

What We've Achieved

Created a design tool: a **library** of toeholds with different reaction speeds

Simulated **3675** DNA toehold sequences

Experimentally verified the reaction speed of **10** different toehold designs

Created a **website** through which researchers can access our library

Why It Matters

By enabling designers to select DNA sequences with predictable reaction speeds, our library supports the development of:

Programmable chemical reaction networks

More reliable DNA-based logic switches

Smarter drug delivery systems

Sensitive and adaptable biosensors

Want to Learn More?

Scan the QR Code to find our full report, web-based tool, & full references!

Find Us

Principles of Biomolecular Systems Group
Department of Bioengineering
Imperial College London
Exhibition Road
London, SW7 2AZ

Acknowledgements

We would like to thank Dr. Thomas Ouldridge, Dr. Sing Ming Chan, Križan Jurinović, Alexander Dack, and all members of the Ouldridge Lab for their support and assistance on this project.

DYNAMICS BY DESIGN

Designing a Library of DNA Parts to Control the Reaction Speed of DNA Systems

IMPERIAL

Developed by:
Simi Brainch, Joseph Mustapha, Nikita James, Sofia Hospodar, Mikal Semere, Rianne Henderson, Kaixuan Huang

Motivation

Molecular circuits built from DNA can operate where electronics cannot — such as inside living organisms!

To control the output of these systems we need to know **how** DNA molecules will interact and **how fast** they will do so.

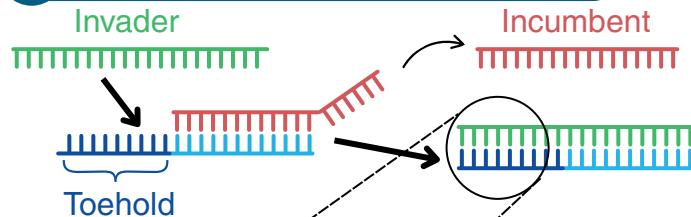
Goals

Develop a tool to enable researchers to design DNA-based circuits with **specific reaction rates** spanning several orders of magnitude.

Specifically, we aimed to:

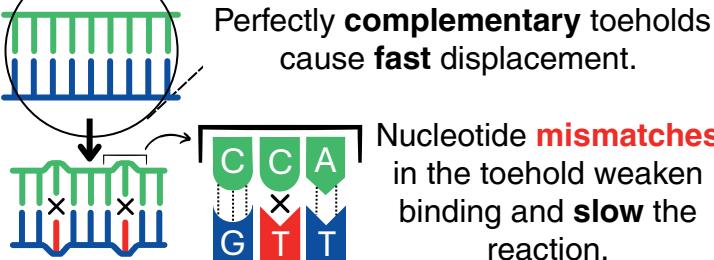
Design a tool to control the reaction speed of DNA-based systems

Experimentally verify our proposed tool's performance

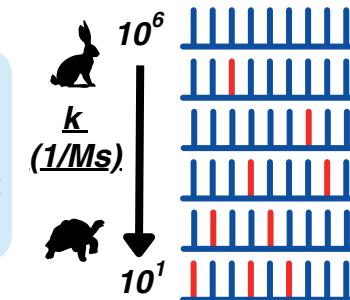


Create a platform which allows **easy access** to our tool

Building Our Idea


Many DNA circuits rely on a type of reaction known as **strand displacement**.

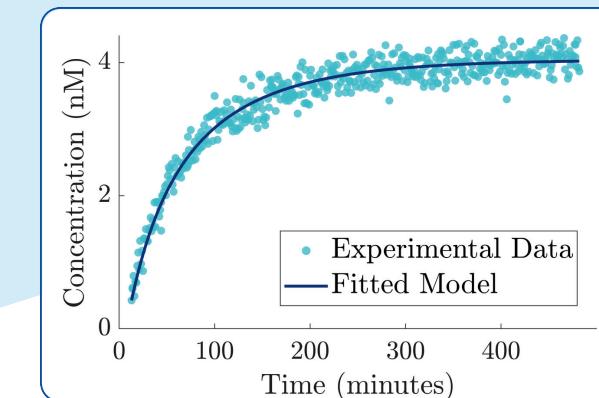
A What is DNA Strand Displacement?


An invader strand binds the **toehold** region of a DNA complex and pushes out the **incumbent** strand, which can trigger other reactions.

B How Can We Change the Speed?

Nucleotide **mismatches** in the toehold weaken binding and **slow** the reaction.

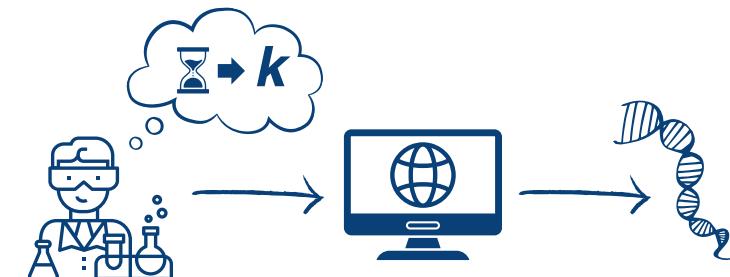
C Our Concept: A Toehold Library



Building on this concept, we designed and simulated a **library** of toehold designs and their associated **reaction rates**.

Testing Our Concept

We conducted strand displacement reactions using **several** toeholds from our library to test if our simulated reaction rates were accurate.


The progression of **each** reaction was tracked by plotting the concentration of the **incumbent** strand over time.

We fit a mathematical model to our data to recover the rate constant, k , for each toehold and verify it was as expected.

Expanding Our Platform

We built a website which takes in a **desired rate constant**, and outputs an **optimised toehold sequence**.

