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• For the last decade AWE has maintained a small effort on ICF implosions and 
ignition as part of a broader plasma physics programme

• The imminent prospect of ignition at the US National Ignition Facility (NIF) has 
stimulated increased interest at AWE in a formal UK approach to ICF & IFE

• An understanding of, and the ability to model, ICF implosions and ignition is a 
core capability for a fusion programme

• In addition NIF will offer exciting opportunities to study ignition physics and 
access new experimental regimes

• A broad range of fundamental plasma physics and nuclear physics experiments 
may be possible

• This talk presents an overview of some of the implosion research undertaken 
by AWE

Introduction
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• Collaborative experiments performed with 
LANL at the Omega laser

• Thin-shell glass capsules fielded in direct 
drive with variety of gas fills

• Experiments intended to guide modelling of 
fuel dopants ahead of future applications on 
NIF.

• use as spectroscopic diagnostic            
of fuel conditions, 

• study of hydrodynamic mix 
• study NLTE physics.

• Experiments also intended to develop in-
house expertise in direct drive implosions

High-Z doped capsule experiments
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• A large database of doped capsule 
data now exists at a range of 
concentrations and dopant Z.

• Even small amount of high-Z dopant
produces significant degradation.

High-Z experiment results

• Experimentally determined ion and 
electron temperatures show transition 
to equilibrium as Kr dopant is increased
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 Clean simulation
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• Experiments have been simulated using 
Nym rad-hydrocode.

• Neutron YoC ranges over 10-35%, 
consistent with that achieved in other high 
convergence implosions

• Fall-line calculations provide a worst-case 
estimate of mix degradation

• At high dopant levels performance cannot 
be accounted for by hydrodynamic mix or 
experimental uncertainty

• Suggestive of errors in dopant modelling

Comparison to simulations
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Capsule modelling

From Wilson et al., J. Phys. 
Conf. Series 112 022015 2007.
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• A large range of diagnostics is being used 
to constrain capsule modelling

• There is some evidence that capsule 
compression is over-predicted by 
simulation:

• Proton downshift
• Self-emission images
• DT/DD neutron ratio



October 2009
7

W Garbett, AWE

• As example have assessed capsule 
sensitivity to electron-ion coupling1

• Recent theory2 suggests exchange rate 
could be in error by a factor 2 in ICF 
capsules

• Neutron and proton yields show 
different sensitivities; measuring both 
uniquely determines model

• Currently at Omega experimental 
uncertainties exceed model sensitivity

• Potential for improvement at NIF
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High-Z capsules offer a platform to study 
fundamental plasma physics

1. W J Garbett et al., J Phys Conf Series 112 022016 (2007)
2. M. Dharma-wardana Phys Rev E 64, 035401 (2001).
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• AWE were involved in early work on double 
shell capsules with LANL at Omega3

• Double shells provide an alternative non-
cryogenic route to ignition that avoids many 
complexities of the single-shell approach

• Much of our effort was aimed at explaining 
the varied performance of different double 
shell targets

• Improved understanding has allowed 
development of designs which control and 
mitigate mix

• LLNL now have credible ignition designs4

Double shell capsule experiments

3. W S Varnum et al, PRL 84, 22 (2000)
4. P Amendt et al PRL 94 (2005)
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• Simulations provide an understanding of 
double shell dynamics

• The main design challenge is to control 
the effects of mixing between the high-Z 
inner shell and the DT fuel.

• Detailed modelling was undertaken using 
the 2D Eulerian code Petra, to study the 
impact of different perturbations

• Multimode perturbations using modes up 
to 100 showed increased mix degradation 
compared to 1D models

Double shell capsule modelling
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• Various degradation mechanisms were 
explored through detailed 2D modelling

• Perturbations due to foam pore structure 
were expected to seed mix at the outer 
surface of the inner shell

• This was calculated to have a significant 
effect on capsule performance

• Effect on yield was later confirmed 
experimentally using two different types 
of foam

Double shell capsule modelling (2)

t=0.3ns

Expansion of high 
density foam regions 
during preheat phase.70
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Instability occurs along 
main shock front, not 
along material 
interfaces as before.
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• AWE has been collaborating with LANL on the development of gamma bang 
time and reaction history diagnostics for Omega and NIF

• The GCD and GRH both work by detecting 16.7MeV gamma rays from an 
alternative DT fusion reaction.

• AWE is also involved in developing the NIF neutron time-of-flight (nToF) 
diagnostics, which will provide ion temperature measurements for the ignition 
campaign.

Fusion diagnostic development

5. S.Caldwell et al., Rev. Sci. Instrum. 74, 3 (2003).
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GCD application

• Application of the GCD has been 
demonstrated in recent experiments at 
Omega

• We have used the GCD to explore the 
anomalous behaviour of 3He, reported 
in experiments by MIT6

• Our experiments reproduce the 
anomalous yield behaviour

• GCD measurements will complement 
other data to help constrain capsule 
modelling 
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6. J.R.Rygg et al. Phys Plasmas 13, (2006).
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• The GCD provides low noise, time 
resolved measurements of the fuel burn. 
(~75ps resolution after deconvolution)

• Two yield phases are apparent in all 
curves; identified as shock and 
compression burn

• Signal evolves as 3He fraction is 
increased; compression phase clearly 
reduced.

• Excellent shot-to-shot reproducibility 
gives confidence that observed features 
are real.

GCD burn history data
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• Clean simulations match initial shock phase, 
but overestimate compression phase.

• Youngs’ mix model7 predicts little yield 
degradation

• Fall-line calculation does surprisingly well 
for simple model, particularly at 36% 3He. 

GCD burn history data
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7. D.L.Youngs, Physica D 37, 270 (1989)
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Ignition Opportunities

• NIF will offer exciting opportunities to study ignition physics and access new 
experimental regimes

• AWE has begun to explore potential applications of the ignition platform:

• Physics of ignition
• Study alpha physics / fundamental plasma physics models

• Improved ICF designs
• Fast ignition, shock ignition, double shells etc

• Nuclear physics
• Cross-section measurements, exotic processes

• NLTE physics
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• NIC THD experiments may help 
constrain alpha physics models

• Recent calculations8 suggests alpha 
range could be around 30% larger 
than Spitzer theory

• This can significantly impact self-
heating; effect most obvious in 
marginal fuels

• THD experiments provide more 
comprehensive diagnostics which help 
confirm origin of effect.

THD experiments
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• Orion also offers opportunities for 
studying ICF physics

• The combination of short and long 
pulse beams is ideal for studying the 
physics of fast ignition

• Orion will be of similar size to the 
Gekko XII laser, used for the 
integrated fast ignition experiments 
of Kodama et al.

• Will allow exploration of beam 
coupling to compressed matter

Orion opportunities
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Summary

• AWE is looking to develop a more formal approach to ICF and IFE

• AWE has a demonstrated capability in modelling ICF implosions, 
which is a core capability for a fusion programme

• AWE is gaining experience in operating at NIF and is involved in
several aspects of the ignition effort

• NIF and Orion will offer opportunities to study ignition physics and 
access new experimental regimes
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