealed that the waves that radiate away from the wire in

the embedded section are scattered back from the boundaries of the joint, thereby
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interfering with the entry reflection. Since this effect is significant and there is uncer-

tainty in the thickness of the joint in the industrial conditions, quantitative results

cannot be obtained in this case. Nevertheless, the method may still potentially be

used for qualitative time monitoring of the cure process.

8.2 Outlook

The work described in this thesis has demonstrated the feasibility of using wave-

guide methods for the measurement of material properties. Several opportunities

for further research emerged in the course of the investigation.

8.2.1 Attenuation Method

The attenuation method has concentrated on the fundamental longitudinal and tor-

sional modes in wire waveguides. The measurement of the longitudinal properties

of viscous liquids using L(0,1) at higher frequency-radius products needs further

validation, and possible sources of errors which were outlined in the thesis have to

be identified conclusively.

8.2.2 Reflection Method

The numerical modelling of the reflection method using the modal analysis should

be repeated using the torsional mode. This is mainly for further validation, but

also because the torsional mode is better suited than the longitudinal mode for the

measurement of shear properties, and future measurements should use this mode.

The assumption of waveguide mode orthogonality in leaky waveguides needs to be

addressed for the full modal solution which includes modes that are incident from

the embedded part of the waveguide.

8.2.3 Applications

The original application to monitor the cure process of epoxy resins can be further

validated by simultaneously measuring the cure using conventional ultrasonic meth-
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ods in the same sample. Cure monitoring curves could then be directly compared.

These measurements would complement each other since the waveguide method

can measure shear properties throughout the cure cycle which is not feasible using

conventional methods.

Both methods however have a much wider range of application to the measurement

of material properties in general. The properties of any material which changes phase

are accessible by these methods, for example solidifying concrete, and in particular

the attenuation method can be applied to the process monitoring of liquids. Also

highly attenuative materials, whose material properties are difficult to obtain, could

be researched. As already mentioned in Ch. 1, the attenuation method has been

successfully applied for example to the measurement of soil shear and longitudinal

velocities [4].
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Appendix A

Propagating, Non-Propagating

and Inhomogeneous Modes

Three types of waveguide modes have been mentioned in Ch. 5 which need further

explanation: propagating, non-propagating and inhomogeneous modes. Their clas-

sification is based on the complex wavenumber in the axial direction, k = ξ − iα,

according to the following definitions:

– for k pure real → propagating mode,

– for k pure imaginary → non-propagating mode,

– for k complex → inhomogeneous mode.

This means that, in a perfectly elastic waveguide in vacuum, there exist solutions

for which the waveguide mode experiences spatial exponential attenuation, arising

from a non-zero imaginary part of the wavenumber. Those modes do not propagate

energy, and this is analysed in this appendix.

Consider a complex relationship for two modes (µ,m) and (ν,n) as derived by

Auld ([65], p. 157), which is very similar to the real relationship of Eq. (5.8):

i(km − kn
∗)

∫

S

{vµm ·Tν
n
∗ + vνn

∗ ·Tµ
m}ẑ dS = 0. (A.1)

Defining

P µ ν
mn = −1

4

∫

S

{vµm ·Tν
n
∗ + vνn

∗ ·Tµ
m}ẑ dS, (A.2)
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this can be written in an abbreviated notation:

−4i(km − kn
∗)P µ ν

mn = 0. (A.3)

From this, either km = kn
∗, or P µ ν

mn = 0. This is called the complex orthogonality

relationship [65]. Considering a single mode, say (µ,m), this becomes

−4i(km − km
∗)P µµ

mm = 0, (A.4)

where P µµ
mm is the average power flow of that mode (see also Eq. (5.18)). For a

propagating mode, where km = km
∗ (pure real), the average power flow is non-

zero and can be normalised to unity. However, for a purely imaginary or complex

wavenumber, the imaginary terms do not cancel out:

−8αmP µµ
mm = 0, (A.5)

and therefore the power flow must vanish.

The consequence is that inhomogeneous and non-propagating modes do not propa-

gate energy. This is best seen by considering the energy velocity of a guided wave,

which is defined as

ve =
P

E
(A.6)

(see, for example, [65]). Here, P is the average power flow (the indices have been

omitted for clarity), and E is the total time-averaged energy of the guided wave

(see also Appendix B). The energy velocity of non-propagating and inhomogeneous

modes is therefore zero. Hence, these modes do not propagate away from the point

where they are created, either by direct excitation or through mode conversion, but

are merely a local vibrations whose amplitudes decay spatially with e−αz.

In general, a given mode can be propagating a higher frequencies and become non-

propagating or inhomogeneous at lower frequencies. The frequency at which this

transition occurs is called the ”cut-off” frequency (see Sec. 5.4 for an example).
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Appendix B

Mode Orthogonality in Embedded

Waveguides

B.1 Preliminary Considerations

The purpose of the following remarks is to give some insight into the problems

encountered when considering mode orthogonality in embedded waveguide systems.

