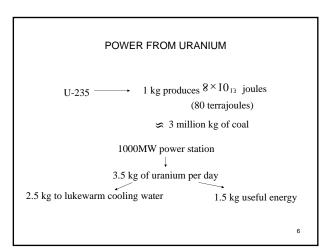
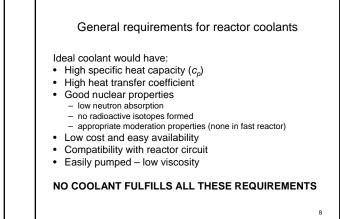
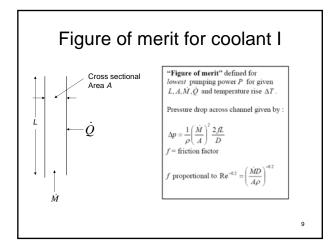
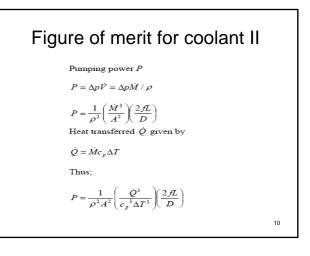

NTEC Module: Water Reactor Performance and Safety Lecture 1: Introduction to water reactors


G. F. Hewitt Imperial college London



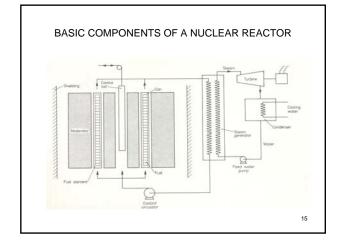




	Energy (10 ¹² J		
Fission products	64		
Fission neutrons	2		
Prompt y radiation	3		
Fission product decay			
β radiation	3		
y radiation	3		
Neutrinos	5		
Total	80		

Coolant	Melting point (°C)	Boiling point (°C)	Physical properties given at		0		Specific	Thermal		Macroscopic thermal neutron absorption
			T (°C)		Density (kg/m3)	Viscosity [Ns/m ² (× 10 ⁶)]	heat (kJ/kg °C)	conductivity (W/m °C)		cross section (cm ⁻¹)
Light water	0	100	270	54	767	102	5.14	0.059	53	0.017
Heavy water	4	101	270	54	845	113	5.27	0.049	67	2.8×10^{-8}
Sodium	98	883	550	1	817	230	1.26	6.1	1	0.011
p-Terphenyl	213	427	400	1	880	100	2.2	0.013	6.5	D.008
Helium	-272	-269	450	40	3.08	36	5.2	0.028	1.1×10^{-1}	2×10^{-9}
Carbon dioxide	-57	-78	450	40	29.5	30	1.2	0.07	1.7×10^{-1}	3 10-7

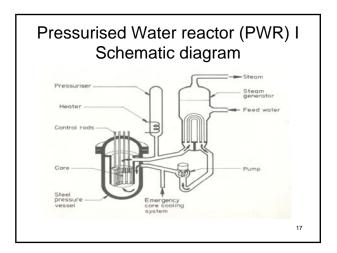
Water as a reactor coolant I

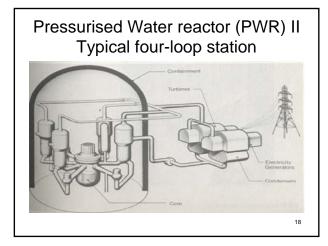

- Single phase light water has:
 - High availability and low cost
 High Figure of Merit
- but problems are:
 - Low boiling point. High pressure required to achieve even moderate thermodynamic efficiencies
 - Neutron absorption relatively high enriched uranium required
 - for light water reactors
 - Corrosive at high temperature special containment materials required. Strict control of water chemistry required.
- Single phase heavy water (D_2O) has lower neutron absorption and natural uranium can be used. Expensive!

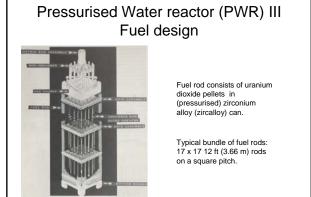
13

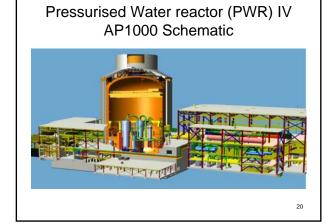
Water as a reactor coolant II

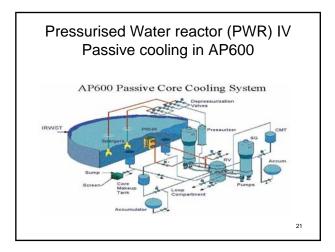
- · Boiling light water advantages
 - Direct steam generation in reactor (no steam generators required)
 - Can operate at lower pressure for same thermodynamic efficiency
- Boiling light water disadvantages
 - Radiolysis problem. H_2O splits into H_2 and O_2 which enter steam phase where recombination is much slower than in liquid. O_2 causes stress corrosion cracking.
 - Steam circuit slightly radioactive.


14




Types of water cooled reactors


- Pressure vessel types
 - Pressurised water reactor (PWR)
 - Boiling water reactor (BWR)
- Pressure tube types
 - CAnadian Deuterium Uranium (CANDU)
 - Boiling water, graphite moderated direct cycle reactor (RBMK)
- Integral water reactors
 - Marine reactor


16

