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Background

• High temperature and high density opacity experiments have been performed 
on the HELEN CPA laser using short pulse driven electron transport to heat 
buried layers in plastic foils but the details of the heating mechanism are not 
understood.

• A number of measurements using X-ray spectroscopy and electron 
spectrometers have been carried out to try to better understand the heating 
mechanisms and to benchmark electron transport codes under development at 
AWE.

• The time delay of heating at different depths in plastic foils has been 
investigated using X-ray spectroscopy and an ultra-fast streak camera.

• The effect of target resistivity and refluxing of electrons has been investigated.
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Generic experimental diagnostic and target setup

Time resolved and time-integrated
diagnostics were fielded.

Target mounting
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(a) Spectra with green light                    (b)    Spectra with infrared light
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Electron heating of the target not effective in the presence 
of pre-pulse.
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2ω conversion and plasma mirrors were used to mitigate pre-
pulse

0.5 -16 µm CH
2µm CH

0.15µm Al

1ω or 2ω

•Plasma mirrors were used in 1.06µm 
wavelength experiments.

Pre-pulse mitigation was important for effective heating 



6UNCLASSIFIED

2.0

1.5

1.0

0.5

0.0
2.01.81.61.4

1.0

0.8

0.6

0.4

0.2

0.0
2200200018001600

IR +plasma mirror produces similar plasma conditions to using green 
light in experiments with aluminium buried layers

IR+plasma mirror Green light

Broad 1-3 line emission indicates densities ~ 1-2g/cc.
Lyb/Heb ratio indicates high Te ~500eV

Plasma mirror and 2ω results compared.
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Heat penetration was measured using aluminium layers 
buried in parylene N plastic foils.
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Time delay in the emission of the two layers expected for

• (a) Thermal heat conduction

• (b) Coronal radiative heating enhancing the thermal conduction

• Alternative/ additional heating mechanisms

• (c) Return currents

• (d) electron refluxing

Polypropylene substrate
4, 10, 15 µm

Buried 
layer A

Buried 
layer B

laser

Heating  studies using multilayer targets 
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Temperatures inferred from analysis of the
Silicon emission are in reasonable 
agreement with those inferred from 
aluminium spectra. 

Si Lya

Si Hea

Al Lyβ
Al Lyβ

Si Lya

Si Hea

Al Lyβ

Si Lya

Si Hea

Al Lyβ

Si Hea

S-pol; 1019 W/cm2 ; 4µm separation P-pol; 1019 W/cm2 ; 15µm separation

P-pol; 1016 W/cm2 ; 4µm separation
P-pol; 5x1017 W/cm2 ; 10µm separation

Electron transport experiments with multilayer targets
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Electron transport models are being developed and will be 
incorporated into an AWE radiation-hydrodynamics code.

The target heating depends on 
return currents and the target
conductivity  σ.

jh

jc

Hot electron
current

“cold” electron
return current

Ejj hc .σ=−=

Laser
beam

§ Thor II electron transport model  
includes return current heating.

Thor II predictions of target heating v experiment
Dashed lines experiment; solid lines prediction
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The effect of conductivity change was studied using 
chlorinated plastic layer targets. 

Target 2µm PyN/1µm PyD/ 2µm PyN
PyD –parylene D 50% by weight chlorine
41J, 0.5ps 2x1019W/cm2.
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Chlorine 1s3p data indicate higher temperatures than Al, Si.

6µm PyN /1µm PyD/ 2µm PyN

20J 0.5ps ~1x1019W/cm2

2µm PyN /1µm PyD/ 2µm PyN

41J 0.5ps ~2x1019W/cm2
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Low and high spectral resolution data agree.

§ Although resolution is low (E/dE~300), the temperature inferred from the 
CsAP crystal spectrum agrees with that from the PET crystal.
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HELEN experiments have demonstrated the technique of 
long pulse shock compression and short pulse heating. 

Shock velocity ~3x106 cm/s
Ablation rate ~6x105 cm/s 
Ablation pressure ~12Mb

CPA 2w 
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1ns square
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Experimental setup schematic
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Predicted density and temperature histories for 
shock compression and short pulse heating.
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Shocked aluminium experiment streak data – Line broadening 
used to diagnose shock compression of an aluminium layer.  
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Comparison of LTE and non-LTE opacity code predictions to 
the shocked germanium data.

The shocked germanium samples are nearer LTE 
but gradients are an issue.

Gradients from radiation-hydrodynamics
450-650eV, 4g/cc

Ge 4g/cc
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Experiments to measure the electron distribution 

Aluminium
emission

Thermal
emission

Ka fluorescence

2PN/ 0.15Al/ 8PN / 15Sc/1PN

frequency

Film dataScandium
Kα α 

laser
Emergent electron spectra for targets
with different density scale-lengths

Electron 
spectrometer

Electron distribution inferred from fluorescence Electron spectrometer measurements 
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FLYCHK calculations including background hot electrons 
show these generally have little effect on the spectrum.

e

hot
hot n

n
f =

• Thot ~200keV based on Beg scaling.

• HELEN Ka measurements show 
conversion efficiency 10-4 and imply fhot
closer to 1% than 5%.

• Possible effect on Ti spectrum. Lyα/Heβ
ratio not a good temperature diagnostic.

• Al Lyβ/Heβ ratio not affected.
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Summary/conclusions

§ Electron transport experiments using buried layer targets have shown that 
target heating using ultra-short pulse lasers is not due to thermal conduction.

§ Near instantaneous heating through up to 15µm of plastic is consistent with 
the Thor2 model of hot electron collisional heating and Ohmic heating via a 
thermal return current, with Ohmic heating the dominant mechanism.

§ Initial experiments changing the target conductivity show an increased 
heating for insulator rather than metal buried layers.

§ Experimental measurements have begun to better characterise the
electron distribution in the target.



20UNCLASSIFIED

Future work

§ Experiments proposed for the TITAN laser will, if approved, continue
this work in the next year.  In the longer term studies will continue on ORION.

§ It is proposed to better characterise the electron distribution using electron
spectrometers and Kα fluorescence and possibly Heα emission.

§ It is proposed to investigate further the role of conductivity and to sample 
deeper buried layers using absorption spectroscopy.