Some questions remain unanswered and are subject to further research which is not

within the scope of this thesis.

It has to be mentioned that the fields attributed to a given mode may not be limited

to the boundaries of the structure which is considered to be the waveguide. As an

example, consider a steel plate which is immersed in water. There exists a non-

leaky mode, the so-called ”Scholte” mode, whose phase velocity is lower than the

bulk velocity of water (see Fig. B.1). The modal field in the embedding water half-

spaces of this mode decays exponentially in the normal direction, y, away from the

plate surface. An argument that the fields in the water actually form part of the

guided wave is as follows:

It can be shown that, for a waveguide mode with zero attenuation, the energy

velocity is equal to the group velocity, which is defined as

vgr =
∂ω

∂ξ
(B.1)
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(see [65], p. 201). The energy velocity for guided waves in plates is in general defined

over the thickness, d, of the waveguide:

ve =
P

E
=

+d/2
∫

−d/2

< p > dy

+d/2
∫

−d/2

< e > dy

, (B.2)

where <> denotes the time average of the quantity inside the brackets over one

cycle, p is the power flow density, and e is the total energy density of the guided

mode. This definition is appropriate for modes which are in vacuum, and would

indeed also be valid if only the fields in the waveguide would form part of the guided

wave. However, if in the case of the Scholte mode the fields in the water are part of

the same mode, the definition should be changed by adjusting the integration limits

to give

ve =

+∞
∫

−∞

< p > dy

+∞
∫

−∞

< e > dy

, (B.3)

Since the attenuation of the Scholte mode is zero, the group velocity should, as

mentioned above, equal the energy velocity. Figure B.2 shows a comparison between

the group velocity, calculated according to Eq. (B.1), and the energy velocities

calculated according to the definitions given in Eq. (B.2) and (B.3), respectively.

It is evident from this calculation that the integration including the half-spaces to

either side of the plate gives the correct solution, and that therefore the fields in the

water have to be considered part of the guided wave.

These findings may be closely related to mode orthogonality. The question which

arises from this is if the orthogonality relationships for guided waves used in this

thesis have to be defined such that they include embedding half-spaces. The above

exercise certainly supports this for non-leaky modes. Here, a closed form integration

from −∞ to +∞ was possible due to the fact that the fields decay exponentially

and vanish at the integration limits. This is not so straightforward for leaky modes,

since for embedded plate-like structures, as was mentioned in Sec. 5.3.4, the modal

fields actually increase exponentially away from the interface, resulting in a diverging
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integral. Also, a similar check using the energy velocity argument is not possible

here, since the group velocity definition is not valid for attenuated waves [102].

Because of this problem, orthogonality for leaky modes in cylinders will be discussed

in the next section as being defined over the cross-section of the waveguide only.

Nevertheless, it has to be acknowledged that orthogonality may have to be defined

including the embedding half-spaces.

B.2 Comparison to Mode Orthogonality in Free

Waveguides

The real reciprocity relation of Eq. (5.3) is also valid for embedded waveguides.

Therefore, to examine waveguide mode orthogonality in embedded waveguides, the

same approach as presented in Sec. 5.2.2 can be followed here, and the first part of

the analysis is identical.

We step in at Eq. (5.6), which reads:

∫

S

∂

∂z
{vνn ·Tµ

m − vµm ·Tν
n} ẑ dS +

∮

C

{vνn ·Tµ
m − vµm ·Tν

n} r̂ dl = 0, (B.4)

For free waveguides and waveguides with rigid boundaries, it was seen that the sec-

ond integral on the left hand side vanishes because either the stresses or the particle

velocities are zero on the waveguide surface. However, in embedded waveguides, the

boundary conditions are not so simple, and it cannot be seen directly if the integral

vanishes in this case. Therefore, the nature of the line integral in Eq. (B.4),

∮

C

{· · · } r̂ dl, (B.5)

has to be examined in more detail. Here, the expression {vνn · Tµ
m − vµm · Tν

n} has

been replaced by {· · · }. The integral is evaluated as follows (omitting the eiωt-

dependence):

∮

C

{· · · } r̂ dl =
Θ0+2π
∫

Θ0

{vνn ·Tµ
m − vµm ·Tν

n} (R, z)r̂ ei(ν+µ)θ RdΘ, (B.6)
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where R is the radius of the waveguide. The integration yields:

∮

C

{· · · } n̂ dl =







2πR {vνn ·Tµ
m − vµm ·Tν

n} (R, z) r̂ for ν = −µ
0 for ν 6= −µ.

(B.7)

Replacing this into equation (B.4), the expression becomes

∫

S

∂

∂z
{· · · } ẑ dS =







−2πR {vνn ·Tµ
m − vµm ·Tν

n} (R, z) r̂ for ν = −µ
0 for ν 6= −µ.

(B.8)

Carrying out the differentiation on the left hand side of the equation, the relationship

for embedded waveguides becomes

i(kn + km)

∫

S

{· · · } ẑ dS

=







2πR {vνn ·Tµ
m − vµm ·Tν

n} (R, z) r̂ for ν = −µ and n 6= −m
0 for ν 6= −µ and n 6= −m.

(B.9)

It can be seen from this that the angular orthogonality relationship is still valid as

in the free and rigid boundary cases. However, the expression on the right hand side

does not vanish for two modes of circumferential order zero, and thus orthogonality

is not ensured in this case.

B.3 Consequences for Scattering Coefficient Cal-

culation

The question of whether for the orthogonality relation the embedding half-spaces

have to be included or if it is valid to define the relationship over the cross-section

of the waveguide alone, has a direct influence on the calculation of the scattering

parameters when the guided mode is incident from the embedded section of the

waveguide.

If the modal fields in the half-spaces form part of the guided wave, then the analysis

has to include the free surface of the embedding material. For the modal solution,

as presented in Sec. 5.3.4, the boundary conditions have not only to be fulfilled over

the cross-section of the waveguide, but on the entire plane at z = 0 (see Fig. 5.2).
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For this reason, the scattering analysis has been carried out only for modes which

are incident from the free section of the waveguide. This is satisfactory from the

practical point of view and the scope of this thesis, which encounters only such

cases, for example in the cure monitoring application. However, the full scattering

solution remains an interesting topic for future work.
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Figure B.1: Phase velocity dispersion curves for a steel plate immersed in water. The

non-leaky mode (solid line) below the bulk velocity of water is called a ”Scholte mode”.

The other symmetric (S) and anti-symmetric (A) plate modes are plotted in dashed lines.
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Figure B.2: Energy velocity of the Scholte mode in a steel plater immersed in water,

calculated according to Eqs. (B.2) and (B.3). The energy velocity calculated with Eq. (B.3)

is identical to the group velocity, which is defined in Eq. (B.1).
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Appendix C

Maximum Attenuation in the

Hysteretic Damping Model

In order to minimise the modelling effort when considering highly attenuating vis-

coelastic materials, it is worth considering what the maximum shear bulk attenua-

tion in the direction of propagation could be. As described in Ch. 2, the software

Disperse adopts a hysteretic damping model [15], where the complex shear velocity

is given by the expression

cs =
ω

k
=

√

µ+ iµ′

ρ
. (C.1)

Excluding the case where µ = 0, we introduce the dimensionless parameter µ̄, defined

by:

µ̄ =
µ′

µ
. (C.2)

Squaring and transforming Eq. (C.1) yields:

k2 = k2re + 2ikrekim − k2im = ω2 ρ

µ

1

1 + iµ̄
, (C.3)

where the complex wavenumber k has been expressed by its real and imaginary part,

kre and kim. Both the real and the imaginary parts of this equation must be equal.

The real part gives

k2re − k2im = ω2 ρ

µ

1

1 + µ̄2
, (C.4)

and the imaginary part gives

2krekim = −ω2 ρ

µ

µ̄

1 + µ̄2
. (C.5)
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These equations can be combined, and after some algebra, the real part of the

wavenumber is found to be of the form

kre =

√

ω2ρ

2µ

√

1 +
√

1 + µ̄2

1 + µ̄2
, (C.6)

and the imaginary part becomes

kim = −
√

ω2ρ

2µ

µ̄2

√

1 + µ̄2
(

1 +
√

1 + µ̄2
) (C.7)

The bulk shear attenuation in nepers/wavelength is defined as

α [np/wl] = 2π
kim
kre

. (C.8)

Replacing Eqs. (C.6) and (C.7) into the above expression yields a formula for the

attenuation which depends on the dimensionless quantity µ̄ only:

α [np/wl] = 2π
µ̄

1 +
√

1 + µ̄2
. (C.9)

The maximum of this expression with respect to the variable µ̄ is 2π. This is

also true when the dimensionless parameter µ̄ itself depends on the frequency, ω.

Figure C.1 shows a graph of the attenuation in nepers per wavelength as a function

of µ̄ = µ′/µ. It should be noted that in the limit of µ→ 0, the attenuation becomes

2π, which is the same value as obtained for viscous liquids in Sec. 4.3. In the limit

µ′ → 0, that means in the zero damping limit, the material is purely elastic, and

the attenuation is zero. This analysis can easily be repeated for longitudinal bulk

waves, also yielding a maximum attenuation value in np/wl of 2π.
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Figure C.1: Shear bulk attenuation in np/wl as a function of the dimensionless variable

µ′/µ.
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